• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14 
15 #define pr_fmt(fmt) "SVM: " fmt
16 
17 #include <linux/kvm_host.h>
18 
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25 
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/hashtable.h>
36 #include <linux/frame.h>
37 #include <linux/psp-sev.h>
38 #include <linux/file.h>
39 #include <linux/pagemap.h>
40 #include <linux/swap.h>
41 
42 #include <asm/apic.h>
43 #include <asm/perf_event.h>
44 #include <asm/tlbflush.h>
45 #include <asm/desc.h>
46 #include <asm/debugreg.h>
47 #include <asm/kvm_para.h>
48 #include <asm/irq_remapping.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/cpu_device_id.h>
51 
52 #include <asm/virtext.h>
53 #include "trace.h"
54 
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56 
57 MODULE_AUTHOR("Qumranet");
58 MODULE_LICENSE("GPL");
59 
60 static const struct x86_cpu_id svm_cpu_id[] = {
61 	X86_FEATURE_MATCH(X86_FEATURE_SVM),
62 	{}
63 };
64 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
65 
66 #define IOPM_ALLOC_ORDER 2
67 #define MSRPM_ALLOC_ORDER 1
68 
69 #define SEG_TYPE_LDT 2
70 #define SEG_TYPE_BUSY_TSS16 3
71 
72 #define SVM_FEATURE_LBRV           (1 <<  1)
73 #define SVM_FEATURE_SVML           (1 <<  2)
74 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
75 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
76 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
77 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
78 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
79 
80 #define SVM_AVIC_DOORBELL	0xc001011b
81 
82 #define NESTED_EXIT_HOST	0	/* Exit handled on host level */
83 #define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */
84 #define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */
85 
86 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
87 
88 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
89 #define TSC_RATIO_MIN		0x0000000000000001ULL
90 #define TSC_RATIO_MAX		0x000000ffffffffffULL
91 
92 #define AVIC_HPA_MASK	~((0xFFFULL << 52) | 0xFFF)
93 
94 /*
95  * 0xff is broadcast, so the max index allowed for physical APIC ID
96  * table is 0xfe.  APIC IDs above 0xff are reserved.
97  */
98 #define AVIC_MAX_PHYSICAL_ID_COUNT	255
99 
100 #define AVIC_UNACCEL_ACCESS_WRITE_MASK		1
101 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK		0xFF0
102 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK		0xFFFFFFFF
103 
104 /* AVIC GATAG is encoded using VM and VCPU IDs */
105 #define AVIC_VCPU_ID_BITS		8
106 #define AVIC_VCPU_ID_MASK		((1 << AVIC_VCPU_ID_BITS) - 1)
107 
108 #define AVIC_VM_ID_BITS			24
109 #define AVIC_VM_ID_NR			(1 << AVIC_VM_ID_BITS)
110 #define AVIC_VM_ID_MASK			((1 << AVIC_VM_ID_BITS) - 1)
111 
112 #define AVIC_GATAG(x, y)		(((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
113 						(y & AVIC_VCPU_ID_MASK))
114 #define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
115 #define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)
116 
117 static bool erratum_383_found __read_mostly;
118 
119 static const u32 host_save_user_msrs[] = {
120 #ifdef CONFIG_X86_64
121 	MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
122 	MSR_FS_BASE,
123 #endif
124 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
125 	MSR_TSC_AUX,
126 };
127 
128 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
129 
130 struct kvm_sev_info {
131 	bool active;		/* SEV enabled guest */
132 	unsigned int asid;	/* ASID used for this guest */
133 	unsigned int handle;	/* SEV firmware handle */
134 	int fd;			/* SEV device fd */
135 	unsigned long pages_locked; /* Number of pages locked */
136 	struct list_head regions_list;  /* List of registered regions */
137 };
138 
139 struct kvm_svm {
140 	struct kvm kvm;
141 
142 	/* Struct members for AVIC */
143 	u32 avic_vm_id;
144 	struct page *avic_logical_id_table_page;
145 	struct page *avic_physical_id_table_page;
146 	struct hlist_node hnode;
147 
148 	struct kvm_sev_info sev_info;
149 };
150 
151 struct kvm_vcpu;
152 
153 struct nested_state {
154 	struct vmcb *hsave;
155 	u64 hsave_msr;
156 	u64 vm_cr_msr;
157 	u64 vmcb;
158 
159 	/* These are the merged vectors */
160 	u32 *msrpm;
161 
162 	/* gpa pointers to the real vectors */
163 	u64 vmcb_msrpm;
164 	u64 vmcb_iopm;
165 
166 	/* A VMEXIT is required but not yet emulated */
167 	bool exit_required;
168 
169 	/* cache for intercepts of the guest */
170 	u32 intercept_cr;
171 	u32 intercept_dr;
172 	u32 intercept_exceptions;
173 	u64 intercept;
174 
175 	/* Nested Paging related state */
176 	u64 nested_cr3;
177 };
178 
179 #define MSRPM_OFFSETS	16
180 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
181 
182 /*
183  * Set osvw_len to higher value when updated Revision Guides
184  * are published and we know what the new status bits are
185  */
186 static uint64_t osvw_len = 4, osvw_status;
187 
188 struct vcpu_svm {
189 	struct kvm_vcpu vcpu;
190 	struct vmcb *vmcb;
191 	unsigned long vmcb_pa;
192 	struct svm_cpu_data *svm_data;
193 	uint64_t asid_generation;
194 	uint64_t sysenter_esp;
195 	uint64_t sysenter_eip;
196 	uint64_t tsc_aux;
197 
198 	u64 msr_decfg;
199 
200 	u64 next_rip;
201 
202 	u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
203 	struct {
204 		u16 fs;
205 		u16 gs;
206 		u16 ldt;
207 		u64 gs_base;
208 	} host;
209 
210 	u64 spec_ctrl;
211 	/*
212 	 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
213 	 * translated into the appropriate L2_CFG bits on the host to
214 	 * perform speculative control.
215 	 */
216 	u64 virt_spec_ctrl;
217 
218 	u32 *msrpm;
219 
220 	ulong nmi_iret_rip;
221 
222 	struct nested_state nested;
223 
224 	bool nmi_singlestep;
225 	u64 nmi_singlestep_guest_rflags;
226 
227 	unsigned int3_injected;
228 	unsigned long int3_rip;
229 
230 	/* cached guest cpuid flags for faster access */
231 	bool nrips_enabled	: 1;
232 
233 	u32 ldr_reg;
234 	u32 dfr_reg;
235 	struct page *avic_backing_page;
236 	u64 *avic_physical_id_cache;
237 	bool avic_is_running;
238 
239 	/*
240 	 * Per-vcpu list of struct amd_svm_iommu_ir:
241 	 * This is used mainly to store interrupt remapping information used
242 	 * when update the vcpu affinity. This avoids the need to scan for
243 	 * IRTE and try to match ga_tag in the IOMMU driver.
244 	 */
245 	struct list_head ir_list;
246 	spinlock_t ir_list_lock;
247 
248 	/* which host CPU was used for running this vcpu */
249 	unsigned int last_cpu;
250 };
251 
252 /*
253  * This is a wrapper of struct amd_iommu_ir_data.
254  */
255 struct amd_svm_iommu_ir {
256 	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
257 	void *data;		/* Storing pointer to struct amd_ir_data */
258 };
259 
260 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK	(0xFF)
261 #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT			31
262 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK		(1 << 31)
263 
264 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK	(0xFFULL)
265 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK	(0xFFFFFFFFFFULL << 12)
266 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK		(1ULL << 62)
267 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK		(1ULL << 63)
268 
269 static DEFINE_PER_CPU(u64, current_tsc_ratio);
270 #define TSC_RATIO_DEFAULT	0x0100000000ULL
271 
272 #define MSR_INVALID			0xffffffffU
273 
274 static const struct svm_direct_access_msrs {
275 	u32 index;   /* Index of the MSR */
276 	bool always; /* True if intercept is always on */
277 } direct_access_msrs[] = {
278 	{ .index = MSR_STAR,				.always = true  },
279 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
280 #ifdef CONFIG_X86_64
281 	{ .index = MSR_GS_BASE,				.always = true  },
282 	{ .index = MSR_FS_BASE,				.always = true  },
283 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
284 	{ .index = MSR_LSTAR,				.always = true  },
285 	{ .index = MSR_CSTAR,				.always = true  },
286 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
287 #endif
288 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
289 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
290 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
291 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
292 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
293 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
294 	{ .index = MSR_INVALID,				.always = false },
295 };
296 
297 /* enable NPT for AMD64 and X86 with PAE */
298 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
299 static bool npt_enabled = true;
300 #else
301 static bool npt_enabled;
302 #endif
303 
304 /*
305  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
306  * pause_filter_count: On processors that support Pause filtering(indicated
307  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
308  *	count value. On VMRUN this value is loaded into an internal counter.
309  *	Each time a pause instruction is executed, this counter is decremented
310  *	until it reaches zero at which time a #VMEXIT is generated if pause
311  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
312  *	Intercept Filtering for more details.
313  *	This also indicate if ple logic enabled.
314  *
315  * pause_filter_thresh: In addition, some processor families support advanced
316  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
317  *	the amount of time a guest is allowed to execute in a pause loop.
318  *	In this mode, a 16-bit pause filter threshold field is added in the
319  *	VMCB. The threshold value is a cycle count that is used to reset the
320  *	pause counter. As with simple pause filtering, VMRUN loads the pause
321  *	count value from VMCB into an internal counter. Then, on each pause
322  *	instruction the hardware checks the elapsed number of cycles since
323  *	the most recent pause instruction against the pause filter threshold.
324  *	If the elapsed cycle count is greater than the pause filter threshold,
325  *	then the internal pause count is reloaded from the VMCB and execution
326  *	continues. If the elapsed cycle count is less than the pause filter
327  *	threshold, then the internal pause count is decremented. If the count
328  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
329  *	triggered. If advanced pause filtering is supported and pause filter
330  *	threshold field is set to zero, the filter will operate in the simpler,
331  *	count only mode.
332  */
333 
334 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
335 module_param(pause_filter_thresh, ushort, 0444);
336 
337 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
338 module_param(pause_filter_count, ushort, 0444);
339 
340 /* Default doubles per-vcpu window every exit. */
341 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
342 module_param(pause_filter_count_grow, ushort, 0444);
343 
344 /* Default resets per-vcpu window every exit to pause_filter_count. */
345 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
346 module_param(pause_filter_count_shrink, ushort, 0444);
347 
348 /* Default is to compute the maximum so we can never overflow. */
349 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
350 module_param(pause_filter_count_max, ushort, 0444);
351 
352 /* allow nested paging (virtualized MMU) for all guests */
353 static int npt = true;
354 module_param(npt, int, S_IRUGO);
355 
356 /* allow nested virtualization in KVM/SVM */
357 static int nested = true;
358 module_param(nested, int, S_IRUGO);
359 
360 /* enable / disable AVIC */
361 static int avic;
362 #ifdef CONFIG_X86_LOCAL_APIC
363 module_param(avic, int, S_IRUGO);
364 #endif
365 
366 /* enable/disable Next RIP Save */
367 static int nrips = true;
368 module_param(nrips, int, 0444);
369 
370 /* enable/disable Virtual VMLOAD VMSAVE */
371 static int vls = true;
372 module_param(vls, int, 0444);
373 
374 /* enable/disable Virtual GIF */
375 static int vgif = true;
376 module_param(vgif, int, 0444);
377 
378 /* enable/disable SEV support */
379 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
380 module_param(sev, int, 0444);
381 
382 static bool __read_mostly dump_invalid_vmcb = 0;
383 module_param(dump_invalid_vmcb, bool, 0644);
384 
385 static u8 rsm_ins_bytes[] = "\x0f\xaa";
386 
387 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
388 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
389 static void svm_complete_interrupts(struct vcpu_svm *svm);
390 
391 static int nested_svm_exit_handled(struct vcpu_svm *svm);
392 static int nested_svm_intercept(struct vcpu_svm *svm);
393 static int nested_svm_vmexit(struct vcpu_svm *svm);
394 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
395 				      bool has_error_code, u32 error_code);
396 
397 enum {
398 	VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
399 			    pause filter count */
400 	VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
401 	VMCB_ASID,	 /* ASID */
402 	VMCB_INTR,	 /* int_ctl, int_vector */
403 	VMCB_NPT,        /* npt_en, nCR3, gPAT */
404 	VMCB_CR,	 /* CR0, CR3, CR4, EFER */
405 	VMCB_DR,         /* DR6, DR7 */
406 	VMCB_DT,         /* GDT, IDT */
407 	VMCB_SEG,        /* CS, DS, SS, ES, CPL */
408 	VMCB_CR2,        /* CR2 only */
409 	VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
410 	VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
411 			  * AVIC PHYSICAL_TABLE pointer,
412 			  * AVIC LOGICAL_TABLE pointer
413 			  */
414 	VMCB_DIRTY_MAX,
415 };
416 
417 /* TPR and CR2 are always written before VMRUN */
418 #define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2))
419 
420 #define VMCB_AVIC_APIC_BAR_MASK		0xFFFFFFFFFF000ULL
421 
422 static unsigned int max_sev_asid;
423 static unsigned int min_sev_asid;
424 static unsigned long *sev_asid_bitmap;
425 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
426 
427 struct enc_region {
428 	struct list_head list;
429 	unsigned long npages;
430 	struct page **pages;
431 	unsigned long uaddr;
432 	unsigned long size;
433 };
434 
435 
to_kvm_svm(struct kvm * kvm)436 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
437 {
438 	return container_of(kvm, struct kvm_svm, kvm);
439 }
440 
svm_sev_enabled(void)441 static inline bool svm_sev_enabled(void)
442 {
443 	return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
444 }
445 
sev_guest(struct kvm * kvm)446 static inline bool sev_guest(struct kvm *kvm)
447 {
448 #ifdef CONFIG_KVM_AMD_SEV
449 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
450 
451 	return sev->active;
452 #else
453 	return false;
454 #endif
455 }
456 
sev_get_asid(struct kvm * kvm)457 static inline int sev_get_asid(struct kvm *kvm)
458 {
459 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
460 
461 	return sev->asid;
462 }
463 
mark_all_dirty(struct vmcb * vmcb)464 static inline void mark_all_dirty(struct vmcb *vmcb)
465 {
466 	vmcb->control.clean = 0;
467 }
468 
mark_all_clean(struct vmcb * vmcb)469 static inline void mark_all_clean(struct vmcb *vmcb)
470 {
471 	vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
472 			       & ~VMCB_ALWAYS_DIRTY_MASK;
473 }
474 
mark_dirty(struct vmcb * vmcb,int bit)475 static inline void mark_dirty(struct vmcb *vmcb, int bit)
476 {
477 	vmcb->control.clean &= ~(1 << bit);
478 }
479 
to_svm(struct kvm_vcpu * vcpu)480 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
481 {
482 	return container_of(vcpu, struct vcpu_svm, vcpu);
483 }
484 
avic_update_vapic_bar(struct vcpu_svm * svm,u64 data)485 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
486 {
487 	svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
488 	mark_dirty(svm->vmcb, VMCB_AVIC);
489 }
490 
avic_vcpu_is_running(struct kvm_vcpu * vcpu)491 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
492 {
493 	struct vcpu_svm *svm = to_svm(vcpu);
494 	u64 *entry = svm->avic_physical_id_cache;
495 
496 	if (!entry)
497 		return false;
498 
499 	return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
500 }
501 
recalc_intercepts(struct vcpu_svm * svm)502 static void recalc_intercepts(struct vcpu_svm *svm)
503 {
504 	struct vmcb_control_area *c, *h;
505 	struct nested_state *g;
506 
507 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
508 
509 	if (!is_guest_mode(&svm->vcpu))
510 		return;
511 
512 	c = &svm->vmcb->control;
513 	h = &svm->nested.hsave->control;
514 	g = &svm->nested;
515 
516 	c->intercept_cr = h->intercept_cr | g->intercept_cr;
517 	c->intercept_dr = h->intercept_dr | g->intercept_dr;
518 	c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
519 	c->intercept = h->intercept | g->intercept;
520 
521 	c->intercept |= (1ULL << INTERCEPT_VMLOAD);
522 	c->intercept |= (1ULL << INTERCEPT_VMSAVE);
523 }
524 
get_host_vmcb(struct vcpu_svm * svm)525 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
526 {
527 	if (is_guest_mode(&svm->vcpu))
528 		return svm->nested.hsave;
529 	else
530 		return svm->vmcb;
531 }
532 
set_cr_intercept(struct vcpu_svm * svm,int bit)533 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
534 {
535 	struct vmcb *vmcb = get_host_vmcb(svm);
536 
537 	vmcb->control.intercept_cr |= (1U << bit);
538 
539 	recalc_intercepts(svm);
540 }
541 
clr_cr_intercept(struct vcpu_svm * svm,int bit)542 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
543 {
544 	struct vmcb *vmcb = get_host_vmcb(svm);
545 
546 	vmcb->control.intercept_cr &= ~(1U << bit);
547 
548 	recalc_intercepts(svm);
549 }
550 
is_cr_intercept(struct vcpu_svm * svm,int bit)551 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
552 {
553 	struct vmcb *vmcb = get_host_vmcb(svm);
554 
555 	return vmcb->control.intercept_cr & (1U << bit);
556 }
557 
set_dr_intercepts(struct vcpu_svm * svm)558 static inline void set_dr_intercepts(struct vcpu_svm *svm)
559 {
560 	struct vmcb *vmcb = get_host_vmcb(svm);
561 
562 	vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
563 		| (1 << INTERCEPT_DR1_READ)
564 		| (1 << INTERCEPT_DR2_READ)
565 		| (1 << INTERCEPT_DR3_READ)
566 		| (1 << INTERCEPT_DR4_READ)
567 		| (1 << INTERCEPT_DR5_READ)
568 		| (1 << INTERCEPT_DR6_READ)
569 		| (1 << INTERCEPT_DR7_READ)
570 		| (1 << INTERCEPT_DR0_WRITE)
571 		| (1 << INTERCEPT_DR1_WRITE)
572 		| (1 << INTERCEPT_DR2_WRITE)
573 		| (1 << INTERCEPT_DR3_WRITE)
574 		| (1 << INTERCEPT_DR4_WRITE)
575 		| (1 << INTERCEPT_DR5_WRITE)
576 		| (1 << INTERCEPT_DR6_WRITE)
577 		| (1 << INTERCEPT_DR7_WRITE);
578 
579 	recalc_intercepts(svm);
580 }
581 
clr_dr_intercepts(struct vcpu_svm * svm)582 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
583 {
584 	struct vmcb *vmcb = get_host_vmcb(svm);
585 
586 	vmcb->control.intercept_dr = 0;
587 
588 	recalc_intercepts(svm);
589 }
590 
set_exception_intercept(struct vcpu_svm * svm,int bit)591 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
592 {
593 	struct vmcb *vmcb = get_host_vmcb(svm);
594 
595 	vmcb->control.intercept_exceptions |= (1U << bit);
596 
597 	recalc_intercepts(svm);
598 }
599 
clr_exception_intercept(struct vcpu_svm * svm,int bit)600 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
601 {
602 	struct vmcb *vmcb = get_host_vmcb(svm);
603 
604 	vmcb->control.intercept_exceptions &= ~(1U << bit);
605 
606 	recalc_intercepts(svm);
607 }
608 
set_intercept(struct vcpu_svm * svm,int bit)609 static inline void set_intercept(struct vcpu_svm *svm, int bit)
610 {
611 	struct vmcb *vmcb = get_host_vmcb(svm);
612 
613 	vmcb->control.intercept |= (1ULL << bit);
614 
615 	recalc_intercepts(svm);
616 }
617 
clr_intercept(struct vcpu_svm * svm,int bit)618 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
619 {
620 	struct vmcb *vmcb = get_host_vmcb(svm);
621 
622 	vmcb->control.intercept &= ~(1ULL << bit);
623 
624 	recalc_intercepts(svm);
625 }
626 
vgif_enabled(struct vcpu_svm * svm)627 static inline bool vgif_enabled(struct vcpu_svm *svm)
628 {
629 	return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
630 }
631 
enable_gif(struct vcpu_svm * svm)632 static inline void enable_gif(struct vcpu_svm *svm)
633 {
634 	if (vgif_enabled(svm))
635 		svm->vmcb->control.int_ctl |= V_GIF_MASK;
636 	else
637 		svm->vcpu.arch.hflags |= HF_GIF_MASK;
638 }
639 
disable_gif(struct vcpu_svm * svm)640 static inline void disable_gif(struct vcpu_svm *svm)
641 {
642 	if (vgif_enabled(svm))
643 		svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
644 	else
645 		svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
646 }
647 
gif_set(struct vcpu_svm * svm)648 static inline bool gif_set(struct vcpu_svm *svm)
649 {
650 	if (vgif_enabled(svm))
651 		return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
652 	else
653 		return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
654 }
655 
656 static unsigned long iopm_base;
657 
658 struct kvm_ldttss_desc {
659 	u16 limit0;
660 	u16 base0;
661 	unsigned base1:8, type:5, dpl:2, p:1;
662 	unsigned limit1:4, zero0:3, g:1, base2:8;
663 	u32 base3;
664 	u32 zero1;
665 } __attribute__((packed));
666 
667 struct svm_cpu_data {
668 	int cpu;
669 
670 	u64 asid_generation;
671 	u32 max_asid;
672 	u32 next_asid;
673 	u32 min_asid;
674 	struct kvm_ldttss_desc *tss_desc;
675 
676 	struct page *save_area;
677 	struct vmcb *current_vmcb;
678 
679 	/* index = sev_asid, value = vmcb pointer */
680 	struct vmcb **sev_vmcbs;
681 };
682 
683 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
684 
685 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
686 
687 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
688 #define MSRS_RANGE_SIZE 2048
689 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
690 
svm_msrpm_offset(u32 msr)691 static u32 svm_msrpm_offset(u32 msr)
692 {
693 	u32 offset;
694 	int i;
695 
696 	for (i = 0; i < NUM_MSR_MAPS; i++) {
697 		if (msr < msrpm_ranges[i] ||
698 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
699 			continue;
700 
701 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
702 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
703 
704 		/* Now we have the u8 offset - but need the u32 offset */
705 		return offset / 4;
706 	}
707 
708 	/* MSR not in any range */
709 	return MSR_INVALID;
710 }
711 
712 #define MAX_INST_SIZE 15
713 
clgi(void)714 static inline void clgi(void)
715 {
716 	asm volatile (__ex("clgi"));
717 }
718 
stgi(void)719 static inline void stgi(void)
720 {
721 	asm volatile (__ex("stgi"));
722 }
723 
invlpga(unsigned long addr,u32 asid)724 static inline void invlpga(unsigned long addr, u32 asid)
725 {
726 	asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
727 }
728 
get_npt_level(struct kvm_vcpu * vcpu)729 static int get_npt_level(struct kvm_vcpu *vcpu)
730 {
731 #ifdef CONFIG_X86_64
732 	return PT64_ROOT_4LEVEL;
733 #else
734 	return PT32E_ROOT_LEVEL;
735 #endif
736 }
737 
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)738 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
739 {
740 	vcpu->arch.efer = efer;
741 
742 	if (!npt_enabled) {
743 		/* Shadow paging assumes NX to be available.  */
744 		efer |= EFER_NX;
745 
746 		if (!(efer & EFER_LMA))
747 			efer &= ~EFER_LME;
748 	}
749 
750 	to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
751 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
752 }
753 
is_external_interrupt(u32 info)754 static int is_external_interrupt(u32 info)
755 {
756 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
757 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
758 }
759 
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)760 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
761 {
762 	struct vcpu_svm *svm = to_svm(vcpu);
763 	u32 ret = 0;
764 
765 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
766 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
767 	return ret;
768 }
769 
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)770 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
771 {
772 	struct vcpu_svm *svm = to_svm(vcpu);
773 
774 	if (mask == 0)
775 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
776 	else
777 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
778 
779 }
780 
skip_emulated_instruction(struct kvm_vcpu * vcpu)781 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
782 {
783 	struct vcpu_svm *svm = to_svm(vcpu);
784 
785 	if (nrips && svm->vmcb->control.next_rip != 0) {
786 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
787 		svm->next_rip = svm->vmcb->control.next_rip;
788 	}
789 
790 	if (!svm->next_rip) {
791 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
792 			return 0;
793 	} else {
794 		kvm_rip_write(vcpu, svm->next_rip);
795 	}
796 	svm_set_interrupt_shadow(vcpu, 0);
797 
798 	return 1;
799 }
800 
svm_queue_exception(struct kvm_vcpu * vcpu)801 static void svm_queue_exception(struct kvm_vcpu *vcpu)
802 {
803 	struct vcpu_svm *svm = to_svm(vcpu);
804 	unsigned nr = vcpu->arch.exception.nr;
805 	bool has_error_code = vcpu->arch.exception.has_error_code;
806 	bool reinject = vcpu->arch.exception.injected;
807 	u32 error_code = vcpu->arch.exception.error_code;
808 
809 	/*
810 	 * If we are within a nested VM we'd better #VMEXIT and let the guest
811 	 * handle the exception
812 	 */
813 	if (!reinject &&
814 	    nested_svm_check_exception(svm, nr, has_error_code, error_code))
815 		return;
816 
817 	kvm_deliver_exception_payload(&svm->vcpu);
818 
819 	if (nr == BP_VECTOR && !nrips) {
820 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
821 
822 		/*
823 		 * For guest debugging where we have to reinject #BP if some
824 		 * INT3 is guest-owned:
825 		 * Emulate nRIP by moving RIP forward. Will fail if injection
826 		 * raises a fault that is not intercepted. Still better than
827 		 * failing in all cases.
828 		 */
829 		(void)skip_emulated_instruction(&svm->vcpu);
830 		rip = kvm_rip_read(&svm->vcpu);
831 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
832 		svm->int3_injected = rip - old_rip;
833 	}
834 
835 	svm->vmcb->control.event_inj = nr
836 		| SVM_EVTINJ_VALID
837 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
838 		| SVM_EVTINJ_TYPE_EXEPT;
839 	svm->vmcb->control.event_inj_err = error_code;
840 }
841 
svm_init_erratum_383(void)842 static void svm_init_erratum_383(void)
843 {
844 	u32 low, high;
845 	int err;
846 	u64 val;
847 
848 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
849 		return;
850 
851 	/* Use _safe variants to not break nested virtualization */
852 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
853 	if (err)
854 		return;
855 
856 	val |= (1ULL << 47);
857 
858 	low  = lower_32_bits(val);
859 	high = upper_32_bits(val);
860 
861 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
862 
863 	erratum_383_found = true;
864 }
865 
svm_init_osvw(struct kvm_vcpu * vcpu)866 static void svm_init_osvw(struct kvm_vcpu *vcpu)
867 {
868 	/*
869 	 * Guests should see errata 400 and 415 as fixed (assuming that
870 	 * HLT and IO instructions are intercepted).
871 	 */
872 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
873 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
874 
875 	/*
876 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
877 	 * all osvw.status bits inside that length, including bit 0 (which is
878 	 * reserved for erratum 298), are valid. However, if host processor's
879 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
880 	 * be conservative here and therefore we tell the guest that erratum 298
881 	 * is present (because we really don't know).
882 	 */
883 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
884 		vcpu->arch.osvw.status |= 1;
885 }
886 
has_svm(void)887 static int has_svm(void)
888 {
889 	const char *msg;
890 
891 	if (!cpu_has_svm(&msg)) {
892 		printk(KERN_INFO "has_svm: %s\n", msg);
893 		return 0;
894 	}
895 
896 	if (sev_active()) {
897 		pr_info("KVM is unsupported when running as an SEV guest\n");
898 		return 0;
899 	}
900 
901 	return 1;
902 }
903 
svm_hardware_disable(void)904 static void svm_hardware_disable(void)
905 {
906 	/* Make sure we clean up behind us */
907 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
908 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
909 
910 	cpu_svm_disable();
911 
912 	amd_pmu_disable_virt();
913 }
914 
svm_hardware_enable(void)915 static int svm_hardware_enable(void)
916 {
917 
918 	struct svm_cpu_data *sd;
919 	uint64_t efer;
920 	struct desc_struct *gdt;
921 	int me = raw_smp_processor_id();
922 
923 	rdmsrl(MSR_EFER, efer);
924 	if (efer & EFER_SVME)
925 		return -EBUSY;
926 
927 	if (!has_svm()) {
928 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
929 		return -EINVAL;
930 	}
931 	sd = per_cpu(svm_data, me);
932 	if (!sd) {
933 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
934 		return -EINVAL;
935 	}
936 
937 	sd->asid_generation = 1;
938 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
939 	sd->next_asid = sd->max_asid + 1;
940 	sd->min_asid = max_sev_asid + 1;
941 
942 	gdt = get_current_gdt_rw();
943 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
944 
945 	wrmsrl(MSR_EFER, efer | EFER_SVME);
946 
947 	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
948 
949 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
950 		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
951 		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
952 	}
953 
954 
955 	/*
956 	 * Get OSVW bits.
957 	 *
958 	 * Note that it is possible to have a system with mixed processor
959 	 * revisions and therefore different OSVW bits. If bits are not the same
960 	 * on different processors then choose the worst case (i.e. if erratum
961 	 * is present on one processor and not on another then assume that the
962 	 * erratum is present everywhere).
963 	 */
964 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
965 		uint64_t len, status = 0;
966 		int err;
967 
968 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
969 		if (!err)
970 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
971 						      &err);
972 
973 		if (err)
974 			osvw_status = osvw_len = 0;
975 		else {
976 			if (len < osvw_len)
977 				osvw_len = len;
978 			osvw_status |= status;
979 			osvw_status &= (1ULL << osvw_len) - 1;
980 		}
981 	} else
982 		osvw_status = osvw_len = 0;
983 
984 	svm_init_erratum_383();
985 
986 	amd_pmu_enable_virt();
987 
988 	return 0;
989 }
990 
svm_cpu_uninit(int cpu)991 static void svm_cpu_uninit(int cpu)
992 {
993 	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
994 
995 	if (!sd)
996 		return;
997 
998 	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
999 	kfree(sd->sev_vmcbs);
1000 	__free_page(sd->save_area);
1001 	kfree(sd);
1002 }
1003 
svm_cpu_init(int cpu)1004 static int svm_cpu_init(int cpu)
1005 {
1006 	struct svm_cpu_data *sd;
1007 
1008 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1009 	if (!sd)
1010 		return -ENOMEM;
1011 	sd->cpu = cpu;
1012 	sd->save_area = alloc_page(GFP_KERNEL);
1013 	if (!sd->save_area)
1014 		goto free_cpu_data;
1015 
1016 	if (svm_sev_enabled()) {
1017 		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1018 					      sizeof(void *),
1019 					      GFP_KERNEL);
1020 		if (!sd->sev_vmcbs)
1021 			goto free_save_area;
1022 	}
1023 
1024 	per_cpu(svm_data, cpu) = sd;
1025 
1026 	return 0;
1027 
1028 free_save_area:
1029 	__free_page(sd->save_area);
1030 free_cpu_data:
1031 	kfree(sd);
1032 	return -ENOMEM;
1033 
1034 }
1035 
valid_msr_intercept(u32 index)1036 static bool valid_msr_intercept(u32 index)
1037 {
1038 	int i;
1039 
1040 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1041 		if (direct_access_msrs[i].index == index)
1042 			return true;
1043 
1044 	return false;
1045 }
1046 
msr_write_intercepted(struct kvm_vcpu * vcpu,unsigned msr)1047 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1048 {
1049 	u8 bit_write;
1050 	unsigned long tmp;
1051 	u32 offset;
1052 	u32 *msrpm;
1053 
1054 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1055 				      to_svm(vcpu)->msrpm;
1056 
1057 	offset    = svm_msrpm_offset(msr);
1058 	bit_write = 2 * (msr & 0x0f) + 1;
1059 	tmp       = msrpm[offset];
1060 
1061 	BUG_ON(offset == MSR_INVALID);
1062 
1063 	return !!test_bit(bit_write,  &tmp);
1064 }
1065 
set_msr_interception(u32 * msrpm,unsigned msr,int read,int write)1066 static void set_msr_interception(u32 *msrpm, unsigned msr,
1067 				 int read, int write)
1068 {
1069 	u8 bit_read, bit_write;
1070 	unsigned long tmp;
1071 	u32 offset;
1072 
1073 	/*
1074 	 * If this warning triggers extend the direct_access_msrs list at the
1075 	 * beginning of the file
1076 	 */
1077 	WARN_ON(!valid_msr_intercept(msr));
1078 
1079 	offset    = svm_msrpm_offset(msr);
1080 	bit_read  = 2 * (msr & 0x0f);
1081 	bit_write = 2 * (msr & 0x0f) + 1;
1082 	tmp       = msrpm[offset];
1083 
1084 	BUG_ON(offset == MSR_INVALID);
1085 
1086 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
1087 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1088 
1089 	msrpm[offset] = tmp;
1090 }
1091 
svm_vcpu_init_msrpm(u32 * msrpm)1092 static void svm_vcpu_init_msrpm(u32 *msrpm)
1093 {
1094 	int i;
1095 
1096 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1097 
1098 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1099 		if (!direct_access_msrs[i].always)
1100 			continue;
1101 
1102 		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1103 	}
1104 }
1105 
add_msr_offset(u32 offset)1106 static void add_msr_offset(u32 offset)
1107 {
1108 	int i;
1109 
1110 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
1111 
1112 		/* Offset already in list? */
1113 		if (msrpm_offsets[i] == offset)
1114 			return;
1115 
1116 		/* Slot used by another offset? */
1117 		if (msrpm_offsets[i] != MSR_INVALID)
1118 			continue;
1119 
1120 		/* Add offset to list */
1121 		msrpm_offsets[i] = offset;
1122 
1123 		return;
1124 	}
1125 
1126 	/*
1127 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1128 	 * increase MSRPM_OFFSETS in this case.
1129 	 */
1130 	BUG();
1131 }
1132 
init_msrpm_offsets(void)1133 static void init_msrpm_offsets(void)
1134 {
1135 	int i;
1136 
1137 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1138 
1139 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1140 		u32 offset;
1141 
1142 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
1143 		BUG_ON(offset == MSR_INVALID);
1144 
1145 		add_msr_offset(offset);
1146 	}
1147 }
1148 
svm_enable_lbrv(struct vcpu_svm * svm)1149 static void svm_enable_lbrv(struct vcpu_svm *svm)
1150 {
1151 	u32 *msrpm = svm->msrpm;
1152 
1153 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1154 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1155 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1156 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1157 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1158 }
1159 
svm_disable_lbrv(struct vcpu_svm * svm)1160 static void svm_disable_lbrv(struct vcpu_svm *svm)
1161 {
1162 	u32 *msrpm = svm->msrpm;
1163 
1164 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1165 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1166 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1167 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1168 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1169 }
1170 
disable_nmi_singlestep(struct vcpu_svm * svm)1171 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1172 {
1173 	svm->nmi_singlestep = false;
1174 
1175 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1176 		/* Clear our flags if they were not set by the guest */
1177 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1178 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1179 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1180 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1181 	}
1182 }
1183 
1184 /* Note:
1185  * This hash table is used to map VM_ID to a struct kvm_svm,
1186  * when handling AMD IOMMU GALOG notification to schedule in
1187  * a particular vCPU.
1188  */
1189 #define SVM_VM_DATA_HASH_BITS	8
1190 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1191 static u32 next_vm_id = 0;
1192 static bool next_vm_id_wrapped = 0;
1193 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1194 
1195 /* Note:
1196  * This function is called from IOMMU driver to notify
1197  * SVM to schedule in a particular vCPU of a particular VM.
1198  */
avic_ga_log_notifier(u32 ga_tag)1199 static int avic_ga_log_notifier(u32 ga_tag)
1200 {
1201 	unsigned long flags;
1202 	struct kvm_svm *kvm_svm;
1203 	struct kvm_vcpu *vcpu = NULL;
1204 	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1205 	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1206 
1207 	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1208 
1209 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1210 	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1211 		if (kvm_svm->avic_vm_id != vm_id)
1212 			continue;
1213 		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1214 		break;
1215 	}
1216 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1217 
1218 	/* Note:
1219 	 * At this point, the IOMMU should have already set the pending
1220 	 * bit in the vAPIC backing page. So, we just need to schedule
1221 	 * in the vcpu.
1222 	 */
1223 	if (vcpu)
1224 		kvm_vcpu_wake_up(vcpu);
1225 
1226 	return 0;
1227 }
1228 
sev_hardware_setup(void)1229 static __init int sev_hardware_setup(void)
1230 {
1231 	struct sev_user_data_status *status;
1232 	int rc;
1233 
1234 	/* Maximum number of encrypted guests supported simultaneously */
1235 	max_sev_asid = cpuid_ecx(0x8000001F);
1236 
1237 	if (!max_sev_asid)
1238 		return 1;
1239 
1240 	/* Minimum ASID value that should be used for SEV guest */
1241 	min_sev_asid = cpuid_edx(0x8000001F);
1242 
1243 	/* Initialize SEV ASID bitmap */
1244 	sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1245 	if (!sev_asid_bitmap)
1246 		return 1;
1247 
1248 	status = kmalloc(sizeof(*status), GFP_KERNEL);
1249 	if (!status)
1250 		return 1;
1251 
1252 	/*
1253 	 * Check SEV platform status.
1254 	 *
1255 	 * PLATFORM_STATUS can be called in any state, if we failed to query
1256 	 * the PLATFORM status then either PSP firmware does not support SEV
1257 	 * feature or SEV firmware is dead.
1258 	 */
1259 	rc = sev_platform_status(status, NULL);
1260 	if (rc)
1261 		goto err;
1262 
1263 	pr_info("SEV supported\n");
1264 
1265 err:
1266 	kfree(status);
1267 	return rc;
1268 }
1269 
grow_ple_window(struct kvm_vcpu * vcpu)1270 static void grow_ple_window(struct kvm_vcpu *vcpu)
1271 {
1272 	struct vcpu_svm *svm = to_svm(vcpu);
1273 	struct vmcb_control_area *control = &svm->vmcb->control;
1274 	int old = control->pause_filter_count;
1275 
1276 	control->pause_filter_count = __grow_ple_window(old,
1277 							pause_filter_count,
1278 							pause_filter_count_grow,
1279 							pause_filter_count_max);
1280 
1281 	if (control->pause_filter_count != old) {
1282 		mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1283 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1284 					    control->pause_filter_count, old);
1285 	}
1286 }
1287 
shrink_ple_window(struct kvm_vcpu * vcpu)1288 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1289 {
1290 	struct vcpu_svm *svm = to_svm(vcpu);
1291 	struct vmcb_control_area *control = &svm->vmcb->control;
1292 	int old = control->pause_filter_count;
1293 
1294 	control->pause_filter_count =
1295 				__shrink_ple_window(old,
1296 						    pause_filter_count,
1297 						    pause_filter_count_shrink,
1298 						    pause_filter_count);
1299 	if (control->pause_filter_count != old) {
1300 		mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1301 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1302 					    control->pause_filter_count, old);
1303 	}
1304 }
1305 
1306 /*
1307  * The default MMIO mask is a single bit (excluding the present bit),
1308  * which could conflict with the memory encryption bit. Check for
1309  * memory encryption support and override the default MMIO mask if
1310  * memory encryption is enabled.
1311  */
svm_adjust_mmio_mask(void)1312 static __init void svm_adjust_mmio_mask(void)
1313 {
1314 	unsigned int enc_bit, mask_bit;
1315 	u64 msr, mask;
1316 
1317 	/* If there is no memory encryption support, use existing mask */
1318 	if (cpuid_eax(0x80000000) < 0x8000001f)
1319 		return;
1320 
1321 	/* If memory encryption is not enabled, use existing mask */
1322 	rdmsrl(MSR_K8_SYSCFG, msr);
1323 	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
1324 		return;
1325 
1326 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
1327 	mask_bit = boot_cpu_data.x86_phys_bits;
1328 
1329 	/* Increment the mask bit if it is the same as the encryption bit */
1330 	if (enc_bit == mask_bit)
1331 		mask_bit++;
1332 
1333 	/*
1334 	 * If the mask bit location is below 52, then some bits above the
1335 	 * physical addressing limit will always be reserved, so use the
1336 	 * rsvd_bits() function to generate the mask. This mask, along with
1337 	 * the present bit, will be used to generate a page fault with
1338 	 * PFER.RSV = 1.
1339 	 *
1340 	 * If the mask bit location is 52 (or above), then clear the mask.
1341 	 */
1342 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
1343 
1344 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
1345 }
1346 
svm_hardware_setup(void)1347 static __init int svm_hardware_setup(void)
1348 {
1349 	int cpu;
1350 	struct page *iopm_pages;
1351 	void *iopm_va;
1352 	int r;
1353 
1354 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1355 
1356 	if (!iopm_pages)
1357 		return -ENOMEM;
1358 
1359 	iopm_va = page_address(iopm_pages);
1360 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1361 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1362 
1363 	init_msrpm_offsets();
1364 
1365 	if (boot_cpu_has(X86_FEATURE_NX))
1366 		kvm_enable_efer_bits(EFER_NX);
1367 
1368 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1369 		kvm_enable_efer_bits(EFER_FFXSR);
1370 
1371 	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1372 		kvm_has_tsc_control = true;
1373 		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1374 		kvm_tsc_scaling_ratio_frac_bits = 32;
1375 	}
1376 
1377 	/* Check for pause filtering support */
1378 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1379 		pause_filter_count = 0;
1380 		pause_filter_thresh = 0;
1381 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1382 		pause_filter_thresh = 0;
1383 	}
1384 
1385 	if (nested) {
1386 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1387 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1388 	}
1389 
1390 	if (sev) {
1391 		if (boot_cpu_has(X86_FEATURE_SEV) &&
1392 		    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1393 			r = sev_hardware_setup();
1394 			if (r)
1395 				sev = false;
1396 		} else {
1397 			sev = false;
1398 		}
1399 	}
1400 
1401 	svm_adjust_mmio_mask();
1402 
1403 	for_each_possible_cpu(cpu) {
1404 		r = svm_cpu_init(cpu);
1405 		if (r)
1406 			goto err;
1407 	}
1408 
1409 	if (!boot_cpu_has(X86_FEATURE_NPT))
1410 		npt_enabled = false;
1411 
1412 	if (npt_enabled && !npt) {
1413 		printk(KERN_INFO "kvm: Nested Paging disabled\n");
1414 		npt_enabled = false;
1415 	}
1416 
1417 	if (npt_enabled) {
1418 		printk(KERN_INFO "kvm: Nested Paging enabled\n");
1419 		kvm_enable_tdp();
1420 	} else
1421 		kvm_disable_tdp();
1422 
1423 	if (nrips) {
1424 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
1425 			nrips = false;
1426 	}
1427 
1428 	if (avic) {
1429 		if (!npt_enabled ||
1430 		    !boot_cpu_has(X86_FEATURE_AVIC) ||
1431 		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1432 			avic = false;
1433 		} else {
1434 			pr_info("AVIC enabled\n");
1435 
1436 			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1437 		}
1438 	}
1439 
1440 	if (vls) {
1441 		if (!npt_enabled ||
1442 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1443 		    !IS_ENABLED(CONFIG_X86_64)) {
1444 			vls = false;
1445 		} else {
1446 			pr_info("Virtual VMLOAD VMSAVE supported\n");
1447 		}
1448 	}
1449 
1450 	vgif = false; /* Disabled for CVE-2021-3653 */
1451 
1452 	return 0;
1453 
1454 err:
1455 	__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1456 	iopm_base = 0;
1457 	return r;
1458 }
1459 
svm_hardware_unsetup(void)1460 static __exit void svm_hardware_unsetup(void)
1461 {
1462 	int cpu;
1463 
1464 	if (svm_sev_enabled())
1465 		bitmap_free(sev_asid_bitmap);
1466 
1467 	for_each_possible_cpu(cpu)
1468 		svm_cpu_uninit(cpu);
1469 
1470 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1471 	iopm_base = 0;
1472 }
1473 
init_seg(struct vmcb_seg * seg)1474 static void init_seg(struct vmcb_seg *seg)
1475 {
1476 	seg->selector = 0;
1477 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1478 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1479 	seg->limit = 0xffff;
1480 	seg->base = 0;
1481 }
1482 
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1483 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1484 {
1485 	seg->selector = 0;
1486 	seg->attrib = SVM_SELECTOR_P_MASK | type;
1487 	seg->limit = 0xffff;
1488 	seg->base = 0;
1489 }
1490 
svm_read_l1_tsc_offset(struct kvm_vcpu * vcpu)1491 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1492 {
1493 	struct vcpu_svm *svm = to_svm(vcpu);
1494 
1495 	if (is_guest_mode(vcpu))
1496 		return svm->nested.hsave->control.tsc_offset;
1497 
1498 	return vcpu->arch.tsc_offset;
1499 }
1500 
svm_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1501 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1502 {
1503 	struct vcpu_svm *svm = to_svm(vcpu);
1504 	u64 g_tsc_offset = 0;
1505 
1506 	if (is_guest_mode(vcpu)) {
1507 		/* Write L1's TSC offset.  */
1508 		g_tsc_offset = svm->vmcb->control.tsc_offset -
1509 			       svm->nested.hsave->control.tsc_offset;
1510 		svm->nested.hsave->control.tsc_offset = offset;
1511 	}
1512 
1513 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1514 				   svm->vmcb->control.tsc_offset - g_tsc_offset,
1515 				   offset);
1516 
1517 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1518 
1519 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1520 	return svm->vmcb->control.tsc_offset;
1521 }
1522 
avic_init_vmcb(struct vcpu_svm * svm)1523 static void avic_init_vmcb(struct vcpu_svm *svm)
1524 {
1525 	struct vmcb *vmcb = svm->vmcb;
1526 	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1527 	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1528 	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1529 	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1530 
1531 	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1532 	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1533 	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1534 	vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1535 	vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1536 }
1537 
init_vmcb(struct vcpu_svm * svm)1538 static void init_vmcb(struct vcpu_svm *svm)
1539 {
1540 	struct vmcb_control_area *control = &svm->vmcb->control;
1541 	struct vmcb_save_area *save = &svm->vmcb->save;
1542 
1543 	svm->vcpu.arch.hflags = 0;
1544 
1545 	set_cr_intercept(svm, INTERCEPT_CR0_READ);
1546 	set_cr_intercept(svm, INTERCEPT_CR3_READ);
1547 	set_cr_intercept(svm, INTERCEPT_CR4_READ);
1548 	set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1549 	set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1550 	set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1551 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
1552 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1553 
1554 	set_dr_intercepts(svm);
1555 
1556 	set_exception_intercept(svm, PF_VECTOR);
1557 	set_exception_intercept(svm, UD_VECTOR);
1558 	set_exception_intercept(svm, MC_VECTOR);
1559 	set_exception_intercept(svm, AC_VECTOR);
1560 	set_exception_intercept(svm, DB_VECTOR);
1561 	/*
1562 	 * Guest access to VMware backdoor ports could legitimately
1563 	 * trigger #GP because of TSS I/O permission bitmap.
1564 	 * We intercept those #GP and allow access to them anyway
1565 	 * as VMware does.
1566 	 */
1567 	if (enable_vmware_backdoor)
1568 		set_exception_intercept(svm, GP_VECTOR);
1569 
1570 	set_intercept(svm, INTERCEPT_INTR);
1571 	set_intercept(svm, INTERCEPT_NMI);
1572 	set_intercept(svm, INTERCEPT_SMI);
1573 	set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1574 	set_intercept(svm, INTERCEPT_RDPMC);
1575 	set_intercept(svm, INTERCEPT_CPUID);
1576 	set_intercept(svm, INTERCEPT_INVD);
1577 	set_intercept(svm, INTERCEPT_INVLPG);
1578 	set_intercept(svm, INTERCEPT_INVLPGA);
1579 	set_intercept(svm, INTERCEPT_IOIO_PROT);
1580 	set_intercept(svm, INTERCEPT_MSR_PROT);
1581 	set_intercept(svm, INTERCEPT_TASK_SWITCH);
1582 	set_intercept(svm, INTERCEPT_SHUTDOWN);
1583 	set_intercept(svm, INTERCEPT_VMRUN);
1584 	set_intercept(svm, INTERCEPT_VMMCALL);
1585 	set_intercept(svm, INTERCEPT_VMLOAD);
1586 	set_intercept(svm, INTERCEPT_VMSAVE);
1587 	set_intercept(svm, INTERCEPT_STGI);
1588 	set_intercept(svm, INTERCEPT_CLGI);
1589 	set_intercept(svm, INTERCEPT_SKINIT);
1590 	set_intercept(svm, INTERCEPT_WBINVD);
1591 	set_intercept(svm, INTERCEPT_XSETBV);
1592 	set_intercept(svm, INTERCEPT_RDPRU);
1593 	set_intercept(svm, INTERCEPT_RSM);
1594 
1595 	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1596 		set_intercept(svm, INTERCEPT_MONITOR);
1597 		set_intercept(svm, INTERCEPT_MWAIT);
1598 	}
1599 
1600 	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1601 		set_intercept(svm, INTERCEPT_HLT);
1602 
1603 	control->iopm_base_pa = __sme_set(iopm_base);
1604 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1605 	control->int_ctl = V_INTR_MASKING_MASK;
1606 
1607 	init_seg(&save->es);
1608 	init_seg(&save->ss);
1609 	init_seg(&save->ds);
1610 	init_seg(&save->fs);
1611 	init_seg(&save->gs);
1612 
1613 	save->cs.selector = 0xf000;
1614 	save->cs.base = 0xffff0000;
1615 	/* Executable/Readable Code Segment */
1616 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1617 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1618 	save->cs.limit = 0xffff;
1619 
1620 	save->gdtr.limit = 0xffff;
1621 	save->idtr.limit = 0xffff;
1622 
1623 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1624 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1625 
1626 	svm_set_efer(&svm->vcpu, 0);
1627 	save->dr6 = 0xffff0ff0;
1628 	kvm_set_rflags(&svm->vcpu, 2);
1629 	save->rip = 0x0000fff0;
1630 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1631 
1632 	/*
1633 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1634 	 * It also updates the guest-visible cr0 value.
1635 	 */
1636 	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1637 	kvm_mmu_reset_context(&svm->vcpu);
1638 
1639 	save->cr4 = X86_CR4_PAE;
1640 	/* rdx = ?? */
1641 
1642 	if (npt_enabled) {
1643 		/* Setup VMCB for Nested Paging */
1644 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1645 		clr_intercept(svm, INTERCEPT_INVLPG);
1646 		clr_exception_intercept(svm, PF_VECTOR);
1647 		clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1648 		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1649 		save->g_pat = svm->vcpu.arch.pat;
1650 		save->cr3 = 0;
1651 		save->cr4 = 0;
1652 	}
1653 	svm->asid_generation = 0;
1654 
1655 	svm->nested.vmcb = 0;
1656 	svm->vcpu.arch.hflags = 0;
1657 
1658 	if (pause_filter_count) {
1659 		control->pause_filter_count = pause_filter_count;
1660 		if (pause_filter_thresh)
1661 			control->pause_filter_thresh = pause_filter_thresh;
1662 		set_intercept(svm, INTERCEPT_PAUSE);
1663 	} else {
1664 		clr_intercept(svm, INTERCEPT_PAUSE);
1665 	}
1666 
1667 	if (kvm_vcpu_apicv_active(&svm->vcpu))
1668 		avic_init_vmcb(svm);
1669 
1670 	/*
1671 	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1672 	 * in VMCB and clear intercepts to avoid #VMEXIT.
1673 	 */
1674 	if (vls) {
1675 		clr_intercept(svm, INTERCEPT_VMLOAD);
1676 		clr_intercept(svm, INTERCEPT_VMSAVE);
1677 		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1678 	}
1679 
1680 	if (vgif) {
1681 		clr_intercept(svm, INTERCEPT_STGI);
1682 		clr_intercept(svm, INTERCEPT_CLGI);
1683 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1684 	}
1685 
1686 	if (sev_guest(svm->vcpu.kvm)) {
1687 		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1688 		clr_exception_intercept(svm, UD_VECTOR);
1689 	}
1690 
1691 	mark_all_dirty(svm->vmcb);
1692 
1693 	enable_gif(svm);
1694 
1695 }
1696 
avic_get_physical_id_entry(struct kvm_vcpu * vcpu,unsigned int index)1697 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1698 				       unsigned int index)
1699 {
1700 	u64 *avic_physical_id_table;
1701 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1702 
1703 	if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1704 		return NULL;
1705 
1706 	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1707 
1708 	return &avic_physical_id_table[index];
1709 }
1710 
1711 /**
1712  * Note:
1713  * AVIC hardware walks the nested page table to check permissions,
1714  * but does not use the SPA address specified in the leaf page
1715  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1716  * field of the VMCB. Therefore, we set up the
1717  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1718  */
avic_init_access_page(struct kvm_vcpu * vcpu)1719 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1720 {
1721 	struct kvm *kvm = vcpu->kvm;
1722 	int ret = 0;
1723 
1724 	mutex_lock(&kvm->slots_lock);
1725 	if (kvm->arch.apic_access_page_done)
1726 		goto out;
1727 
1728 	ret = __x86_set_memory_region(kvm,
1729 				      APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1730 				      APIC_DEFAULT_PHYS_BASE,
1731 				      PAGE_SIZE);
1732 	if (ret)
1733 		goto out;
1734 
1735 	kvm->arch.apic_access_page_done = true;
1736 out:
1737 	mutex_unlock(&kvm->slots_lock);
1738 	return ret;
1739 }
1740 
avic_init_backing_page(struct kvm_vcpu * vcpu)1741 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1742 {
1743 	int ret;
1744 	u64 *entry, new_entry;
1745 	int id = vcpu->vcpu_id;
1746 	struct vcpu_svm *svm = to_svm(vcpu);
1747 
1748 	ret = avic_init_access_page(vcpu);
1749 	if (ret)
1750 		return ret;
1751 
1752 	if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1753 		return -EINVAL;
1754 
1755 	if (!svm->vcpu.arch.apic->regs)
1756 		return -EINVAL;
1757 
1758 	svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1759 
1760 	/* Setting AVIC backing page address in the phy APIC ID table */
1761 	entry = avic_get_physical_id_entry(vcpu, id);
1762 	if (!entry)
1763 		return -EINVAL;
1764 
1765 	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1766 			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1767 			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1768 	WRITE_ONCE(*entry, new_entry);
1769 
1770 	svm->avic_physical_id_cache = entry;
1771 
1772 	return 0;
1773 }
1774 
__sev_asid_free(int asid)1775 static void __sev_asid_free(int asid)
1776 {
1777 	struct svm_cpu_data *sd;
1778 	int cpu, pos;
1779 
1780 	pos = asid - 1;
1781 	clear_bit(pos, sev_asid_bitmap);
1782 
1783 	for_each_possible_cpu(cpu) {
1784 		sd = per_cpu(svm_data, cpu);
1785 		sd->sev_vmcbs[asid] = NULL;
1786 	}
1787 }
1788 
sev_asid_free(struct kvm * kvm)1789 static void sev_asid_free(struct kvm *kvm)
1790 {
1791 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1792 
1793 	__sev_asid_free(sev->asid);
1794 }
1795 
sev_decommission(unsigned int handle)1796 static void sev_decommission(unsigned int handle)
1797 {
1798 	struct sev_data_decommission *decommission;
1799 
1800 	if (!handle)
1801 		return;
1802 
1803 	decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1804 	if (!decommission)
1805 		return;
1806 
1807 	decommission->handle = handle;
1808 	sev_guest_decommission(decommission, NULL);
1809 
1810 	kfree(decommission);
1811 }
1812 
sev_unbind_asid(struct kvm * kvm,unsigned int handle)1813 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1814 {
1815 	struct sev_data_deactivate *data;
1816 
1817 	if (!handle)
1818 		return;
1819 
1820 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1821 	if (!data)
1822 		return;
1823 
1824 	/* deactivate handle */
1825 	data->handle = handle;
1826 	sev_guest_deactivate(data, NULL);
1827 
1828 	wbinvd_on_all_cpus();
1829 	sev_guest_df_flush(NULL);
1830 	kfree(data);
1831 
1832 	sev_decommission(handle);
1833 }
1834 
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,int write)1835 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1836 				    unsigned long ulen, unsigned long *n,
1837 				    int write)
1838 {
1839 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1840 	unsigned long npages, npinned, size;
1841 	unsigned long locked, lock_limit;
1842 	struct page **pages;
1843 	unsigned long first, last;
1844 
1845 	lockdep_assert_held(&kvm->lock);
1846 
1847 	if (ulen == 0 || uaddr + ulen < uaddr)
1848 		return NULL;
1849 
1850 	/* Calculate number of pages. */
1851 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1852 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1853 	npages = (last - first + 1);
1854 
1855 	locked = sev->pages_locked + npages;
1856 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1857 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1858 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1859 		return NULL;
1860 	}
1861 
1862 	/* Avoid using vmalloc for smaller buffers. */
1863 	size = npages * sizeof(struct page *);
1864 	if (size > PAGE_SIZE)
1865 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1866 				  PAGE_KERNEL);
1867 	else
1868 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
1869 
1870 	if (!pages)
1871 		return NULL;
1872 
1873 	/* Pin the user virtual address. */
1874 	npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1875 	if (npinned != npages) {
1876 		pr_err("SEV: Failure locking %lu pages.\n", npages);
1877 		goto err;
1878 	}
1879 
1880 	*n = npages;
1881 	sev->pages_locked = locked;
1882 
1883 	return pages;
1884 
1885 err:
1886 	if (npinned > 0)
1887 		release_pages(pages, npinned);
1888 
1889 	kvfree(pages);
1890 	return NULL;
1891 }
1892 
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)1893 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1894 			     unsigned long npages)
1895 {
1896 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1897 
1898 	release_pages(pages, npages);
1899 	kvfree(pages);
1900 	sev->pages_locked -= npages;
1901 }
1902 
sev_clflush_pages(struct page * pages[],unsigned long npages)1903 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1904 {
1905 	uint8_t *page_virtual;
1906 	unsigned long i;
1907 
1908 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
1909 	    pages == NULL)
1910 		return;
1911 
1912 	for (i = 0; i < npages; i++) {
1913 		page_virtual = kmap_atomic(pages[i]);
1914 		clflush_cache_range(page_virtual, PAGE_SIZE);
1915 		kunmap_atomic(page_virtual);
1916 	}
1917 }
1918 
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)1919 static void __unregister_enc_region_locked(struct kvm *kvm,
1920 					   struct enc_region *region)
1921 {
1922 	/*
1923 	 * The guest may change the memory encryption attribute from C=0 -> C=1
1924 	 * or vice versa for this memory range. Lets make sure caches are
1925 	 * flushed to ensure that guest data gets written into memory with
1926 	 * correct C-bit.
1927 	 */
1928 	sev_clflush_pages(region->pages, region->npages);
1929 
1930 	sev_unpin_memory(kvm, region->pages, region->npages);
1931 	list_del(&region->list);
1932 	kfree(region);
1933 }
1934 
svm_vm_alloc(void)1935 static struct kvm *svm_vm_alloc(void)
1936 {
1937 	struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm),
1938 					    GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1939 					    PAGE_KERNEL);
1940 
1941 	if (!kvm_svm)
1942 		return NULL;
1943 
1944 	return &kvm_svm->kvm;
1945 }
1946 
svm_vm_free(struct kvm * kvm)1947 static void svm_vm_free(struct kvm *kvm)
1948 {
1949 	vfree(to_kvm_svm(kvm));
1950 }
1951 
sev_vm_destroy(struct kvm * kvm)1952 static void sev_vm_destroy(struct kvm *kvm)
1953 {
1954 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1955 	struct list_head *head = &sev->regions_list;
1956 	struct list_head *pos, *q;
1957 
1958 	if (!sev_guest(kvm))
1959 		return;
1960 
1961 	mutex_lock(&kvm->lock);
1962 
1963 	/*
1964 	 * if userspace was terminated before unregistering the memory regions
1965 	 * then lets unpin all the registered memory.
1966 	 */
1967 	if (!list_empty(head)) {
1968 		list_for_each_safe(pos, q, head) {
1969 			__unregister_enc_region_locked(kvm,
1970 				list_entry(pos, struct enc_region, list));
1971 			cond_resched();
1972 		}
1973 	}
1974 
1975 	mutex_unlock(&kvm->lock);
1976 
1977 	sev_unbind_asid(kvm, sev->handle);
1978 	sev_asid_free(kvm);
1979 }
1980 
avic_vm_destroy(struct kvm * kvm)1981 static void avic_vm_destroy(struct kvm *kvm)
1982 {
1983 	unsigned long flags;
1984 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1985 
1986 	if (!avic)
1987 		return;
1988 
1989 	if (kvm_svm->avic_logical_id_table_page)
1990 		__free_page(kvm_svm->avic_logical_id_table_page);
1991 	if (kvm_svm->avic_physical_id_table_page)
1992 		__free_page(kvm_svm->avic_physical_id_table_page);
1993 
1994 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1995 	hash_del(&kvm_svm->hnode);
1996 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1997 }
1998 
svm_vm_destroy(struct kvm * kvm)1999 static void svm_vm_destroy(struct kvm *kvm)
2000 {
2001 	avic_vm_destroy(kvm);
2002 	sev_vm_destroy(kvm);
2003 }
2004 
avic_vm_init(struct kvm * kvm)2005 static int avic_vm_init(struct kvm *kvm)
2006 {
2007 	unsigned long flags;
2008 	int err = -ENOMEM;
2009 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
2010 	struct kvm_svm *k2;
2011 	struct page *p_page;
2012 	struct page *l_page;
2013 	u32 vm_id;
2014 
2015 	if (!avic)
2016 		return 0;
2017 
2018 	/* Allocating physical APIC ID table (4KB) */
2019 	p_page = alloc_page(GFP_KERNEL_ACCOUNT);
2020 	if (!p_page)
2021 		goto free_avic;
2022 
2023 	kvm_svm->avic_physical_id_table_page = p_page;
2024 	clear_page(page_address(p_page));
2025 
2026 	/* Allocating logical APIC ID table (4KB) */
2027 	l_page = alloc_page(GFP_KERNEL_ACCOUNT);
2028 	if (!l_page)
2029 		goto free_avic;
2030 
2031 	kvm_svm->avic_logical_id_table_page = l_page;
2032 	clear_page(page_address(l_page));
2033 
2034 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
2035  again:
2036 	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
2037 	if (vm_id == 0) { /* id is 1-based, zero is not okay */
2038 		next_vm_id_wrapped = 1;
2039 		goto again;
2040 	}
2041 	/* Is it still in use? Only possible if wrapped at least once */
2042 	if (next_vm_id_wrapped) {
2043 		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
2044 			if (k2->avic_vm_id == vm_id)
2045 				goto again;
2046 		}
2047 	}
2048 	kvm_svm->avic_vm_id = vm_id;
2049 	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
2050 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
2051 
2052 	return 0;
2053 
2054 free_avic:
2055 	avic_vm_destroy(kvm);
2056 	return err;
2057 }
2058 
2059 static inline int
avic_update_iommu_vcpu_affinity(struct kvm_vcpu * vcpu,int cpu,bool r)2060 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
2061 {
2062 	int ret = 0;
2063 	unsigned long flags;
2064 	struct amd_svm_iommu_ir *ir;
2065 	struct vcpu_svm *svm = to_svm(vcpu);
2066 
2067 	if (!kvm_arch_has_assigned_device(vcpu->kvm))
2068 		return 0;
2069 
2070 	/*
2071 	 * Here, we go through the per-vcpu ir_list to update all existing
2072 	 * interrupt remapping table entry targeting this vcpu.
2073 	 */
2074 	spin_lock_irqsave(&svm->ir_list_lock, flags);
2075 
2076 	if (list_empty(&svm->ir_list))
2077 		goto out;
2078 
2079 	list_for_each_entry(ir, &svm->ir_list, node) {
2080 		ret = amd_iommu_update_ga(cpu, r, ir->data);
2081 		if (ret)
2082 			break;
2083 	}
2084 out:
2085 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2086 	return ret;
2087 }
2088 
avic_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2089 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2090 {
2091 	u64 entry;
2092 	/* ID = 0xff (broadcast), ID > 0xff (reserved) */
2093 	int h_physical_id = kvm_cpu_get_apicid(cpu);
2094 	struct vcpu_svm *svm = to_svm(vcpu);
2095 
2096 	if (!kvm_vcpu_apicv_active(vcpu))
2097 		return;
2098 
2099 	/*
2100 	 * Since the host physical APIC id is 8 bits,
2101 	 * we can support host APIC ID upto 255.
2102 	 */
2103 	if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
2104 		return;
2105 
2106 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
2107 	WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2108 
2109 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2110 	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2111 
2112 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2113 	if (svm->avic_is_running)
2114 		entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2115 
2116 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2117 	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2118 					svm->avic_is_running);
2119 }
2120 
avic_vcpu_put(struct kvm_vcpu * vcpu)2121 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2122 {
2123 	u64 entry;
2124 	struct vcpu_svm *svm = to_svm(vcpu);
2125 
2126 	if (!kvm_vcpu_apicv_active(vcpu))
2127 		return;
2128 
2129 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
2130 	if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2131 		avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2132 
2133 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2134 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2135 }
2136 
2137 /**
2138  * This function is called during VCPU halt/unhalt.
2139  */
avic_set_running(struct kvm_vcpu * vcpu,bool is_run)2140 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2141 {
2142 	struct vcpu_svm *svm = to_svm(vcpu);
2143 
2144 	svm->avic_is_running = is_run;
2145 	if (is_run)
2146 		avic_vcpu_load(vcpu, vcpu->cpu);
2147 	else
2148 		avic_vcpu_put(vcpu);
2149 }
2150 
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)2151 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2152 {
2153 	struct vcpu_svm *svm = to_svm(vcpu);
2154 	u32 dummy;
2155 	u32 eax = 1;
2156 
2157 	vcpu->arch.microcode_version = 0x01000065;
2158 	svm->spec_ctrl = 0;
2159 	svm->virt_spec_ctrl = 0;
2160 
2161 	if (!init_event) {
2162 		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2163 					   MSR_IA32_APICBASE_ENABLE;
2164 		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2165 			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2166 	}
2167 	init_vmcb(svm);
2168 
2169 	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2170 	kvm_rdx_write(vcpu, eax);
2171 
2172 	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2173 		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2174 }
2175 
avic_init_vcpu(struct vcpu_svm * svm)2176 static int avic_init_vcpu(struct vcpu_svm *svm)
2177 {
2178 	int ret;
2179 
2180 	if (!kvm_vcpu_apicv_active(&svm->vcpu))
2181 		return 0;
2182 
2183 	ret = avic_init_backing_page(&svm->vcpu);
2184 	if (ret)
2185 		return ret;
2186 
2187 	INIT_LIST_HEAD(&svm->ir_list);
2188 	spin_lock_init(&svm->ir_list_lock);
2189 	svm->dfr_reg = APIC_DFR_FLAT;
2190 
2191 	return ret;
2192 }
2193 
svm_create_vcpu(struct kvm * kvm,unsigned int id)2194 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2195 {
2196 	struct vcpu_svm *svm;
2197 	struct page *page;
2198 	struct page *msrpm_pages;
2199 	struct page *hsave_page;
2200 	struct page *nested_msrpm_pages;
2201 	int err;
2202 
2203 	BUILD_BUG_ON_MSG(offsetof(struct vcpu_svm, vcpu) != 0,
2204 		"struct kvm_vcpu must be at offset 0 for arch usercopy region");
2205 
2206 	svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
2207 	if (!svm) {
2208 		err = -ENOMEM;
2209 		goto out;
2210 	}
2211 
2212 	svm->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
2213 						     GFP_KERNEL_ACCOUNT);
2214 	if (!svm->vcpu.arch.user_fpu) {
2215 		printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
2216 		err = -ENOMEM;
2217 		goto free_partial_svm;
2218 	}
2219 
2220 	svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
2221 						     GFP_KERNEL_ACCOUNT);
2222 	if (!svm->vcpu.arch.guest_fpu) {
2223 		printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
2224 		err = -ENOMEM;
2225 		goto free_user_fpu;
2226 	}
2227 
2228 	err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2229 	if (err)
2230 		goto free_svm;
2231 
2232 	err = -ENOMEM;
2233 	page = alloc_page(GFP_KERNEL_ACCOUNT);
2234 	if (!page)
2235 		goto uninit;
2236 
2237 	msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2238 	if (!msrpm_pages)
2239 		goto free_page1;
2240 
2241 	nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2242 	if (!nested_msrpm_pages)
2243 		goto free_page2;
2244 
2245 	hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
2246 	if (!hsave_page)
2247 		goto free_page3;
2248 
2249 	err = avic_init_vcpu(svm);
2250 	if (err)
2251 		goto free_page4;
2252 
2253 	/* We initialize this flag to true to make sure that the is_running
2254 	 * bit would be set the first time the vcpu is loaded.
2255 	 */
2256 	svm->avic_is_running = true;
2257 
2258 	svm->nested.hsave = page_address(hsave_page);
2259 
2260 	svm->msrpm = page_address(msrpm_pages);
2261 	svm_vcpu_init_msrpm(svm->msrpm);
2262 
2263 	svm->nested.msrpm = page_address(nested_msrpm_pages);
2264 	svm_vcpu_init_msrpm(svm->nested.msrpm);
2265 
2266 	svm->vmcb = page_address(page);
2267 	clear_page(svm->vmcb);
2268 	svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2269 	svm->asid_generation = 0;
2270 	init_vmcb(svm);
2271 
2272 	svm_init_osvw(&svm->vcpu);
2273 
2274 	return &svm->vcpu;
2275 
2276 free_page4:
2277 	__free_page(hsave_page);
2278 free_page3:
2279 	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2280 free_page2:
2281 	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2282 free_page1:
2283 	__free_page(page);
2284 uninit:
2285 	kvm_vcpu_uninit(&svm->vcpu);
2286 free_svm:
2287 	kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2288 free_user_fpu:
2289 	kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2290 free_partial_svm:
2291 	kmem_cache_free(kvm_vcpu_cache, svm);
2292 out:
2293 	return ERR_PTR(err);
2294 }
2295 
svm_clear_current_vmcb(struct vmcb * vmcb)2296 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2297 {
2298 	int i;
2299 
2300 	for_each_online_cpu(i)
2301 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2302 }
2303 
svm_free_vcpu(struct kvm_vcpu * vcpu)2304 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2305 {
2306 	struct vcpu_svm *svm = to_svm(vcpu);
2307 
2308 	/*
2309 	 * The vmcb page can be recycled, causing a false negative in
2310 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
2311 	 * vmcb page recorded as its current vmcb.
2312 	 */
2313 	svm_clear_current_vmcb(svm->vmcb);
2314 
2315 	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2316 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2317 	__free_page(virt_to_page(svm->nested.hsave));
2318 	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2319 	kvm_vcpu_uninit(vcpu);
2320 	kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2321 	kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2322 	kmem_cache_free(kvm_vcpu_cache, svm);
2323 }
2324 
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2325 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2326 {
2327 	struct vcpu_svm *svm = to_svm(vcpu);
2328 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2329 	int i;
2330 
2331 	if (unlikely(cpu != vcpu->cpu)) {
2332 		svm->asid_generation = 0;
2333 		mark_all_dirty(svm->vmcb);
2334 	}
2335 
2336 #ifdef CONFIG_X86_64
2337 	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2338 #endif
2339 	savesegment(fs, svm->host.fs);
2340 	savesegment(gs, svm->host.gs);
2341 	svm->host.ldt = kvm_read_ldt();
2342 
2343 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2344 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2345 
2346 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2347 		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2348 		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2349 			__this_cpu_write(current_tsc_ratio, tsc_ratio);
2350 			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2351 		}
2352 	}
2353 	/* This assumes that the kernel never uses MSR_TSC_AUX */
2354 	if (static_cpu_has(X86_FEATURE_RDTSCP))
2355 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2356 
2357 	if (sd->current_vmcb != svm->vmcb) {
2358 		sd->current_vmcb = svm->vmcb;
2359 		indirect_branch_prediction_barrier();
2360 	}
2361 	avic_vcpu_load(vcpu, cpu);
2362 }
2363 
svm_vcpu_put(struct kvm_vcpu * vcpu)2364 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2365 {
2366 	struct vcpu_svm *svm = to_svm(vcpu);
2367 	int i;
2368 
2369 	avic_vcpu_put(vcpu);
2370 
2371 	++vcpu->stat.host_state_reload;
2372 	kvm_load_ldt(svm->host.ldt);
2373 #ifdef CONFIG_X86_64
2374 	loadsegment(fs, svm->host.fs);
2375 	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2376 	load_gs_index(svm->host.gs);
2377 #else
2378 #ifdef CONFIG_X86_32_LAZY_GS
2379 	loadsegment(gs, svm->host.gs);
2380 #endif
2381 #endif
2382 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2383 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2384 }
2385 
svm_vcpu_blocking(struct kvm_vcpu * vcpu)2386 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2387 {
2388 	avic_set_running(vcpu, false);
2389 }
2390 
svm_vcpu_unblocking(struct kvm_vcpu * vcpu)2391 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2392 {
2393 	avic_set_running(vcpu, true);
2394 }
2395 
svm_get_rflags(struct kvm_vcpu * vcpu)2396 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2397 {
2398 	struct vcpu_svm *svm = to_svm(vcpu);
2399 	unsigned long rflags = svm->vmcb->save.rflags;
2400 
2401 	if (svm->nmi_singlestep) {
2402 		/* Hide our flags if they were not set by the guest */
2403 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2404 			rflags &= ~X86_EFLAGS_TF;
2405 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2406 			rflags &= ~X86_EFLAGS_RF;
2407 	}
2408 	return rflags;
2409 }
2410 
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)2411 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2412 {
2413 	if (to_svm(vcpu)->nmi_singlestep)
2414 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2415 
2416        /*
2417         * Any change of EFLAGS.VM is accompanied by a reload of SS
2418         * (caused by either a task switch or an inter-privilege IRET),
2419         * so we do not need to update the CPL here.
2420         */
2421 	to_svm(vcpu)->vmcb->save.rflags = rflags;
2422 }
2423 
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2424 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2425 {
2426 	switch (reg) {
2427 	case VCPU_EXREG_PDPTR:
2428 		BUG_ON(!npt_enabled);
2429 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2430 		break;
2431 	default:
2432 		BUG();
2433 	}
2434 }
2435 
svm_set_vintr(struct vcpu_svm * svm)2436 static void svm_set_vintr(struct vcpu_svm *svm)
2437 {
2438 	set_intercept(svm, INTERCEPT_VINTR);
2439 }
2440 
svm_clear_vintr(struct vcpu_svm * svm)2441 static void svm_clear_vintr(struct vcpu_svm *svm)
2442 {
2443 	clr_intercept(svm, INTERCEPT_VINTR);
2444 }
2445 
svm_seg(struct kvm_vcpu * vcpu,int seg)2446 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2447 {
2448 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2449 
2450 	switch (seg) {
2451 	case VCPU_SREG_CS: return &save->cs;
2452 	case VCPU_SREG_DS: return &save->ds;
2453 	case VCPU_SREG_ES: return &save->es;
2454 	case VCPU_SREG_FS: return &save->fs;
2455 	case VCPU_SREG_GS: return &save->gs;
2456 	case VCPU_SREG_SS: return &save->ss;
2457 	case VCPU_SREG_TR: return &save->tr;
2458 	case VCPU_SREG_LDTR: return &save->ldtr;
2459 	}
2460 	BUG();
2461 	return NULL;
2462 }
2463 
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)2464 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2465 {
2466 	struct vmcb_seg *s = svm_seg(vcpu, seg);
2467 
2468 	return s->base;
2469 }
2470 
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)2471 static void svm_get_segment(struct kvm_vcpu *vcpu,
2472 			    struct kvm_segment *var, int seg)
2473 {
2474 	struct vmcb_seg *s = svm_seg(vcpu, seg);
2475 
2476 	var->base = s->base;
2477 	var->limit = s->limit;
2478 	var->selector = s->selector;
2479 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2480 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2481 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2482 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2483 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2484 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2485 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2486 
2487 	/*
2488 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2489 	 * However, the SVM spec states that the G bit is not observed by the
2490 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2491 	 * So let's synthesize a legal G bit for all segments, this helps
2492 	 * running KVM nested. It also helps cross-vendor migration, because
2493 	 * Intel's vmentry has a check on the 'G' bit.
2494 	 */
2495 	var->g = s->limit > 0xfffff;
2496 
2497 	/*
2498 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
2499 	 * for cross vendor migration purposes by "not present"
2500 	 */
2501 	var->unusable = !var->present;
2502 
2503 	switch (seg) {
2504 	case VCPU_SREG_TR:
2505 		/*
2506 		 * Work around a bug where the busy flag in the tr selector
2507 		 * isn't exposed
2508 		 */
2509 		var->type |= 0x2;
2510 		break;
2511 	case VCPU_SREG_DS:
2512 	case VCPU_SREG_ES:
2513 	case VCPU_SREG_FS:
2514 	case VCPU_SREG_GS:
2515 		/*
2516 		 * The accessed bit must always be set in the segment
2517 		 * descriptor cache, although it can be cleared in the
2518 		 * descriptor, the cached bit always remains at 1. Since
2519 		 * Intel has a check on this, set it here to support
2520 		 * cross-vendor migration.
2521 		 */
2522 		if (!var->unusable)
2523 			var->type |= 0x1;
2524 		break;
2525 	case VCPU_SREG_SS:
2526 		/*
2527 		 * On AMD CPUs sometimes the DB bit in the segment
2528 		 * descriptor is left as 1, although the whole segment has
2529 		 * been made unusable. Clear it here to pass an Intel VMX
2530 		 * entry check when cross vendor migrating.
2531 		 */
2532 		if (var->unusable)
2533 			var->db = 0;
2534 		/* This is symmetric with svm_set_segment() */
2535 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2536 		break;
2537 	}
2538 }
2539 
svm_get_cpl(struct kvm_vcpu * vcpu)2540 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2541 {
2542 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2543 
2544 	return save->cpl;
2545 }
2546 
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2547 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2548 {
2549 	struct vcpu_svm *svm = to_svm(vcpu);
2550 
2551 	dt->size = svm->vmcb->save.idtr.limit;
2552 	dt->address = svm->vmcb->save.idtr.base;
2553 }
2554 
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2555 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2556 {
2557 	struct vcpu_svm *svm = to_svm(vcpu);
2558 
2559 	svm->vmcb->save.idtr.limit = dt->size;
2560 	svm->vmcb->save.idtr.base = dt->address ;
2561 	mark_dirty(svm->vmcb, VMCB_DT);
2562 }
2563 
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2564 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2565 {
2566 	struct vcpu_svm *svm = to_svm(vcpu);
2567 
2568 	dt->size = svm->vmcb->save.gdtr.limit;
2569 	dt->address = svm->vmcb->save.gdtr.base;
2570 }
2571 
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2572 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2573 {
2574 	struct vcpu_svm *svm = to_svm(vcpu);
2575 
2576 	svm->vmcb->save.gdtr.limit = dt->size;
2577 	svm->vmcb->save.gdtr.base = dt->address ;
2578 	mark_dirty(svm->vmcb, VMCB_DT);
2579 }
2580 
svm_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)2581 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2582 {
2583 }
2584 
svm_decache_cr3(struct kvm_vcpu * vcpu)2585 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2586 {
2587 }
2588 
svm_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)2589 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2590 {
2591 }
2592 
update_cr0_intercept(struct vcpu_svm * svm)2593 static void update_cr0_intercept(struct vcpu_svm *svm)
2594 {
2595 	ulong gcr0 = svm->vcpu.arch.cr0;
2596 	u64 *hcr0 = &svm->vmcb->save.cr0;
2597 
2598 	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2599 		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
2600 
2601 	mark_dirty(svm->vmcb, VMCB_CR);
2602 
2603 	if (gcr0 == *hcr0) {
2604 		clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2605 		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2606 	} else {
2607 		set_cr_intercept(svm, INTERCEPT_CR0_READ);
2608 		set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2609 	}
2610 }
2611 
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)2612 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2613 {
2614 	struct vcpu_svm *svm = to_svm(vcpu);
2615 
2616 #ifdef CONFIG_X86_64
2617 	if (vcpu->arch.efer & EFER_LME) {
2618 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2619 			vcpu->arch.efer |= EFER_LMA;
2620 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2621 		}
2622 
2623 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2624 			vcpu->arch.efer &= ~EFER_LMA;
2625 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2626 		}
2627 	}
2628 #endif
2629 	vcpu->arch.cr0 = cr0;
2630 
2631 	if (!npt_enabled)
2632 		cr0 |= X86_CR0_PG | X86_CR0_WP;
2633 
2634 	/*
2635 	 * re-enable caching here because the QEMU bios
2636 	 * does not do it - this results in some delay at
2637 	 * reboot
2638 	 */
2639 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2640 		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2641 	svm->vmcb->save.cr0 = cr0;
2642 	mark_dirty(svm->vmcb, VMCB_CR);
2643 	update_cr0_intercept(svm);
2644 }
2645 
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)2646 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2647 {
2648 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2649 	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2650 
2651 	if (cr4 & X86_CR4_VMXE)
2652 		return 1;
2653 
2654 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2655 		svm_flush_tlb(vcpu, true);
2656 
2657 	vcpu->arch.cr4 = cr4;
2658 	if (!npt_enabled)
2659 		cr4 |= X86_CR4_PAE;
2660 	cr4 |= host_cr4_mce;
2661 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
2662 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2663 	return 0;
2664 }
2665 
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)2666 static void svm_set_segment(struct kvm_vcpu *vcpu,
2667 			    struct kvm_segment *var, int seg)
2668 {
2669 	struct vcpu_svm *svm = to_svm(vcpu);
2670 	struct vmcb_seg *s = svm_seg(vcpu, seg);
2671 
2672 	s->base = var->base;
2673 	s->limit = var->limit;
2674 	s->selector = var->selector;
2675 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2676 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2677 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2678 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2679 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2680 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2681 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2682 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2683 
2684 	/*
2685 	 * This is always accurate, except if SYSRET returned to a segment
2686 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
2687 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2688 	 * would entail passing the CPL to userspace and back.
2689 	 */
2690 	if (seg == VCPU_SREG_SS)
2691 		/* This is symmetric with svm_get_segment() */
2692 		svm->vmcb->save.cpl = (var->dpl & 3);
2693 
2694 	mark_dirty(svm->vmcb, VMCB_SEG);
2695 }
2696 
update_bp_intercept(struct kvm_vcpu * vcpu)2697 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2698 {
2699 	struct vcpu_svm *svm = to_svm(vcpu);
2700 
2701 	clr_exception_intercept(svm, BP_VECTOR);
2702 
2703 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2704 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2705 			set_exception_intercept(svm, BP_VECTOR);
2706 	} else
2707 		vcpu->guest_debug = 0;
2708 }
2709 
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)2710 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2711 {
2712 	if (sd->next_asid > sd->max_asid) {
2713 		++sd->asid_generation;
2714 		sd->next_asid = sd->min_asid;
2715 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2716 	}
2717 
2718 	svm->asid_generation = sd->asid_generation;
2719 	svm->vmcb->control.asid = sd->next_asid++;
2720 
2721 	mark_dirty(svm->vmcb, VMCB_ASID);
2722 }
2723 
svm_get_dr6(struct kvm_vcpu * vcpu)2724 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2725 {
2726 	return to_svm(vcpu)->vmcb->save.dr6;
2727 }
2728 
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)2729 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2730 {
2731 	struct vcpu_svm *svm = to_svm(vcpu);
2732 
2733 	svm->vmcb->save.dr6 = value;
2734 	mark_dirty(svm->vmcb, VMCB_DR);
2735 }
2736 
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)2737 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2738 {
2739 	struct vcpu_svm *svm = to_svm(vcpu);
2740 
2741 	get_debugreg(vcpu->arch.db[0], 0);
2742 	get_debugreg(vcpu->arch.db[1], 1);
2743 	get_debugreg(vcpu->arch.db[2], 2);
2744 	get_debugreg(vcpu->arch.db[3], 3);
2745 	vcpu->arch.dr6 = svm_get_dr6(vcpu);
2746 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
2747 
2748 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2749 	set_dr_intercepts(svm);
2750 }
2751 
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)2752 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2753 {
2754 	struct vcpu_svm *svm = to_svm(vcpu);
2755 
2756 	svm->vmcb->save.dr7 = value;
2757 	mark_dirty(svm->vmcb, VMCB_DR);
2758 }
2759 
pf_interception(struct vcpu_svm * svm)2760 static int pf_interception(struct vcpu_svm *svm)
2761 {
2762 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2763 	u64 error_code = svm->vmcb->control.exit_info_1;
2764 
2765 	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2766 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2767 			svm->vmcb->control.insn_bytes : NULL,
2768 			svm->vmcb->control.insn_len);
2769 }
2770 
npf_interception(struct vcpu_svm * svm)2771 static int npf_interception(struct vcpu_svm *svm)
2772 {
2773 	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2774 	u64 error_code = svm->vmcb->control.exit_info_1;
2775 
2776 	trace_kvm_page_fault(fault_address, error_code);
2777 	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2778 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2779 			svm->vmcb->control.insn_bytes : NULL,
2780 			svm->vmcb->control.insn_len);
2781 }
2782 
db_interception(struct vcpu_svm * svm)2783 static int db_interception(struct vcpu_svm *svm)
2784 {
2785 	struct kvm_run *kvm_run = svm->vcpu.run;
2786 	struct kvm_vcpu *vcpu = &svm->vcpu;
2787 
2788 	if (!(svm->vcpu.guest_debug &
2789 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2790 		!svm->nmi_singlestep) {
2791 		kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2792 		return 1;
2793 	}
2794 
2795 	if (svm->nmi_singlestep) {
2796 		disable_nmi_singlestep(svm);
2797 		/* Make sure we check for pending NMIs upon entry */
2798 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2799 	}
2800 
2801 	if (svm->vcpu.guest_debug &
2802 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2803 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2804 		kvm_run->debug.arch.pc =
2805 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2806 		kvm_run->debug.arch.exception = DB_VECTOR;
2807 		return 0;
2808 	}
2809 
2810 	return 1;
2811 }
2812 
bp_interception(struct vcpu_svm * svm)2813 static int bp_interception(struct vcpu_svm *svm)
2814 {
2815 	struct kvm_run *kvm_run = svm->vcpu.run;
2816 
2817 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2818 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2819 	kvm_run->debug.arch.exception = BP_VECTOR;
2820 	return 0;
2821 }
2822 
ud_interception(struct vcpu_svm * svm)2823 static int ud_interception(struct vcpu_svm *svm)
2824 {
2825 	return handle_ud(&svm->vcpu);
2826 }
2827 
ac_interception(struct vcpu_svm * svm)2828 static int ac_interception(struct vcpu_svm *svm)
2829 {
2830 	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2831 	return 1;
2832 }
2833 
gp_interception(struct vcpu_svm * svm)2834 static int gp_interception(struct vcpu_svm *svm)
2835 {
2836 	struct kvm_vcpu *vcpu = &svm->vcpu;
2837 	u32 error_code = svm->vmcb->control.exit_info_1;
2838 
2839 	WARN_ON_ONCE(!enable_vmware_backdoor);
2840 
2841 	/*
2842 	 * VMware backdoor emulation on #GP interception only handles IN{S},
2843 	 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
2844 	 */
2845 	if (error_code) {
2846 		kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2847 		return 1;
2848 	}
2849 	return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
2850 }
2851 
is_erratum_383(void)2852 static bool is_erratum_383(void)
2853 {
2854 	int err, i;
2855 	u64 value;
2856 
2857 	if (!erratum_383_found)
2858 		return false;
2859 
2860 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2861 	if (err)
2862 		return false;
2863 
2864 	/* Bit 62 may or may not be set for this mce */
2865 	value &= ~(1ULL << 62);
2866 
2867 	if (value != 0xb600000000010015ULL)
2868 		return false;
2869 
2870 	/* Clear MCi_STATUS registers */
2871 	for (i = 0; i < 6; ++i)
2872 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2873 
2874 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2875 	if (!err) {
2876 		u32 low, high;
2877 
2878 		value &= ~(1ULL << 2);
2879 		low    = lower_32_bits(value);
2880 		high   = upper_32_bits(value);
2881 
2882 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2883 	}
2884 
2885 	/* Flush tlb to evict multi-match entries */
2886 	__flush_tlb_all();
2887 
2888 	return true;
2889 }
2890 
svm_handle_mce(struct vcpu_svm * svm)2891 static void svm_handle_mce(struct vcpu_svm *svm)
2892 {
2893 	if (is_erratum_383()) {
2894 		/*
2895 		 * Erratum 383 triggered. Guest state is corrupt so kill the
2896 		 * guest.
2897 		 */
2898 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2899 
2900 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2901 
2902 		return;
2903 	}
2904 
2905 	/*
2906 	 * On an #MC intercept the MCE handler is not called automatically in
2907 	 * the host. So do it by hand here.
2908 	 */
2909 	asm volatile (
2910 		"int $0x12\n");
2911 	/* not sure if we ever come back to this point */
2912 
2913 	return;
2914 }
2915 
mc_interception(struct vcpu_svm * svm)2916 static int mc_interception(struct vcpu_svm *svm)
2917 {
2918 	return 1;
2919 }
2920 
shutdown_interception(struct vcpu_svm * svm)2921 static int shutdown_interception(struct vcpu_svm *svm)
2922 {
2923 	struct kvm_run *kvm_run = svm->vcpu.run;
2924 
2925 	/*
2926 	 * VMCB is undefined after a SHUTDOWN intercept
2927 	 * so reinitialize it.
2928 	 */
2929 	clear_page(svm->vmcb);
2930 	init_vmcb(svm);
2931 
2932 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2933 	return 0;
2934 }
2935 
io_interception(struct vcpu_svm * svm)2936 static int io_interception(struct vcpu_svm *svm)
2937 {
2938 	struct kvm_vcpu *vcpu = &svm->vcpu;
2939 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2940 	int size, in, string;
2941 	unsigned port;
2942 
2943 	++svm->vcpu.stat.io_exits;
2944 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2945 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2946 	if (string)
2947 		return kvm_emulate_instruction(vcpu, 0);
2948 
2949 	port = io_info >> 16;
2950 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2951 	svm->next_rip = svm->vmcb->control.exit_info_2;
2952 
2953 	return kvm_fast_pio(&svm->vcpu, size, port, in);
2954 }
2955 
nmi_interception(struct vcpu_svm * svm)2956 static int nmi_interception(struct vcpu_svm *svm)
2957 {
2958 	return 1;
2959 }
2960 
intr_interception(struct vcpu_svm * svm)2961 static int intr_interception(struct vcpu_svm *svm)
2962 {
2963 	++svm->vcpu.stat.irq_exits;
2964 	return 1;
2965 }
2966 
nop_on_interception(struct vcpu_svm * svm)2967 static int nop_on_interception(struct vcpu_svm *svm)
2968 {
2969 	return 1;
2970 }
2971 
halt_interception(struct vcpu_svm * svm)2972 static int halt_interception(struct vcpu_svm *svm)
2973 {
2974 	return kvm_emulate_halt(&svm->vcpu);
2975 }
2976 
vmmcall_interception(struct vcpu_svm * svm)2977 static int vmmcall_interception(struct vcpu_svm *svm)
2978 {
2979 	return kvm_emulate_hypercall(&svm->vcpu);
2980 }
2981 
nested_svm_get_tdp_cr3(struct kvm_vcpu * vcpu)2982 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2983 {
2984 	struct vcpu_svm *svm = to_svm(vcpu);
2985 
2986 	return svm->nested.nested_cr3;
2987 }
2988 
nested_svm_get_tdp_pdptr(struct kvm_vcpu * vcpu,int index)2989 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2990 {
2991 	struct vcpu_svm *svm = to_svm(vcpu);
2992 	u64 cr3 = svm->nested.nested_cr3;
2993 	u64 pdpte;
2994 	int ret;
2995 
2996 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2997 				       offset_in_page(cr3) + index * 8, 8);
2998 	if (ret)
2999 		return 0;
3000 	return pdpte;
3001 }
3002 
nested_svm_set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)3003 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
3004 				   unsigned long root)
3005 {
3006 	struct vcpu_svm *svm = to_svm(vcpu);
3007 
3008 	svm->vmcb->control.nested_cr3 = __sme_set(root);
3009 	mark_dirty(svm->vmcb, VMCB_NPT);
3010 }
3011 
nested_svm_inject_npf_exit(struct kvm_vcpu * vcpu,struct x86_exception * fault)3012 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
3013 				       struct x86_exception *fault)
3014 {
3015 	struct vcpu_svm *svm = to_svm(vcpu);
3016 
3017 	if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
3018 		/*
3019 		 * TODO: track the cause of the nested page fault, and
3020 		 * correctly fill in the high bits of exit_info_1.
3021 		 */
3022 		svm->vmcb->control.exit_code = SVM_EXIT_NPF;
3023 		svm->vmcb->control.exit_code_hi = 0;
3024 		svm->vmcb->control.exit_info_1 = (1ULL << 32);
3025 		svm->vmcb->control.exit_info_2 = fault->address;
3026 	}
3027 
3028 	svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
3029 	svm->vmcb->control.exit_info_1 |= fault->error_code;
3030 
3031 	/*
3032 	 * The present bit is always zero for page structure faults on real
3033 	 * hardware.
3034 	 */
3035 	if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
3036 		svm->vmcb->control.exit_info_1 &= ~1;
3037 
3038 	nested_svm_vmexit(svm);
3039 }
3040 
nested_svm_init_mmu_context(struct kvm_vcpu * vcpu)3041 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
3042 {
3043 	WARN_ON(mmu_is_nested(vcpu));
3044 
3045 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
3046 	kvm_init_shadow_mmu(vcpu);
3047 	vcpu->arch.mmu->set_cr3           = nested_svm_set_tdp_cr3;
3048 	vcpu->arch.mmu->get_cr3           = nested_svm_get_tdp_cr3;
3049 	vcpu->arch.mmu->get_pdptr         = nested_svm_get_tdp_pdptr;
3050 	vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
3051 	vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
3052 	reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
3053 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
3054 }
3055 
nested_svm_uninit_mmu_context(struct kvm_vcpu * vcpu)3056 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
3057 {
3058 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
3059 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
3060 }
3061 
nested_svm_check_permissions(struct vcpu_svm * svm)3062 static int nested_svm_check_permissions(struct vcpu_svm *svm)
3063 {
3064 	if (!(svm->vcpu.arch.efer & EFER_SVME) ||
3065 	    !is_paging(&svm->vcpu)) {
3066 		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3067 		return 1;
3068 	}
3069 
3070 	if (svm->vmcb->save.cpl) {
3071 		kvm_inject_gp(&svm->vcpu, 0);
3072 		return 1;
3073 	}
3074 
3075 	return 0;
3076 }
3077 
nested_svm_check_exception(struct vcpu_svm * svm,unsigned nr,bool has_error_code,u32 error_code)3078 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
3079 				      bool has_error_code, u32 error_code)
3080 {
3081 	int vmexit;
3082 
3083 	if (!is_guest_mode(&svm->vcpu))
3084 		return 0;
3085 
3086 	vmexit = nested_svm_intercept(svm);
3087 	if (vmexit != NESTED_EXIT_DONE)
3088 		return 0;
3089 
3090 	svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3091 	svm->vmcb->control.exit_code_hi = 0;
3092 	svm->vmcb->control.exit_info_1 = error_code;
3093 
3094 	/*
3095 	 * EXITINFO2 is undefined for all exception intercepts other
3096 	 * than #PF.
3097 	 */
3098 	if (svm->vcpu.arch.exception.nested_apf)
3099 		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3100 	else if (svm->vcpu.arch.exception.has_payload)
3101 		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3102 	else
3103 		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3104 
3105 	svm->nested.exit_required = true;
3106 	return vmexit;
3107 }
3108 
3109 /* This function returns true if it is save to enable the irq window */
nested_svm_intr(struct vcpu_svm * svm)3110 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3111 {
3112 	if (!is_guest_mode(&svm->vcpu))
3113 		return true;
3114 
3115 	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3116 		return true;
3117 
3118 	if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3119 		return false;
3120 
3121 	/*
3122 	 * if vmexit was already requested (by intercepted exception
3123 	 * for instance) do not overwrite it with "external interrupt"
3124 	 * vmexit.
3125 	 */
3126 	if (svm->nested.exit_required)
3127 		return false;
3128 
3129 	svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
3130 	svm->vmcb->control.exit_info_1 = 0;
3131 	svm->vmcb->control.exit_info_2 = 0;
3132 
3133 	if (svm->nested.intercept & 1ULL) {
3134 		/*
3135 		 * The #vmexit can't be emulated here directly because this
3136 		 * code path runs with irqs and preemption disabled. A
3137 		 * #vmexit emulation might sleep. Only signal request for
3138 		 * the #vmexit here.
3139 		 */
3140 		svm->nested.exit_required = true;
3141 		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3142 		return false;
3143 	}
3144 
3145 	return true;
3146 }
3147 
3148 /* This function returns true if it is save to enable the nmi window */
nested_svm_nmi(struct vcpu_svm * svm)3149 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3150 {
3151 	if (!is_guest_mode(&svm->vcpu))
3152 		return true;
3153 
3154 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3155 		return true;
3156 
3157 	svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3158 	svm->nested.exit_required = true;
3159 
3160 	return false;
3161 }
3162 
nested_svm_intercept_ioio(struct vcpu_svm * svm)3163 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3164 {
3165 	unsigned port, size, iopm_len;
3166 	u16 val, mask;
3167 	u8 start_bit;
3168 	u64 gpa;
3169 
3170 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3171 		return NESTED_EXIT_HOST;
3172 
3173 	port = svm->vmcb->control.exit_info_1 >> 16;
3174 	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3175 		SVM_IOIO_SIZE_SHIFT;
3176 	gpa  = svm->nested.vmcb_iopm + (port / 8);
3177 	start_bit = port % 8;
3178 	iopm_len = (start_bit + size > 8) ? 2 : 1;
3179 	mask = (0xf >> (4 - size)) << start_bit;
3180 	val = 0;
3181 
3182 	if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3183 		return NESTED_EXIT_DONE;
3184 
3185 	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3186 }
3187 
nested_svm_exit_handled_msr(struct vcpu_svm * svm)3188 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3189 {
3190 	u32 offset, msr, value;
3191 	int write, mask;
3192 
3193 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3194 		return NESTED_EXIT_HOST;
3195 
3196 	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3197 	offset = svm_msrpm_offset(msr);
3198 	write  = svm->vmcb->control.exit_info_1 & 1;
3199 	mask   = 1 << ((2 * (msr & 0xf)) + write);
3200 
3201 	if (offset == MSR_INVALID)
3202 		return NESTED_EXIT_DONE;
3203 
3204 	/* Offset is in 32 bit units but need in 8 bit units */
3205 	offset *= 4;
3206 
3207 	if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3208 		return NESTED_EXIT_DONE;
3209 
3210 	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3211 }
3212 
3213 /* DB exceptions for our internal use must not cause vmexit */
nested_svm_intercept_db(struct vcpu_svm * svm)3214 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3215 {
3216 	unsigned long dr6;
3217 
3218 	/* if we're not singlestepping, it's not ours */
3219 	if (!svm->nmi_singlestep)
3220 		return NESTED_EXIT_DONE;
3221 
3222 	/* if it's not a singlestep exception, it's not ours */
3223 	if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3224 		return NESTED_EXIT_DONE;
3225 	if (!(dr6 & DR6_BS))
3226 		return NESTED_EXIT_DONE;
3227 
3228 	/* if the guest is singlestepping, it should get the vmexit */
3229 	if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3230 		disable_nmi_singlestep(svm);
3231 		return NESTED_EXIT_DONE;
3232 	}
3233 
3234 	/* it's ours, the nested hypervisor must not see this one */
3235 	return NESTED_EXIT_HOST;
3236 }
3237 
nested_svm_exit_special(struct vcpu_svm * svm)3238 static int nested_svm_exit_special(struct vcpu_svm *svm)
3239 {
3240 	u32 exit_code = svm->vmcb->control.exit_code;
3241 
3242 	switch (exit_code) {
3243 	case SVM_EXIT_INTR:
3244 	case SVM_EXIT_NMI:
3245 	case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3246 		return NESTED_EXIT_HOST;
3247 	case SVM_EXIT_NPF:
3248 		/* For now we are always handling NPFs when using them */
3249 		if (npt_enabled)
3250 			return NESTED_EXIT_HOST;
3251 		break;
3252 	case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3253 		/* Trap async PF even if not shadowing */
3254 		if (!npt_enabled || svm->vcpu.arch.apf.host_apf_reason)
3255 			return NESTED_EXIT_HOST;
3256 		break;
3257 	default:
3258 		break;
3259 	}
3260 
3261 	return NESTED_EXIT_CONTINUE;
3262 }
3263 
3264 /*
3265  * If this function returns true, this #vmexit was already handled
3266  */
nested_svm_intercept(struct vcpu_svm * svm)3267 static int nested_svm_intercept(struct vcpu_svm *svm)
3268 {
3269 	u32 exit_code = svm->vmcb->control.exit_code;
3270 	int vmexit = NESTED_EXIT_HOST;
3271 
3272 	switch (exit_code) {
3273 	case SVM_EXIT_MSR:
3274 		vmexit = nested_svm_exit_handled_msr(svm);
3275 		break;
3276 	case SVM_EXIT_IOIO:
3277 		vmexit = nested_svm_intercept_ioio(svm);
3278 		break;
3279 	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3280 		u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3281 		if (svm->nested.intercept_cr & bit)
3282 			vmexit = NESTED_EXIT_DONE;
3283 		break;
3284 	}
3285 	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3286 		u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3287 		if (svm->nested.intercept_dr & bit)
3288 			vmexit = NESTED_EXIT_DONE;
3289 		break;
3290 	}
3291 	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3292 		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3293 		if (svm->nested.intercept_exceptions & excp_bits) {
3294 			if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3295 				vmexit = nested_svm_intercept_db(svm);
3296 			else
3297 				vmexit = NESTED_EXIT_DONE;
3298 		}
3299 		/* async page fault always cause vmexit */
3300 		else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3301 			 svm->vcpu.arch.exception.nested_apf != 0)
3302 			vmexit = NESTED_EXIT_DONE;
3303 		break;
3304 	}
3305 	case SVM_EXIT_ERR: {
3306 		vmexit = NESTED_EXIT_DONE;
3307 		break;
3308 	}
3309 	default: {
3310 		u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3311 		if (svm->nested.intercept & exit_bits)
3312 			vmexit = NESTED_EXIT_DONE;
3313 	}
3314 	}
3315 
3316 	return vmexit;
3317 }
3318 
nested_svm_exit_handled(struct vcpu_svm * svm)3319 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3320 {
3321 	int vmexit;
3322 
3323 	vmexit = nested_svm_intercept(svm);
3324 
3325 	if (vmexit == NESTED_EXIT_DONE)
3326 		nested_svm_vmexit(svm);
3327 
3328 	return vmexit;
3329 }
3330 
copy_vmcb_control_area(struct vmcb * dst_vmcb,struct vmcb * from_vmcb)3331 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3332 {
3333 	struct vmcb_control_area *dst  = &dst_vmcb->control;
3334 	struct vmcb_control_area *from = &from_vmcb->control;
3335 
3336 	dst->intercept_cr         = from->intercept_cr;
3337 	dst->intercept_dr         = from->intercept_dr;
3338 	dst->intercept_exceptions = from->intercept_exceptions;
3339 	dst->intercept            = from->intercept;
3340 	dst->iopm_base_pa         = from->iopm_base_pa;
3341 	dst->msrpm_base_pa        = from->msrpm_base_pa;
3342 	dst->tsc_offset           = from->tsc_offset;
3343 	/* asid not copied, it is handled manually for svm->vmcb.  */
3344 	dst->tlb_ctl              = from->tlb_ctl;
3345 	dst->int_ctl              = from->int_ctl;
3346 	dst->int_vector           = from->int_vector;
3347 	dst->int_state            = from->int_state;
3348 	dst->exit_code            = from->exit_code;
3349 	dst->exit_code_hi         = from->exit_code_hi;
3350 	dst->exit_info_1          = from->exit_info_1;
3351 	dst->exit_info_2          = from->exit_info_2;
3352 	dst->exit_int_info        = from->exit_int_info;
3353 	dst->exit_int_info_err    = from->exit_int_info_err;
3354 	dst->nested_ctl           = from->nested_ctl;
3355 	dst->event_inj            = from->event_inj;
3356 	dst->event_inj_err        = from->event_inj_err;
3357 	dst->nested_cr3           = from->nested_cr3;
3358 	dst->virt_ext              = from->virt_ext;
3359 	dst->pause_filter_count   = from->pause_filter_count;
3360 	dst->pause_filter_thresh  = from->pause_filter_thresh;
3361 }
3362 
nested_svm_vmexit(struct vcpu_svm * svm)3363 static int nested_svm_vmexit(struct vcpu_svm *svm)
3364 {
3365 	int rc;
3366 	struct vmcb *nested_vmcb;
3367 	struct vmcb *hsave = svm->nested.hsave;
3368 	struct vmcb *vmcb = svm->vmcb;
3369 	struct kvm_host_map map;
3370 
3371 	trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3372 				       vmcb->control.exit_info_1,
3373 				       vmcb->control.exit_info_2,
3374 				       vmcb->control.exit_int_info,
3375 				       vmcb->control.exit_int_info_err,
3376 				       KVM_ISA_SVM);
3377 
3378 	rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
3379 	if (rc) {
3380 		if (rc == -EINVAL)
3381 			kvm_inject_gp(&svm->vcpu, 0);
3382 		return 1;
3383 	}
3384 
3385 	nested_vmcb = map.hva;
3386 
3387 	/* Exit Guest-Mode */
3388 	leave_guest_mode(&svm->vcpu);
3389 	svm->nested.vmcb = 0;
3390 
3391 	/* Give the current vmcb to the guest */
3392 	disable_gif(svm);
3393 
3394 	nested_vmcb->save.es     = vmcb->save.es;
3395 	nested_vmcb->save.cs     = vmcb->save.cs;
3396 	nested_vmcb->save.ss     = vmcb->save.ss;
3397 	nested_vmcb->save.ds     = vmcb->save.ds;
3398 	nested_vmcb->save.gdtr   = vmcb->save.gdtr;
3399 	nested_vmcb->save.idtr   = vmcb->save.idtr;
3400 	nested_vmcb->save.efer   = svm->vcpu.arch.efer;
3401 	nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
3402 	nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
3403 	nested_vmcb->save.cr2    = vmcb->save.cr2;
3404 	nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
3405 	nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3406 	nested_vmcb->save.rip    = vmcb->save.rip;
3407 	nested_vmcb->save.rsp    = vmcb->save.rsp;
3408 	nested_vmcb->save.rax    = vmcb->save.rax;
3409 	nested_vmcb->save.dr7    = vmcb->save.dr7;
3410 	nested_vmcb->save.dr6    = vmcb->save.dr6;
3411 	nested_vmcb->save.cpl    = vmcb->save.cpl;
3412 
3413 	nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
3414 	nested_vmcb->control.int_vector        = vmcb->control.int_vector;
3415 	nested_vmcb->control.int_state         = vmcb->control.int_state;
3416 	nested_vmcb->control.exit_code         = vmcb->control.exit_code;
3417 	nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
3418 	nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
3419 	nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
3420 	nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
3421 	nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3422 
3423 	if (svm->nrips_enabled)
3424 		nested_vmcb->control.next_rip  = vmcb->control.next_rip;
3425 
3426 	/*
3427 	 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3428 	 * to make sure that we do not lose injected events. So check event_inj
3429 	 * here and copy it to exit_int_info if it is valid.
3430 	 * Exit_int_info and event_inj can't be both valid because the case
3431 	 * below only happens on a VMRUN instruction intercept which has
3432 	 * no valid exit_int_info set.
3433 	 */
3434 	if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3435 		struct vmcb_control_area *nc = &nested_vmcb->control;
3436 
3437 		nc->exit_int_info     = vmcb->control.event_inj;
3438 		nc->exit_int_info_err = vmcb->control.event_inj_err;
3439 	}
3440 
3441 	nested_vmcb->control.tlb_ctl           = 0;
3442 	nested_vmcb->control.event_inj         = 0;
3443 	nested_vmcb->control.event_inj_err     = 0;
3444 
3445 	nested_vmcb->control.pause_filter_count =
3446 		svm->vmcb->control.pause_filter_count;
3447 	nested_vmcb->control.pause_filter_thresh =
3448 		svm->vmcb->control.pause_filter_thresh;
3449 
3450 	/* We always set V_INTR_MASKING and remember the old value in hflags */
3451 	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3452 		nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3453 
3454 	/* Restore the original control entries */
3455 	copy_vmcb_control_area(vmcb, hsave);
3456 
3457 	svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3458 	kvm_clear_exception_queue(&svm->vcpu);
3459 	kvm_clear_interrupt_queue(&svm->vcpu);
3460 
3461 	svm->nested.nested_cr3 = 0;
3462 
3463 	/* Restore selected save entries */
3464 	svm->vmcb->save.es = hsave->save.es;
3465 	svm->vmcb->save.cs = hsave->save.cs;
3466 	svm->vmcb->save.ss = hsave->save.ss;
3467 	svm->vmcb->save.ds = hsave->save.ds;
3468 	svm->vmcb->save.gdtr = hsave->save.gdtr;
3469 	svm->vmcb->save.idtr = hsave->save.idtr;
3470 	kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3471 	svm_set_efer(&svm->vcpu, hsave->save.efer);
3472 	svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3473 	svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3474 	if (npt_enabled) {
3475 		svm->vmcb->save.cr3 = hsave->save.cr3;
3476 		svm->vcpu.arch.cr3 = hsave->save.cr3;
3477 	} else {
3478 		(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3479 	}
3480 	kvm_rax_write(&svm->vcpu, hsave->save.rax);
3481 	kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
3482 	kvm_rip_write(&svm->vcpu, hsave->save.rip);
3483 	svm->vmcb->save.dr7 = 0;
3484 	svm->vmcb->save.cpl = 0;
3485 	svm->vmcb->control.exit_int_info = 0;
3486 
3487 	mark_all_dirty(svm->vmcb);
3488 
3489 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
3490 
3491 	nested_svm_uninit_mmu_context(&svm->vcpu);
3492 	kvm_mmu_reset_context(&svm->vcpu);
3493 	kvm_mmu_load(&svm->vcpu);
3494 
3495 	/*
3496 	 * Drop what we picked up for L2 via svm_complete_interrupts() so it
3497 	 * doesn't end up in L1.
3498 	 */
3499 	svm->vcpu.arch.nmi_injected = false;
3500 	kvm_clear_exception_queue(&svm->vcpu);
3501 	kvm_clear_interrupt_queue(&svm->vcpu);
3502 
3503 	return 0;
3504 }
3505 
nested_svm_vmrun_msrpm(struct vcpu_svm * svm)3506 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3507 {
3508 	/*
3509 	 * This function merges the msr permission bitmaps of kvm and the
3510 	 * nested vmcb. It is optimized in that it only merges the parts where
3511 	 * the kvm msr permission bitmap may contain zero bits
3512 	 */
3513 	int i;
3514 
3515 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3516 		return true;
3517 
3518 	for (i = 0; i < MSRPM_OFFSETS; i++) {
3519 		u32 value, p;
3520 		u64 offset;
3521 
3522 		if (msrpm_offsets[i] == 0xffffffff)
3523 			break;
3524 
3525 		p      = msrpm_offsets[i];
3526 		offset = svm->nested.vmcb_msrpm + (p * 4);
3527 
3528 		if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3529 			return false;
3530 
3531 		svm->nested.msrpm[p] = svm->msrpm[p] | value;
3532 	}
3533 
3534 	svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3535 
3536 	return true;
3537 }
3538 
nested_vmcb_checks(struct vmcb * vmcb)3539 static bool nested_vmcb_checks(struct vmcb *vmcb)
3540 {
3541 	if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3542 		return false;
3543 
3544 	if (vmcb->control.asid == 0)
3545 		return false;
3546 
3547 	if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3548 	    !npt_enabled)
3549 		return false;
3550 
3551 	return true;
3552 }
3553 
enter_svm_guest_mode(struct vcpu_svm * svm,u64 vmcb_gpa,struct vmcb * nested_vmcb,struct kvm_host_map * map)3554 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3555 				 struct vmcb *nested_vmcb, struct kvm_host_map *map)
3556 {
3557 	if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3558 		svm->vcpu.arch.hflags |= HF_HIF_MASK;
3559 	else
3560 		svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3561 
3562 	if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3563 		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3564 		nested_svm_init_mmu_context(&svm->vcpu);
3565 	}
3566 
3567 	/* Load the nested guest state */
3568 	svm->vmcb->save.es = nested_vmcb->save.es;
3569 	svm->vmcb->save.cs = nested_vmcb->save.cs;
3570 	svm->vmcb->save.ss = nested_vmcb->save.ss;
3571 	svm->vmcb->save.ds = nested_vmcb->save.ds;
3572 	svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3573 	svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3574 	kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3575 	svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3576 	svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3577 	svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3578 	if (npt_enabled) {
3579 		svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3580 		svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3581 	} else
3582 		(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3583 
3584 	/* Guest paging mode is active - reset mmu */
3585 	kvm_mmu_reset_context(&svm->vcpu);
3586 
3587 	svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3588 	kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
3589 	kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
3590 	kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
3591 
3592 	/* In case we don't even reach vcpu_run, the fields are not updated */
3593 	svm->vmcb->save.rax = nested_vmcb->save.rax;
3594 	svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3595 	svm->vmcb->save.rip = nested_vmcb->save.rip;
3596 	svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3597 	svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3598 	svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3599 
3600 	svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3601 	svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3602 
3603 	/* cache intercepts */
3604 	svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3605 	svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3606 	svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3607 	svm->nested.intercept            = nested_vmcb->control.intercept;
3608 
3609 	svm_flush_tlb(&svm->vcpu, true);
3610 
3611 	svm->vmcb->control.int_ctl &=
3612 			V_INTR_MASKING_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK;
3613 
3614 	svm->vmcb->control.int_ctl |= nested_vmcb->control.int_ctl &
3615 			(V_TPR_MASK | V_IRQ_INJECTION_BITS_MASK);
3616 
3617 	if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3618 		svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3619 	else
3620 		svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3621 
3622 	if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3623 		/* We only want the cr8 intercept bits of the guest */
3624 		clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3625 		clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3626 	}
3627 
3628 	/* We don't want to see VMMCALLs from a nested guest */
3629 	clr_intercept(svm, INTERCEPT_VMMCALL);
3630 
3631 	svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3632 	svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3633 
3634 	svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3635 	svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3636 	svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3637 	svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3638 	svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3639 
3640 	svm->vmcb->control.pause_filter_count =
3641 		nested_vmcb->control.pause_filter_count;
3642 	svm->vmcb->control.pause_filter_thresh =
3643 		nested_vmcb->control.pause_filter_thresh;
3644 
3645 	kvm_vcpu_unmap(&svm->vcpu, map, true);
3646 
3647 	/* Enter Guest-Mode */
3648 	enter_guest_mode(&svm->vcpu);
3649 
3650 	/*
3651 	 * Merge guest and host intercepts - must be called  with vcpu in
3652 	 * guest-mode to take affect here
3653 	 */
3654 	recalc_intercepts(svm);
3655 
3656 	svm->nested.vmcb = vmcb_gpa;
3657 
3658 	enable_gif(svm);
3659 
3660 	mark_all_dirty(svm->vmcb);
3661 }
3662 
nested_svm_vmrun(struct vcpu_svm * svm)3663 static int nested_svm_vmrun(struct vcpu_svm *svm)
3664 {
3665 	int ret;
3666 	struct vmcb *nested_vmcb;
3667 	struct vmcb *hsave = svm->nested.hsave;
3668 	struct vmcb *vmcb = svm->vmcb;
3669 	struct kvm_host_map map;
3670 	u64 vmcb_gpa;
3671 
3672 	vmcb_gpa = svm->vmcb->save.rax;
3673 
3674 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
3675 	if (ret == -EINVAL) {
3676 		kvm_inject_gp(&svm->vcpu, 0);
3677 		return 1;
3678 	} else if (ret) {
3679 		return kvm_skip_emulated_instruction(&svm->vcpu);
3680 	}
3681 
3682 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3683 
3684 	nested_vmcb = map.hva;
3685 
3686 	if (!nested_vmcb_checks(nested_vmcb)) {
3687 		nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
3688 		nested_vmcb->control.exit_code_hi = 0;
3689 		nested_vmcb->control.exit_info_1  = 0;
3690 		nested_vmcb->control.exit_info_2  = 0;
3691 
3692 		kvm_vcpu_unmap(&svm->vcpu, &map, true);
3693 
3694 		return ret;
3695 	}
3696 
3697 	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3698 			       nested_vmcb->save.rip,
3699 			       nested_vmcb->control.int_ctl,
3700 			       nested_vmcb->control.event_inj,
3701 			       nested_vmcb->control.nested_ctl);
3702 
3703 	trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3704 				    nested_vmcb->control.intercept_cr >> 16,
3705 				    nested_vmcb->control.intercept_exceptions,
3706 				    nested_vmcb->control.intercept);
3707 
3708 	/* Clear internal status */
3709 	kvm_clear_exception_queue(&svm->vcpu);
3710 	kvm_clear_interrupt_queue(&svm->vcpu);
3711 
3712 	/*
3713 	 * Save the old vmcb, so we don't need to pick what we save, but can
3714 	 * restore everything when a VMEXIT occurs
3715 	 */
3716 	hsave->save.es     = vmcb->save.es;
3717 	hsave->save.cs     = vmcb->save.cs;
3718 	hsave->save.ss     = vmcb->save.ss;
3719 	hsave->save.ds     = vmcb->save.ds;
3720 	hsave->save.gdtr   = vmcb->save.gdtr;
3721 	hsave->save.idtr   = vmcb->save.idtr;
3722 	hsave->save.efer   = svm->vcpu.arch.efer;
3723 	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
3724 	hsave->save.cr4    = svm->vcpu.arch.cr4;
3725 	hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3726 	hsave->save.rip    = kvm_rip_read(&svm->vcpu);
3727 	hsave->save.rsp    = vmcb->save.rsp;
3728 	hsave->save.rax    = vmcb->save.rax;
3729 	if (npt_enabled)
3730 		hsave->save.cr3    = vmcb->save.cr3;
3731 	else
3732 		hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
3733 
3734 	copy_vmcb_control_area(hsave, vmcb);
3735 
3736 	enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
3737 
3738 	if (!nested_svm_vmrun_msrpm(svm)) {
3739 		svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3740 		svm->vmcb->control.exit_code_hi = 0;
3741 		svm->vmcb->control.exit_info_1  = 0;
3742 		svm->vmcb->control.exit_info_2  = 0;
3743 
3744 		nested_svm_vmexit(svm);
3745 	}
3746 
3747 	return ret;
3748 }
3749 
nested_svm_vmloadsave(struct vmcb * from_vmcb,struct vmcb * to_vmcb)3750 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3751 {
3752 	to_vmcb->save.fs = from_vmcb->save.fs;
3753 	to_vmcb->save.gs = from_vmcb->save.gs;
3754 	to_vmcb->save.tr = from_vmcb->save.tr;
3755 	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3756 	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3757 	to_vmcb->save.star = from_vmcb->save.star;
3758 	to_vmcb->save.lstar = from_vmcb->save.lstar;
3759 	to_vmcb->save.cstar = from_vmcb->save.cstar;
3760 	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3761 	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3762 	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3763 	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3764 }
3765 
vmload_interception(struct vcpu_svm * svm)3766 static int vmload_interception(struct vcpu_svm *svm)
3767 {
3768 	struct vmcb *nested_vmcb;
3769 	struct kvm_host_map map;
3770 	int ret;
3771 
3772 	if (nested_svm_check_permissions(svm))
3773 		return 1;
3774 
3775 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3776 	if (ret) {
3777 		if (ret == -EINVAL)
3778 			kvm_inject_gp(&svm->vcpu, 0);
3779 		return 1;
3780 	}
3781 
3782 	nested_vmcb = map.hva;
3783 
3784 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3785 
3786 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3787 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
3788 
3789 	return ret;
3790 }
3791 
vmsave_interception(struct vcpu_svm * svm)3792 static int vmsave_interception(struct vcpu_svm *svm)
3793 {
3794 	struct vmcb *nested_vmcb;
3795 	struct kvm_host_map map;
3796 	int ret;
3797 
3798 	if (nested_svm_check_permissions(svm))
3799 		return 1;
3800 
3801 	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3802 	if (ret) {
3803 		if (ret == -EINVAL)
3804 			kvm_inject_gp(&svm->vcpu, 0);
3805 		return 1;
3806 	}
3807 
3808 	nested_vmcb = map.hva;
3809 
3810 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3811 
3812 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3813 	kvm_vcpu_unmap(&svm->vcpu, &map, true);
3814 
3815 	return ret;
3816 }
3817 
vmrun_interception(struct vcpu_svm * svm)3818 static int vmrun_interception(struct vcpu_svm *svm)
3819 {
3820 	if (nested_svm_check_permissions(svm))
3821 		return 1;
3822 
3823 	return nested_svm_vmrun(svm);
3824 }
3825 
stgi_interception(struct vcpu_svm * svm)3826 static int stgi_interception(struct vcpu_svm *svm)
3827 {
3828 	int ret;
3829 
3830 	if (nested_svm_check_permissions(svm))
3831 		return 1;
3832 
3833 	/*
3834 	 * If VGIF is enabled, the STGI intercept is only added to
3835 	 * detect the opening of the SMI/NMI window; remove it now.
3836 	 */
3837 	if (vgif_enabled(svm))
3838 		clr_intercept(svm, INTERCEPT_STGI);
3839 
3840 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3841 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3842 
3843 	enable_gif(svm);
3844 
3845 	return ret;
3846 }
3847 
clgi_interception(struct vcpu_svm * svm)3848 static int clgi_interception(struct vcpu_svm *svm)
3849 {
3850 	int ret;
3851 
3852 	if (nested_svm_check_permissions(svm))
3853 		return 1;
3854 
3855 	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3856 
3857 	disable_gif(svm);
3858 
3859 	/* After a CLGI no interrupts should come */
3860 	if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3861 		svm_clear_vintr(svm);
3862 		svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3863 		mark_dirty(svm->vmcb, VMCB_INTR);
3864 	}
3865 
3866 	return ret;
3867 }
3868 
invlpga_interception(struct vcpu_svm * svm)3869 static int invlpga_interception(struct vcpu_svm *svm)
3870 {
3871 	struct kvm_vcpu *vcpu = &svm->vcpu;
3872 
3873 	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
3874 			  kvm_rax_read(&svm->vcpu));
3875 
3876 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3877 	kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
3878 
3879 	return kvm_skip_emulated_instruction(&svm->vcpu);
3880 }
3881 
skinit_interception(struct vcpu_svm * svm)3882 static int skinit_interception(struct vcpu_svm *svm)
3883 {
3884 	trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
3885 
3886 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3887 	return 1;
3888 }
3889 
wbinvd_interception(struct vcpu_svm * svm)3890 static int wbinvd_interception(struct vcpu_svm *svm)
3891 {
3892 	return kvm_emulate_wbinvd(&svm->vcpu);
3893 }
3894 
xsetbv_interception(struct vcpu_svm * svm)3895 static int xsetbv_interception(struct vcpu_svm *svm)
3896 {
3897 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3898 	u32 index = kvm_rcx_read(&svm->vcpu);
3899 
3900 	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3901 		return kvm_skip_emulated_instruction(&svm->vcpu);
3902 	}
3903 
3904 	return 1;
3905 }
3906 
rdpru_interception(struct vcpu_svm * svm)3907 static int rdpru_interception(struct vcpu_svm *svm)
3908 {
3909 	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3910 	return 1;
3911 }
3912 
task_switch_interception(struct vcpu_svm * svm)3913 static int task_switch_interception(struct vcpu_svm *svm)
3914 {
3915 	u16 tss_selector;
3916 	int reason;
3917 	int int_type = svm->vmcb->control.exit_int_info &
3918 		SVM_EXITINTINFO_TYPE_MASK;
3919 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3920 	uint32_t type =
3921 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3922 	uint32_t idt_v =
3923 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3924 	bool has_error_code = false;
3925 	u32 error_code = 0;
3926 
3927 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
3928 
3929 	if (svm->vmcb->control.exit_info_2 &
3930 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3931 		reason = TASK_SWITCH_IRET;
3932 	else if (svm->vmcb->control.exit_info_2 &
3933 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3934 		reason = TASK_SWITCH_JMP;
3935 	else if (idt_v)
3936 		reason = TASK_SWITCH_GATE;
3937 	else
3938 		reason = TASK_SWITCH_CALL;
3939 
3940 	if (reason == TASK_SWITCH_GATE) {
3941 		switch (type) {
3942 		case SVM_EXITINTINFO_TYPE_NMI:
3943 			svm->vcpu.arch.nmi_injected = false;
3944 			break;
3945 		case SVM_EXITINTINFO_TYPE_EXEPT:
3946 			if (svm->vmcb->control.exit_info_2 &
3947 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3948 				has_error_code = true;
3949 				error_code =
3950 					(u32)svm->vmcb->control.exit_info_2;
3951 			}
3952 			kvm_clear_exception_queue(&svm->vcpu);
3953 			break;
3954 		case SVM_EXITINTINFO_TYPE_INTR:
3955 			kvm_clear_interrupt_queue(&svm->vcpu);
3956 			break;
3957 		default:
3958 			break;
3959 		}
3960 	}
3961 
3962 	if (reason != TASK_SWITCH_GATE ||
3963 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3964 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3965 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
3966 		if (!skip_emulated_instruction(&svm->vcpu))
3967 			return 0;
3968 	}
3969 
3970 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3971 		int_vec = -1;
3972 
3973 	return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3974 			       has_error_code, error_code);
3975 }
3976 
cpuid_interception(struct vcpu_svm * svm)3977 static int cpuid_interception(struct vcpu_svm *svm)
3978 {
3979 	return kvm_emulate_cpuid(&svm->vcpu);
3980 }
3981 
iret_interception(struct vcpu_svm * svm)3982 static int iret_interception(struct vcpu_svm *svm)
3983 {
3984 	++svm->vcpu.stat.nmi_window_exits;
3985 	clr_intercept(svm, INTERCEPT_IRET);
3986 	svm->vcpu.arch.hflags |= HF_IRET_MASK;
3987 	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3988 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3989 	return 1;
3990 }
3991 
invd_interception(struct vcpu_svm * svm)3992 static int invd_interception(struct vcpu_svm *svm)
3993 {
3994 	/* Treat an INVD instruction as a NOP and just skip it. */
3995 	return kvm_skip_emulated_instruction(&svm->vcpu);
3996 }
3997 
invlpg_interception(struct vcpu_svm * svm)3998 static int invlpg_interception(struct vcpu_svm *svm)
3999 {
4000 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
4001 		return kvm_emulate_instruction(&svm->vcpu, 0);
4002 
4003 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
4004 	return kvm_skip_emulated_instruction(&svm->vcpu);
4005 }
4006 
emulate_on_interception(struct vcpu_svm * svm)4007 static int emulate_on_interception(struct vcpu_svm *svm)
4008 {
4009 	return kvm_emulate_instruction(&svm->vcpu, 0);
4010 }
4011 
rsm_interception(struct vcpu_svm * svm)4012 static int rsm_interception(struct vcpu_svm *svm)
4013 {
4014 	return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
4015 }
4016 
rdpmc_interception(struct vcpu_svm * svm)4017 static int rdpmc_interception(struct vcpu_svm *svm)
4018 {
4019 	int err;
4020 
4021 	if (!nrips)
4022 		return emulate_on_interception(svm);
4023 
4024 	err = kvm_rdpmc(&svm->vcpu);
4025 	return kvm_complete_insn_gp(&svm->vcpu, err);
4026 }
4027 
check_selective_cr0_intercepted(struct vcpu_svm * svm,unsigned long val)4028 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
4029 					    unsigned long val)
4030 {
4031 	unsigned long cr0 = svm->vcpu.arch.cr0;
4032 	bool ret = false;
4033 	u64 intercept;
4034 
4035 	intercept = svm->nested.intercept;
4036 
4037 	if (!is_guest_mode(&svm->vcpu) ||
4038 	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
4039 		return false;
4040 
4041 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
4042 	val &= ~SVM_CR0_SELECTIVE_MASK;
4043 
4044 	if (cr0 ^ val) {
4045 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4046 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
4047 	}
4048 
4049 	return ret;
4050 }
4051 
4052 #define CR_VALID (1ULL << 63)
4053 
cr_interception(struct vcpu_svm * svm)4054 static int cr_interception(struct vcpu_svm *svm)
4055 {
4056 	int reg, cr;
4057 	unsigned long val;
4058 	int err;
4059 
4060 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
4061 		return emulate_on_interception(svm);
4062 
4063 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
4064 		return emulate_on_interception(svm);
4065 
4066 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4067 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
4068 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
4069 	else
4070 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
4071 
4072 	err = 0;
4073 	if (cr >= 16) { /* mov to cr */
4074 		cr -= 16;
4075 		val = kvm_register_readl(&svm->vcpu, reg);
4076 		switch (cr) {
4077 		case 0:
4078 			if (!check_selective_cr0_intercepted(svm, val))
4079 				err = kvm_set_cr0(&svm->vcpu, val);
4080 			else
4081 				return 1;
4082 
4083 			break;
4084 		case 3:
4085 			err = kvm_set_cr3(&svm->vcpu, val);
4086 			break;
4087 		case 4:
4088 			err = kvm_set_cr4(&svm->vcpu, val);
4089 			break;
4090 		case 8:
4091 			err = kvm_set_cr8(&svm->vcpu, val);
4092 			break;
4093 		default:
4094 			WARN(1, "unhandled write to CR%d", cr);
4095 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4096 			return 1;
4097 		}
4098 	} else { /* mov from cr */
4099 		switch (cr) {
4100 		case 0:
4101 			val = kvm_read_cr0(&svm->vcpu);
4102 			break;
4103 		case 2:
4104 			val = svm->vcpu.arch.cr2;
4105 			break;
4106 		case 3:
4107 			val = kvm_read_cr3(&svm->vcpu);
4108 			break;
4109 		case 4:
4110 			val = kvm_read_cr4(&svm->vcpu);
4111 			break;
4112 		case 8:
4113 			val = kvm_get_cr8(&svm->vcpu);
4114 			break;
4115 		default:
4116 			WARN(1, "unhandled read from CR%d", cr);
4117 			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4118 			return 1;
4119 		}
4120 		kvm_register_writel(&svm->vcpu, reg, val);
4121 	}
4122 	return kvm_complete_insn_gp(&svm->vcpu, err);
4123 }
4124 
dr_interception(struct vcpu_svm * svm)4125 static int dr_interception(struct vcpu_svm *svm)
4126 {
4127 	int reg, dr;
4128 	unsigned long val;
4129 
4130 	if (svm->vcpu.guest_debug == 0) {
4131 		/*
4132 		 * No more DR vmexits; force a reload of the debug registers
4133 		 * and reenter on this instruction.  The next vmexit will
4134 		 * retrieve the full state of the debug registers.
4135 		 */
4136 		clr_dr_intercepts(svm);
4137 		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4138 		return 1;
4139 	}
4140 
4141 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4142 		return emulate_on_interception(svm);
4143 
4144 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4145 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4146 
4147 	if (dr >= 16) { /* mov to DRn */
4148 		if (!kvm_require_dr(&svm->vcpu, dr - 16))
4149 			return 1;
4150 		val = kvm_register_readl(&svm->vcpu, reg);
4151 		kvm_set_dr(&svm->vcpu, dr - 16, val);
4152 	} else {
4153 		if (!kvm_require_dr(&svm->vcpu, dr))
4154 			return 1;
4155 		kvm_get_dr(&svm->vcpu, dr, &val);
4156 		kvm_register_writel(&svm->vcpu, reg, val);
4157 	}
4158 
4159 	return kvm_skip_emulated_instruction(&svm->vcpu);
4160 }
4161 
cr8_write_interception(struct vcpu_svm * svm)4162 static int cr8_write_interception(struct vcpu_svm *svm)
4163 {
4164 	struct kvm_run *kvm_run = svm->vcpu.run;
4165 	int r;
4166 
4167 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4168 	/* instruction emulation calls kvm_set_cr8() */
4169 	r = cr_interception(svm);
4170 	if (lapic_in_kernel(&svm->vcpu))
4171 		return r;
4172 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4173 		return r;
4174 	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4175 	return 0;
4176 }
4177 
svm_get_msr_feature(struct kvm_msr_entry * msr)4178 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4179 {
4180 	msr->data = 0;
4181 
4182 	switch (msr->index) {
4183 	case MSR_AMD64_DE_CFG:
4184 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
4185 			msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
4186 		break;
4187 	default:
4188 		return 1;
4189 	}
4190 
4191 	return 0;
4192 }
4193 
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4194 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4195 {
4196 	struct vcpu_svm *svm = to_svm(vcpu);
4197 
4198 	switch (msr_info->index) {
4199 	case MSR_STAR:
4200 		msr_info->data = svm->vmcb->save.star;
4201 		break;
4202 #ifdef CONFIG_X86_64
4203 	case MSR_LSTAR:
4204 		msr_info->data = svm->vmcb->save.lstar;
4205 		break;
4206 	case MSR_CSTAR:
4207 		msr_info->data = svm->vmcb->save.cstar;
4208 		break;
4209 	case MSR_KERNEL_GS_BASE:
4210 		msr_info->data = svm->vmcb->save.kernel_gs_base;
4211 		break;
4212 	case MSR_SYSCALL_MASK:
4213 		msr_info->data = svm->vmcb->save.sfmask;
4214 		break;
4215 #endif
4216 	case MSR_IA32_SYSENTER_CS:
4217 		msr_info->data = svm->vmcb->save.sysenter_cs;
4218 		break;
4219 	case MSR_IA32_SYSENTER_EIP:
4220 		msr_info->data = svm->sysenter_eip;
4221 		break;
4222 	case MSR_IA32_SYSENTER_ESP:
4223 		msr_info->data = svm->sysenter_esp;
4224 		break;
4225 	case MSR_TSC_AUX:
4226 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4227 			return 1;
4228 		msr_info->data = svm->tsc_aux;
4229 		break;
4230 	/*
4231 	 * Nobody will change the following 5 values in the VMCB so we can
4232 	 * safely return them on rdmsr. They will always be 0 until LBRV is
4233 	 * implemented.
4234 	 */
4235 	case MSR_IA32_DEBUGCTLMSR:
4236 		msr_info->data = svm->vmcb->save.dbgctl;
4237 		break;
4238 	case MSR_IA32_LASTBRANCHFROMIP:
4239 		msr_info->data = svm->vmcb->save.br_from;
4240 		break;
4241 	case MSR_IA32_LASTBRANCHTOIP:
4242 		msr_info->data = svm->vmcb->save.br_to;
4243 		break;
4244 	case MSR_IA32_LASTINTFROMIP:
4245 		msr_info->data = svm->vmcb->save.last_excp_from;
4246 		break;
4247 	case MSR_IA32_LASTINTTOIP:
4248 		msr_info->data = svm->vmcb->save.last_excp_to;
4249 		break;
4250 	case MSR_VM_HSAVE_PA:
4251 		msr_info->data = svm->nested.hsave_msr;
4252 		break;
4253 	case MSR_VM_CR:
4254 		msr_info->data = svm->nested.vm_cr_msr;
4255 		break;
4256 	case MSR_IA32_SPEC_CTRL:
4257 		if (!msr_info->host_initiated &&
4258 		    !guest_has_spec_ctrl_msr(vcpu))
4259 			return 1;
4260 
4261 		msr_info->data = svm->spec_ctrl;
4262 		break;
4263 	case MSR_AMD64_VIRT_SPEC_CTRL:
4264 		if (!msr_info->host_initiated &&
4265 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4266 			return 1;
4267 
4268 		msr_info->data = svm->virt_spec_ctrl;
4269 		break;
4270 	case MSR_F15H_IC_CFG: {
4271 
4272 		int family, model;
4273 
4274 		family = guest_cpuid_family(vcpu);
4275 		model  = guest_cpuid_model(vcpu);
4276 
4277 		if (family < 0 || model < 0)
4278 			return kvm_get_msr_common(vcpu, msr_info);
4279 
4280 		msr_info->data = 0;
4281 
4282 		if (family == 0x15 &&
4283 		    (model >= 0x2 && model < 0x20))
4284 			msr_info->data = 0x1E;
4285 		}
4286 		break;
4287 	case MSR_AMD64_DE_CFG:
4288 		msr_info->data = svm->msr_decfg;
4289 		break;
4290 	default:
4291 		return kvm_get_msr_common(vcpu, msr_info);
4292 	}
4293 	return 0;
4294 }
4295 
rdmsr_interception(struct vcpu_svm * svm)4296 static int rdmsr_interception(struct vcpu_svm *svm)
4297 {
4298 	return kvm_emulate_rdmsr(&svm->vcpu);
4299 }
4300 
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)4301 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4302 {
4303 	struct vcpu_svm *svm = to_svm(vcpu);
4304 	int svm_dis, chg_mask;
4305 
4306 	if (data & ~SVM_VM_CR_VALID_MASK)
4307 		return 1;
4308 
4309 	chg_mask = SVM_VM_CR_VALID_MASK;
4310 
4311 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4312 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4313 
4314 	svm->nested.vm_cr_msr &= ~chg_mask;
4315 	svm->nested.vm_cr_msr |= (data & chg_mask);
4316 
4317 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4318 
4319 	/* check for svm_disable while efer.svme is set */
4320 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4321 		return 1;
4322 
4323 	return 0;
4324 }
4325 
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)4326 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4327 {
4328 	struct vcpu_svm *svm = to_svm(vcpu);
4329 
4330 	u32 ecx = msr->index;
4331 	u64 data = msr->data;
4332 	switch (ecx) {
4333 	case MSR_IA32_CR_PAT:
4334 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4335 			return 1;
4336 		vcpu->arch.pat = data;
4337 		svm->vmcb->save.g_pat = data;
4338 		mark_dirty(svm->vmcb, VMCB_NPT);
4339 		break;
4340 	case MSR_IA32_SPEC_CTRL:
4341 		if (!msr->host_initiated &&
4342 		    !guest_has_spec_ctrl_msr(vcpu))
4343 			return 1;
4344 
4345 		if (kvm_spec_ctrl_test_value(data))
4346 			return 1;
4347 
4348 		svm->spec_ctrl = data;
4349 		if (!data)
4350 			break;
4351 
4352 		/*
4353 		 * For non-nested:
4354 		 * When it's written (to non-zero) for the first time, pass
4355 		 * it through.
4356 		 *
4357 		 * For nested:
4358 		 * The handling of the MSR bitmap for L2 guests is done in
4359 		 * nested_svm_vmrun_msrpm.
4360 		 * We update the L1 MSR bit as well since it will end up
4361 		 * touching the MSR anyway now.
4362 		 */
4363 		set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4364 		break;
4365 	case MSR_IA32_PRED_CMD:
4366 		if (!msr->host_initiated &&
4367 		    !guest_has_pred_cmd_msr(vcpu))
4368 			return 1;
4369 
4370 		if (data & ~PRED_CMD_IBPB)
4371 			return 1;
4372 		if (!boot_cpu_has(X86_FEATURE_IBPB))
4373 			return 1;
4374 		if (!data)
4375 			break;
4376 
4377 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4378 		set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4379 		break;
4380 	case MSR_AMD64_VIRT_SPEC_CTRL:
4381 		if (!msr->host_initiated &&
4382 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4383 			return 1;
4384 
4385 		if (data & ~SPEC_CTRL_SSBD)
4386 			return 1;
4387 
4388 		svm->virt_spec_ctrl = data;
4389 		break;
4390 	case MSR_STAR:
4391 		svm->vmcb->save.star = data;
4392 		break;
4393 #ifdef CONFIG_X86_64
4394 	case MSR_LSTAR:
4395 		svm->vmcb->save.lstar = data;
4396 		break;
4397 	case MSR_CSTAR:
4398 		svm->vmcb->save.cstar = data;
4399 		break;
4400 	case MSR_KERNEL_GS_BASE:
4401 		svm->vmcb->save.kernel_gs_base = data;
4402 		break;
4403 	case MSR_SYSCALL_MASK:
4404 		svm->vmcb->save.sfmask = data;
4405 		break;
4406 #endif
4407 	case MSR_IA32_SYSENTER_CS:
4408 		svm->vmcb->save.sysenter_cs = data;
4409 		break;
4410 	case MSR_IA32_SYSENTER_EIP:
4411 		svm->sysenter_eip = data;
4412 		svm->vmcb->save.sysenter_eip = data;
4413 		break;
4414 	case MSR_IA32_SYSENTER_ESP:
4415 		svm->sysenter_esp = data;
4416 		svm->vmcb->save.sysenter_esp = data;
4417 		break;
4418 	case MSR_TSC_AUX:
4419 		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4420 			return 1;
4421 
4422 		/*
4423 		 * This is rare, so we update the MSR here instead of using
4424 		 * direct_access_msrs.  Doing that would require a rdmsr in
4425 		 * svm_vcpu_put.
4426 		 */
4427 		svm->tsc_aux = data;
4428 		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4429 		break;
4430 	case MSR_IA32_DEBUGCTLMSR:
4431 		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4432 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4433 				    __func__, data);
4434 			break;
4435 		}
4436 		if (data & DEBUGCTL_RESERVED_BITS)
4437 			return 1;
4438 
4439 		svm->vmcb->save.dbgctl = data;
4440 		mark_dirty(svm->vmcb, VMCB_LBR);
4441 		if (data & (1ULL<<0))
4442 			svm_enable_lbrv(svm);
4443 		else
4444 			svm_disable_lbrv(svm);
4445 		break;
4446 	case MSR_VM_HSAVE_PA:
4447 		svm->nested.hsave_msr = data;
4448 		break;
4449 	case MSR_VM_CR:
4450 		return svm_set_vm_cr(vcpu, data);
4451 	case MSR_VM_IGNNE:
4452 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4453 		break;
4454 	case MSR_AMD64_DE_CFG: {
4455 		struct kvm_msr_entry msr_entry;
4456 
4457 		msr_entry.index = msr->index;
4458 		if (svm_get_msr_feature(&msr_entry))
4459 			return 1;
4460 
4461 		/* Check the supported bits */
4462 		if (data & ~msr_entry.data)
4463 			return 1;
4464 
4465 		/* Don't allow the guest to change a bit, #GP */
4466 		if (!msr->host_initiated && (data ^ msr_entry.data))
4467 			return 1;
4468 
4469 		svm->msr_decfg = data;
4470 		break;
4471 	}
4472 	case MSR_IA32_APICBASE:
4473 		if (kvm_vcpu_apicv_active(vcpu))
4474 			avic_update_vapic_bar(to_svm(vcpu), data);
4475 		/* Fall through */
4476 	default:
4477 		return kvm_set_msr_common(vcpu, msr);
4478 	}
4479 	return 0;
4480 }
4481 
wrmsr_interception(struct vcpu_svm * svm)4482 static int wrmsr_interception(struct vcpu_svm *svm)
4483 {
4484 	return kvm_emulate_wrmsr(&svm->vcpu);
4485 }
4486 
msr_interception(struct vcpu_svm * svm)4487 static int msr_interception(struct vcpu_svm *svm)
4488 {
4489 	if (svm->vmcb->control.exit_info_1)
4490 		return wrmsr_interception(svm);
4491 	else
4492 		return rdmsr_interception(svm);
4493 }
4494 
interrupt_window_interception(struct vcpu_svm * svm)4495 static int interrupt_window_interception(struct vcpu_svm *svm)
4496 {
4497 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4498 	svm_clear_vintr(svm);
4499 	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4500 	mark_dirty(svm->vmcb, VMCB_INTR);
4501 	++svm->vcpu.stat.irq_window_exits;
4502 	return 1;
4503 }
4504 
pause_interception(struct vcpu_svm * svm)4505 static int pause_interception(struct vcpu_svm *svm)
4506 {
4507 	struct kvm_vcpu *vcpu = &svm->vcpu;
4508 	bool in_kernel = (svm_get_cpl(vcpu) == 0);
4509 
4510 	if (pause_filter_thresh)
4511 		grow_ple_window(vcpu);
4512 
4513 	kvm_vcpu_on_spin(vcpu, in_kernel);
4514 	return 1;
4515 }
4516 
nop_interception(struct vcpu_svm * svm)4517 static int nop_interception(struct vcpu_svm *svm)
4518 {
4519 	return kvm_skip_emulated_instruction(&(svm->vcpu));
4520 }
4521 
monitor_interception(struct vcpu_svm * svm)4522 static int monitor_interception(struct vcpu_svm *svm)
4523 {
4524 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4525 	return nop_interception(svm);
4526 }
4527 
mwait_interception(struct vcpu_svm * svm)4528 static int mwait_interception(struct vcpu_svm *svm)
4529 {
4530 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4531 	return nop_interception(svm);
4532 }
4533 
4534 enum avic_ipi_failure_cause {
4535 	AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4536 	AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4537 	AVIC_IPI_FAILURE_INVALID_TARGET,
4538 	AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4539 };
4540 
avic_incomplete_ipi_interception(struct vcpu_svm * svm)4541 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4542 {
4543 	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4544 	u32 icrl = svm->vmcb->control.exit_info_1;
4545 	u32 id = svm->vmcb->control.exit_info_2 >> 32;
4546 	u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4547 	struct kvm_lapic *apic = svm->vcpu.arch.apic;
4548 
4549 	trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4550 
4551 	switch (id) {
4552 	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4553 		/*
4554 		 * AVIC hardware handles the generation of
4555 		 * IPIs when the specified Message Type is Fixed
4556 		 * (also known as fixed delivery mode) and
4557 		 * the Trigger Mode is edge-triggered. The hardware
4558 		 * also supports self and broadcast delivery modes
4559 		 * specified via the Destination Shorthand(DSH)
4560 		 * field of the ICRL. Logical and physical APIC ID
4561 		 * formats are supported. All other IPI types cause
4562 		 * a #VMEXIT, which needs to emulated.
4563 		 */
4564 		kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4565 		kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4566 		break;
4567 	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4568 		int i;
4569 		struct kvm_vcpu *vcpu;
4570 		struct kvm *kvm = svm->vcpu.kvm;
4571 		struct kvm_lapic *apic = svm->vcpu.arch.apic;
4572 
4573 		/*
4574 		 * At this point, we expect that the AVIC HW has already
4575 		 * set the appropriate IRR bits on the valid target
4576 		 * vcpus. So, we just need to kick the appropriate vcpu.
4577 		 */
4578 		kvm_for_each_vcpu(i, vcpu, kvm) {
4579 			bool m = kvm_apic_match_dest(vcpu, apic,
4580 						     icrl & KVM_APIC_SHORT_MASK,
4581 						     GET_APIC_DEST_FIELD(icrh),
4582 						     icrl & KVM_APIC_DEST_MASK);
4583 
4584 			if (m && !avic_vcpu_is_running(vcpu))
4585 				kvm_vcpu_wake_up(vcpu);
4586 		}
4587 		break;
4588 	}
4589 	case AVIC_IPI_FAILURE_INVALID_TARGET:
4590 		break;
4591 	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4592 		WARN_ONCE(1, "Invalid backing page\n");
4593 		break;
4594 	default:
4595 		pr_err("Unknown IPI interception\n");
4596 	}
4597 
4598 	return 1;
4599 }
4600 
avic_get_logical_id_entry(struct kvm_vcpu * vcpu,u32 ldr,bool flat)4601 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4602 {
4603 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4604 	int index;
4605 	u32 *logical_apic_id_table;
4606 	int dlid = GET_APIC_LOGICAL_ID(ldr);
4607 
4608 	if (!dlid)
4609 		return NULL;
4610 
4611 	if (flat) { /* flat */
4612 		index = ffs(dlid) - 1;
4613 		if (index > 7)
4614 			return NULL;
4615 	} else { /* cluster */
4616 		int cluster = (dlid & 0xf0) >> 4;
4617 		int apic = ffs(dlid & 0x0f) - 1;
4618 
4619 		if ((apic < 0) || (apic > 7) ||
4620 		    (cluster >= 0xf))
4621 			return NULL;
4622 		index = (cluster << 2) + apic;
4623 	}
4624 
4625 	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4626 
4627 	return &logical_apic_id_table[index];
4628 }
4629 
avic_ldr_write(struct kvm_vcpu * vcpu,u8 g_physical_id,u32 ldr)4630 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
4631 {
4632 	bool flat;
4633 	u32 *entry, new_entry;
4634 
4635 	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4636 	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4637 	if (!entry)
4638 		return -EINVAL;
4639 
4640 	new_entry = READ_ONCE(*entry);
4641 	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4642 	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4643 	new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4644 	WRITE_ONCE(*entry, new_entry);
4645 
4646 	return 0;
4647 }
4648 
avic_invalidate_logical_id_entry(struct kvm_vcpu * vcpu)4649 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
4650 {
4651 	struct vcpu_svm *svm = to_svm(vcpu);
4652 	bool flat = svm->dfr_reg == APIC_DFR_FLAT;
4653 	u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
4654 
4655 	if (entry)
4656 		clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
4657 }
4658 
avic_handle_ldr_update(struct kvm_vcpu * vcpu)4659 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4660 {
4661 	int ret = 0;
4662 	struct vcpu_svm *svm = to_svm(vcpu);
4663 	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4664 	u32 id = kvm_xapic_id(vcpu->arch.apic);
4665 
4666 	if (ldr == svm->ldr_reg)
4667 		return 0;
4668 
4669 	avic_invalidate_logical_id_entry(vcpu);
4670 
4671 	if (ldr)
4672 		ret = avic_ldr_write(vcpu, id, ldr);
4673 
4674 	if (!ret)
4675 		svm->ldr_reg = ldr;
4676 
4677 	return ret;
4678 }
4679 
avic_handle_apic_id_update(struct kvm_vcpu * vcpu)4680 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4681 {
4682 	u64 *old, *new;
4683 	struct vcpu_svm *svm = to_svm(vcpu);
4684 	u32 id = kvm_xapic_id(vcpu->arch.apic);
4685 
4686 	if (vcpu->vcpu_id == id)
4687 		return 0;
4688 
4689 	old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4690 	new = avic_get_physical_id_entry(vcpu, id);
4691 	if (!new || !old)
4692 		return 1;
4693 
4694 	/* We need to move physical_id_entry to new offset */
4695 	*new = *old;
4696 	*old = 0ULL;
4697 	to_svm(vcpu)->avic_physical_id_cache = new;
4698 
4699 	/*
4700 	 * Also update the guest physical APIC ID in the logical
4701 	 * APIC ID table entry if already setup the LDR.
4702 	 */
4703 	if (svm->ldr_reg)
4704 		avic_handle_ldr_update(vcpu);
4705 
4706 	return 0;
4707 }
4708 
avic_handle_dfr_update(struct kvm_vcpu * vcpu)4709 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4710 {
4711 	struct vcpu_svm *svm = to_svm(vcpu);
4712 	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4713 
4714 	if (svm->dfr_reg == dfr)
4715 		return;
4716 
4717 	avic_invalidate_logical_id_entry(vcpu);
4718 	svm->dfr_reg = dfr;
4719 }
4720 
avic_unaccel_trap_write(struct vcpu_svm * svm)4721 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4722 {
4723 	struct kvm_lapic *apic = svm->vcpu.arch.apic;
4724 	u32 offset = svm->vmcb->control.exit_info_1 &
4725 				AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4726 
4727 	switch (offset) {
4728 	case APIC_ID:
4729 		if (avic_handle_apic_id_update(&svm->vcpu))
4730 			return 0;
4731 		break;
4732 	case APIC_LDR:
4733 		if (avic_handle_ldr_update(&svm->vcpu))
4734 			return 0;
4735 		break;
4736 	case APIC_DFR:
4737 		avic_handle_dfr_update(&svm->vcpu);
4738 		break;
4739 	default:
4740 		break;
4741 	}
4742 
4743 	kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4744 
4745 	return 1;
4746 }
4747 
is_avic_unaccelerated_access_trap(u32 offset)4748 static bool is_avic_unaccelerated_access_trap(u32 offset)
4749 {
4750 	bool ret = false;
4751 
4752 	switch (offset) {
4753 	case APIC_ID:
4754 	case APIC_EOI:
4755 	case APIC_RRR:
4756 	case APIC_LDR:
4757 	case APIC_DFR:
4758 	case APIC_SPIV:
4759 	case APIC_ESR:
4760 	case APIC_ICR:
4761 	case APIC_LVTT:
4762 	case APIC_LVTTHMR:
4763 	case APIC_LVTPC:
4764 	case APIC_LVT0:
4765 	case APIC_LVT1:
4766 	case APIC_LVTERR:
4767 	case APIC_TMICT:
4768 	case APIC_TDCR:
4769 		ret = true;
4770 		break;
4771 	default:
4772 		break;
4773 	}
4774 	return ret;
4775 }
4776 
avic_unaccelerated_access_interception(struct vcpu_svm * svm)4777 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4778 {
4779 	int ret = 0;
4780 	u32 offset = svm->vmcb->control.exit_info_1 &
4781 		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4782 	u32 vector = svm->vmcb->control.exit_info_2 &
4783 		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4784 	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4785 		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
4786 	bool trap = is_avic_unaccelerated_access_trap(offset);
4787 
4788 	trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4789 					    trap, write, vector);
4790 	if (trap) {
4791 		/* Handling Trap */
4792 		WARN_ONCE(!write, "svm: Handling trap read.\n");
4793 		ret = avic_unaccel_trap_write(svm);
4794 	} else {
4795 		/* Handling Fault */
4796 		ret = kvm_emulate_instruction(&svm->vcpu, 0);
4797 	}
4798 
4799 	return ret;
4800 }
4801 
4802 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4803 	[SVM_EXIT_READ_CR0]			= cr_interception,
4804 	[SVM_EXIT_READ_CR3]			= cr_interception,
4805 	[SVM_EXIT_READ_CR4]			= cr_interception,
4806 	[SVM_EXIT_READ_CR8]			= cr_interception,
4807 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
4808 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
4809 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
4810 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
4811 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
4812 	[SVM_EXIT_READ_DR0]			= dr_interception,
4813 	[SVM_EXIT_READ_DR1]			= dr_interception,
4814 	[SVM_EXIT_READ_DR2]			= dr_interception,
4815 	[SVM_EXIT_READ_DR3]			= dr_interception,
4816 	[SVM_EXIT_READ_DR4]			= dr_interception,
4817 	[SVM_EXIT_READ_DR5]			= dr_interception,
4818 	[SVM_EXIT_READ_DR6]			= dr_interception,
4819 	[SVM_EXIT_READ_DR7]			= dr_interception,
4820 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
4821 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
4822 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
4823 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
4824 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
4825 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
4826 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
4827 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
4828 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
4829 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
4830 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
4831 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
4832 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
4833 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
4834 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
4835 	[SVM_EXIT_INTR]				= intr_interception,
4836 	[SVM_EXIT_NMI]				= nmi_interception,
4837 	[SVM_EXIT_SMI]				= nop_on_interception,
4838 	[SVM_EXIT_INIT]				= nop_on_interception,
4839 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
4840 	[SVM_EXIT_RDPMC]			= rdpmc_interception,
4841 	[SVM_EXIT_CPUID]			= cpuid_interception,
4842 	[SVM_EXIT_IRET]                         = iret_interception,
4843 	[SVM_EXIT_INVD]                         = invd_interception,
4844 	[SVM_EXIT_PAUSE]			= pause_interception,
4845 	[SVM_EXIT_HLT]				= halt_interception,
4846 	[SVM_EXIT_INVLPG]			= invlpg_interception,
4847 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
4848 	[SVM_EXIT_IOIO]				= io_interception,
4849 	[SVM_EXIT_MSR]				= msr_interception,
4850 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
4851 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
4852 	[SVM_EXIT_VMRUN]			= vmrun_interception,
4853 	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
4854 	[SVM_EXIT_VMLOAD]			= vmload_interception,
4855 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
4856 	[SVM_EXIT_STGI]				= stgi_interception,
4857 	[SVM_EXIT_CLGI]				= clgi_interception,
4858 	[SVM_EXIT_SKINIT]			= skinit_interception,
4859 	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
4860 	[SVM_EXIT_MONITOR]			= monitor_interception,
4861 	[SVM_EXIT_MWAIT]			= mwait_interception,
4862 	[SVM_EXIT_XSETBV]			= xsetbv_interception,
4863 	[SVM_EXIT_RDPRU]			= rdpru_interception,
4864 	[SVM_EXIT_NPF]				= npf_interception,
4865 	[SVM_EXIT_RSM]                          = rsm_interception,
4866 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
4867 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
4868 };
4869 
dump_vmcb(struct kvm_vcpu * vcpu)4870 static void dump_vmcb(struct kvm_vcpu *vcpu)
4871 {
4872 	struct vcpu_svm *svm = to_svm(vcpu);
4873 	struct vmcb_control_area *control = &svm->vmcb->control;
4874 	struct vmcb_save_area *save = &svm->vmcb->save;
4875 
4876 	if (!dump_invalid_vmcb) {
4877 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
4878 		return;
4879 	}
4880 
4881 	pr_err("VMCB Control Area:\n");
4882 	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4883 	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4884 	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4885 	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4886 	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4887 	pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4888 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4889 	pr_err("%-20s%d\n", "pause filter threshold:",
4890 	       control->pause_filter_thresh);
4891 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4892 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4893 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4894 	pr_err("%-20s%d\n", "asid:", control->asid);
4895 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4896 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4897 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4898 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
4899 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4900 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4901 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4902 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4903 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4904 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4905 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4906 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4907 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4908 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4909 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4910 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4911 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4912 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4913 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4914 	pr_err("VMCB State Save Area:\n");
4915 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4916 	       "es:",
4917 	       save->es.selector, save->es.attrib,
4918 	       save->es.limit, save->es.base);
4919 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4920 	       "cs:",
4921 	       save->cs.selector, save->cs.attrib,
4922 	       save->cs.limit, save->cs.base);
4923 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4924 	       "ss:",
4925 	       save->ss.selector, save->ss.attrib,
4926 	       save->ss.limit, save->ss.base);
4927 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4928 	       "ds:",
4929 	       save->ds.selector, save->ds.attrib,
4930 	       save->ds.limit, save->ds.base);
4931 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4932 	       "fs:",
4933 	       save->fs.selector, save->fs.attrib,
4934 	       save->fs.limit, save->fs.base);
4935 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4936 	       "gs:",
4937 	       save->gs.selector, save->gs.attrib,
4938 	       save->gs.limit, save->gs.base);
4939 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4940 	       "gdtr:",
4941 	       save->gdtr.selector, save->gdtr.attrib,
4942 	       save->gdtr.limit, save->gdtr.base);
4943 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4944 	       "ldtr:",
4945 	       save->ldtr.selector, save->ldtr.attrib,
4946 	       save->ldtr.limit, save->ldtr.base);
4947 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4948 	       "idtr:",
4949 	       save->idtr.selector, save->idtr.attrib,
4950 	       save->idtr.limit, save->idtr.base);
4951 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4952 	       "tr:",
4953 	       save->tr.selector, save->tr.attrib,
4954 	       save->tr.limit, save->tr.base);
4955 	pr_err("cpl:            %d                efer:         %016llx\n",
4956 		save->cpl, save->efer);
4957 	pr_err("%-15s %016llx %-13s %016llx\n",
4958 	       "cr0:", save->cr0, "cr2:", save->cr2);
4959 	pr_err("%-15s %016llx %-13s %016llx\n",
4960 	       "cr3:", save->cr3, "cr4:", save->cr4);
4961 	pr_err("%-15s %016llx %-13s %016llx\n",
4962 	       "dr6:", save->dr6, "dr7:", save->dr7);
4963 	pr_err("%-15s %016llx %-13s %016llx\n",
4964 	       "rip:", save->rip, "rflags:", save->rflags);
4965 	pr_err("%-15s %016llx %-13s %016llx\n",
4966 	       "rsp:", save->rsp, "rax:", save->rax);
4967 	pr_err("%-15s %016llx %-13s %016llx\n",
4968 	       "star:", save->star, "lstar:", save->lstar);
4969 	pr_err("%-15s %016llx %-13s %016llx\n",
4970 	       "cstar:", save->cstar, "sfmask:", save->sfmask);
4971 	pr_err("%-15s %016llx %-13s %016llx\n",
4972 	       "kernel_gs_base:", save->kernel_gs_base,
4973 	       "sysenter_cs:", save->sysenter_cs);
4974 	pr_err("%-15s %016llx %-13s %016llx\n",
4975 	       "sysenter_esp:", save->sysenter_esp,
4976 	       "sysenter_eip:", save->sysenter_eip);
4977 	pr_err("%-15s %016llx %-13s %016llx\n",
4978 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4979 	pr_err("%-15s %016llx %-13s %016llx\n",
4980 	       "br_from:", save->br_from, "br_to:", save->br_to);
4981 	pr_err("%-15s %016llx %-13s %016llx\n",
4982 	       "excp_from:", save->last_excp_from,
4983 	       "excp_to:", save->last_excp_to);
4984 }
4985 
svm_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)4986 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4987 {
4988 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4989 
4990 	*info1 = control->exit_info_1;
4991 	*info2 = control->exit_info_2;
4992 }
4993 
handle_exit(struct kvm_vcpu * vcpu)4994 static int handle_exit(struct kvm_vcpu *vcpu)
4995 {
4996 	struct vcpu_svm *svm = to_svm(vcpu);
4997 	struct kvm_run *kvm_run = vcpu->run;
4998 	u32 exit_code = svm->vmcb->control.exit_code;
4999 
5000 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
5001 
5002 	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
5003 		vcpu->arch.cr0 = svm->vmcb->save.cr0;
5004 	if (npt_enabled)
5005 		vcpu->arch.cr3 = svm->vmcb->save.cr3;
5006 
5007 	if (unlikely(svm->nested.exit_required)) {
5008 		nested_svm_vmexit(svm);
5009 		svm->nested.exit_required = false;
5010 
5011 		return 1;
5012 	}
5013 
5014 	if (is_guest_mode(vcpu)) {
5015 		int vmexit;
5016 
5017 		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
5018 					svm->vmcb->control.exit_info_1,
5019 					svm->vmcb->control.exit_info_2,
5020 					svm->vmcb->control.exit_int_info,
5021 					svm->vmcb->control.exit_int_info_err,
5022 					KVM_ISA_SVM);
5023 
5024 		vmexit = nested_svm_exit_special(svm);
5025 
5026 		if (vmexit == NESTED_EXIT_CONTINUE)
5027 			vmexit = nested_svm_exit_handled(svm);
5028 
5029 		if (vmexit == NESTED_EXIT_DONE)
5030 			return 1;
5031 	}
5032 
5033 	svm_complete_interrupts(svm);
5034 
5035 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
5036 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5037 		kvm_run->fail_entry.hardware_entry_failure_reason
5038 			= svm->vmcb->control.exit_code;
5039 		dump_vmcb(vcpu);
5040 		return 0;
5041 	}
5042 
5043 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
5044 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
5045 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
5046 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
5047 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
5048 		       "exit_code 0x%x\n",
5049 		       __func__, svm->vmcb->control.exit_int_info,
5050 		       exit_code);
5051 
5052 	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
5053 	    || !svm_exit_handlers[exit_code]) {
5054 		vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
5055 		dump_vmcb(vcpu);
5056 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5057 		vcpu->run->internal.suberror =
5058 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5059 		vcpu->run->internal.ndata = 1;
5060 		vcpu->run->internal.data[0] = exit_code;
5061 		return 0;
5062 	}
5063 
5064 	return svm_exit_handlers[exit_code](svm);
5065 }
5066 
reload_tss(struct kvm_vcpu * vcpu)5067 static void reload_tss(struct kvm_vcpu *vcpu)
5068 {
5069 	int cpu = raw_smp_processor_id();
5070 
5071 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5072 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5073 	load_TR_desc();
5074 }
5075 
pre_sev_run(struct vcpu_svm * svm,int cpu)5076 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5077 {
5078 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5079 	int asid = sev_get_asid(svm->vcpu.kvm);
5080 
5081 	/* Assign the asid allocated with this SEV guest */
5082 	svm->vmcb->control.asid = asid;
5083 
5084 	/*
5085 	 * Flush guest TLB:
5086 	 *
5087 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5088 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5089 	 */
5090 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
5091 	    svm->last_cpu == cpu)
5092 		return;
5093 
5094 	svm->last_cpu = cpu;
5095 	sd->sev_vmcbs[asid] = svm->vmcb;
5096 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5097 	mark_dirty(svm->vmcb, VMCB_ASID);
5098 }
5099 
pre_svm_run(struct vcpu_svm * svm)5100 static void pre_svm_run(struct vcpu_svm *svm)
5101 {
5102 	int cpu = raw_smp_processor_id();
5103 
5104 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5105 
5106 	if (sev_guest(svm->vcpu.kvm))
5107 		return pre_sev_run(svm, cpu);
5108 
5109 	/* FIXME: handle wraparound of asid_generation */
5110 	if (svm->asid_generation != sd->asid_generation)
5111 		new_asid(svm, sd);
5112 }
5113 
svm_inject_nmi(struct kvm_vcpu * vcpu)5114 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5115 {
5116 	struct vcpu_svm *svm = to_svm(vcpu);
5117 
5118 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5119 	vcpu->arch.hflags |= HF_NMI_MASK;
5120 	set_intercept(svm, INTERCEPT_IRET);
5121 	++vcpu->stat.nmi_injections;
5122 }
5123 
svm_inject_irq(struct vcpu_svm * svm,int irq)5124 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5125 {
5126 	struct vmcb_control_area *control;
5127 
5128 	/* The following fields are ignored when AVIC is enabled */
5129 	control = &svm->vmcb->control;
5130 	control->int_vector = irq;
5131 	control->int_ctl &= ~V_INTR_PRIO_MASK;
5132 	control->int_ctl |= V_IRQ_MASK |
5133 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5134 	mark_dirty(svm->vmcb, VMCB_INTR);
5135 }
5136 
svm_set_irq(struct kvm_vcpu * vcpu)5137 static void svm_set_irq(struct kvm_vcpu *vcpu)
5138 {
5139 	struct vcpu_svm *svm = to_svm(vcpu);
5140 
5141 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5142 	++vcpu->stat.irq_injections;
5143 
5144 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5145 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5146 }
5147 
svm_nested_virtualize_tpr(struct kvm_vcpu * vcpu)5148 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5149 {
5150 	return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5151 }
5152 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)5153 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5154 {
5155 	struct vcpu_svm *svm = to_svm(vcpu);
5156 
5157 	if (svm_nested_virtualize_tpr(vcpu) ||
5158 	    kvm_vcpu_apicv_active(vcpu))
5159 		return;
5160 
5161 	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5162 
5163 	if (irr == -1)
5164 		return;
5165 
5166 	if (tpr >= irr)
5167 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5168 }
5169 
svm_set_virtual_apic_mode(struct kvm_vcpu * vcpu)5170 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5171 {
5172 	return;
5173 }
5174 
svm_get_enable_apicv(struct kvm_vcpu * vcpu)5175 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5176 {
5177 	return avic && irqchip_split(vcpu->kvm);
5178 }
5179 
svm_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)5180 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5181 {
5182 }
5183 
svm_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)5184 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5185 {
5186 }
5187 
5188 /* Note: Currently only used by Hyper-V. */
svm_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)5189 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5190 {
5191 	struct vcpu_svm *svm = to_svm(vcpu);
5192 	struct vmcb *vmcb = svm->vmcb;
5193 
5194 	if (kvm_vcpu_apicv_active(vcpu))
5195 		vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
5196 	else
5197 		vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5198 	mark_dirty(vmcb, VMCB_AVIC);
5199 }
5200 
svm_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)5201 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5202 {
5203 	return;
5204 }
5205 
svm_deliver_avic_intr(struct kvm_vcpu * vcpu,int vec)5206 static int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5207 {
5208 	if (!vcpu->arch.apicv_active)
5209 		return -1;
5210 
5211 	kvm_lapic_set_irr(vec, vcpu->arch.apic);
5212 	smp_mb__after_atomic();
5213 
5214 	if (avic_vcpu_is_running(vcpu)) {
5215 		int cpuid = vcpu->cpu;
5216 
5217 		if (cpuid != get_cpu())
5218 			wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
5219 		put_cpu();
5220 	} else
5221 		kvm_vcpu_wake_up(vcpu);
5222 
5223 	return 0;
5224 }
5225 
svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu * vcpu)5226 static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
5227 {
5228 	return false;
5229 }
5230 
svm_ir_list_del(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)5231 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5232 {
5233 	unsigned long flags;
5234 	struct amd_svm_iommu_ir *cur;
5235 
5236 	spin_lock_irqsave(&svm->ir_list_lock, flags);
5237 	list_for_each_entry(cur, &svm->ir_list, node) {
5238 		if (cur->data != pi->ir_data)
5239 			continue;
5240 		list_del(&cur->node);
5241 		kfree(cur);
5242 		break;
5243 	}
5244 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5245 }
5246 
svm_ir_list_add(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)5247 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5248 {
5249 	int ret = 0;
5250 	unsigned long flags;
5251 	struct amd_svm_iommu_ir *ir;
5252 
5253 	/**
5254 	 * In some cases, the existing irte is updaed and re-set,
5255 	 * so we need to check here if it's already been * added
5256 	 * to the ir_list.
5257 	 */
5258 	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5259 		struct kvm *kvm = svm->vcpu.kvm;
5260 		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5261 		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5262 		struct vcpu_svm *prev_svm;
5263 
5264 		if (!prev_vcpu) {
5265 			ret = -EINVAL;
5266 			goto out;
5267 		}
5268 
5269 		prev_svm = to_svm(prev_vcpu);
5270 		svm_ir_list_del(prev_svm, pi);
5271 	}
5272 
5273 	/**
5274 	 * Allocating new amd_iommu_pi_data, which will get
5275 	 * add to the per-vcpu ir_list.
5276 	 */
5277 	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
5278 	if (!ir) {
5279 		ret = -ENOMEM;
5280 		goto out;
5281 	}
5282 	ir->data = pi->ir_data;
5283 
5284 	spin_lock_irqsave(&svm->ir_list_lock, flags);
5285 	list_add(&ir->node, &svm->ir_list);
5286 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5287 out:
5288 	return ret;
5289 }
5290 
5291 /**
5292  * Note:
5293  * The HW cannot support posting multicast/broadcast
5294  * interrupts to a vCPU. So, we still use legacy interrupt
5295  * remapping for these kind of interrupts.
5296  *
5297  * For lowest-priority interrupts, we only support
5298  * those with single CPU as the destination, e.g. user
5299  * configures the interrupts via /proc/irq or uses
5300  * irqbalance to make the interrupts single-CPU.
5301  */
5302 static int
get_pi_vcpu_info(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,struct vcpu_data * vcpu_info,struct vcpu_svm ** svm)5303 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5304 		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5305 {
5306 	struct kvm_lapic_irq irq;
5307 	struct kvm_vcpu *vcpu = NULL;
5308 
5309 	kvm_set_msi_irq(kvm, e, &irq);
5310 
5311 	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
5312 	    !kvm_irq_is_postable(&irq)) {
5313 		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5314 			 __func__, irq.vector);
5315 		return -1;
5316 	}
5317 
5318 	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5319 		 irq.vector);
5320 	*svm = to_svm(vcpu);
5321 	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5322 	vcpu_info->vector = irq.vector;
5323 
5324 	return 0;
5325 }
5326 
5327 /*
5328  * svm_update_pi_irte - set IRTE for Posted-Interrupts
5329  *
5330  * @kvm: kvm
5331  * @host_irq: host irq of the interrupt
5332  * @guest_irq: gsi of the interrupt
5333  * @set: set or unset PI
5334  * returns 0 on success, < 0 on failure
5335  */
svm_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)5336 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5337 			      uint32_t guest_irq, bool set)
5338 {
5339 	struct kvm_kernel_irq_routing_entry *e;
5340 	struct kvm_irq_routing_table *irq_rt;
5341 	int idx, ret = -EINVAL;
5342 
5343 	if (!kvm_arch_has_assigned_device(kvm) ||
5344 	    !irq_remapping_cap(IRQ_POSTING_CAP))
5345 		return 0;
5346 
5347 	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5348 		 __func__, host_irq, guest_irq, set);
5349 
5350 	idx = srcu_read_lock(&kvm->irq_srcu);
5351 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5352 	WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5353 
5354 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5355 		struct vcpu_data vcpu_info;
5356 		struct vcpu_svm *svm = NULL;
5357 
5358 		if (e->type != KVM_IRQ_ROUTING_MSI)
5359 			continue;
5360 
5361 		/**
5362 		 * Here, we setup with legacy mode in the following cases:
5363 		 * 1. When cannot target interrupt to a specific vcpu.
5364 		 * 2. Unsetting posted interrupt.
5365 		 * 3. APIC virtialization is disabled for the vcpu.
5366 		 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
5367 		 */
5368 		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5369 		    kvm_vcpu_apicv_active(&svm->vcpu)) {
5370 			struct amd_iommu_pi_data pi;
5371 
5372 			/* Try to enable guest_mode in IRTE */
5373 			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5374 					    AVIC_HPA_MASK);
5375 			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5376 						     svm->vcpu.vcpu_id);
5377 			pi.is_guest_mode = true;
5378 			pi.vcpu_data = &vcpu_info;
5379 			ret = irq_set_vcpu_affinity(host_irq, &pi);
5380 
5381 			/**
5382 			 * Here, we successfully setting up vcpu affinity in
5383 			 * IOMMU guest mode. Now, we need to store the posted
5384 			 * interrupt information in a per-vcpu ir_list so that
5385 			 * we can reference to them directly when we update vcpu
5386 			 * scheduling information in IOMMU irte.
5387 			 */
5388 			if (!ret && pi.is_guest_mode)
5389 				svm_ir_list_add(svm, &pi);
5390 		} else {
5391 			/* Use legacy mode in IRTE */
5392 			struct amd_iommu_pi_data pi;
5393 
5394 			/**
5395 			 * Here, pi is used to:
5396 			 * - Tell IOMMU to use legacy mode for this interrupt.
5397 			 * - Retrieve ga_tag of prior interrupt remapping data.
5398 			 */
5399 			pi.prev_ga_tag = 0;
5400 			pi.is_guest_mode = false;
5401 			ret = irq_set_vcpu_affinity(host_irq, &pi);
5402 
5403 			/**
5404 			 * Check if the posted interrupt was previously
5405 			 * setup with the guest_mode by checking if the ga_tag
5406 			 * was cached. If so, we need to clean up the per-vcpu
5407 			 * ir_list.
5408 			 */
5409 			if (!ret && pi.prev_ga_tag) {
5410 				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5411 				struct kvm_vcpu *vcpu;
5412 
5413 				vcpu = kvm_get_vcpu_by_id(kvm, id);
5414 				if (vcpu)
5415 					svm_ir_list_del(to_svm(vcpu), &pi);
5416 			}
5417 		}
5418 
5419 		if (!ret && svm) {
5420 			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5421 						 e->gsi, vcpu_info.vector,
5422 						 vcpu_info.pi_desc_addr, set);
5423 		}
5424 
5425 		if (ret < 0) {
5426 			pr_err("%s: failed to update PI IRTE\n", __func__);
5427 			goto out;
5428 		}
5429 	}
5430 
5431 	ret = 0;
5432 out:
5433 	srcu_read_unlock(&kvm->irq_srcu, idx);
5434 	return ret;
5435 }
5436 
svm_nmi_allowed(struct kvm_vcpu * vcpu)5437 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5438 {
5439 	struct vcpu_svm *svm = to_svm(vcpu);
5440 	struct vmcb *vmcb = svm->vmcb;
5441 	int ret;
5442 	ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5443 	      !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5444 	ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5445 
5446 	return ret;
5447 }
5448 
svm_get_nmi_mask(struct kvm_vcpu * vcpu)5449 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5450 {
5451 	struct vcpu_svm *svm = to_svm(vcpu);
5452 
5453 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5454 }
5455 
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5456 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5457 {
5458 	struct vcpu_svm *svm = to_svm(vcpu);
5459 
5460 	if (masked) {
5461 		svm->vcpu.arch.hflags |= HF_NMI_MASK;
5462 		set_intercept(svm, INTERCEPT_IRET);
5463 	} else {
5464 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5465 		clr_intercept(svm, INTERCEPT_IRET);
5466 	}
5467 }
5468 
svm_interrupt_allowed(struct kvm_vcpu * vcpu)5469 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5470 {
5471 	struct vcpu_svm *svm = to_svm(vcpu);
5472 	struct vmcb *vmcb = svm->vmcb;
5473 	int ret;
5474 
5475 	if (!gif_set(svm) ||
5476 	     (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5477 		return 0;
5478 
5479 	ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5480 
5481 	if (is_guest_mode(vcpu))
5482 		return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5483 
5484 	return ret;
5485 }
5486 
enable_irq_window(struct kvm_vcpu * vcpu)5487 static void enable_irq_window(struct kvm_vcpu *vcpu)
5488 {
5489 	struct vcpu_svm *svm = to_svm(vcpu);
5490 
5491 	if (kvm_vcpu_apicv_active(vcpu))
5492 		return;
5493 
5494 	/*
5495 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5496 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
5497 	 * get that intercept, this function will be called again though and
5498 	 * we'll get the vintr intercept. However, if the vGIF feature is
5499 	 * enabled, the STGI interception will not occur. Enable the irq
5500 	 * window under the assumption that the hardware will set the GIF.
5501 	 */
5502 	if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5503 		svm_set_vintr(svm);
5504 		svm_inject_irq(svm, 0x0);
5505 	}
5506 }
5507 
enable_nmi_window(struct kvm_vcpu * vcpu)5508 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5509 {
5510 	struct vcpu_svm *svm = to_svm(vcpu);
5511 
5512 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5513 	    == HF_NMI_MASK)
5514 		return; /* IRET will cause a vm exit */
5515 
5516 	if (!gif_set(svm)) {
5517 		if (vgif_enabled(svm))
5518 			set_intercept(svm, INTERCEPT_STGI);
5519 		return; /* STGI will cause a vm exit */
5520 	}
5521 
5522 	if (svm->nested.exit_required)
5523 		return; /* we're not going to run the guest yet */
5524 
5525 	/*
5526 	 * Something prevents NMI from been injected. Single step over possible
5527 	 * problem (IRET or exception injection or interrupt shadow)
5528 	 */
5529 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5530 	svm->nmi_singlestep = true;
5531 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5532 }
5533 
svm_set_tss_addr(struct kvm * kvm,unsigned int addr)5534 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5535 {
5536 	return 0;
5537 }
5538 
svm_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5539 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5540 {
5541 	return 0;
5542 }
5543 
svm_flush_tlb(struct kvm_vcpu * vcpu,bool invalidate_gpa)5544 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5545 {
5546 	struct vcpu_svm *svm = to_svm(vcpu);
5547 
5548 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5549 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5550 	else
5551 		svm->asid_generation--;
5552 }
5553 
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)5554 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5555 {
5556 	struct vcpu_svm *svm = to_svm(vcpu);
5557 
5558 	invlpga(gva, svm->vmcb->control.asid);
5559 }
5560 
svm_prepare_guest_switch(struct kvm_vcpu * vcpu)5561 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5562 {
5563 }
5564 
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)5565 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5566 {
5567 	struct vcpu_svm *svm = to_svm(vcpu);
5568 
5569 	if (svm_nested_virtualize_tpr(vcpu))
5570 		return;
5571 
5572 	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5573 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5574 		kvm_set_cr8(vcpu, cr8);
5575 	}
5576 }
5577 
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)5578 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5579 {
5580 	struct vcpu_svm *svm = to_svm(vcpu);
5581 	u64 cr8;
5582 
5583 	if (svm_nested_virtualize_tpr(vcpu) ||
5584 	    kvm_vcpu_apicv_active(vcpu))
5585 		return;
5586 
5587 	cr8 = kvm_get_cr8(vcpu);
5588 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5589 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5590 }
5591 
svm_complete_interrupts(struct vcpu_svm * svm)5592 static void svm_complete_interrupts(struct vcpu_svm *svm)
5593 {
5594 	u8 vector;
5595 	int type;
5596 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
5597 	unsigned int3_injected = svm->int3_injected;
5598 
5599 	svm->int3_injected = 0;
5600 
5601 	/*
5602 	 * If we've made progress since setting HF_IRET_MASK, we've
5603 	 * executed an IRET and can allow NMI injection.
5604 	 */
5605 	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5606 	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5607 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5608 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5609 	}
5610 
5611 	svm->vcpu.arch.nmi_injected = false;
5612 	kvm_clear_exception_queue(&svm->vcpu);
5613 	kvm_clear_interrupt_queue(&svm->vcpu);
5614 
5615 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5616 		return;
5617 
5618 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5619 
5620 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5621 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5622 
5623 	switch (type) {
5624 	case SVM_EXITINTINFO_TYPE_NMI:
5625 		svm->vcpu.arch.nmi_injected = true;
5626 		break;
5627 	case SVM_EXITINTINFO_TYPE_EXEPT:
5628 		/*
5629 		 * In case of software exceptions, do not reinject the vector,
5630 		 * but re-execute the instruction instead. Rewind RIP first
5631 		 * if we emulated INT3 before.
5632 		 */
5633 		if (kvm_exception_is_soft(vector)) {
5634 			if (vector == BP_VECTOR && int3_injected &&
5635 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5636 				kvm_rip_write(&svm->vcpu,
5637 					      kvm_rip_read(&svm->vcpu) -
5638 					      int3_injected);
5639 			break;
5640 		}
5641 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5642 			u32 err = svm->vmcb->control.exit_int_info_err;
5643 			kvm_requeue_exception_e(&svm->vcpu, vector, err);
5644 
5645 		} else
5646 			kvm_requeue_exception(&svm->vcpu, vector);
5647 		break;
5648 	case SVM_EXITINTINFO_TYPE_INTR:
5649 		kvm_queue_interrupt(&svm->vcpu, vector, false);
5650 		break;
5651 	default:
5652 		break;
5653 	}
5654 }
5655 
svm_cancel_injection(struct kvm_vcpu * vcpu)5656 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5657 {
5658 	struct vcpu_svm *svm = to_svm(vcpu);
5659 	struct vmcb_control_area *control = &svm->vmcb->control;
5660 
5661 	control->exit_int_info = control->event_inj;
5662 	control->exit_int_info_err = control->event_inj_err;
5663 	control->event_inj = 0;
5664 	svm_complete_interrupts(svm);
5665 }
5666 
svm_vcpu_run(struct kvm_vcpu * vcpu)5667 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5668 {
5669 	struct vcpu_svm *svm = to_svm(vcpu);
5670 
5671 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5672 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5673 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5674 
5675 	/*
5676 	 * A vmexit emulation is required before the vcpu can be executed
5677 	 * again.
5678 	 */
5679 	if (unlikely(svm->nested.exit_required))
5680 		return;
5681 
5682 	/*
5683 	 * Disable singlestep if we're injecting an interrupt/exception.
5684 	 * We don't want our modified rflags to be pushed on the stack where
5685 	 * we might not be able to easily reset them if we disabled NMI
5686 	 * singlestep later.
5687 	 */
5688 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5689 		/*
5690 		 * Event injection happens before external interrupts cause a
5691 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
5692 		 * is enough to force an immediate vmexit.
5693 		 */
5694 		disable_nmi_singlestep(svm);
5695 		smp_send_reschedule(vcpu->cpu);
5696 	}
5697 
5698 	pre_svm_run(svm);
5699 
5700 	sync_lapic_to_cr8(vcpu);
5701 
5702 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
5703 
5704 	clgi();
5705 	kvm_load_guest_xcr0(vcpu);
5706 
5707 	if (lapic_in_kernel(vcpu) &&
5708 		vcpu->arch.apic->lapic_timer.timer_advance_ns)
5709 		kvm_wait_lapic_expire(vcpu);
5710 
5711 	/*
5712 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5713 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5714 	 * is no need to worry about the conditional branch over the wrmsr
5715 	 * being speculatively taken.
5716 	 */
5717 	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5718 
5719 	local_irq_enable();
5720 
5721 	asm volatile (
5722 		"push %%" _ASM_BP "; \n\t"
5723 		"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5724 		"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5725 		"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5726 		"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5727 		"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5728 		"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5729 #ifdef CONFIG_X86_64
5730 		"mov %c[r8](%[svm]),  %%r8  \n\t"
5731 		"mov %c[r9](%[svm]),  %%r9  \n\t"
5732 		"mov %c[r10](%[svm]), %%r10 \n\t"
5733 		"mov %c[r11](%[svm]), %%r11 \n\t"
5734 		"mov %c[r12](%[svm]), %%r12 \n\t"
5735 		"mov %c[r13](%[svm]), %%r13 \n\t"
5736 		"mov %c[r14](%[svm]), %%r14 \n\t"
5737 		"mov %c[r15](%[svm]), %%r15 \n\t"
5738 #endif
5739 
5740 		/* Enter guest mode */
5741 		"push %%" _ASM_AX " \n\t"
5742 		"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5743 		__ex("vmload %%" _ASM_AX) "\n\t"
5744 		__ex("vmrun %%" _ASM_AX) "\n\t"
5745 		__ex("vmsave %%" _ASM_AX) "\n\t"
5746 		"pop %%" _ASM_AX " \n\t"
5747 
5748 		/* Save guest registers, load host registers */
5749 		"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5750 		"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5751 		"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5752 		"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5753 		"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5754 		"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5755 #ifdef CONFIG_X86_64
5756 		"mov %%r8,  %c[r8](%[svm]) \n\t"
5757 		"mov %%r9,  %c[r9](%[svm]) \n\t"
5758 		"mov %%r10, %c[r10](%[svm]) \n\t"
5759 		"mov %%r11, %c[r11](%[svm]) \n\t"
5760 		"mov %%r12, %c[r12](%[svm]) \n\t"
5761 		"mov %%r13, %c[r13](%[svm]) \n\t"
5762 		"mov %%r14, %c[r14](%[svm]) \n\t"
5763 		"mov %%r15, %c[r15](%[svm]) \n\t"
5764 		/*
5765 		* Clear host registers marked as clobbered to prevent
5766 		* speculative use.
5767 		*/
5768 		"xor %%r8d, %%r8d \n\t"
5769 		"xor %%r9d, %%r9d \n\t"
5770 		"xor %%r10d, %%r10d \n\t"
5771 		"xor %%r11d, %%r11d \n\t"
5772 		"xor %%r12d, %%r12d \n\t"
5773 		"xor %%r13d, %%r13d \n\t"
5774 		"xor %%r14d, %%r14d \n\t"
5775 		"xor %%r15d, %%r15d \n\t"
5776 #endif
5777 		"xor %%ebx, %%ebx \n\t"
5778 		"xor %%ecx, %%ecx \n\t"
5779 		"xor %%edx, %%edx \n\t"
5780 		"xor %%esi, %%esi \n\t"
5781 		"xor %%edi, %%edi \n\t"
5782 		"pop %%" _ASM_BP
5783 		:
5784 		: [svm]"a"(svm),
5785 		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5786 		  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5787 		  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5788 		  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5789 		  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5790 		  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5791 		  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5792 #ifdef CONFIG_X86_64
5793 		  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5794 		  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5795 		  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5796 		  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5797 		  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5798 		  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5799 		  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5800 		  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5801 #endif
5802 		: "cc", "memory"
5803 #ifdef CONFIG_X86_64
5804 		, "rbx", "rcx", "rdx", "rsi", "rdi"
5805 		, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5806 #else
5807 		, "ebx", "ecx", "edx", "esi", "edi"
5808 #endif
5809 		);
5810 
5811 	/* Eliminate branch target predictions from guest mode */
5812 	vmexit_fill_RSB();
5813 
5814 #ifdef CONFIG_X86_64
5815 	wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5816 #else
5817 	loadsegment(fs, svm->host.fs);
5818 #ifndef CONFIG_X86_32_LAZY_GS
5819 	loadsegment(gs, svm->host.gs);
5820 #endif
5821 #endif
5822 
5823 	/*
5824 	 * We do not use IBRS in the kernel. If this vCPU has used the
5825 	 * SPEC_CTRL MSR it may have left it on; save the value and
5826 	 * turn it off. This is much more efficient than blindly adding
5827 	 * it to the atomic save/restore list. Especially as the former
5828 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5829 	 *
5830 	 * For non-nested case:
5831 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5832 	 * save it.
5833 	 *
5834 	 * For nested case:
5835 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5836 	 * save it.
5837 	 */
5838 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5839 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5840 
5841 	reload_tss(vcpu);
5842 
5843 	local_irq_disable();
5844 
5845 	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5846 
5847 	vcpu->arch.cr2 = svm->vmcb->save.cr2;
5848 	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5849 	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5850 	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5851 
5852 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5853 		kvm_before_interrupt(&svm->vcpu);
5854 
5855 	kvm_put_guest_xcr0(vcpu);
5856 	stgi();
5857 
5858 	/* Any pending NMI will happen here */
5859 
5860 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5861 		kvm_after_interrupt(&svm->vcpu);
5862 
5863 	sync_cr8_to_lapic(vcpu);
5864 
5865 	svm->next_rip = 0;
5866 
5867 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5868 
5869 	/* if exit due to PF check for async PF */
5870 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5871 		svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5872 
5873 	if (npt_enabled) {
5874 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5875 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5876 	}
5877 
5878 	/*
5879 	 * We need to handle MC intercepts here before the vcpu has a chance to
5880 	 * change the physical cpu
5881 	 */
5882 	if (unlikely(svm->vmcb->control.exit_code ==
5883 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
5884 		svm_handle_mce(svm);
5885 
5886 	mark_all_clean(svm->vmcb);
5887 }
5888 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5889 
svm_set_cr3(struct kvm_vcpu * vcpu,unsigned long root)5890 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5891 {
5892 	struct vcpu_svm *svm = to_svm(vcpu);
5893 
5894 	svm->vmcb->save.cr3 = __sme_set(root);
5895 	mark_dirty(svm->vmcb, VMCB_CR);
5896 }
5897 
set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)5898 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5899 {
5900 	struct vcpu_svm *svm = to_svm(vcpu);
5901 
5902 	svm->vmcb->control.nested_cr3 = __sme_set(root);
5903 	mark_dirty(svm->vmcb, VMCB_NPT);
5904 
5905 	/* Also sync guest cr3 here in case we live migrate */
5906 	svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5907 	mark_dirty(svm->vmcb, VMCB_CR);
5908 }
5909 
is_disabled(void)5910 static int is_disabled(void)
5911 {
5912 	u64 vm_cr;
5913 
5914 	rdmsrl(MSR_VM_CR, vm_cr);
5915 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5916 		return 1;
5917 
5918 	return 0;
5919 }
5920 
5921 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5922 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5923 {
5924 	/*
5925 	 * Patch in the VMMCALL instruction:
5926 	 */
5927 	hypercall[0] = 0x0f;
5928 	hypercall[1] = 0x01;
5929 	hypercall[2] = 0xd9;
5930 }
5931 
svm_check_processor_compat(void)5932 static int __init svm_check_processor_compat(void)
5933 {
5934 	return 0;
5935 }
5936 
svm_cpu_has_accelerated_tpr(void)5937 static bool svm_cpu_has_accelerated_tpr(void)
5938 {
5939 	return false;
5940 }
5941 
svm_has_emulated_msr(int index)5942 static bool svm_has_emulated_msr(int index)
5943 {
5944 	switch (index) {
5945 	case MSR_IA32_MCG_EXT_CTL:
5946 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
5947 		return false;
5948 	default:
5949 		break;
5950 	}
5951 
5952 	return true;
5953 }
5954 
svm_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)5955 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5956 {
5957 	return 0;
5958 }
5959 
svm_cpuid_update(struct kvm_vcpu * vcpu)5960 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5961 {
5962 	struct vcpu_svm *svm = to_svm(vcpu);
5963 
5964 	/* Update nrips enabled cache */
5965 	svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5966 
5967 	if (!kvm_vcpu_apicv_active(vcpu))
5968 		return;
5969 
5970 	guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5971 }
5972 
5973 #define F(x) bit(X86_FEATURE_##x)
5974 
svm_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)5975 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5976 {
5977 	switch (func) {
5978 	case 0x1:
5979 		if (avic)
5980 			entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5981 		break;
5982 	case 0x80000001:
5983 		if (nested)
5984 			entry->ecx |= (1 << 2); /* Set SVM bit */
5985 		break;
5986 	case 0x80000008:
5987 		if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5988 		     boot_cpu_has(X86_FEATURE_AMD_SSBD))
5989 			entry->ebx |= F(VIRT_SSBD);
5990 		break;
5991 	case 0x8000000A:
5992 		entry->eax = 1; /* SVM revision 1 */
5993 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5994 				   ASID emulation to nested SVM */
5995 		entry->ecx = 0; /* Reserved */
5996 		entry->edx = 0; /* Per default do not support any
5997 				   additional features */
5998 
5999 		/* Support next_rip if host supports it */
6000 		if (boot_cpu_has(X86_FEATURE_NRIPS))
6001 			entry->edx |= F(NRIPS);
6002 
6003 		/* Support NPT for the guest if enabled */
6004 		if (npt_enabled)
6005 			entry->edx |= F(NPT);
6006 
6007 		break;
6008 	case 0x8000001F:
6009 		/* Support memory encryption cpuid if host supports it */
6010 		if (boot_cpu_has(X86_FEATURE_SEV))
6011 			cpuid(0x8000001f, &entry->eax, &entry->ebx,
6012 				&entry->ecx, &entry->edx);
6013 
6014 	}
6015 }
6016 
svm_get_lpage_level(void)6017 static int svm_get_lpage_level(void)
6018 {
6019 	return PT_PDPE_LEVEL;
6020 }
6021 
svm_rdtscp_supported(void)6022 static bool svm_rdtscp_supported(void)
6023 {
6024 	return boot_cpu_has(X86_FEATURE_RDTSCP);
6025 }
6026 
svm_invpcid_supported(void)6027 static bool svm_invpcid_supported(void)
6028 {
6029 	return false;
6030 }
6031 
svm_mpx_supported(void)6032 static bool svm_mpx_supported(void)
6033 {
6034 	return false;
6035 }
6036 
svm_xsaves_supported(void)6037 static bool svm_xsaves_supported(void)
6038 {
6039 	return false;
6040 }
6041 
svm_umip_emulated(void)6042 static bool svm_umip_emulated(void)
6043 {
6044 	return false;
6045 }
6046 
svm_pt_supported(void)6047 static bool svm_pt_supported(void)
6048 {
6049 	return false;
6050 }
6051 
svm_has_wbinvd_exit(void)6052 static bool svm_has_wbinvd_exit(void)
6053 {
6054 	return true;
6055 }
6056 
svm_pku_supported(void)6057 static bool svm_pku_supported(void)
6058 {
6059 	return false;
6060 }
6061 
6062 #define PRE_EX(exit)  { .exit_code = (exit), \
6063 			.stage = X86_ICPT_PRE_EXCEPT, }
6064 #define POST_EX(exit) { .exit_code = (exit), \
6065 			.stage = X86_ICPT_POST_EXCEPT, }
6066 #define POST_MEM(exit) { .exit_code = (exit), \
6067 			.stage = X86_ICPT_POST_MEMACCESS, }
6068 
6069 static const struct __x86_intercept {
6070 	u32 exit_code;
6071 	enum x86_intercept_stage stage;
6072 } x86_intercept_map[] = {
6073 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
6074 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
6075 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
6076 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
6077 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
6078 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
6079 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
6080 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
6081 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
6082 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
6083 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
6084 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
6085 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
6086 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
6087 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
6088 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
6089 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
6090 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
6091 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
6092 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
6093 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
6094 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
6095 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
6096 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
6097 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
6098 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
6099 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
6100 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
6101 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
6102 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
6103 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
6104 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
6105 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
6106 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
6107 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
6108 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
6109 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
6110 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
6111 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
6112 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
6113 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
6114 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
6115 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
6116 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
6117 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
6118 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
6119 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
6120 };
6121 
6122 #undef PRE_EX
6123 #undef POST_EX
6124 #undef POST_MEM
6125 
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)6126 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6127 			       struct x86_instruction_info *info,
6128 			       enum x86_intercept_stage stage)
6129 {
6130 	struct vcpu_svm *svm = to_svm(vcpu);
6131 	int vmexit, ret = X86EMUL_CONTINUE;
6132 	struct __x86_intercept icpt_info;
6133 	struct vmcb *vmcb = svm->vmcb;
6134 
6135 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6136 		goto out;
6137 
6138 	icpt_info = x86_intercept_map[info->intercept];
6139 
6140 	if (stage != icpt_info.stage)
6141 		goto out;
6142 
6143 	switch (icpt_info.exit_code) {
6144 	case SVM_EXIT_READ_CR0:
6145 		if (info->intercept == x86_intercept_cr_read)
6146 			icpt_info.exit_code += info->modrm_reg;
6147 		break;
6148 	case SVM_EXIT_WRITE_CR0: {
6149 		unsigned long cr0, val;
6150 		u64 intercept;
6151 
6152 		if (info->intercept == x86_intercept_cr_write)
6153 			icpt_info.exit_code += info->modrm_reg;
6154 
6155 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6156 		    info->intercept == x86_intercept_clts)
6157 			break;
6158 
6159 		intercept = svm->nested.intercept;
6160 
6161 		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6162 			break;
6163 
6164 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6165 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
6166 
6167 		if (info->intercept == x86_intercept_lmsw) {
6168 			cr0 &= 0xfUL;
6169 			val &= 0xfUL;
6170 			/* lmsw can't clear PE - catch this here */
6171 			if (cr0 & X86_CR0_PE)
6172 				val |= X86_CR0_PE;
6173 		}
6174 
6175 		if (cr0 ^ val)
6176 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6177 
6178 		break;
6179 	}
6180 	case SVM_EXIT_READ_DR0:
6181 	case SVM_EXIT_WRITE_DR0:
6182 		icpt_info.exit_code += info->modrm_reg;
6183 		break;
6184 	case SVM_EXIT_MSR:
6185 		if (info->intercept == x86_intercept_wrmsr)
6186 			vmcb->control.exit_info_1 = 1;
6187 		else
6188 			vmcb->control.exit_info_1 = 0;
6189 		break;
6190 	case SVM_EXIT_PAUSE:
6191 		/*
6192 		 * We get this for NOP only, but pause
6193 		 * is rep not, check this here
6194 		 */
6195 		if (info->rep_prefix != REPE_PREFIX)
6196 			goto out;
6197 		break;
6198 	case SVM_EXIT_IOIO: {
6199 		u64 exit_info;
6200 		u32 bytes;
6201 
6202 		if (info->intercept == x86_intercept_in ||
6203 		    info->intercept == x86_intercept_ins) {
6204 			exit_info = ((info->src_val & 0xffff) << 16) |
6205 				SVM_IOIO_TYPE_MASK;
6206 			bytes = info->dst_bytes;
6207 		} else {
6208 			exit_info = (info->dst_val & 0xffff) << 16;
6209 			bytes = info->src_bytes;
6210 		}
6211 
6212 		if (info->intercept == x86_intercept_outs ||
6213 		    info->intercept == x86_intercept_ins)
6214 			exit_info |= SVM_IOIO_STR_MASK;
6215 
6216 		if (info->rep_prefix)
6217 			exit_info |= SVM_IOIO_REP_MASK;
6218 
6219 		bytes = min(bytes, 4u);
6220 
6221 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6222 
6223 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6224 
6225 		vmcb->control.exit_info_1 = exit_info;
6226 		vmcb->control.exit_info_2 = info->next_rip;
6227 
6228 		break;
6229 	}
6230 	default:
6231 		break;
6232 	}
6233 
6234 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6235 	if (static_cpu_has(X86_FEATURE_NRIPS))
6236 		vmcb->control.next_rip  = info->next_rip;
6237 	vmcb->control.exit_code = icpt_info.exit_code;
6238 	vmexit = nested_svm_exit_handled(svm);
6239 
6240 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6241 					   : X86EMUL_CONTINUE;
6242 
6243 out:
6244 	return ret;
6245 }
6246 
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)6247 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6248 {
6249 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
6250 		vcpu->arch.at_instruction_boundary = true;
6251 }
6252 
svm_sched_in(struct kvm_vcpu * vcpu,int cpu)6253 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6254 {
6255 	if (pause_filter_thresh)
6256 		shrink_ple_window(vcpu);
6257 }
6258 
avic_post_state_restore(struct kvm_vcpu * vcpu)6259 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6260 {
6261 	if (avic_handle_apic_id_update(vcpu) != 0)
6262 		return;
6263 	avic_handle_dfr_update(vcpu);
6264 	avic_handle_ldr_update(vcpu);
6265 }
6266 
svm_setup_mce(struct kvm_vcpu * vcpu)6267 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6268 {
6269 	/* [63:9] are reserved. */
6270 	vcpu->arch.mcg_cap &= 0x1ff;
6271 }
6272 
svm_smi_allowed(struct kvm_vcpu * vcpu)6273 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6274 {
6275 	struct vcpu_svm *svm = to_svm(vcpu);
6276 
6277 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
6278 	if (!gif_set(svm))
6279 		return 0;
6280 
6281 	if (is_guest_mode(&svm->vcpu) &&
6282 	    svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6283 		/* TODO: Might need to set exit_info_1 and exit_info_2 here */
6284 		svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6285 		svm->nested.exit_required = true;
6286 		return 0;
6287 	}
6288 
6289 	return 1;
6290 }
6291 
svm_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)6292 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6293 {
6294 	struct vcpu_svm *svm = to_svm(vcpu);
6295 	int ret;
6296 
6297 	if (is_guest_mode(vcpu)) {
6298 		/* FED8h - SVM Guest */
6299 		put_smstate(u64, smstate, 0x7ed8, 1);
6300 		/* FEE0h - SVM Guest VMCB Physical Address */
6301 		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6302 
6303 		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6304 		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6305 		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6306 
6307 		ret = nested_svm_vmexit(svm);
6308 		if (ret)
6309 			return ret;
6310 	}
6311 	return 0;
6312 }
6313 
svm_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)6314 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
6315 {
6316 	struct vcpu_svm *svm = to_svm(vcpu);
6317 	struct vmcb *nested_vmcb;
6318 	struct kvm_host_map map;
6319 	u64 guest;
6320 	u64 vmcb;
6321 
6322 	guest = GET_SMSTATE(u64, smstate, 0x7ed8);
6323 	vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
6324 
6325 	if (guest) {
6326 		if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
6327 			return 1;
6328 		nested_vmcb = map.hva;
6329 		enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
6330 	}
6331 	return 0;
6332 }
6333 
enable_smi_window(struct kvm_vcpu * vcpu)6334 static int enable_smi_window(struct kvm_vcpu *vcpu)
6335 {
6336 	struct vcpu_svm *svm = to_svm(vcpu);
6337 
6338 	if (!gif_set(svm)) {
6339 		if (vgif_enabled(svm))
6340 			set_intercept(svm, INTERCEPT_STGI);
6341 		/* STGI will cause a vm exit */
6342 		return 1;
6343 	}
6344 	return 0;
6345 }
6346 
sev_asid_new(void)6347 static int sev_asid_new(void)
6348 {
6349 	int pos;
6350 
6351 	/*
6352 	 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6353 	 */
6354 	pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6355 	if (pos >= max_sev_asid)
6356 		return -EBUSY;
6357 
6358 	set_bit(pos, sev_asid_bitmap);
6359 	return pos + 1;
6360 }
6361 
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)6362 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6363 {
6364 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6365 	int asid, ret;
6366 
6367 	ret = -EBUSY;
6368 	if (unlikely(sev->active))
6369 		return ret;
6370 
6371 	asid = sev_asid_new();
6372 	if (asid < 0)
6373 		return ret;
6374 
6375 	ret = sev_platform_init(&argp->error);
6376 	if (ret)
6377 		goto e_free;
6378 
6379 	sev->active = true;
6380 	sev->asid = asid;
6381 	INIT_LIST_HEAD(&sev->regions_list);
6382 
6383 	return 0;
6384 
6385 e_free:
6386 	__sev_asid_free(asid);
6387 	return ret;
6388 }
6389 
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)6390 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6391 {
6392 	struct sev_data_activate *data;
6393 	int asid = sev_get_asid(kvm);
6394 	int ret;
6395 
6396 	wbinvd_on_all_cpus();
6397 
6398 	ret = sev_guest_df_flush(error);
6399 	if (ret)
6400 		return ret;
6401 
6402 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6403 	if (!data)
6404 		return -ENOMEM;
6405 
6406 	/* activate ASID on the given handle */
6407 	data->handle = handle;
6408 	data->asid   = asid;
6409 	ret = sev_guest_activate(data, error);
6410 	kfree(data);
6411 
6412 	return ret;
6413 }
6414 
__sev_issue_cmd(int fd,int id,void * data,int * error)6415 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6416 {
6417 	struct fd f;
6418 	int ret;
6419 
6420 	f = fdget(fd);
6421 	if (!f.file)
6422 		return -EBADF;
6423 
6424 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
6425 
6426 	fdput(f);
6427 	return ret;
6428 }
6429 
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)6430 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6431 {
6432 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6433 
6434 	return __sev_issue_cmd(sev->fd, id, data, error);
6435 }
6436 
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)6437 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6438 {
6439 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6440 	struct sev_data_launch_start *start;
6441 	struct kvm_sev_launch_start params;
6442 	void *dh_blob, *session_blob;
6443 	int *error = &argp->error;
6444 	int ret;
6445 
6446 	if (!sev_guest(kvm))
6447 		return -ENOTTY;
6448 
6449 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6450 		return -EFAULT;
6451 
6452 	start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
6453 	if (!start)
6454 		return -ENOMEM;
6455 
6456 	dh_blob = NULL;
6457 	if (params.dh_uaddr) {
6458 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6459 		if (IS_ERR(dh_blob)) {
6460 			ret = PTR_ERR(dh_blob);
6461 			goto e_free;
6462 		}
6463 
6464 		start->dh_cert_address = __sme_set(__pa(dh_blob));
6465 		start->dh_cert_len = params.dh_len;
6466 	}
6467 
6468 	session_blob = NULL;
6469 	if (params.session_uaddr) {
6470 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6471 		if (IS_ERR(session_blob)) {
6472 			ret = PTR_ERR(session_blob);
6473 			goto e_free_dh;
6474 		}
6475 
6476 		start->session_address = __sme_set(__pa(session_blob));
6477 		start->session_len = params.session_len;
6478 	}
6479 
6480 	start->handle = params.handle;
6481 	start->policy = params.policy;
6482 
6483 	/* create memory encryption context */
6484 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6485 	if (ret)
6486 		goto e_free_session;
6487 
6488 	/* Bind ASID to this guest */
6489 	ret = sev_bind_asid(kvm, start->handle, error);
6490 	if (ret) {
6491 		sev_decommission(start->handle);
6492 		goto e_free_session;
6493 	}
6494 
6495 	/* return handle to userspace */
6496 	params.handle = start->handle;
6497 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6498 		sev_unbind_asid(kvm, start->handle);
6499 		ret = -EFAULT;
6500 		goto e_free_session;
6501 	}
6502 
6503 	sev->handle = start->handle;
6504 	sev->fd = argp->sev_fd;
6505 
6506 e_free_session:
6507 	kfree(session_blob);
6508 e_free_dh:
6509 	kfree(dh_blob);
6510 e_free:
6511 	kfree(start);
6512 	return ret;
6513 }
6514 
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)6515 static unsigned long get_num_contig_pages(unsigned long idx,
6516 				struct page **inpages, unsigned long npages)
6517 {
6518 	unsigned long paddr, next_paddr;
6519 	unsigned long i = idx + 1, pages = 1;
6520 
6521 	/* find the number of contiguous pages starting from idx */
6522 	paddr = __sme_page_pa(inpages[idx]);
6523 	while (i < npages) {
6524 		next_paddr = __sme_page_pa(inpages[i++]);
6525 		if ((paddr + PAGE_SIZE) == next_paddr) {
6526 			pages++;
6527 			paddr = next_paddr;
6528 			continue;
6529 		}
6530 		break;
6531 	}
6532 
6533 	return pages;
6534 }
6535 
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)6536 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6537 {
6538 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6539 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6540 	struct kvm_sev_launch_update_data params;
6541 	struct sev_data_launch_update_data *data;
6542 	struct page **inpages;
6543 	int ret;
6544 
6545 	if (!sev_guest(kvm))
6546 		return -ENOTTY;
6547 
6548 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6549 		return -EFAULT;
6550 
6551 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6552 	if (!data)
6553 		return -ENOMEM;
6554 
6555 	vaddr = params.uaddr;
6556 	size = params.len;
6557 	vaddr_end = vaddr + size;
6558 
6559 	/* Lock the user memory. */
6560 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6561 	if (!inpages) {
6562 		ret = -ENOMEM;
6563 		goto e_free;
6564 	}
6565 
6566 	/*
6567 	 * The LAUNCH_UPDATE command will perform in-place encryption of the
6568 	 * memory content (i.e it will write the same memory region with C=1).
6569 	 * It's possible that the cache may contain the data with C=0, i.e.,
6570 	 * unencrypted so invalidate it first.
6571 	 */
6572 	sev_clflush_pages(inpages, npages);
6573 
6574 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6575 		int offset, len;
6576 
6577 		/*
6578 		 * If the user buffer is not page-aligned, calculate the offset
6579 		 * within the page.
6580 		 */
6581 		offset = vaddr & (PAGE_SIZE - 1);
6582 
6583 		/* Calculate the number of pages that can be encrypted in one go. */
6584 		pages = get_num_contig_pages(i, inpages, npages);
6585 
6586 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6587 
6588 		data->handle = sev->handle;
6589 		data->len = len;
6590 		data->address = __sme_page_pa(inpages[i]) + offset;
6591 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6592 		if (ret)
6593 			goto e_unpin;
6594 
6595 		size -= len;
6596 		next_vaddr = vaddr + len;
6597 	}
6598 
6599 e_unpin:
6600 	/* content of memory is updated, mark pages dirty */
6601 	for (i = 0; i < npages; i++) {
6602 		set_page_dirty_lock(inpages[i]);
6603 		mark_page_accessed(inpages[i]);
6604 	}
6605 	/* unlock the user pages */
6606 	sev_unpin_memory(kvm, inpages, npages);
6607 e_free:
6608 	kfree(data);
6609 	return ret;
6610 }
6611 
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)6612 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6613 {
6614 	void __user *measure = (void __user *)(uintptr_t)argp->data;
6615 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6616 	struct sev_data_launch_measure *data;
6617 	struct kvm_sev_launch_measure params;
6618 	void __user *p = NULL;
6619 	void *blob = NULL;
6620 	int ret;
6621 
6622 	if (!sev_guest(kvm))
6623 		return -ENOTTY;
6624 
6625 	if (copy_from_user(&params, measure, sizeof(params)))
6626 		return -EFAULT;
6627 
6628 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6629 	if (!data)
6630 		return -ENOMEM;
6631 
6632 	/* User wants to query the blob length */
6633 	if (!params.len)
6634 		goto cmd;
6635 
6636 	p = (void __user *)(uintptr_t)params.uaddr;
6637 	if (p) {
6638 		if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6639 			ret = -EINVAL;
6640 			goto e_free;
6641 		}
6642 
6643 		ret = -ENOMEM;
6644 		blob = kmalloc(params.len, GFP_KERNEL);
6645 		if (!blob)
6646 			goto e_free;
6647 
6648 		data->address = __psp_pa(blob);
6649 		data->len = params.len;
6650 	}
6651 
6652 cmd:
6653 	data->handle = sev->handle;
6654 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6655 
6656 	/*
6657 	 * If we query the session length, FW responded with expected data.
6658 	 */
6659 	if (!params.len)
6660 		goto done;
6661 
6662 	if (ret)
6663 		goto e_free_blob;
6664 
6665 	if (blob) {
6666 		if (copy_to_user(p, blob, params.len))
6667 			ret = -EFAULT;
6668 	}
6669 
6670 done:
6671 	params.len = data->len;
6672 	if (copy_to_user(measure, &params, sizeof(params)))
6673 		ret = -EFAULT;
6674 e_free_blob:
6675 	kfree(blob);
6676 e_free:
6677 	kfree(data);
6678 	return ret;
6679 }
6680 
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)6681 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6682 {
6683 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6684 	struct sev_data_launch_finish *data;
6685 	int ret;
6686 
6687 	if (!sev_guest(kvm))
6688 		return -ENOTTY;
6689 
6690 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6691 	if (!data)
6692 		return -ENOMEM;
6693 
6694 	data->handle = sev->handle;
6695 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6696 
6697 	kfree(data);
6698 	return ret;
6699 }
6700 
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)6701 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6702 {
6703 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6704 	struct kvm_sev_guest_status params;
6705 	struct sev_data_guest_status *data;
6706 	int ret;
6707 
6708 	if (!sev_guest(kvm))
6709 		return -ENOTTY;
6710 
6711 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6712 	if (!data)
6713 		return -ENOMEM;
6714 
6715 	data->handle = sev->handle;
6716 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6717 	if (ret)
6718 		goto e_free;
6719 
6720 	params.policy = data->policy;
6721 	params.state = data->state;
6722 	params.handle = data->handle;
6723 
6724 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6725 		ret = -EFAULT;
6726 e_free:
6727 	kfree(data);
6728 	return ret;
6729 }
6730 
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)6731 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6732 			       unsigned long dst, int size,
6733 			       int *error, bool enc)
6734 {
6735 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6736 	struct sev_data_dbg *data;
6737 	int ret;
6738 
6739 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6740 	if (!data)
6741 		return -ENOMEM;
6742 
6743 	data->handle = sev->handle;
6744 	data->dst_addr = dst;
6745 	data->src_addr = src;
6746 	data->len = size;
6747 
6748 	ret = sev_issue_cmd(kvm,
6749 			    enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6750 			    data, error);
6751 	kfree(data);
6752 	return ret;
6753 }
6754 
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)6755 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6756 			     unsigned long dst_paddr, int sz, int *err)
6757 {
6758 	int offset;
6759 
6760 	/*
6761 	 * Its safe to read more than we are asked, caller should ensure that
6762 	 * destination has enough space.
6763 	 */
6764 	src_paddr = round_down(src_paddr, 16);
6765 	offset = src_paddr & 15;
6766 	sz = round_up(sz + offset, 16);
6767 
6768 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6769 }
6770 
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,unsigned long __user dst_uaddr,unsigned long dst_paddr,int size,int * err)6771 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6772 				  unsigned long __user dst_uaddr,
6773 				  unsigned long dst_paddr,
6774 				  int size, int *err)
6775 {
6776 	struct page *tpage = NULL;
6777 	int ret, offset;
6778 
6779 	/* if inputs are not 16-byte then use intermediate buffer */
6780 	if (!IS_ALIGNED(dst_paddr, 16) ||
6781 	    !IS_ALIGNED(paddr,     16) ||
6782 	    !IS_ALIGNED(size,      16)) {
6783 		tpage = (void *)alloc_page(GFP_KERNEL);
6784 		if (!tpage)
6785 			return -ENOMEM;
6786 
6787 		dst_paddr = __sme_page_pa(tpage);
6788 	}
6789 
6790 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6791 	if (ret)
6792 		goto e_free;
6793 
6794 	if (tpage) {
6795 		offset = paddr & 15;
6796 		if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6797 				 page_address(tpage) + offset, size))
6798 			ret = -EFAULT;
6799 	}
6800 
6801 e_free:
6802 	if (tpage)
6803 		__free_page(tpage);
6804 
6805 	return ret;
6806 }
6807 
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,unsigned long __user vaddr,unsigned long dst_paddr,unsigned long __user dst_vaddr,int size,int * error)6808 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6809 				  unsigned long __user vaddr,
6810 				  unsigned long dst_paddr,
6811 				  unsigned long __user dst_vaddr,
6812 				  int size, int *error)
6813 {
6814 	struct page *src_tpage = NULL;
6815 	struct page *dst_tpage = NULL;
6816 	int ret, len = size;
6817 
6818 	/* If source buffer is not aligned then use an intermediate buffer */
6819 	if (!IS_ALIGNED(vaddr, 16)) {
6820 		src_tpage = alloc_page(GFP_KERNEL);
6821 		if (!src_tpage)
6822 			return -ENOMEM;
6823 
6824 		if (copy_from_user(page_address(src_tpage),
6825 				(void __user *)(uintptr_t)vaddr, size)) {
6826 			__free_page(src_tpage);
6827 			return -EFAULT;
6828 		}
6829 
6830 		paddr = __sme_page_pa(src_tpage);
6831 	}
6832 
6833 	/*
6834 	 *  If destination buffer or length is not aligned then do read-modify-write:
6835 	 *   - decrypt destination in an intermediate buffer
6836 	 *   - copy the source buffer in an intermediate buffer
6837 	 *   - use the intermediate buffer as source buffer
6838 	 */
6839 	if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6840 		int dst_offset;
6841 
6842 		dst_tpage = alloc_page(GFP_KERNEL);
6843 		if (!dst_tpage) {
6844 			ret = -ENOMEM;
6845 			goto e_free;
6846 		}
6847 
6848 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
6849 					__sme_page_pa(dst_tpage), size, error);
6850 		if (ret)
6851 			goto e_free;
6852 
6853 		/*
6854 		 *  If source is kernel buffer then use memcpy() otherwise
6855 		 *  copy_from_user().
6856 		 */
6857 		dst_offset = dst_paddr & 15;
6858 
6859 		if (src_tpage)
6860 			memcpy(page_address(dst_tpage) + dst_offset,
6861 			       page_address(src_tpage), size);
6862 		else {
6863 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
6864 					   (void __user *)(uintptr_t)vaddr, size)) {
6865 				ret = -EFAULT;
6866 				goto e_free;
6867 			}
6868 		}
6869 
6870 		paddr = __sme_page_pa(dst_tpage);
6871 		dst_paddr = round_down(dst_paddr, 16);
6872 		len = round_up(size, 16);
6873 	}
6874 
6875 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6876 
6877 e_free:
6878 	if (src_tpage)
6879 		__free_page(src_tpage);
6880 	if (dst_tpage)
6881 		__free_page(dst_tpage);
6882 	return ret;
6883 }
6884 
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)6885 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6886 {
6887 	unsigned long vaddr, vaddr_end, next_vaddr;
6888 	unsigned long dst_vaddr;
6889 	struct page **src_p, **dst_p;
6890 	struct kvm_sev_dbg debug;
6891 	unsigned long n;
6892 	unsigned int size;
6893 	int ret;
6894 
6895 	if (!sev_guest(kvm))
6896 		return -ENOTTY;
6897 
6898 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6899 		return -EFAULT;
6900 
6901 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
6902 		return -EINVAL;
6903 	if (!debug.dst_uaddr)
6904 		return -EINVAL;
6905 
6906 	vaddr = debug.src_uaddr;
6907 	size = debug.len;
6908 	vaddr_end = vaddr + size;
6909 	dst_vaddr = debug.dst_uaddr;
6910 
6911 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6912 		int len, s_off, d_off;
6913 
6914 		/* lock userspace source and destination page */
6915 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6916 		if (!src_p)
6917 			return -EFAULT;
6918 
6919 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6920 		if (!dst_p) {
6921 			sev_unpin_memory(kvm, src_p, n);
6922 			return -EFAULT;
6923 		}
6924 
6925 		/*
6926 		 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6927 		 * memory content (i.e it will write the same memory region with C=1).
6928 		 * It's possible that the cache may contain the data with C=0, i.e.,
6929 		 * unencrypted so invalidate it first.
6930 		 */
6931 		sev_clflush_pages(src_p, 1);
6932 		sev_clflush_pages(dst_p, 1);
6933 
6934 		/*
6935 		 * Since user buffer may not be page aligned, calculate the
6936 		 * offset within the page.
6937 		 */
6938 		s_off = vaddr & ~PAGE_MASK;
6939 		d_off = dst_vaddr & ~PAGE_MASK;
6940 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
6941 
6942 		if (dec)
6943 			ret = __sev_dbg_decrypt_user(kvm,
6944 						     __sme_page_pa(src_p[0]) + s_off,
6945 						     dst_vaddr,
6946 						     __sme_page_pa(dst_p[0]) + d_off,
6947 						     len, &argp->error);
6948 		else
6949 			ret = __sev_dbg_encrypt_user(kvm,
6950 						     __sme_page_pa(src_p[0]) + s_off,
6951 						     vaddr,
6952 						     __sme_page_pa(dst_p[0]) + d_off,
6953 						     dst_vaddr,
6954 						     len, &argp->error);
6955 
6956 		sev_unpin_memory(kvm, src_p, n);
6957 		sev_unpin_memory(kvm, dst_p, n);
6958 
6959 		if (ret)
6960 			goto err;
6961 
6962 		next_vaddr = vaddr + len;
6963 		dst_vaddr = dst_vaddr + len;
6964 		size -= len;
6965 	}
6966 err:
6967 	return ret;
6968 }
6969 
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)6970 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6971 {
6972 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6973 	struct sev_data_launch_secret *data;
6974 	struct kvm_sev_launch_secret params;
6975 	struct page **pages;
6976 	void *blob, *hdr;
6977 	unsigned long n;
6978 	int ret, offset;
6979 
6980 	if (!sev_guest(kvm))
6981 		return -ENOTTY;
6982 
6983 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6984 		return -EFAULT;
6985 
6986 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6987 	if (!pages)
6988 		return -ENOMEM;
6989 
6990 	/*
6991 	 * The secret must be copied into contiguous memory region, lets verify
6992 	 * that userspace memory pages are contiguous before we issue command.
6993 	 */
6994 	if (get_num_contig_pages(0, pages, n) != n) {
6995 		ret = -EINVAL;
6996 		goto e_unpin_memory;
6997 	}
6998 
6999 	ret = -ENOMEM;
7000 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
7001 	if (!data)
7002 		goto e_unpin_memory;
7003 
7004 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
7005 	data->guest_address = __sme_page_pa(pages[0]) + offset;
7006 	data->guest_len = params.guest_len;
7007 
7008 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
7009 	if (IS_ERR(blob)) {
7010 		ret = PTR_ERR(blob);
7011 		goto e_free;
7012 	}
7013 
7014 	data->trans_address = __psp_pa(blob);
7015 	data->trans_len = params.trans_len;
7016 
7017 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
7018 	if (IS_ERR(hdr)) {
7019 		ret = PTR_ERR(hdr);
7020 		goto e_free_blob;
7021 	}
7022 	data->hdr_address = __psp_pa(hdr);
7023 	data->hdr_len = params.hdr_len;
7024 
7025 	data->handle = sev->handle;
7026 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
7027 
7028 	kfree(hdr);
7029 
7030 e_free_blob:
7031 	kfree(blob);
7032 e_free:
7033 	kfree(data);
7034 e_unpin_memory:
7035 	sev_unpin_memory(kvm, pages, n);
7036 	return ret;
7037 }
7038 
svm_mem_enc_op(struct kvm * kvm,void __user * argp)7039 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
7040 {
7041 	struct kvm_sev_cmd sev_cmd;
7042 	int r;
7043 
7044 	if (!svm_sev_enabled())
7045 		return -ENOTTY;
7046 
7047 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
7048 		return -EFAULT;
7049 
7050 	mutex_lock(&kvm->lock);
7051 
7052 	switch (sev_cmd.id) {
7053 	case KVM_SEV_INIT:
7054 		r = sev_guest_init(kvm, &sev_cmd);
7055 		break;
7056 	case KVM_SEV_LAUNCH_START:
7057 		r = sev_launch_start(kvm, &sev_cmd);
7058 		break;
7059 	case KVM_SEV_LAUNCH_UPDATE_DATA:
7060 		r = sev_launch_update_data(kvm, &sev_cmd);
7061 		break;
7062 	case KVM_SEV_LAUNCH_MEASURE:
7063 		r = sev_launch_measure(kvm, &sev_cmd);
7064 		break;
7065 	case KVM_SEV_LAUNCH_FINISH:
7066 		r = sev_launch_finish(kvm, &sev_cmd);
7067 		break;
7068 	case KVM_SEV_GUEST_STATUS:
7069 		r = sev_guest_status(kvm, &sev_cmd);
7070 		break;
7071 	case KVM_SEV_DBG_DECRYPT:
7072 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
7073 		break;
7074 	case KVM_SEV_DBG_ENCRYPT:
7075 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
7076 		break;
7077 	case KVM_SEV_LAUNCH_SECRET:
7078 		r = sev_launch_secret(kvm, &sev_cmd);
7079 		break;
7080 	default:
7081 		r = -EINVAL;
7082 		goto out;
7083 	}
7084 
7085 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
7086 		r = -EFAULT;
7087 
7088 out:
7089 	mutex_unlock(&kvm->lock);
7090 	return r;
7091 }
7092 
svm_register_enc_region(struct kvm * kvm,struct kvm_enc_region * range)7093 static int svm_register_enc_region(struct kvm *kvm,
7094 				   struct kvm_enc_region *range)
7095 {
7096 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7097 	struct enc_region *region;
7098 	int ret = 0;
7099 
7100 	if (!sev_guest(kvm))
7101 		return -ENOTTY;
7102 
7103 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7104 		return -EINVAL;
7105 
7106 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
7107 	if (!region)
7108 		return -ENOMEM;
7109 
7110 	mutex_lock(&kvm->lock);
7111 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
7112 	if (!region->pages) {
7113 		ret = -ENOMEM;
7114 		mutex_unlock(&kvm->lock);
7115 		goto e_free;
7116 	}
7117 
7118 	region->uaddr = range->addr;
7119 	region->size = range->size;
7120 
7121 	list_add_tail(&region->list, &sev->regions_list);
7122 	mutex_unlock(&kvm->lock);
7123 
7124 	/*
7125 	 * The guest may change the memory encryption attribute from C=0 -> C=1
7126 	 * or vice versa for this memory range. Lets make sure caches are
7127 	 * flushed to ensure that guest data gets written into memory with
7128 	 * correct C-bit.
7129 	 */
7130 	sev_clflush_pages(region->pages, region->npages);
7131 
7132 	return ret;
7133 
7134 e_free:
7135 	kfree(region);
7136 	return ret;
7137 }
7138 
7139 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)7140 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7141 {
7142 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7143 	struct list_head *head = &sev->regions_list;
7144 	struct enc_region *i;
7145 
7146 	list_for_each_entry(i, head, list) {
7147 		if (i->uaddr == range->addr &&
7148 		    i->size == range->size)
7149 			return i;
7150 	}
7151 
7152 	return NULL;
7153 }
7154 
7155 
svm_unregister_enc_region(struct kvm * kvm,struct kvm_enc_region * range)7156 static int svm_unregister_enc_region(struct kvm *kvm,
7157 				     struct kvm_enc_region *range)
7158 {
7159 	struct enc_region *region;
7160 	int ret;
7161 
7162 	mutex_lock(&kvm->lock);
7163 
7164 	if (!sev_guest(kvm)) {
7165 		ret = -ENOTTY;
7166 		goto failed;
7167 	}
7168 
7169 	region = find_enc_region(kvm, range);
7170 	if (!region) {
7171 		ret = -EINVAL;
7172 		goto failed;
7173 	}
7174 
7175 	__unregister_enc_region_locked(kvm, region);
7176 
7177 	mutex_unlock(&kvm->lock);
7178 	return 0;
7179 
7180 failed:
7181 	mutex_unlock(&kvm->lock);
7182 	return ret;
7183 }
7184 
svm_need_emulation_on_page_fault(struct kvm_vcpu * vcpu)7185 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7186 {
7187 	unsigned long cr4 = kvm_read_cr4(vcpu);
7188 	bool smep = cr4 & X86_CR4_SMEP;
7189 	bool smap = cr4 & X86_CR4_SMAP;
7190 	bool is_user = svm_get_cpl(vcpu) == 3;
7191 
7192 	/*
7193 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
7194 	 *
7195 	 * Errata:
7196 	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
7197 	 * possible that CPU microcode implementing DecodeAssist will fail
7198 	 * to read bytes of instruction which caused #NPF. In this case,
7199 	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
7200 	 * return 0 instead of the correct guest instruction bytes.
7201 	 *
7202 	 * This happens because CPU microcode reading instruction bytes
7203 	 * uses a special opcode which attempts to read data using CPL=0
7204 	 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
7205 	 * fault, it gives up and returns no instruction bytes.
7206 	 *
7207 	 * Detection:
7208 	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
7209 	 * returned 0 in GuestIntrBytes field of the VMCB.
7210 	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
7211 	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
7212 	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
7213 	 * a SMEP fault instead of #NPF).
7214 	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
7215 	 * As most guests enable SMAP if they have also enabled SMEP, use above
7216 	 * logic in order to attempt minimize false-positive of detecting errata
7217 	 * while still preserving all cases semantic correctness.
7218 	 *
7219 	 * Workaround:
7220 	 * To determine what instruction the guest was executing, the hypervisor
7221 	 * will have to decode the instruction at the instruction pointer.
7222 	 *
7223 	 * In non SEV guest, hypervisor will be able to read the guest
7224 	 * memory to decode the instruction pointer when insn_len is zero
7225 	 * so we return true to indicate that decoding is possible.
7226 	 *
7227 	 * But in the SEV guest, the guest memory is encrypted with the
7228 	 * guest specific key and hypervisor will not be able to decode the
7229 	 * instruction pointer so we will not able to workaround it. Lets
7230 	 * print the error and request to kill the guest.
7231 	 */
7232 	if (smap && (!smep || is_user)) {
7233 		if (!sev_guest(vcpu->kvm))
7234 			return true;
7235 
7236 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
7237 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7238 	}
7239 
7240 	return false;
7241 }
7242 
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7243 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7244 {
7245 	struct vcpu_svm *svm = to_svm(vcpu);
7246 
7247 	/*
7248 	 * TODO: Last condition latch INIT signals on vCPU when
7249 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
7250 	 * To properly emulate the INIT intercept, SVM should implement
7251 	 * kvm_x86_ops->check_nested_events() and call nested_svm_vmexit()
7252 	 * there if an INIT signal is pending.
7253 	 */
7254 	return !gif_set(svm) ||
7255 		   (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
7256 }
7257 
7258 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7259 	.cpu_has_kvm_support = has_svm,
7260 	.disabled_by_bios = is_disabled,
7261 	.hardware_setup = svm_hardware_setup,
7262 	.hardware_unsetup = svm_hardware_unsetup,
7263 	.check_processor_compatibility = svm_check_processor_compat,
7264 	.hardware_enable = svm_hardware_enable,
7265 	.hardware_disable = svm_hardware_disable,
7266 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7267 	.has_emulated_msr = svm_has_emulated_msr,
7268 
7269 	.vcpu_create = svm_create_vcpu,
7270 	.vcpu_free = svm_free_vcpu,
7271 	.vcpu_reset = svm_vcpu_reset,
7272 
7273 	.vm_alloc = svm_vm_alloc,
7274 	.vm_free = svm_vm_free,
7275 	.vm_init = avic_vm_init,
7276 	.vm_destroy = svm_vm_destroy,
7277 
7278 	.prepare_guest_switch = svm_prepare_guest_switch,
7279 	.vcpu_load = svm_vcpu_load,
7280 	.vcpu_put = svm_vcpu_put,
7281 	.vcpu_blocking = svm_vcpu_blocking,
7282 	.vcpu_unblocking = svm_vcpu_unblocking,
7283 
7284 	.update_bp_intercept = update_bp_intercept,
7285 	.get_msr_feature = svm_get_msr_feature,
7286 	.get_msr = svm_get_msr,
7287 	.set_msr = svm_set_msr,
7288 	.get_segment_base = svm_get_segment_base,
7289 	.get_segment = svm_get_segment,
7290 	.set_segment = svm_set_segment,
7291 	.get_cpl = svm_get_cpl,
7292 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7293 	.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7294 	.decache_cr3 = svm_decache_cr3,
7295 	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7296 	.set_cr0 = svm_set_cr0,
7297 	.set_cr3 = svm_set_cr3,
7298 	.set_cr4 = svm_set_cr4,
7299 	.set_efer = svm_set_efer,
7300 	.get_idt = svm_get_idt,
7301 	.set_idt = svm_set_idt,
7302 	.get_gdt = svm_get_gdt,
7303 	.set_gdt = svm_set_gdt,
7304 	.get_dr6 = svm_get_dr6,
7305 	.set_dr6 = svm_set_dr6,
7306 	.set_dr7 = svm_set_dr7,
7307 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7308 	.cache_reg = svm_cache_reg,
7309 	.get_rflags = svm_get_rflags,
7310 	.set_rflags = svm_set_rflags,
7311 
7312 	.tlb_flush = svm_flush_tlb,
7313 	.tlb_flush_gva = svm_flush_tlb_gva,
7314 
7315 	.run = svm_vcpu_run,
7316 	.handle_exit = handle_exit,
7317 	.skip_emulated_instruction = skip_emulated_instruction,
7318 	.set_interrupt_shadow = svm_set_interrupt_shadow,
7319 	.get_interrupt_shadow = svm_get_interrupt_shadow,
7320 	.patch_hypercall = svm_patch_hypercall,
7321 	.set_irq = svm_set_irq,
7322 	.set_nmi = svm_inject_nmi,
7323 	.queue_exception = svm_queue_exception,
7324 	.cancel_injection = svm_cancel_injection,
7325 	.interrupt_allowed = svm_interrupt_allowed,
7326 	.nmi_allowed = svm_nmi_allowed,
7327 	.get_nmi_mask = svm_get_nmi_mask,
7328 	.set_nmi_mask = svm_set_nmi_mask,
7329 	.enable_nmi_window = enable_nmi_window,
7330 	.enable_irq_window = enable_irq_window,
7331 	.update_cr8_intercept = update_cr8_intercept,
7332 	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
7333 	.get_enable_apicv = svm_get_enable_apicv,
7334 	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7335 	.load_eoi_exitmap = svm_load_eoi_exitmap,
7336 	.hwapic_irr_update = svm_hwapic_irr_update,
7337 	.hwapic_isr_update = svm_hwapic_isr_update,
7338 	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
7339 	.apicv_post_state_restore = avic_post_state_restore,
7340 
7341 	.set_tss_addr = svm_set_tss_addr,
7342 	.set_identity_map_addr = svm_set_identity_map_addr,
7343 	.get_tdp_level = get_npt_level,
7344 	.get_mt_mask = svm_get_mt_mask,
7345 
7346 	.get_exit_info = svm_get_exit_info,
7347 
7348 	.get_lpage_level = svm_get_lpage_level,
7349 
7350 	.cpuid_update = svm_cpuid_update,
7351 
7352 	.rdtscp_supported = svm_rdtscp_supported,
7353 	.invpcid_supported = svm_invpcid_supported,
7354 	.mpx_supported = svm_mpx_supported,
7355 	.xsaves_supported = svm_xsaves_supported,
7356 	.umip_emulated = svm_umip_emulated,
7357 	.pt_supported = svm_pt_supported,
7358 	.pku_supported = svm_pku_supported,
7359 
7360 	.set_supported_cpuid = svm_set_supported_cpuid,
7361 
7362 	.has_wbinvd_exit = svm_has_wbinvd_exit,
7363 
7364 	.read_l1_tsc_offset = svm_read_l1_tsc_offset,
7365 	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
7366 
7367 	.set_tdp_cr3 = set_tdp_cr3,
7368 
7369 	.check_intercept = svm_check_intercept,
7370 	.handle_exit_irqoff = svm_handle_exit_irqoff,
7371 
7372 	.request_immediate_exit = __kvm_request_immediate_exit,
7373 
7374 	.sched_in = svm_sched_in,
7375 
7376 	.pmu_ops = &amd_pmu_ops,
7377 	.deliver_posted_interrupt = svm_deliver_avic_intr,
7378 	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
7379 	.update_pi_irte = svm_update_pi_irte,
7380 	.setup_mce = svm_setup_mce,
7381 
7382 	.smi_allowed = svm_smi_allowed,
7383 	.pre_enter_smm = svm_pre_enter_smm,
7384 	.pre_leave_smm = svm_pre_leave_smm,
7385 	.enable_smi_window = enable_smi_window,
7386 
7387 	.mem_enc_op = svm_mem_enc_op,
7388 	.mem_enc_reg_region = svm_register_enc_region,
7389 	.mem_enc_unreg_region = svm_unregister_enc_region,
7390 
7391 	.nested_enable_evmcs = NULL,
7392 	.nested_get_evmcs_version = NULL,
7393 
7394 	.need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
7395 
7396 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
7397 };
7398 
svm_init(void)7399 static int __init svm_init(void)
7400 {
7401 	return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7402 			__alignof__(struct vcpu_svm), THIS_MODULE);
7403 }
7404 
svm_exit(void)7405 static void __exit svm_exit(void)
7406 {
7407 	kvm_exit();
7408 }
7409 
7410 module_init(svm_init)
7411 module_exit(svm_exit)
7412