1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM support
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
13 */
14
15 #define pr_fmt(fmt) "SVM: " fmt
16
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/hashtable.h>
36 #include <linux/frame.h>
37 #include <linux/psp-sev.h>
38 #include <linux/file.h>
39 #include <linux/pagemap.h>
40 #include <linux/swap.h>
41
42 #include <asm/apic.h>
43 #include <asm/perf_event.h>
44 #include <asm/tlbflush.h>
45 #include <asm/desc.h>
46 #include <asm/debugreg.h>
47 #include <asm/kvm_para.h>
48 #include <asm/irq_remapping.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/cpu_device_id.h>
51
52 #include <asm/virtext.h>
53 #include "trace.h"
54
55 #define __ex(x) __kvm_handle_fault_on_reboot(x)
56
57 MODULE_AUTHOR("Qumranet");
58 MODULE_LICENSE("GPL");
59
60 static const struct x86_cpu_id svm_cpu_id[] = {
61 X86_FEATURE_MATCH(X86_FEATURE_SVM),
62 {}
63 };
64 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
65
66 #define IOPM_ALLOC_ORDER 2
67 #define MSRPM_ALLOC_ORDER 1
68
69 #define SEG_TYPE_LDT 2
70 #define SEG_TYPE_BUSY_TSS16 3
71
72 #define SVM_FEATURE_LBRV (1 << 1)
73 #define SVM_FEATURE_SVML (1 << 2)
74 #define SVM_FEATURE_TSC_RATE (1 << 4)
75 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
76 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
77 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
78 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
79
80 #define SVM_AVIC_DOORBELL 0xc001011b
81
82 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
83 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
84 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
85
86 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
87
88 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
89 #define TSC_RATIO_MIN 0x0000000000000001ULL
90 #define TSC_RATIO_MAX 0x000000ffffffffffULL
91
92 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
93
94 /*
95 * 0xff is broadcast, so the max index allowed for physical APIC ID
96 * table is 0xfe. APIC IDs above 0xff are reserved.
97 */
98 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
99
100 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
101 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
102 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
103
104 /* AVIC GATAG is encoded using VM and VCPU IDs */
105 #define AVIC_VCPU_ID_BITS 8
106 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
107
108 #define AVIC_VM_ID_BITS 24
109 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
110 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
111
112 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
113 (y & AVIC_VCPU_ID_MASK))
114 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
115 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
116
117 static bool erratum_383_found __read_mostly;
118
119 static const u32 host_save_user_msrs[] = {
120 #ifdef CONFIG_X86_64
121 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
122 MSR_FS_BASE,
123 #endif
124 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
125 MSR_TSC_AUX,
126 };
127
128 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
129
130 struct kvm_sev_info {
131 bool active; /* SEV enabled guest */
132 unsigned int asid; /* ASID used for this guest */
133 unsigned int handle; /* SEV firmware handle */
134 int fd; /* SEV device fd */
135 unsigned long pages_locked; /* Number of pages locked */
136 struct list_head regions_list; /* List of registered regions */
137 };
138
139 struct kvm_svm {
140 struct kvm kvm;
141
142 /* Struct members for AVIC */
143 u32 avic_vm_id;
144 struct page *avic_logical_id_table_page;
145 struct page *avic_physical_id_table_page;
146 struct hlist_node hnode;
147
148 struct kvm_sev_info sev_info;
149 };
150
151 struct kvm_vcpu;
152
153 struct nested_state {
154 struct vmcb *hsave;
155 u64 hsave_msr;
156 u64 vm_cr_msr;
157 u64 vmcb;
158
159 /* These are the merged vectors */
160 u32 *msrpm;
161
162 /* gpa pointers to the real vectors */
163 u64 vmcb_msrpm;
164 u64 vmcb_iopm;
165
166 /* A VMEXIT is required but not yet emulated */
167 bool exit_required;
168
169 /* cache for intercepts of the guest */
170 u32 intercept_cr;
171 u32 intercept_dr;
172 u32 intercept_exceptions;
173 u64 intercept;
174
175 /* Nested Paging related state */
176 u64 nested_cr3;
177 };
178
179 #define MSRPM_OFFSETS 16
180 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
181
182 /*
183 * Set osvw_len to higher value when updated Revision Guides
184 * are published and we know what the new status bits are
185 */
186 static uint64_t osvw_len = 4, osvw_status;
187
188 struct vcpu_svm {
189 struct kvm_vcpu vcpu;
190 struct vmcb *vmcb;
191 unsigned long vmcb_pa;
192 struct svm_cpu_data *svm_data;
193 uint64_t asid_generation;
194 uint64_t sysenter_esp;
195 uint64_t sysenter_eip;
196 uint64_t tsc_aux;
197
198 u64 msr_decfg;
199
200 u64 next_rip;
201
202 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
203 struct {
204 u16 fs;
205 u16 gs;
206 u16 ldt;
207 u64 gs_base;
208 } host;
209
210 u64 spec_ctrl;
211 /*
212 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
213 * translated into the appropriate L2_CFG bits on the host to
214 * perform speculative control.
215 */
216 u64 virt_spec_ctrl;
217
218 u32 *msrpm;
219
220 ulong nmi_iret_rip;
221
222 struct nested_state nested;
223
224 bool nmi_singlestep;
225 u64 nmi_singlestep_guest_rflags;
226
227 unsigned int3_injected;
228 unsigned long int3_rip;
229
230 /* cached guest cpuid flags for faster access */
231 bool nrips_enabled : 1;
232
233 u32 ldr_reg;
234 u32 dfr_reg;
235 struct page *avic_backing_page;
236 u64 *avic_physical_id_cache;
237 bool avic_is_running;
238
239 /*
240 * Per-vcpu list of struct amd_svm_iommu_ir:
241 * This is used mainly to store interrupt remapping information used
242 * when update the vcpu affinity. This avoids the need to scan for
243 * IRTE and try to match ga_tag in the IOMMU driver.
244 */
245 struct list_head ir_list;
246 spinlock_t ir_list_lock;
247
248 /* which host CPU was used for running this vcpu */
249 unsigned int last_cpu;
250 };
251
252 /*
253 * This is a wrapper of struct amd_iommu_ir_data.
254 */
255 struct amd_svm_iommu_ir {
256 struct list_head node; /* Used by SVM for per-vcpu ir_list */
257 void *data; /* Storing pointer to struct amd_ir_data */
258 };
259
260 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
261 #define AVIC_LOGICAL_ID_ENTRY_VALID_BIT 31
262 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
263
264 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
265 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
266 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
267 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
268
269 static DEFINE_PER_CPU(u64, current_tsc_ratio);
270 #define TSC_RATIO_DEFAULT 0x0100000000ULL
271
272 #define MSR_INVALID 0xffffffffU
273
274 static const struct svm_direct_access_msrs {
275 u32 index; /* Index of the MSR */
276 bool always; /* True if intercept is always on */
277 } direct_access_msrs[] = {
278 { .index = MSR_STAR, .always = true },
279 { .index = MSR_IA32_SYSENTER_CS, .always = true },
280 #ifdef CONFIG_X86_64
281 { .index = MSR_GS_BASE, .always = true },
282 { .index = MSR_FS_BASE, .always = true },
283 { .index = MSR_KERNEL_GS_BASE, .always = true },
284 { .index = MSR_LSTAR, .always = true },
285 { .index = MSR_CSTAR, .always = true },
286 { .index = MSR_SYSCALL_MASK, .always = true },
287 #endif
288 { .index = MSR_IA32_SPEC_CTRL, .always = false },
289 { .index = MSR_IA32_PRED_CMD, .always = false },
290 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
291 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
292 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
293 { .index = MSR_IA32_LASTINTTOIP, .always = false },
294 { .index = MSR_INVALID, .always = false },
295 };
296
297 /* enable NPT for AMD64 and X86 with PAE */
298 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
299 static bool npt_enabled = true;
300 #else
301 static bool npt_enabled;
302 #endif
303
304 /*
305 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
306 * pause_filter_count: On processors that support Pause filtering(indicated
307 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
308 * count value. On VMRUN this value is loaded into an internal counter.
309 * Each time a pause instruction is executed, this counter is decremented
310 * until it reaches zero at which time a #VMEXIT is generated if pause
311 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
312 * Intercept Filtering for more details.
313 * This also indicate if ple logic enabled.
314 *
315 * pause_filter_thresh: In addition, some processor families support advanced
316 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
317 * the amount of time a guest is allowed to execute in a pause loop.
318 * In this mode, a 16-bit pause filter threshold field is added in the
319 * VMCB. The threshold value is a cycle count that is used to reset the
320 * pause counter. As with simple pause filtering, VMRUN loads the pause
321 * count value from VMCB into an internal counter. Then, on each pause
322 * instruction the hardware checks the elapsed number of cycles since
323 * the most recent pause instruction against the pause filter threshold.
324 * If the elapsed cycle count is greater than the pause filter threshold,
325 * then the internal pause count is reloaded from the VMCB and execution
326 * continues. If the elapsed cycle count is less than the pause filter
327 * threshold, then the internal pause count is decremented. If the count
328 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
329 * triggered. If advanced pause filtering is supported and pause filter
330 * threshold field is set to zero, the filter will operate in the simpler,
331 * count only mode.
332 */
333
334 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
335 module_param(pause_filter_thresh, ushort, 0444);
336
337 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
338 module_param(pause_filter_count, ushort, 0444);
339
340 /* Default doubles per-vcpu window every exit. */
341 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
342 module_param(pause_filter_count_grow, ushort, 0444);
343
344 /* Default resets per-vcpu window every exit to pause_filter_count. */
345 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
346 module_param(pause_filter_count_shrink, ushort, 0444);
347
348 /* Default is to compute the maximum so we can never overflow. */
349 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
350 module_param(pause_filter_count_max, ushort, 0444);
351
352 /* allow nested paging (virtualized MMU) for all guests */
353 static int npt = true;
354 module_param(npt, int, S_IRUGO);
355
356 /* allow nested virtualization in KVM/SVM */
357 static int nested = true;
358 module_param(nested, int, S_IRUGO);
359
360 /* enable / disable AVIC */
361 static int avic;
362 #ifdef CONFIG_X86_LOCAL_APIC
363 module_param(avic, int, S_IRUGO);
364 #endif
365
366 /* enable/disable Next RIP Save */
367 static int nrips = true;
368 module_param(nrips, int, 0444);
369
370 /* enable/disable Virtual VMLOAD VMSAVE */
371 static int vls = true;
372 module_param(vls, int, 0444);
373
374 /* enable/disable Virtual GIF */
375 static int vgif = true;
376 module_param(vgif, int, 0444);
377
378 /* enable/disable SEV support */
379 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
380 module_param(sev, int, 0444);
381
382 static bool __read_mostly dump_invalid_vmcb = 0;
383 module_param(dump_invalid_vmcb, bool, 0644);
384
385 static u8 rsm_ins_bytes[] = "\x0f\xaa";
386
387 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
388 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
389 static void svm_complete_interrupts(struct vcpu_svm *svm);
390
391 static int nested_svm_exit_handled(struct vcpu_svm *svm);
392 static int nested_svm_intercept(struct vcpu_svm *svm);
393 static int nested_svm_vmexit(struct vcpu_svm *svm);
394 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
395 bool has_error_code, u32 error_code);
396
397 enum {
398 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
399 pause filter count */
400 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
401 VMCB_ASID, /* ASID */
402 VMCB_INTR, /* int_ctl, int_vector */
403 VMCB_NPT, /* npt_en, nCR3, gPAT */
404 VMCB_CR, /* CR0, CR3, CR4, EFER */
405 VMCB_DR, /* DR6, DR7 */
406 VMCB_DT, /* GDT, IDT */
407 VMCB_SEG, /* CS, DS, SS, ES, CPL */
408 VMCB_CR2, /* CR2 only */
409 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
410 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
411 * AVIC PHYSICAL_TABLE pointer,
412 * AVIC LOGICAL_TABLE pointer
413 */
414 VMCB_DIRTY_MAX,
415 };
416
417 /* TPR and CR2 are always written before VMRUN */
418 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
419
420 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
421
422 static unsigned int max_sev_asid;
423 static unsigned int min_sev_asid;
424 static unsigned long *sev_asid_bitmap;
425 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
426
427 struct enc_region {
428 struct list_head list;
429 unsigned long npages;
430 struct page **pages;
431 unsigned long uaddr;
432 unsigned long size;
433 };
434
435
to_kvm_svm(struct kvm * kvm)436 static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
437 {
438 return container_of(kvm, struct kvm_svm, kvm);
439 }
440
svm_sev_enabled(void)441 static inline bool svm_sev_enabled(void)
442 {
443 return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
444 }
445
sev_guest(struct kvm * kvm)446 static inline bool sev_guest(struct kvm *kvm)
447 {
448 #ifdef CONFIG_KVM_AMD_SEV
449 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
450
451 return sev->active;
452 #else
453 return false;
454 #endif
455 }
456
sev_get_asid(struct kvm * kvm)457 static inline int sev_get_asid(struct kvm *kvm)
458 {
459 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
460
461 return sev->asid;
462 }
463
mark_all_dirty(struct vmcb * vmcb)464 static inline void mark_all_dirty(struct vmcb *vmcb)
465 {
466 vmcb->control.clean = 0;
467 }
468
mark_all_clean(struct vmcb * vmcb)469 static inline void mark_all_clean(struct vmcb *vmcb)
470 {
471 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
472 & ~VMCB_ALWAYS_DIRTY_MASK;
473 }
474
mark_dirty(struct vmcb * vmcb,int bit)475 static inline void mark_dirty(struct vmcb *vmcb, int bit)
476 {
477 vmcb->control.clean &= ~(1 << bit);
478 }
479
to_svm(struct kvm_vcpu * vcpu)480 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
481 {
482 return container_of(vcpu, struct vcpu_svm, vcpu);
483 }
484
avic_update_vapic_bar(struct vcpu_svm * svm,u64 data)485 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
486 {
487 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
488 mark_dirty(svm->vmcb, VMCB_AVIC);
489 }
490
avic_vcpu_is_running(struct kvm_vcpu * vcpu)491 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
492 {
493 struct vcpu_svm *svm = to_svm(vcpu);
494 u64 *entry = svm->avic_physical_id_cache;
495
496 if (!entry)
497 return false;
498
499 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
500 }
501
recalc_intercepts(struct vcpu_svm * svm)502 static void recalc_intercepts(struct vcpu_svm *svm)
503 {
504 struct vmcb_control_area *c, *h;
505 struct nested_state *g;
506
507 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
508
509 if (!is_guest_mode(&svm->vcpu))
510 return;
511
512 c = &svm->vmcb->control;
513 h = &svm->nested.hsave->control;
514 g = &svm->nested;
515
516 c->intercept_cr = h->intercept_cr | g->intercept_cr;
517 c->intercept_dr = h->intercept_dr | g->intercept_dr;
518 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
519 c->intercept = h->intercept | g->intercept;
520
521 c->intercept |= (1ULL << INTERCEPT_VMLOAD);
522 c->intercept |= (1ULL << INTERCEPT_VMSAVE);
523 }
524
get_host_vmcb(struct vcpu_svm * svm)525 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
526 {
527 if (is_guest_mode(&svm->vcpu))
528 return svm->nested.hsave;
529 else
530 return svm->vmcb;
531 }
532
set_cr_intercept(struct vcpu_svm * svm,int bit)533 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
534 {
535 struct vmcb *vmcb = get_host_vmcb(svm);
536
537 vmcb->control.intercept_cr |= (1U << bit);
538
539 recalc_intercepts(svm);
540 }
541
clr_cr_intercept(struct vcpu_svm * svm,int bit)542 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
543 {
544 struct vmcb *vmcb = get_host_vmcb(svm);
545
546 vmcb->control.intercept_cr &= ~(1U << bit);
547
548 recalc_intercepts(svm);
549 }
550
is_cr_intercept(struct vcpu_svm * svm,int bit)551 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
552 {
553 struct vmcb *vmcb = get_host_vmcb(svm);
554
555 return vmcb->control.intercept_cr & (1U << bit);
556 }
557
set_dr_intercepts(struct vcpu_svm * svm)558 static inline void set_dr_intercepts(struct vcpu_svm *svm)
559 {
560 struct vmcb *vmcb = get_host_vmcb(svm);
561
562 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
563 | (1 << INTERCEPT_DR1_READ)
564 | (1 << INTERCEPT_DR2_READ)
565 | (1 << INTERCEPT_DR3_READ)
566 | (1 << INTERCEPT_DR4_READ)
567 | (1 << INTERCEPT_DR5_READ)
568 | (1 << INTERCEPT_DR6_READ)
569 | (1 << INTERCEPT_DR7_READ)
570 | (1 << INTERCEPT_DR0_WRITE)
571 | (1 << INTERCEPT_DR1_WRITE)
572 | (1 << INTERCEPT_DR2_WRITE)
573 | (1 << INTERCEPT_DR3_WRITE)
574 | (1 << INTERCEPT_DR4_WRITE)
575 | (1 << INTERCEPT_DR5_WRITE)
576 | (1 << INTERCEPT_DR6_WRITE)
577 | (1 << INTERCEPT_DR7_WRITE);
578
579 recalc_intercepts(svm);
580 }
581
clr_dr_intercepts(struct vcpu_svm * svm)582 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
583 {
584 struct vmcb *vmcb = get_host_vmcb(svm);
585
586 vmcb->control.intercept_dr = 0;
587
588 recalc_intercepts(svm);
589 }
590
set_exception_intercept(struct vcpu_svm * svm,int bit)591 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
592 {
593 struct vmcb *vmcb = get_host_vmcb(svm);
594
595 vmcb->control.intercept_exceptions |= (1U << bit);
596
597 recalc_intercepts(svm);
598 }
599
clr_exception_intercept(struct vcpu_svm * svm,int bit)600 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
601 {
602 struct vmcb *vmcb = get_host_vmcb(svm);
603
604 vmcb->control.intercept_exceptions &= ~(1U << bit);
605
606 recalc_intercepts(svm);
607 }
608
set_intercept(struct vcpu_svm * svm,int bit)609 static inline void set_intercept(struct vcpu_svm *svm, int bit)
610 {
611 struct vmcb *vmcb = get_host_vmcb(svm);
612
613 vmcb->control.intercept |= (1ULL << bit);
614
615 recalc_intercepts(svm);
616 }
617
clr_intercept(struct vcpu_svm * svm,int bit)618 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
619 {
620 struct vmcb *vmcb = get_host_vmcb(svm);
621
622 vmcb->control.intercept &= ~(1ULL << bit);
623
624 recalc_intercepts(svm);
625 }
626
vgif_enabled(struct vcpu_svm * svm)627 static inline bool vgif_enabled(struct vcpu_svm *svm)
628 {
629 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
630 }
631
enable_gif(struct vcpu_svm * svm)632 static inline void enable_gif(struct vcpu_svm *svm)
633 {
634 if (vgif_enabled(svm))
635 svm->vmcb->control.int_ctl |= V_GIF_MASK;
636 else
637 svm->vcpu.arch.hflags |= HF_GIF_MASK;
638 }
639
disable_gif(struct vcpu_svm * svm)640 static inline void disable_gif(struct vcpu_svm *svm)
641 {
642 if (vgif_enabled(svm))
643 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
644 else
645 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
646 }
647
gif_set(struct vcpu_svm * svm)648 static inline bool gif_set(struct vcpu_svm *svm)
649 {
650 if (vgif_enabled(svm))
651 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
652 else
653 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
654 }
655
656 static unsigned long iopm_base;
657
658 struct kvm_ldttss_desc {
659 u16 limit0;
660 u16 base0;
661 unsigned base1:8, type:5, dpl:2, p:1;
662 unsigned limit1:4, zero0:3, g:1, base2:8;
663 u32 base3;
664 u32 zero1;
665 } __attribute__((packed));
666
667 struct svm_cpu_data {
668 int cpu;
669
670 u64 asid_generation;
671 u32 max_asid;
672 u32 next_asid;
673 u32 min_asid;
674 struct kvm_ldttss_desc *tss_desc;
675
676 struct page *save_area;
677 struct vmcb *current_vmcb;
678
679 /* index = sev_asid, value = vmcb pointer */
680 struct vmcb **sev_vmcbs;
681 };
682
683 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
684
685 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
686
687 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
688 #define MSRS_RANGE_SIZE 2048
689 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
690
svm_msrpm_offset(u32 msr)691 static u32 svm_msrpm_offset(u32 msr)
692 {
693 u32 offset;
694 int i;
695
696 for (i = 0; i < NUM_MSR_MAPS; i++) {
697 if (msr < msrpm_ranges[i] ||
698 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
699 continue;
700
701 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
702 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
703
704 /* Now we have the u8 offset - but need the u32 offset */
705 return offset / 4;
706 }
707
708 /* MSR not in any range */
709 return MSR_INVALID;
710 }
711
712 #define MAX_INST_SIZE 15
713
clgi(void)714 static inline void clgi(void)
715 {
716 asm volatile (__ex("clgi"));
717 }
718
stgi(void)719 static inline void stgi(void)
720 {
721 asm volatile (__ex("stgi"));
722 }
723
invlpga(unsigned long addr,u32 asid)724 static inline void invlpga(unsigned long addr, u32 asid)
725 {
726 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
727 }
728
get_npt_level(struct kvm_vcpu * vcpu)729 static int get_npt_level(struct kvm_vcpu *vcpu)
730 {
731 #ifdef CONFIG_X86_64
732 return PT64_ROOT_4LEVEL;
733 #else
734 return PT32E_ROOT_LEVEL;
735 #endif
736 }
737
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)738 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
739 {
740 vcpu->arch.efer = efer;
741
742 if (!npt_enabled) {
743 /* Shadow paging assumes NX to be available. */
744 efer |= EFER_NX;
745
746 if (!(efer & EFER_LMA))
747 efer &= ~EFER_LME;
748 }
749
750 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
751 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
752 }
753
is_external_interrupt(u32 info)754 static int is_external_interrupt(u32 info)
755 {
756 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
757 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
758 }
759
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)760 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
761 {
762 struct vcpu_svm *svm = to_svm(vcpu);
763 u32 ret = 0;
764
765 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
766 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
767 return ret;
768 }
769
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)770 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
771 {
772 struct vcpu_svm *svm = to_svm(vcpu);
773
774 if (mask == 0)
775 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
776 else
777 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
778
779 }
780
skip_emulated_instruction(struct kvm_vcpu * vcpu)781 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
782 {
783 struct vcpu_svm *svm = to_svm(vcpu);
784
785 if (nrips && svm->vmcb->control.next_rip != 0) {
786 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
787 svm->next_rip = svm->vmcb->control.next_rip;
788 }
789
790 if (!svm->next_rip) {
791 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
792 return 0;
793 } else {
794 kvm_rip_write(vcpu, svm->next_rip);
795 }
796 svm_set_interrupt_shadow(vcpu, 0);
797
798 return 1;
799 }
800
svm_queue_exception(struct kvm_vcpu * vcpu)801 static void svm_queue_exception(struct kvm_vcpu *vcpu)
802 {
803 struct vcpu_svm *svm = to_svm(vcpu);
804 unsigned nr = vcpu->arch.exception.nr;
805 bool has_error_code = vcpu->arch.exception.has_error_code;
806 bool reinject = vcpu->arch.exception.injected;
807 u32 error_code = vcpu->arch.exception.error_code;
808
809 /*
810 * If we are within a nested VM we'd better #VMEXIT and let the guest
811 * handle the exception
812 */
813 if (!reinject &&
814 nested_svm_check_exception(svm, nr, has_error_code, error_code))
815 return;
816
817 kvm_deliver_exception_payload(&svm->vcpu);
818
819 if (nr == BP_VECTOR && !nrips) {
820 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
821
822 /*
823 * For guest debugging where we have to reinject #BP if some
824 * INT3 is guest-owned:
825 * Emulate nRIP by moving RIP forward. Will fail if injection
826 * raises a fault that is not intercepted. Still better than
827 * failing in all cases.
828 */
829 (void)skip_emulated_instruction(&svm->vcpu);
830 rip = kvm_rip_read(&svm->vcpu);
831 svm->int3_rip = rip + svm->vmcb->save.cs.base;
832 svm->int3_injected = rip - old_rip;
833 }
834
835 svm->vmcb->control.event_inj = nr
836 | SVM_EVTINJ_VALID
837 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
838 | SVM_EVTINJ_TYPE_EXEPT;
839 svm->vmcb->control.event_inj_err = error_code;
840 }
841
svm_init_erratum_383(void)842 static void svm_init_erratum_383(void)
843 {
844 u32 low, high;
845 int err;
846 u64 val;
847
848 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
849 return;
850
851 /* Use _safe variants to not break nested virtualization */
852 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
853 if (err)
854 return;
855
856 val |= (1ULL << 47);
857
858 low = lower_32_bits(val);
859 high = upper_32_bits(val);
860
861 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
862
863 erratum_383_found = true;
864 }
865
svm_init_osvw(struct kvm_vcpu * vcpu)866 static void svm_init_osvw(struct kvm_vcpu *vcpu)
867 {
868 /*
869 * Guests should see errata 400 and 415 as fixed (assuming that
870 * HLT and IO instructions are intercepted).
871 */
872 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
873 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
874
875 /*
876 * By increasing VCPU's osvw.length to 3 we are telling the guest that
877 * all osvw.status bits inside that length, including bit 0 (which is
878 * reserved for erratum 298), are valid. However, if host processor's
879 * osvw_len is 0 then osvw_status[0] carries no information. We need to
880 * be conservative here and therefore we tell the guest that erratum 298
881 * is present (because we really don't know).
882 */
883 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
884 vcpu->arch.osvw.status |= 1;
885 }
886
has_svm(void)887 static int has_svm(void)
888 {
889 const char *msg;
890
891 if (!cpu_has_svm(&msg)) {
892 printk(KERN_INFO "has_svm: %s\n", msg);
893 return 0;
894 }
895
896 if (sev_active()) {
897 pr_info("KVM is unsupported when running as an SEV guest\n");
898 return 0;
899 }
900
901 return 1;
902 }
903
svm_hardware_disable(void)904 static void svm_hardware_disable(void)
905 {
906 /* Make sure we clean up behind us */
907 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
908 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
909
910 cpu_svm_disable();
911
912 amd_pmu_disable_virt();
913 }
914
svm_hardware_enable(void)915 static int svm_hardware_enable(void)
916 {
917
918 struct svm_cpu_data *sd;
919 uint64_t efer;
920 struct desc_struct *gdt;
921 int me = raw_smp_processor_id();
922
923 rdmsrl(MSR_EFER, efer);
924 if (efer & EFER_SVME)
925 return -EBUSY;
926
927 if (!has_svm()) {
928 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
929 return -EINVAL;
930 }
931 sd = per_cpu(svm_data, me);
932 if (!sd) {
933 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
934 return -EINVAL;
935 }
936
937 sd->asid_generation = 1;
938 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
939 sd->next_asid = sd->max_asid + 1;
940 sd->min_asid = max_sev_asid + 1;
941
942 gdt = get_current_gdt_rw();
943 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
944
945 wrmsrl(MSR_EFER, efer | EFER_SVME);
946
947 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
948
949 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
950 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
951 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
952 }
953
954
955 /*
956 * Get OSVW bits.
957 *
958 * Note that it is possible to have a system with mixed processor
959 * revisions and therefore different OSVW bits. If bits are not the same
960 * on different processors then choose the worst case (i.e. if erratum
961 * is present on one processor and not on another then assume that the
962 * erratum is present everywhere).
963 */
964 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
965 uint64_t len, status = 0;
966 int err;
967
968 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
969 if (!err)
970 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
971 &err);
972
973 if (err)
974 osvw_status = osvw_len = 0;
975 else {
976 if (len < osvw_len)
977 osvw_len = len;
978 osvw_status |= status;
979 osvw_status &= (1ULL << osvw_len) - 1;
980 }
981 } else
982 osvw_status = osvw_len = 0;
983
984 svm_init_erratum_383();
985
986 amd_pmu_enable_virt();
987
988 return 0;
989 }
990
svm_cpu_uninit(int cpu)991 static void svm_cpu_uninit(int cpu)
992 {
993 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
994
995 if (!sd)
996 return;
997
998 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
999 kfree(sd->sev_vmcbs);
1000 __free_page(sd->save_area);
1001 kfree(sd);
1002 }
1003
svm_cpu_init(int cpu)1004 static int svm_cpu_init(int cpu)
1005 {
1006 struct svm_cpu_data *sd;
1007
1008 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1009 if (!sd)
1010 return -ENOMEM;
1011 sd->cpu = cpu;
1012 sd->save_area = alloc_page(GFP_KERNEL);
1013 if (!sd->save_area)
1014 goto free_cpu_data;
1015
1016 if (svm_sev_enabled()) {
1017 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1018 sizeof(void *),
1019 GFP_KERNEL);
1020 if (!sd->sev_vmcbs)
1021 goto free_save_area;
1022 }
1023
1024 per_cpu(svm_data, cpu) = sd;
1025
1026 return 0;
1027
1028 free_save_area:
1029 __free_page(sd->save_area);
1030 free_cpu_data:
1031 kfree(sd);
1032 return -ENOMEM;
1033
1034 }
1035
valid_msr_intercept(u32 index)1036 static bool valid_msr_intercept(u32 index)
1037 {
1038 int i;
1039
1040 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1041 if (direct_access_msrs[i].index == index)
1042 return true;
1043
1044 return false;
1045 }
1046
msr_write_intercepted(struct kvm_vcpu * vcpu,unsigned msr)1047 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1048 {
1049 u8 bit_write;
1050 unsigned long tmp;
1051 u32 offset;
1052 u32 *msrpm;
1053
1054 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1055 to_svm(vcpu)->msrpm;
1056
1057 offset = svm_msrpm_offset(msr);
1058 bit_write = 2 * (msr & 0x0f) + 1;
1059 tmp = msrpm[offset];
1060
1061 BUG_ON(offset == MSR_INVALID);
1062
1063 return !!test_bit(bit_write, &tmp);
1064 }
1065
set_msr_interception(u32 * msrpm,unsigned msr,int read,int write)1066 static void set_msr_interception(u32 *msrpm, unsigned msr,
1067 int read, int write)
1068 {
1069 u8 bit_read, bit_write;
1070 unsigned long tmp;
1071 u32 offset;
1072
1073 /*
1074 * If this warning triggers extend the direct_access_msrs list at the
1075 * beginning of the file
1076 */
1077 WARN_ON(!valid_msr_intercept(msr));
1078
1079 offset = svm_msrpm_offset(msr);
1080 bit_read = 2 * (msr & 0x0f);
1081 bit_write = 2 * (msr & 0x0f) + 1;
1082 tmp = msrpm[offset];
1083
1084 BUG_ON(offset == MSR_INVALID);
1085
1086 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
1087 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1088
1089 msrpm[offset] = tmp;
1090 }
1091
svm_vcpu_init_msrpm(u32 * msrpm)1092 static void svm_vcpu_init_msrpm(u32 *msrpm)
1093 {
1094 int i;
1095
1096 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1097
1098 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1099 if (!direct_access_msrs[i].always)
1100 continue;
1101
1102 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1103 }
1104 }
1105
add_msr_offset(u32 offset)1106 static void add_msr_offset(u32 offset)
1107 {
1108 int i;
1109
1110 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1111
1112 /* Offset already in list? */
1113 if (msrpm_offsets[i] == offset)
1114 return;
1115
1116 /* Slot used by another offset? */
1117 if (msrpm_offsets[i] != MSR_INVALID)
1118 continue;
1119
1120 /* Add offset to list */
1121 msrpm_offsets[i] = offset;
1122
1123 return;
1124 }
1125
1126 /*
1127 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1128 * increase MSRPM_OFFSETS in this case.
1129 */
1130 BUG();
1131 }
1132
init_msrpm_offsets(void)1133 static void init_msrpm_offsets(void)
1134 {
1135 int i;
1136
1137 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1138
1139 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1140 u32 offset;
1141
1142 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1143 BUG_ON(offset == MSR_INVALID);
1144
1145 add_msr_offset(offset);
1146 }
1147 }
1148
svm_enable_lbrv(struct vcpu_svm * svm)1149 static void svm_enable_lbrv(struct vcpu_svm *svm)
1150 {
1151 u32 *msrpm = svm->msrpm;
1152
1153 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1154 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1155 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1156 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1157 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1158 }
1159
svm_disable_lbrv(struct vcpu_svm * svm)1160 static void svm_disable_lbrv(struct vcpu_svm *svm)
1161 {
1162 u32 *msrpm = svm->msrpm;
1163
1164 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1165 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1166 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1167 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1168 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1169 }
1170
disable_nmi_singlestep(struct vcpu_svm * svm)1171 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1172 {
1173 svm->nmi_singlestep = false;
1174
1175 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1176 /* Clear our flags if they were not set by the guest */
1177 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1178 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1179 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1180 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1181 }
1182 }
1183
1184 /* Note:
1185 * This hash table is used to map VM_ID to a struct kvm_svm,
1186 * when handling AMD IOMMU GALOG notification to schedule in
1187 * a particular vCPU.
1188 */
1189 #define SVM_VM_DATA_HASH_BITS 8
1190 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1191 static u32 next_vm_id = 0;
1192 static bool next_vm_id_wrapped = 0;
1193 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1194
1195 /* Note:
1196 * This function is called from IOMMU driver to notify
1197 * SVM to schedule in a particular vCPU of a particular VM.
1198 */
avic_ga_log_notifier(u32 ga_tag)1199 static int avic_ga_log_notifier(u32 ga_tag)
1200 {
1201 unsigned long flags;
1202 struct kvm_svm *kvm_svm;
1203 struct kvm_vcpu *vcpu = NULL;
1204 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1205 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1206
1207 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1208
1209 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1210 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1211 if (kvm_svm->avic_vm_id != vm_id)
1212 continue;
1213 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1214 break;
1215 }
1216 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1217
1218 /* Note:
1219 * At this point, the IOMMU should have already set the pending
1220 * bit in the vAPIC backing page. So, we just need to schedule
1221 * in the vcpu.
1222 */
1223 if (vcpu)
1224 kvm_vcpu_wake_up(vcpu);
1225
1226 return 0;
1227 }
1228
sev_hardware_setup(void)1229 static __init int sev_hardware_setup(void)
1230 {
1231 struct sev_user_data_status *status;
1232 int rc;
1233
1234 /* Maximum number of encrypted guests supported simultaneously */
1235 max_sev_asid = cpuid_ecx(0x8000001F);
1236
1237 if (!max_sev_asid)
1238 return 1;
1239
1240 /* Minimum ASID value that should be used for SEV guest */
1241 min_sev_asid = cpuid_edx(0x8000001F);
1242
1243 /* Initialize SEV ASID bitmap */
1244 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1245 if (!sev_asid_bitmap)
1246 return 1;
1247
1248 status = kmalloc(sizeof(*status), GFP_KERNEL);
1249 if (!status)
1250 return 1;
1251
1252 /*
1253 * Check SEV platform status.
1254 *
1255 * PLATFORM_STATUS can be called in any state, if we failed to query
1256 * the PLATFORM status then either PSP firmware does not support SEV
1257 * feature or SEV firmware is dead.
1258 */
1259 rc = sev_platform_status(status, NULL);
1260 if (rc)
1261 goto err;
1262
1263 pr_info("SEV supported\n");
1264
1265 err:
1266 kfree(status);
1267 return rc;
1268 }
1269
grow_ple_window(struct kvm_vcpu * vcpu)1270 static void grow_ple_window(struct kvm_vcpu *vcpu)
1271 {
1272 struct vcpu_svm *svm = to_svm(vcpu);
1273 struct vmcb_control_area *control = &svm->vmcb->control;
1274 int old = control->pause_filter_count;
1275
1276 control->pause_filter_count = __grow_ple_window(old,
1277 pause_filter_count,
1278 pause_filter_count_grow,
1279 pause_filter_count_max);
1280
1281 if (control->pause_filter_count != old) {
1282 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1283 trace_kvm_ple_window_update(vcpu->vcpu_id,
1284 control->pause_filter_count, old);
1285 }
1286 }
1287
shrink_ple_window(struct kvm_vcpu * vcpu)1288 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1289 {
1290 struct vcpu_svm *svm = to_svm(vcpu);
1291 struct vmcb_control_area *control = &svm->vmcb->control;
1292 int old = control->pause_filter_count;
1293
1294 control->pause_filter_count =
1295 __shrink_ple_window(old,
1296 pause_filter_count,
1297 pause_filter_count_shrink,
1298 pause_filter_count);
1299 if (control->pause_filter_count != old) {
1300 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1301 trace_kvm_ple_window_update(vcpu->vcpu_id,
1302 control->pause_filter_count, old);
1303 }
1304 }
1305
1306 /*
1307 * The default MMIO mask is a single bit (excluding the present bit),
1308 * which could conflict with the memory encryption bit. Check for
1309 * memory encryption support and override the default MMIO mask if
1310 * memory encryption is enabled.
1311 */
svm_adjust_mmio_mask(void)1312 static __init void svm_adjust_mmio_mask(void)
1313 {
1314 unsigned int enc_bit, mask_bit;
1315 u64 msr, mask;
1316
1317 /* If there is no memory encryption support, use existing mask */
1318 if (cpuid_eax(0x80000000) < 0x8000001f)
1319 return;
1320
1321 /* If memory encryption is not enabled, use existing mask */
1322 rdmsrl(MSR_K8_SYSCFG, msr);
1323 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
1324 return;
1325
1326 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
1327 mask_bit = boot_cpu_data.x86_phys_bits;
1328
1329 /* Increment the mask bit if it is the same as the encryption bit */
1330 if (enc_bit == mask_bit)
1331 mask_bit++;
1332
1333 /*
1334 * If the mask bit location is below 52, then some bits above the
1335 * physical addressing limit will always be reserved, so use the
1336 * rsvd_bits() function to generate the mask. This mask, along with
1337 * the present bit, will be used to generate a page fault with
1338 * PFER.RSV = 1.
1339 *
1340 * If the mask bit location is 52 (or above), then clear the mask.
1341 */
1342 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
1343
1344 kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
1345 }
1346
svm_hardware_setup(void)1347 static __init int svm_hardware_setup(void)
1348 {
1349 int cpu;
1350 struct page *iopm_pages;
1351 void *iopm_va;
1352 int r;
1353
1354 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1355
1356 if (!iopm_pages)
1357 return -ENOMEM;
1358
1359 iopm_va = page_address(iopm_pages);
1360 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1361 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1362
1363 init_msrpm_offsets();
1364
1365 if (boot_cpu_has(X86_FEATURE_NX))
1366 kvm_enable_efer_bits(EFER_NX);
1367
1368 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1369 kvm_enable_efer_bits(EFER_FFXSR);
1370
1371 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1372 kvm_has_tsc_control = true;
1373 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1374 kvm_tsc_scaling_ratio_frac_bits = 32;
1375 }
1376
1377 /* Check for pause filtering support */
1378 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1379 pause_filter_count = 0;
1380 pause_filter_thresh = 0;
1381 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1382 pause_filter_thresh = 0;
1383 }
1384
1385 if (nested) {
1386 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1387 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1388 }
1389
1390 if (sev) {
1391 if (boot_cpu_has(X86_FEATURE_SEV) &&
1392 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1393 r = sev_hardware_setup();
1394 if (r)
1395 sev = false;
1396 } else {
1397 sev = false;
1398 }
1399 }
1400
1401 svm_adjust_mmio_mask();
1402
1403 for_each_possible_cpu(cpu) {
1404 r = svm_cpu_init(cpu);
1405 if (r)
1406 goto err;
1407 }
1408
1409 if (!boot_cpu_has(X86_FEATURE_NPT))
1410 npt_enabled = false;
1411
1412 if (npt_enabled && !npt) {
1413 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1414 npt_enabled = false;
1415 }
1416
1417 if (npt_enabled) {
1418 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1419 kvm_enable_tdp();
1420 } else
1421 kvm_disable_tdp();
1422
1423 if (nrips) {
1424 if (!boot_cpu_has(X86_FEATURE_NRIPS))
1425 nrips = false;
1426 }
1427
1428 if (avic) {
1429 if (!npt_enabled ||
1430 !boot_cpu_has(X86_FEATURE_AVIC) ||
1431 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1432 avic = false;
1433 } else {
1434 pr_info("AVIC enabled\n");
1435
1436 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1437 }
1438 }
1439
1440 if (vls) {
1441 if (!npt_enabled ||
1442 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1443 !IS_ENABLED(CONFIG_X86_64)) {
1444 vls = false;
1445 } else {
1446 pr_info("Virtual VMLOAD VMSAVE supported\n");
1447 }
1448 }
1449
1450 vgif = false; /* Disabled for CVE-2021-3653 */
1451
1452 return 0;
1453
1454 err:
1455 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1456 iopm_base = 0;
1457 return r;
1458 }
1459
svm_hardware_unsetup(void)1460 static __exit void svm_hardware_unsetup(void)
1461 {
1462 int cpu;
1463
1464 if (svm_sev_enabled())
1465 bitmap_free(sev_asid_bitmap);
1466
1467 for_each_possible_cpu(cpu)
1468 svm_cpu_uninit(cpu);
1469
1470 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1471 iopm_base = 0;
1472 }
1473
init_seg(struct vmcb_seg * seg)1474 static void init_seg(struct vmcb_seg *seg)
1475 {
1476 seg->selector = 0;
1477 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1478 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1479 seg->limit = 0xffff;
1480 seg->base = 0;
1481 }
1482
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1483 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1484 {
1485 seg->selector = 0;
1486 seg->attrib = SVM_SELECTOR_P_MASK | type;
1487 seg->limit = 0xffff;
1488 seg->base = 0;
1489 }
1490
svm_read_l1_tsc_offset(struct kvm_vcpu * vcpu)1491 static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1492 {
1493 struct vcpu_svm *svm = to_svm(vcpu);
1494
1495 if (is_guest_mode(vcpu))
1496 return svm->nested.hsave->control.tsc_offset;
1497
1498 return vcpu->arch.tsc_offset;
1499 }
1500
svm_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1501 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1502 {
1503 struct vcpu_svm *svm = to_svm(vcpu);
1504 u64 g_tsc_offset = 0;
1505
1506 if (is_guest_mode(vcpu)) {
1507 /* Write L1's TSC offset. */
1508 g_tsc_offset = svm->vmcb->control.tsc_offset -
1509 svm->nested.hsave->control.tsc_offset;
1510 svm->nested.hsave->control.tsc_offset = offset;
1511 }
1512
1513 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1514 svm->vmcb->control.tsc_offset - g_tsc_offset,
1515 offset);
1516
1517 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1518
1519 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1520 return svm->vmcb->control.tsc_offset;
1521 }
1522
avic_init_vmcb(struct vcpu_svm * svm)1523 static void avic_init_vmcb(struct vcpu_svm *svm)
1524 {
1525 struct vmcb *vmcb = svm->vmcb;
1526 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1527 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1528 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1529 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1530
1531 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1532 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1533 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1534 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1535 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1536 }
1537
init_vmcb(struct vcpu_svm * svm)1538 static void init_vmcb(struct vcpu_svm *svm)
1539 {
1540 struct vmcb_control_area *control = &svm->vmcb->control;
1541 struct vmcb_save_area *save = &svm->vmcb->save;
1542
1543 svm->vcpu.arch.hflags = 0;
1544
1545 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1546 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1547 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1548 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1549 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1550 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1551 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1552 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1553
1554 set_dr_intercepts(svm);
1555
1556 set_exception_intercept(svm, PF_VECTOR);
1557 set_exception_intercept(svm, UD_VECTOR);
1558 set_exception_intercept(svm, MC_VECTOR);
1559 set_exception_intercept(svm, AC_VECTOR);
1560 set_exception_intercept(svm, DB_VECTOR);
1561 /*
1562 * Guest access to VMware backdoor ports could legitimately
1563 * trigger #GP because of TSS I/O permission bitmap.
1564 * We intercept those #GP and allow access to them anyway
1565 * as VMware does.
1566 */
1567 if (enable_vmware_backdoor)
1568 set_exception_intercept(svm, GP_VECTOR);
1569
1570 set_intercept(svm, INTERCEPT_INTR);
1571 set_intercept(svm, INTERCEPT_NMI);
1572 set_intercept(svm, INTERCEPT_SMI);
1573 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1574 set_intercept(svm, INTERCEPT_RDPMC);
1575 set_intercept(svm, INTERCEPT_CPUID);
1576 set_intercept(svm, INTERCEPT_INVD);
1577 set_intercept(svm, INTERCEPT_INVLPG);
1578 set_intercept(svm, INTERCEPT_INVLPGA);
1579 set_intercept(svm, INTERCEPT_IOIO_PROT);
1580 set_intercept(svm, INTERCEPT_MSR_PROT);
1581 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1582 set_intercept(svm, INTERCEPT_SHUTDOWN);
1583 set_intercept(svm, INTERCEPT_VMRUN);
1584 set_intercept(svm, INTERCEPT_VMMCALL);
1585 set_intercept(svm, INTERCEPT_VMLOAD);
1586 set_intercept(svm, INTERCEPT_VMSAVE);
1587 set_intercept(svm, INTERCEPT_STGI);
1588 set_intercept(svm, INTERCEPT_CLGI);
1589 set_intercept(svm, INTERCEPT_SKINIT);
1590 set_intercept(svm, INTERCEPT_WBINVD);
1591 set_intercept(svm, INTERCEPT_XSETBV);
1592 set_intercept(svm, INTERCEPT_RDPRU);
1593 set_intercept(svm, INTERCEPT_RSM);
1594
1595 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1596 set_intercept(svm, INTERCEPT_MONITOR);
1597 set_intercept(svm, INTERCEPT_MWAIT);
1598 }
1599
1600 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1601 set_intercept(svm, INTERCEPT_HLT);
1602
1603 control->iopm_base_pa = __sme_set(iopm_base);
1604 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1605 control->int_ctl = V_INTR_MASKING_MASK;
1606
1607 init_seg(&save->es);
1608 init_seg(&save->ss);
1609 init_seg(&save->ds);
1610 init_seg(&save->fs);
1611 init_seg(&save->gs);
1612
1613 save->cs.selector = 0xf000;
1614 save->cs.base = 0xffff0000;
1615 /* Executable/Readable Code Segment */
1616 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1617 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1618 save->cs.limit = 0xffff;
1619
1620 save->gdtr.limit = 0xffff;
1621 save->idtr.limit = 0xffff;
1622
1623 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1624 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1625
1626 svm_set_efer(&svm->vcpu, 0);
1627 save->dr6 = 0xffff0ff0;
1628 kvm_set_rflags(&svm->vcpu, 2);
1629 save->rip = 0x0000fff0;
1630 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1631
1632 /*
1633 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1634 * It also updates the guest-visible cr0 value.
1635 */
1636 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1637 kvm_mmu_reset_context(&svm->vcpu);
1638
1639 save->cr4 = X86_CR4_PAE;
1640 /* rdx = ?? */
1641
1642 if (npt_enabled) {
1643 /* Setup VMCB for Nested Paging */
1644 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1645 clr_intercept(svm, INTERCEPT_INVLPG);
1646 clr_exception_intercept(svm, PF_VECTOR);
1647 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1648 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1649 save->g_pat = svm->vcpu.arch.pat;
1650 save->cr3 = 0;
1651 save->cr4 = 0;
1652 }
1653 svm->asid_generation = 0;
1654
1655 svm->nested.vmcb = 0;
1656 svm->vcpu.arch.hflags = 0;
1657
1658 if (pause_filter_count) {
1659 control->pause_filter_count = pause_filter_count;
1660 if (pause_filter_thresh)
1661 control->pause_filter_thresh = pause_filter_thresh;
1662 set_intercept(svm, INTERCEPT_PAUSE);
1663 } else {
1664 clr_intercept(svm, INTERCEPT_PAUSE);
1665 }
1666
1667 if (kvm_vcpu_apicv_active(&svm->vcpu))
1668 avic_init_vmcb(svm);
1669
1670 /*
1671 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1672 * in VMCB and clear intercepts to avoid #VMEXIT.
1673 */
1674 if (vls) {
1675 clr_intercept(svm, INTERCEPT_VMLOAD);
1676 clr_intercept(svm, INTERCEPT_VMSAVE);
1677 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1678 }
1679
1680 if (vgif) {
1681 clr_intercept(svm, INTERCEPT_STGI);
1682 clr_intercept(svm, INTERCEPT_CLGI);
1683 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1684 }
1685
1686 if (sev_guest(svm->vcpu.kvm)) {
1687 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1688 clr_exception_intercept(svm, UD_VECTOR);
1689 }
1690
1691 mark_all_dirty(svm->vmcb);
1692
1693 enable_gif(svm);
1694
1695 }
1696
avic_get_physical_id_entry(struct kvm_vcpu * vcpu,unsigned int index)1697 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1698 unsigned int index)
1699 {
1700 u64 *avic_physical_id_table;
1701 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1702
1703 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1704 return NULL;
1705
1706 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1707
1708 return &avic_physical_id_table[index];
1709 }
1710
1711 /**
1712 * Note:
1713 * AVIC hardware walks the nested page table to check permissions,
1714 * but does not use the SPA address specified in the leaf page
1715 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1716 * field of the VMCB. Therefore, we set up the
1717 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1718 */
avic_init_access_page(struct kvm_vcpu * vcpu)1719 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1720 {
1721 struct kvm *kvm = vcpu->kvm;
1722 int ret = 0;
1723
1724 mutex_lock(&kvm->slots_lock);
1725 if (kvm->arch.apic_access_page_done)
1726 goto out;
1727
1728 ret = __x86_set_memory_region(kvm,
1729 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1730 APIC_DEFAULT_PHYS_BASE,
1731 PAGE_SIZE);
1732 if (ret)
1733 goto out;
1734
1735 kvm->arch.apic_access_page_done = true;
1736 out:
1737 mutex_unlock(&kvm->slots_lock);
1738 return ret;
1739 }
1740
avic_init_backing_page(struct kvm_vcpu * vcpu)1741 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1742 {
1743 int ret;
1744 u64 *entry, new_entry;
1745 int id = vcpu->vcpu_id;
1746 struct vcpu_svm *svm = to_svm(vcpu);
1747
1748 ret = avic_init_access_page(vcpu);
1749 if (ret)
1750 return ret;
1751
1752 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1753 return -EINVAL;
1754
1755 if (!svm->vcpu.arch.apic->regs)
1756 return -EINVAL;
1757
1758 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1759
1760 /* Setting AVIC backing page address in the phy APIC ID table */
1761 entry = avic_get_physical_id_entry(vcpu, id);
1762 if (!entry)
1763 return -EINVAL;
1764
1765 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1766 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1767 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1768 WRITE_ONCE(*entry, new_entry);
1769
1770 svm->avic_physical_id_cache = entry;
1771
1772 return 0;
1773 }
1774
__sev_asid_free(int asid)1775 static void __sev_asid_free(int asid)
1776 {
1777 struct svm_cpu_data *sd;
1778 int cpu, pos;
1779
1780 pos = asid - 1;
1781 clear_bit(pos, sev_asid_bitmap);
1782
1783 for_each_possible_cpu(cpu) {
1784 sd = per_cpu(svm_data, cpu);
1785 sd->sev_vmcbs[asid] = NULL;
1786 }
1787 }
1788
sev_asid_free(struct kvm * kvm)1789 static void sev_asid_free(struct kvm *kvm)
1790 {
1791 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1792
1793 __sev_asid_free(sev->asid);
1794 }
1795
sev_decommission(unsigned int handle)1796 static void sev_decommission(unsigned int handle)
1797 {
1798 struct sev_data_decommission *decommission;
1799
1800 if (!handle)
1801 return;
1802
1803 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1804 if (!decommission)
1805 return;
1806
1807 decommission->handle = handle;
1808 sev_guest_decommission(decommission, NULL);
1809
1810 kfree(decommission);
1811 }
1812
sev_unbind_asid(struct kvm * kvm,unsigned int handle)1813 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1814 {
1815 struct sev_data_deactivate *data;
1816
1817 if (!handle)
1818 return;
1819
1820 data = kzalloc(sizeof(*data), GFP_KERNEL);
1821 if (!data)
1822 return;
1823
1824 /* deactivate handle */
1825 data->handle = handle;
1826 sev_guest_deactivate(data, NULL);
1827
1828 wbinvd_on_all_cpus();
1829 sev_guest_df_flush(NULL);
1830 kfree(data);
1831
1832 sev_decommission(handle);
1833 }
1834
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,int write)1835 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1836 unsigned long ulen, unsigned long *n,
1837 int write)
1838 {
1839 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1840 unsigned long npages, npinned, size;
1841 unsigned long locked, lock_limit;
1842 struct page **pages;
1843 unsigned long first, last;
1844
1845 lockdep_assert_held(&kvm->lock);
1846
1847 if (ulen == 0 || uaddr + ulen < uaddr)
1848 return NULL;
1849
1850 /* Calculate number of pages. */
1851 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1852 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1853 npages = (last - first + 1);
1854
1855 locked = sev->pages_locked + npages;
1856 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1857 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1858 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1859 return NULL;
1860 }
1861
1862 /* Avoid using vmalloc for smaller buffers. */
1863 size = npages * sizeof(struct page *);
1864 if (size > PAGE_SIZE)
1865 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1866 PAGE_KERNEL);
1867 else
1868 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
1869
1870 if (!pages)
1871 return NULL;
1872
1873 /* Pin the user virtual address. */
1874 npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1875 if (npinned != npages) {
1876 pr_err("SEV: Failure locking %lu pages.\n", npages);
1877 goto err;
1878 }
1879
1880 *n = npages;
1881 sev->pages_locked = locked;
1882
1883 return pages;
1884
1885 err:
1886 if (npinned > 0)
1887 release_pages(pages, npinned);
1888
1889 kvfree(pages);
1890 return NULL;
1891 }
1892
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)1893 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1894 unsigned long npages)
1895 {
1896 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1897
1898 release_pages(pages, npages);
1899 kvfree(pages);
1900 sev->pages_locked -= npages;
1901 }
1902
sev_clflush_pages(struct page * pages[],unsigned long npages)1903 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1904 {
1905 uint8_t *page_virtual;
1906 unsigned long i;
1907
1908 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
1909 pages == NULL)
1910 return;
1911
1912 for (i = 0; i < npages; i++) {
1913 page_virtual = kmap_atomic(pages[i]);
1914 clflush_cache_range(page_virtual, PAGE_SIZE);
1915 kunmap_atomic(page_virtual);
1916 }
1917 }
1918
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)1919 static void __unregister_enc_region_locked(struct kvm *kvm,
1920 struct enc_region *region)
1921 {
1922 /*
1923 * The guest may change the memory encryption attribute from C=0 -> C=1
1924 * or vice versa for this memory range. Lets make sure caches are
1925 * flushed to ensure that guest data gets written into memory with
1926 * correct C-bit.
1927 */
1928 sev_clflush_pages(region->pages, region->npages);
1929
1930 sev_unpin_memory(kvm, region->pages, region->npages);
1931 list_del(®ion->list);
1932 kfree(region);
1933 }
1934
svm_vm_alloc(void)1935 static struct kvm *svm_vm_alloc(void)
1936 {
1937 struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm),
1938 GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1939 PAGE_KERNEL);
1940
1941 if (!kvm_svm)
1942 return NULL;
1943
1944 return &kvm_svm->kvm;
1945 }
1946
svm_vm_free(struct kvm * kvm)1947 static void svm_vm_free(struct kvm *kvm)
1948 {
1949 vfree(to_kvm_svm(kvm));
1950 }
1951
sev_vm_destroy(struct kvm * kvm)1952 static void sev_vm_destroy(struct kvm *kvm)
1953 {
1954 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1955 struct list_head *head = &sev->regions_list;
1956 struct list_head *pos, *q;
1957
1958 if (!sev_guest(kvm))
1959 return;
1960
1961 mutex_lock(&kvm->lock);
1962
1963 /*
1964 * if userspace was terminated before unregistering the memory regions
1965 * then lets unpin all the registered memory.
1966 */
1967 if (!list_empty(head)) {
1968 list_for_each_safe(pos, q, head) {
1969 __unregister_enc_region_locked(kvm,
1970 list_entry(pos, struct enc_region, list));
1971 cond_resched();
1972 }
1973 }
1974
1975 mutex_unlock(&kvm->lock);
1976
1977 sev_unbind_asid(kvm, sev->handle);
1978 sev_asid_free(kvm);
1979 }
1980
avic_vm_destroy(struct kvm * kvm)1981 static void avic_vm_destroy(struct kvm *kvm)
1982 {
1983 unsigned long flags;
1984 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1985
1986 if (!avic)
1987 return;
1988
1989 if (kvm_svm->avic_logical_id_table_page)
1990 __free_page(kvm_svm->avic_logical_id_table_page);
1991 if (kvm_svm->avic_physical_id_table_page)
1992 __free_page(kvm_svm->avic_physical_id_table_page);
1993
1994 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1995 hash_del(&kvm_svm->hnode);
1996 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1997 }
1998
svm_vm_destroy(struct kvm * kvm)1999 static void svm_vm_destroy(struct kvm *kvm)
2000 {
2001 avic_vm_destroy(kvm);
2002 sev_vm_destroy(kvm);
2003 }
2004
avic_vm_init(struct kvm * kvm)2005 static int avic_vm_init(struct kvm *kvm)
2006 {
2007 unsigned long flags;
2008 int err = -ENOMEM;
2009 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
2010 struct kvm_svm *k2;
2011 struct page *p_page;
2012 struct page *l_page;
2013 u32 vm_id;
2014
2015 if (!avic)
2016 return 0;
2017
2018 /* Allocating physical APIC ID table (4KB) */
2019 p_page = alloc_page(GFP_KERNEL_ACCOUNT);
2020 if (!p_page)
2021 goto free_avic;
2022
2023 kvm_svm->avic_physical_id_table_page = p_page;
2024 clear_page(page_address(p_page));
2025
2026 /* Allocating logical APIC ID table (4KB) */
2027 l_page = alloc_page(GFP_KERNEL_ACCOUNT);
2028 if (!l_page)
2029 goto free_avic;
2030
2031 kvm_svm->avic_logical_id_table_page = l_page;
2032 clear_page(page_address(l_page));
2033
2034 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
2035 again:
2036 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
2037 if (vm_id == 0) { /* id is 1-based, zero is not okay */
2038 next_vm_id_wrapped = 1;
2039 goto again;
2040 }
2041 /* Is it still in use? Only possible if wrapped at least once */
2042 if (next_vm_id_wrapped) {
2043 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
2044 if (k2->avic_vm_id == vm_id)
2045 goto again;
2046 }
2047 }
2048 kvm_svm->avic_vm_id = vm_id;
2049 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
2050 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
2051
2052 return 0;
2053
2054 free_avic:
2055 avic_vm_destroy(kvm);
2056 return err;
2057 }
2058
2059 static inline int
avic_update_iommu_vcpu_affinity(struct kvm_vcpu * vcpu,int cpu,bool r)2060 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
2061 {
2062 int ret = 0;
2063 unsigned long flags;
2064 struct amd_svm_iommu_ir *ir;
2065 struct vcpu_svm *svm = to_svm(vcpu);
2066
2067 if (!kvm_arch_has_assigned_device(vcpu->kvm))
2068 return 0;
2069
2070 /*
2071 * Here, we go through the per-vcpu ir_list to update all existing
2072 * interrupt remapping table entry targeting this vcpu.
2073 */
2074 spin_lock_irqsave(&svm->ir_list_lock, flags);
2075
2076 if (list_empty(&svm->ir_list))
2077 goto out;
2078
2079 list_for_each_entry(ir, &svm->ir_list, node) {
2080 ret = amd_iommu_update_ga(cpu, r, ir->data);
2081 if (ret)
2082 break;
2083 }
2084 out:
2085 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2086 return ret;
2087 }
2088
avic_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2089 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2090 {
2091 u64 entry;
2092 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
2093 int h_physical_id = kvm_cpu_get_apicid(cpu);
2094 struct vcpu_svm *svm = to_svm(vcpu);
2095
2096 if (!kvm_vcpu_apicv_active(vcpu))
2097 return;
2098
2099 /*
2100 * Since the host physical APIC id is 8 bits,
2101 * we can support host APIC ID upto 255.
2102 */
2103 if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
2104 return;
2105
2106 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2107 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2108
2109 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2110 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2111
2112 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2113 if (svm->avic_is_running)
2114 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2115
2116 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2117 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2118 svm->avic_is_running);
2119 }
2120
avic_vcpu_put(struct kvm_vcpu * vcpu)2121 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2122 {
2123 u64 entry;
2124 struct vcpu_svm *svm = to_svm(vcpu);
2125
2126 if (!kvm_vcpu_apicv_active(vcpu))
2127 return;
2128
2129 entry = READ_ONCE(*(svm->avic_physical_id_cache));
2130 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2131 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2132
2133 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2134 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2135 }
2136
2137 /**
2138 * This function is called during VCPU halt/unhalt.
2139 */
avic_set_running(struct kvm_vcpu * vcpu,bool is_run)2140 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2141 {
2142 struct vcpu_svm *svm = to_svm(vcpu);
2143
2144 svm->avic_is_running = is_run;
2145 if (is_run)
2146 avic_vcpu_load(vcpu, vcpu->cpu);
2147 else
2148 avic_vcpu_put(vcpu);
2149 }
2150
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)2151 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2152 {
2153 struct vcpu_svm *svm = to_svm(vcpu);
2154 u32 dummy;
2155 u32 eax = 1;
2156
2157 vcpu->arch.microcode_version = 0x01000065;
2158 svm->spec_ctrl = 0;
2159 svm->virt_spec_ctrl = 0;
2160
2161 if (!init_event) {
2162 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2163 MSR_IA32_APICBASE_ENABLE;
2164 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2165 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2166 }
2167 init_vmcb(svm);
2168
2169 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2170 kvm_rdx_write(vcpu, eax);
2171
2172 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2173 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2174 }
2175
avic_init_vcpu(struct vcpu_svm * svm)2176 static int avic_init_vcpu(struct vcpu_svm *svm)
2177 {
2178 int ret;
2179
2180 if (!kvm_vcpu_apicv_active(&svm->vcpu))
2181 return 0;
2182
2183 ret = avic_init_backing_page(&svm->vcpu);
2184 if (ret)
2185 return ret;
2186
2187 INIT_LIST_HEAD(&svm->ir_list);
2188 spin_lock_init(&svm->ir_list_lock);
2189 svm->dfr_reg = APIC_DFR_FLAT;
2190
2191 return ret;
2192 }
2193
svm_create_vcpu(struct kvm * kvm,unsigned int id)2194 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2195 {
2196 struct vcpu_svm *svm;
2197 struct page *page;
2198 struct page *msrpm_pages;
2199 struct page *hsave_page;
2200 struct page *nested_msrpm_pages;
2201 int err;
2202
2203 BUILD_BUG_ON_MSG(offsetof(struct vcpu_svm, vcpu) != 0,
2204 "struct kvm_vcpu must be at offset 0 for arch usercopy region");
2205
2206 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
2207 if (!svm) {
2208 err = -ENOMEM;
2209 goto out;
2210 }
2211
2212 svm->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
2213 GFP_KERNEL_ACCOUNT);
2214 if (!svm->vcpu.arch.user_fpu) {
2215 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
2216 err = -ENOMEM;
2217 goto free_partial_svm;
2218 }
2219
2220 svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
2221 GFP_KERNEL_ACCOUNT);
2222 if (!svm->vcpu.arch.guest_fpu) {
2223 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
2224 err = -ENOMEM;
2225 goto free_user_fpu;
2226 }
2227
2228 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2229 if (err)
2230 goto free_svm;
2231
2232 err = -ENOMEM;
2233 page = alloc_page(GFP_KERNEL_ACCOUNT);
2234 if (!page)
2235 goto uninit;
2236
2237 msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2238 if (!msrpm_pages)
2239 goto free_page1;
2240
2241 nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2242 if (!nested_msrpm_pages)
2243 goto free_page2;
2244
2245 hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
2246 if (!hsave_page)
2247 goto free_page3;
2248
2249 err = avic_init_vcpu(svm);
2250 if (err)
2251 goto free_page4;
2252
2253 /* We initialize this flag to true to make sure that the is_running
2254 * bit would be set the first time the vcpu is loaded.
2255 */
2256 svm->avic_is_running = true;
2257
2258 svm->nested.hsave = page_address(hsave_page);
2259
2260 svm->msrpm = page_address(msrpm_pages);
2261 svm_vcpu_init_msrpm(svm->msrpm);
2262
2263 svm->nested.msrpm = page_address(nested_msrpm_pages);
2264 svm_vcpu_init_msrpm(svm->nested.msrpm);
2265
2266 svm->vmcb = page_address(page);
2267 clear_page(svm->vmcb);
2268 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2269 svm->asid_generation = 0;
2270 init_vmcb(svm);
2271
2272 svm_init_osvw(&svm->vcpu);
2273
2274 return &svm->vcpu;
2275
2276 free_page4:
2277 __free_page(hsave_page);
2278 free_page3:
2279 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2280 free_page2:
2281 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2282 free_page1:
2283 __free_page(page);
2284 uninit:
2285 kvm_vcpu_uninit(&svm->vcpu);
2286 free_svm:
2287 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2288 free_user_fpu:
2289 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2290 free_partial_svm:
2291 kmem_cache_free(kvm_vcpu_cache, svm);
2292 out:
2293 return ERR_PTR(err);
2294 }
2295
svm_clear_current_vmcb(struct vmcb * vmcb)2296 static void svm_clear_current_vmcb(struct vmcb *vmcb)
2297 {
2298 int i;
2299
2300 for_each_online_cpu(i)
2301 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2302 }
2303
svm_free_vcpu(struct kvm_vcpu * vcpu)2304 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2305 {
2306 struct vcpu_svm *svm = to_svm(vcpu);
2307
2308 /*
2309 * The vmcb page can be recycled, causing a false negative in
2310 * svm_vcpu_load(). So, ensure that no logical CPU has this
2311 * vmcb page recorded as its current vmcb.
2312 */
2313 svm_clear_current_vmcb(svm->vmcb);
2314
2315 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2316 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2317 __free_page(virt_to_page(svm->nested.hsave));
2318 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2319 kvm_vcpu_uninit(vcpu);
2320 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2321 kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2322 kmem_cache_free(kvm_vcpu_cache, svm);
2323 }
2324
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2325 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2326 {
2327 struct vcpu_svm *svm = to_svm(vcpu);
2328 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2329 int i;
2330
2331 if (unlikely(cpu != vcpu->cpu)) {
2332 svm->asid_generation = 0;
2333 mark_all_dirty(svm->vmcb);
2334 }
2335
2336 #ifdef CONFIG_X86_64
2337 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2338 #endif
2339 savesegment(fs, svm->host.fs);
2340 savesegment(gs, svm->host.gs);
2341 svm->host.ldt = kvm_read_ldt();
2342
2343 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2344 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2345
2346 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2347 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2348 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2349 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2350 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2351 }
2352 }
2353 /* This assumes that the kernel never uses MSR_TSC_AUX */
2354 if (static_cpu_has(X86_FEATURE_RDTSCP))
2355 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2356
2357 if (sd->current_vmcb != svm->vmcb) {
2358 sd->current_vmcb = svm->vmcb;
2359 indirect_branch_prediction_barrier();
2360 }
2361 avic_vcpu_load(vcpu, cpu);
2362 }
2363
svm_vcpu_put(struct kvm_vcpu * vcpu)2364 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2365 {
2366 struct vcpu_svm *svm = to_svm(vcpu);
2367 int i;
2368
2369 avic_vcpu_put(vcpu);
2370
2371 ++vcpu->stat.host_state_reload;
2372 kvm_load_ldt(svm->host.ldt);
2373 #ifdef CONFIG_X86_64
2374 loadsegment(fs, svm->host.fs);
2375 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2376 load_gs_index(svm->host.gs);
2377 #else
2378 #ifdef CONFIG_X86_32_LAZY_GS
2379 loadsegment(gs, svm->host.gs);
2380 #endif
2381 #endif
2382 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2383 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2384 }
2385
svm_vcpu_blocking(struct kvm_vcpu * vcpu)2386 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2387 {
2388 avic_set_running(vcpu, false);
2389 }
2390
svm_vcpu_unblocking(struct kvm_vcpu * vcpu)2391 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2392 {
2393 avic_set_running(vcpu, true);
2394 }
2395
svm_get_rflags(struct kvm_vcpu * vcpu)2396 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2397 {
2398 struct vcpu_svm *svm = to_svm(vcpu);
2399 unsigned long rflags = svm->vmcb->save.rflags;
2400
2401 if (svm->nmi_singlestep) {
2402 /* Hide our flags if they were not set by the guest */
2403 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2404 rflags &= ~X86_EFLAGS_TF;
2405 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2406 rflags &= ~X86_EFLAGS_RF;
2407 }
2408 return rflags;
2409 }
2410
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)2411 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2412 {
2413 if (to_svm(vcpu)->nmi_singlestep)
2414 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2415
2416 /*
2417 * Any change of EFLAGS.VM is accompanied by a reload of SS
2418 * (caused by either a task switch or an inter-privilege IRET),
2419 * so we do not need to update the CPL here.
2420 */
2421 to_svm(vcpu)->vmcb->save.rflags = rflags;
2422 }
2423
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2424 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2425 {
2426 switch (reg) {
2427 case VCPU_EXREG_PDPTR:
2428 BUG_ON(!npt_enabled);
2429 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2430 break;
2431 default:
2432 BUG();
2433 }
2434 }
2435
svm_set_vintr(struct vcpu_svm * svm)2436 static void svm_set_vintr(struct vcpu_svm *svm)
2437 {
2438 set_intercept(svm, INTERCEPT_VINTR);
2439 }
2440
svm_clear_vintr(struct vcpu_svm * svm)2441 static void svm_clear_vintr(struct vcpu_svm *svm)
2442 {
2443 clr_intercept(svm, INTERCEPT_VINTR);
2444 }
2445
svm_seg(struct kvm_vcpu * vcpu,int seg)2446 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2447 {
2448 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2449
2450 switch (seg) {
2451 case VCPU_SREG_CS: return &save->cs;
2452 case VCPU_SREG_DS: return &save->ds;
2453 case VCPU_SREG_ES: return &save->es;
2454 case VCPU_SREG_FS: return &save->fs;
2455 case VCPU_SREG_GS: return &save->gs;
2456 case VCPU_SREG_SS: return &save->ss;
2457 case VCPU_SREG_TR: return &save->tr;
2458 case VCPU_SREG_LDTR: return &save->ldtr;
2459 }
2460 BUG();
2461 return NULL;
2462 }
2463
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)2464 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2465 {
2466 struct vmcb_seg *s = svm_seg(vcpu, seg);
2467
2468 return s->base;
2469 }
2470
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)2471 static void svm_get_segment(struct kvm_vcpu *vcpu,
2472 struct kvm_segment *var, int seg)
2473 {
2474 struct vmcb_seg *s = svm_seg(vcpu, seg);
2475
2476 var->base = s->base;
2477 var->limit = s->limit;
2478 var->selector = s->selector;
2479 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2480 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2481 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2482 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2483 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2484 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2485 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2486
2487 /*
2488 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2489 * However, the SVM spec states that the G bit is not observed by the
2490 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2491 * So let's synthesize a legal G bit for all segments, this helps
2492 * running KVM nested. It also helps cross-vendor migration, because
2493 * Intel's vmentry has a check on the 'G' bit.
2494 */
2495 var->g = s->limit > 0xfffff;
2496
2497 /*
2498 * AMD's VMCB does not have an explicit unusable field, so emulate it
2499 * for cross vendor migration purposes by "not present"
2500 */
2501 var->unusable = !var->present;
2502
2503 switch (seg) {
2504 case VCPU_SREG_TR:
2505 /*
2506 * Work around a bug where the busy flag in the tr selector
2507 * isn't exposed
2508 */
2509 var->type |= 0x2;
2510 break;
2511 case VCPU_SREG_DS:
2512 case VCPU_SREG_ES:
2513 case VCPU_SREG_FS:
2514 case VCPU_SREG_GS:
2515 /*
2516 * The accessed bit must always be set in the segment
2517 * descriptor cache, although it can be cleared in the
2518 * descriptor, the cached bit always remains at 1. Since
2519 * Intel has a check on this, set it here to support
2520 * cross-vendor migration.
2521 */
2522 if (!var->unusable)
2523 var->type |= 0x1;
2524 break;
2525 case VCPU_SREG_SS:
2526 /*
2527 * On AMD CPUs sometimes the DB bit in the segment
2528 * descriptor is left as 1, although the whole segment has
2529 * been made unusable. Clear it here to pass an Intel VMX
2530 * entry check when cross vendor migrating.
2531 */
2532 if (var->unusable)
2533 var->db = 0;
2534 /* This is symmetric with svm_set_segment() */
2535 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2536 break;
2537 }
2538 }
2539
svm_get_cpl(struct kvm_vcpu * vcpu)2540 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2541 {
2542 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2543
2544 return save->cpl;
2545 }
2546
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2547 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2548 {
2549 struct vcpu_svm *svm = to_svm(vcpu);
2550
2551 dt->size = svm->vmcb->save.idtr.limit;
2552 dt->address = svm->vmcb->save.idtr.base;
2553 }
2554
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2555 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2556 {
2557 struct vcpu_svm *svm = to_svm(vcpu);
2558
2559 svm->vmcb->save.idtr.limit = dt->size;
2560 svm->vmcb->save.idtr.base = dt->address ;
2561 mark_dirty(svm->vmcb, VMCB_DT);
2562 }
2563
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2564 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2565 {
2566 struct vcpu_svm *svm = to_svm(vcpu);
2567
2568 dt->size = svm->vmcb->save.gdtr.limit;
2569 dt->address = svm->vmcb->save.gdtr.base;
2570 }
2571
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)2572 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2573 {
2574 struct vcpu_svm *svm = to_svm(vcpu);
2575
2576 svm->vmcb->save.gdtr.limit = dt->size;
2577 svm->vmcb->save.gdtr.base = dt->address ;
2578 mark_dirty(svm->vmcb, VMCB_DT);
2579 }
2580
svm_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)2581 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2582 {
2583 }
2584
svm_decache_cr3(struct kvm_vcpu * vcpu)2585 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2586 {
2587 }
2588
svm_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)2589 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2590 {
2591 }
2592
update_cr0_intercept(struct vcpu_svm * svm)2593 static void update_cr0_intercept(struct vcpu_svm *svm)
2594 {
2595 ulong gcr0 = svm->vcpu.arch.cr0;
2596 u64 *hcr0 = &svm->vmcb->save.cr0;
2597
2598 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2599 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2600
2601 mark_dirty(svm->vmcb, VMCB_CR);
2602
2603 if (gcr0 == *hcr0) {
2604 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2605 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2606 } else {
2607 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2608 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2609 }
2610 }
2611
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)2612 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2613 {
2614 struct vcpu_svm *svm = to_svm(vcpu);
2615
2616 #ifdef CONFIG_X86_64
2617 if (vcpu->arch.efer & EFER_LME) {
2618 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2619 vcpu->arch.efer |= EFER_LMA;
2620 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2621 }
2622
2623 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2624 vcpu->arch.efer &= ~EFER_LMA;
2625 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2626 }
2627 }
2628 #endif
2629 vcpu->arch.cr0 = cr0;
2630
2631 if (!npt_enabled)
2632 cr0 |= X86_CR0_PG | X86_CR0_WP;
2633
2634 /*
2635 * re-enable caching here because the QEMU bios
2636 * does not do it - this results in some delay at
2637 * reboot
2638 */
2639 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2640 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2641 svm->vmcb->save.cr0 = cr0;
2642 mark_dirty(svm->vmcb, VMCB_CR);
2643 update_cr0_intercept(svm);
2644 }
2645
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)2646 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2647 {
2648 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2649 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2650
2651 if (cr4 & X86_CR4_VMXE)
2652 return 1;
2653
2654 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2655 svm_flush_tlb(vcpu, true);
2656
2657 vcpu->arch.cr4 = cr4;
2658 if (!npt_enabled)
2659 cr4 |= X86_CR4_PAE;
2660 cr4 |= host_cr4_mce;
2661 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2662 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2663 return 0;
2664 }
2665
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)2666 static void svm_set_segment(struct kvm_vcpu *vcpu,
2667 struct kvm_segment *var, int seg)
2668 {
2669 struct vcpu_svm *svm = to_svm(vcpu);
2670 struct vmcb_seg *s = svm_seg(vcpu, seg);
2671
2672 s->base = var->base;
2673 s->limit = var->limit;
2674 s->selector = var->selector;
2675 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2676 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2677 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2678 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2679 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2680 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2681 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2682 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2683
2684 /*
2685 * This is always accurate, except if SYSRET returned to a segment
2686 * with SS.DPL != 3. Intel does not have this quirk, and always
2687 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2688 * would entail passing the CPL to userspace and back.
2689 */
2690 if (seg == VCPU_SREG_SS)
2691 /* This is symmetric with svm_get_segment() */
2692 svm->vmcb->save.cpl = (var->dpl & 3);
2693
2694 mark_dirty(svm->vmcb, VMCB_SEG);
2695 }
2696
update_bp_intercept(struct kvm_vcpu * vcpu)2697 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2698 {
2699 struct vcpu_svm *svm = to_svm(vcpu);
2700
2701 clr_exception_intercept(svm, BP_VECTOR);
2702
2703 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2704 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2705 set_exception_intercept(svm, BP_VECTOR);
2706 } else
2707 vcpu->guest_debug = 0;
2708 }
2709
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)2710 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2711 {
2712 if (sd->next_asid > sd->max_asid) {
2713 ++sd->asid_generation;
2714 sd->next_asid = sd->min_asid;
2715 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2716 }
2717
2718 svm->asid_generation = sd->asid_generation;
2719 svm->vmcb->control.asid = sd->next_asid++;
2720
2721 mark_dirty(svm->vmcb, VMCB_ASID);
2722 }
2723
svm_get_dr6(struct kvm_vcpu * vcpu)2724 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2725 {
2726 return to_svm(vcpu)->vmcb->save.dr6;
2727 }
2728
svm_set_dr6(struct kvm_vcpu * vcpu,unsigned long value)2729 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2730 {
2731 struct vcpu_svm *svm = to_svm(vcpu);
2732
2733 svm->vmcb->save.dr6 = value;
2734 mark_dirty(svm->vmcb, VMCB_DR);
2735 }
2736
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)2737 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2738 {
2739 struct vcpu_svm *svm = to_svm(vcpu);
2740
2741 get_debugreg(vcpu->arch.db[0], 0);
2742 get_debugreg(vcpu->arch.db[1], 1);
2743 get_debugreg(vcpu->arch.db[2], 2);
2744 get_debugreg(vcpu->arch.db[3], 3);
2745 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2746 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2747
2748 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2749 set_dr_intercepts(svm);
2750 }
2751
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)2752 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2753 {
2754 struct vcpu_svm *svm = to_svm(vcpu);
2755
2756 svm->vmcb->save.dr7 = value;
2757 mark_dirty(svm->vmcb, VMCB_DR);
2758 }
2759
pf_interception(struct vcpu_svm * svm)2760 static int pf_interception(struct vcpu_svm *svm)
2761 {
2762 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2763 u64 error_code = svm->vmcb->control.exit_info_1;
2764
2765 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2766 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2767 svm->vmcb->control.insn_bytes : NULL,
2768 svm->vmcb->control.insn_len);
2769 }
2770
npf_interception(struct vcpu_svm * svm)2771 static int npf_interception(struct vcpu_svm *svm)
2772 {
2773 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2774 u64 error_code = svm->vmcb->control.exit_info_1;
2775
2776 trace_kvm_page_fault(fault_address, error_code);
2777 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2778 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2779 svm->vmcb->control.insn_bytes : NULL,
2780 svm->vmcb->control.insn_len);
2781 }
2782
db_interception(struct vcpu_svm * svm)2783 static int db_interception(struct vcpu_svm *svm)
2784 {
2785 struct kvm_run *kvm_run = svm->vcpu.run;
2786 struct kvm_vcpu *vcpu = &svm->vcpu;
2787
2788 if (!(svm->vcpu.guest_debug &
2789 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2790 !svm->nmi_singlestep) {
2791 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2792 return 1;
2793 }
2794
2795 if (svm->nmi_singlestep) {
2796 disable_nmi_singlestep(svm);
2797 /* Make sure we check for pending NMIs upon entry */
2798 kvm_make_request(KVM_REQ_EVENT, vcpu);
2799 }
2800
2801 if (svm->vcpu.guest_debug &
2802 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2803 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2804 kvm_run->debug.arch.pc =
2805 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2806 kvm_run->debug.arch.exception = DB_VECTOR;
2807 return 0;
2808 }
2809
2810 return 1;
2811 }
2812
bp_interception(struct vcpu_svm * svm)2813 static int bp_interception(struct vcpu_svm *svm)
2814 {
2815 struct kvm_run *kvm_run = svm->vcpu.run;
2816
2817 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2818 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2819 kvm_run->debug.arch.exception = BP_VECTOR;
2820 return 0;
2821 }
2822
ud_interception(struct vcpu_svm * svm)2823 static int ud_interception(struct vcpu_svm *svm)
2824 {
2825 return handle_ud(&svm->vcpu);
2826 }
2827
ac_interception(struct vcpu_svm * svm)2828 static int ac_interception(struct vcpu_svm *svm)
2829 {
2830 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2831 return 1;
2832 }
2833
gp_interception(struct vcpu_svm * svm)2834 static int gp_interception(struct vcpu_svm *svm)
2835 {
2836 struct kvm_vcpu *vcpu = &svm->vcpu;
2837 u32 error_code = svm->vmcb->control.exit_info_1;
2838
2839 WARN_ON_ONCE(!enable_vmware_backdoor);
2840
2841 /*
2842 * VMware backdoor emulation on #GP interception only handles IN{S},
2843 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
2844 */
2845 if (error_code) {
2846 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2847 return 1;
2848 }
2849 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
2850 }
2851
is_erratum_383(void)2852 static bool is_erratum_383(void)
2853 {
2854 int err, i;
2855 u64 value;
2856
2857 if (!erratum_383_found)
2858 return false;
2859
2860 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2861 if (err)
2862 return false;
2863
2864 /* Bit 62 may or may not be set for this mce */
2865 value &= ~(1ULL << 62);
2866
2867 if (value != 0xb600000000010015ULL)
2868 return false;
2869
2870 /* Clear MCi_STATUS registers */
2871 for (i = 0; i < 6; ++i)
2872 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2873
2874 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2875 if (!err) {
2876 u32 low, high;
2877
2878 value &= ~(1ULL << 2);
2879 low = lower_32_bits(value);
2880 high = upper_32_bits(value);
2881
2882 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2883 }
2884
2885 /* Flush tlb to evict multi-match entries */
2886 __flush_tlb_all();
2887
2888 return true;
2889 }
2890
svm_handle_mce(struct vcpu_svm * svm)2891 static void svm_handle_mce(struct vcpu_svm *svm)
2892 {
2893 if (is_erratum_383()) {
2894 /*
2895 * Erratum 383 triggered. Guest state is corrupt so kill the
2896 * guest.
2897 */
2898 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2899
2900 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2901
2902 return;
2903 }
2904
2905 /*
2906 * On an #MC intercept the MCE handler is not called automatically in
2907 * the host. So do it by hand here.
2908 */
2909 asm volatile (
2910 "int $0x12\n");
2911 /* not sure if we ever come back to this point */
2912
2913 return;
2914 }
2915
mc_interception(struct vcpu_svm * svm)2916 static int mc_interception(struct vcpu_svm *svm)
2917 {
2918 return 1;
2919 }
2920
shutdown_interception(struct vcpu_svm * svm)2921 static int shutdown_interception(struct vcpu_svm *svm)
2922 {
2923 struct kvm_run *kvm_run = svm->vcpu.run;
2924
2925 /*
2926 * VMCB is undefined after a SHUTDOWN intercept
2927 * so reinitialize it.
2928 */
2929 clear_page(svm->vmcb);
2930 init_vmcb(svm);
2931
2932 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2933 return 0;
2934 }
2935
io_interception(struct vcpu_svm * svm)2936 static int io_interception(struct vcpu_svm *svm)
2937 {
2938 struct kvm_vcpu *vcpu = &svm->vcpu;
2939 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2940 int size, in, string;
2941 unsigned port;
2942
2943 ++svm->vcpu.stat.io_exits;
2944 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2945 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2946 if (string)
2947 return kvm_emulate_instruction(vcpu, 0);
2948
2949 port = io_info >> 16;
2950 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2951 svm->next_rip = svm->vmcb->control.exit_info_2;
2952
2953 return kvm_fast_pio(&svm->vcpu, size, port, in);
2954 }
2955
nmi_interception(struct vcpu_svm * svm)2956 static int nmi_interception(struct vcpu_svm *svm)
2957 {
2958 return 1;
2959 }
2960
intr_interception(struct vcpu_svm * svm)2961 static int intr_interception(struct vcpu_svm *svm)
2962 {
2963 ++svm->vcpu.stat.irq_exits;
2964 return 1;
2965 }
2966
nop_on_interception(struct vcpu_svm * svm)2967 static int nop_on_interception(struct vcpu_svm *svm)
2968 {
2969 return 1;
2970 }
2971
halt_interception(struct vcpu_svm * svm)2972 static int halt_interception(struct vcpu_svm *svm)
2973 {
2974 return kvm_emulate_halt(&svm->vcpu);
2975 }
2976
vmmcall_interception(struct vcpu_svm * svm)2977 static int vmmcall_interception(struct vcpu_svm *svm)
2978 {
2979 return kvm_emulate_hypercall(&svm->vcpu);
2980 }
2981
nested_svm_get_tdp_cr3(struct kvm_vcpu * vcpu)2982 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2983 {
2984 struct vcpu_svm *svm = to_svm(vcpu);
2985
2986 return svm->nested.nested_cr3;
2987 }
2988
nested_svm_get_tdp_pdptr(struct kvm_vcpu * vcpu,int index)2989 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2990 {
2991 struct vcpu_svm *svm = to_svm(vcpu);
2992 u64 cr3 = svm->nested.nested_cr3;
2993 u64 pdpte;
2994 int ret;
2995
2996 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2997 offset_in_page(cr3) + index * 8, 8);
2998 if (ret)
2999 return 0;
3000 return pdpte;
3001 }
3002
nested_svm_set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)3003 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
3004 unsigned long root)
3005 {
3006 struct vcpu_svm *svm = to_svm(vcpu);
3007
3008 svm->vmcb->control.nested_cr3 = __sme_set(root);
3009 mark_dirty(svm->vmcb, VMCB_NPT);
3010 }
3011
nested_svm_inject_npf_exit(struct kvm_vcpu * vcpu,struct x86_exception * fault)3012 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
3013 struct x86_exception *fault)
3014 {
3015 struct vcpu_svm *svm = to_svm(vcpu);
3016
3017 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
3018 /*
3019 * TODO: track the cause of the nested page fault, and
3020 * correctly fill in the high bits of exit_info_1.
3021 */
3022 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
3023 svm->vmcb->control.exit_code_hi = 0;
3024 svm->vmcb->control.exit_info_1 = (1ULL << 32);
3025 svm->vmcb->control.exit_info_2 = fault->address;
3026 }
3027
3028 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
3029 svm->vmcb->control.exit_info_1 |= fault->error_code;
3030
3031 /*
3032 * The present bit is always zero for page structure faults on real
3033 * hardware.
3034 */
3035 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
3036 svm->vmcb->control.exit_info_1 &= ~1;
3037
3038 nested_svm_vmexit(svm);
3039 }
3040
nested_svm_init_mmu_context(struct kvm_vcpu * vcpu)3041 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
3042 {
3043 WARN_ON(mmu_is_nested(vcpu));
3044
3045 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
3046 kvm_init_shadow_mmu(vcpu);
3047 vcpu->arch.mmu->set_cr3 = nested_svm_set_tdp_cr3;
3048 vcpu->arch.mmu->get_cr3 = nested_svm_get_tdp_cr3;
3049 vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
3050 vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
3051 vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
3052 reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
3053 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
3054 }
3055
nested_svm_uninit_mmu_context(struct kvm_vcpu * vcpu)3056 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
3057 {
3058 vcpu->arch.mmu = &vcpu->arch.root_mmu;
3059 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
3060 }
3061
nested_svm_check_permissions(struct vcpu_svm * svm)3062 static int nested_svm_check_permissions(struct vcpu_svm *svm)
3063 {
3064 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
3065 !is_paging(&svm->vcpu)) {
3066 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3067 return 1;
3068 }
3069
3070 if (svm->vmcb->save.cpl) {
3071 kvm_inject_gp(&svm->vcpu, 0);
3072 return 1;
3073 }
3074
3075 return 0;
3076 }
3077
nested_svm_check_exception(struct vcpu_svm * svm,unsigned nr,bool has_error_code,u32 error_code)3078 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
3079 bool has_error_code, u32 error_code)
3080 {
3081 int vmexit;
3082
3083 if (!is_guest_mode(&svm->vcpu))
3084 return 0;
3085
3086 vmexit = nested_svm_intercept(svm);
3087 if (vmexit != NESTED_EXIT_DONE)
3088 return 0;
3089
3090 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3091 svm->vmcb->control.exit_code_hi = 0;
3092 svm->vmcb->control.exit_info_1 = error_code;
3093
3094 /*
3095 * EXITINFO2 is undefined for all exception intercepts other
3096 * than #PF.
3097 */
3098 if (svm->vcpu.arch.exception.nested_apf)
3099 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3100 else if (svm->vcpu.arch.exception.has_payload)
3101 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3102 else
3103 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3104
3105 svm->nested.exit_required = true;
3106 return vmexit;
3107 }
3108
3109 /* This function returns true if it is save to enable the irq window */
nested_svm_intr(struct vcpu_svm * svm)3110 static inline bool nested_svm_intr(struct vcpu_svm *svm)
3111 {
3112 if (!is_guest_mode(&svm->vcpu))
3113 return true;
3114
3115 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3116 return true;
3117
3118 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3119 return false;
3120
3121 /*
3122 * if vmexit was already requested (by intercepted exception
3123 * for instance) do not overwrite it with "external interrupt"
3124 * vmexit.
3125 */
3126 if (svm->nested.exit_required)
3127 return false;
3128
3129 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
3130 svm->vmcb->control.exit_info_1 = 0;
3131 svm->vmcb->control.exit_info_2 = 0;
3132
3133 if (svm->nested.intercept & 1ULL) {
3134 /*
3135 * The #vmexit can't be emulated here directly because this
3136 * code path runs with irqs and preemption disabled. A
3137 * #vmexit emulation might sleep. Only signal request for
3138 * the #vmexit here.
3139 */
3140 svm->nested.exit_required = true;
3141 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3142 return false;
3143 }
3144
3145 return true;
3146 }
3147
3148 /* This function returns true if it is save to enable the nmi window */
nested_svm_nmi(struct vcpu_svm * svm)3149 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3150 {
3151 if (!is_guest_mode(&svm->vcpu))
3152 return true;
3153
3154 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3155 return true;
3156
3157 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3158 svm->nested.exit_required = true;
3159
3160 return false;
3161 }
3162
nested_svm_intercept_ioio(struct vcpu_svm * svm)3163 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3164 {
3165 unsigned port, size, iopm_len;
3166 u16 val, mask;
3167 u8 start_bit;
3168 u64 gpa;
3169
3170 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3171 return NESTED_EXIT_HOST;
3172
3173 port = svm->vmcb->control.exit_info_1 >> 16;
3174 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3175 SVM_IOIO_SIZE_SHIFT;
3176 gpa = svm->nested.vmcb_iopm + (port / 8);
3177 start_bit = port % 8;
3178 iopm_len = (start_bit + size > 8) ? 2 : 1;
3179 mask = (0xf >> (4 - size)) << start_bit;
3180 val = 0;
3181
3182 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3183 return NESTED_EXIT_DONE;
3184
3185 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3186 }
3187
nested_svm_exit_handled_msr(struct vcpu_svm * svm)3188 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3189 {
3190 u32 offset, msr, value;
3191 int write, mask;
3192
3193 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3194 return NESTED_EXIT_HOST;
3195
3196 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3197 offset = svm_msrpm_offset(msr);
3198 write = svm->vmcb->control.exit_info_1 & 1;
3199 mask = 1 << ((2 * (msr & 0xf)) + write);
3200
3201 if (offset == MSR_INVALID)
3202 return NESTED_EXIT_DONE;
3203
3204 /* Offset is in 32 bit units but need in 8 bit units */
3205 offset *= 4;
3206
3207 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3208 return NESTED_EXIT_DONE;
3209
3210 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3211 }
3212
3213 /* DB exceptions for our internal use must not cause vmexit */
nested_svm_intercept_db(struct vcpu_svm * svm)3214 static int nested_svm_intercept_db(struct vcpu_svm *svm)
3215 {
3216 unsigned long dr6;
3217
3218 /* if we're not singlestepping, it's not ours */
3219 if (!svm->nmi_singlestep)
3220 return NESTED_EXIT_DONE;
3221
3222 /* if it's not a singlestep exception, it's not ours */
3223 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3224 return NESTED_EXIT_DONE;
3225 if (!(dr6 & DR6_BS))
3226 return NESTED_EXIT_DONE;
3227
3228 /* if the guest is singlestepping, it should get the vmexit */
3229 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3230 disable_nmi_singlestep(svm);
3231 return NESTED_EXIT_DONE;
3232 }
3233
3234 /* it's ours, the nested hypervisor must not see this one */
3235 return NESTED_EXIT_HOST;
3236 }
3237
nested_svm_exit_special(struct vcpu_svm * svm)3238 static int nested_svm_exit_special(struct vcpu_svm *svm)
3239 {
3240 u32 exit_code = svm->vmcb->control.exit_code;
3241
3242 switch (exit_code) {
3243 case SVM_EXIT_INTR:
3244 case SVM_EXIT_NMI:
3245 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3246 return NESTED_EXIT_HOST;
3247 case SVM_EXIT_NPF:
3248 /* For now we are always handling NPFs when using them */
3249 if (npt_enabled)
3250 return NESTED_EXIT_HOST;
3251 break;
3252 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3253 /* Trap async PF even if not shadowing */
3254 if (!npt_enabled || svm->vcpu.arch.apf.host_apf_reason)
3255 return NESTED_EXIT_HOST;
3256 break;
3257 default:
3258 break;
3259 }
3260
3261 return NESTED_EXIT_CONTINUE;
3262 }
3263
3264 /*
3265 * If this function returns true, this #vmexit was already handled
3266 */
nested_svm_intercept(struct vcpu_svm * svm)3267 static int nested_svm_intercept(struct vcpu_svm *svm)
3268 {
3269 u32 exit_code = svm->vmcb->control.exit_code;
3270 int vmexit = NESTED_EXIT_HOST;
3271
3272 switch (exit_code) {
3273 case SVM_EXIT_MSR:
3274 vmexit = nested_svm_exit_handled_msr(svm);
3275 break;
3276 case SVM_EXIT_IOIO:
3277 vmexit = nested_svm_intercept_ioio(svm);
3278 break;
3279 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3280 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3281 if (svm->nested.intercept_cr & bit)
3282 vmexit = NESTED_EXIT_DONE;
3283 break;
3284 }
3285 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3286 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3287 if (svm->nested.intercept_dr & bit)
3288 vmexit = NESTED_EXIT_DONE;
3289 break;
3290 }
3291 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3292 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3293 if (svm->nested.intercept_exceptions & excp_bits) {
3294 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3295 vmexit = nested_svm_intercept_db(svm);
3296 else
3297 vmexit = NESTED_EXIT_DONE;
3298 }
3299 /* async page fault always cause vmexit */
3300 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3301 svm->vcpu.arch.exception.nested_apf != 0)
3302 vmexit = NESTED_EXIT_DONE;
3303 break;
3304 }
3305 case SVM_EXIT_ERR: {
3306 vmexit = NESTED_EXIT_DONE;
3307 break;
3308 }
3309 default: {
3310 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3311 if (svm->nested.intercept & exit_bits)
3312 vmexit = NESTED_EXIT_DONE;
3313 }
3314 }
3315
3316 return vmexit;
3317 }
3318
nested_svm_exit_handled(struct vcpu_svm * svm)3319 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3320 {
3321 int vmexit;
3322
3323 vmexit = nested_svm_intercept(svm);
3324
3325 if (vmexit == NESTED_EXIT_DONE)
3326 nested_svm_vmexit(svm);
3327
3328 return vmexit;
3329 }
3330
copy_vmcb_control_area(struct vmcb * dst_vmcb,struct vmcb * from_vmcb)3331 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3332 {
3333 struct vmcb_control_area *dst = &dst_vmcb->control;
3334 struct vmcb_control_area *from = &from_vmcb->control;
3335
3336 dst->intercept_cr = from->intercept_cr;
3337 dst->intercept_dr = from->intercept_dr;
3338 dst->intercept_exceptions = from->intercept_exceptions;
3339 dst->intercept = from->intercept;
3340 dst->iopm_base_pa = from->iopm_base_pa;
3341 dst->msrpm_base_pa = from->msrpm_base_pa;
3342 dst->tsc_offset = from->tsc_offset;
3343 /* asid not copied, it is handled manually for svm->vmcb. */
3344 dst->tlb_ctl = from->tlb_ctl;
3345 dst->int_ctl = from->int_ctl;
3346 dst->int_vector = from->int_vector;
3347 dst->int_state = from->int_state;
3348 dst->exit_code = from->exit_code;
3349 dst->exit_code_hi = from->exit_code_hi;
3350 dst->exit_info_1 = from->exit_info_1;
3351 dst->exit_info_2 = from->exit_info_2;
3352 dst->exit_int_info = from->exit_int_info;
3353 dst->exit_int_info_err = from->exit_int_info_err;
3354 dst->nested_ctl = from->nested_ctl;
3355 dst->event_inj = from->event_inj;
3356 dst->event_inj_err = from->event_inj_err;
3357 dst->nested_cr3 = from->nested_cr3;
3358 dst->virt_ext = from->virt_ext;
3359 dst->pause_filter_count = from->pause_filter_count;
3360 dst->pause_filter_thresh = from->pause_filter_thresh;
3361 }
3362
nested_svm_vmexit(struct vcpu_svm * svm)3363 static int nested_svm_vmexit(struct vcpu_svm *svm)
3364 {
3365 int rc;
3366 struct vmcb *nested_vmcb;
3367 struct vmcb *hsave = svm->nested.hsave;
3368 struct vmcb *vmcb = svm->vmcb;
3369 struct kvm_host_map map;
3370
3371 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3372 vmcb->control.exit_info_1,
3373 vmcb->control.exit_info_2,
3374 vmcb->control.exit_int_info,
3375 vmcb->control.exit_int_info_err,
3376 KVM_ISA_SVM);
3377
3378 rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
3379 if (rc) {
3380 if (rc == -EINVAL)
3381 kvm_inject_gp(&svm->vcpu, 0);
3382 return 1;
3383 }
3384
3385 nested_vmcb = map.hva;
3386
3387 /* Exit Guest-Mode */
3388 leave_guest_mode(&svm->vcpu);
3389 svm->nested.vmcb = 0;
3390
3391 /* Give the current vmcb to the guest */
3392 disable_gif(svm);
3393
3394 nested_vmcb->save.es = vmcb->save.es;
3395 nested_vmcb->save.cs = vmcb->save.cs;
3396 nested_vmcb->save.ss = vmcb->save.ss;
3397 nested_vmcb->save.ds = vmcb->save.ds;
3398 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3399 nested_vmcb->save.idtr = vmcb->save.idtr;
3400 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3401 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3402 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3403 nested_vmcb->save.cr2 = vmcb->save.cr2;
3404 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3405 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3406 nested_vmcb->save.rip = vmcb->save.rip;
3407 nested_vmcb->save.rsp = vmcb->save.rsp;
3408 nested_vmcb->save.rax = vmcb->save.rax;
3409 nested_vmcb->save.dr7 = vmcb->save.dr7;
3410 nested_vmcb->save.dr6 = vmcb->save.dr6;
3411 nested_vmcb->save.cpl = vmcb->save.cpl;
3412
3413 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3414 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3415 nested_vmcb->control.int_state = vmcb->control.int_state;
3416 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3417 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3418 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3419 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3420 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3421 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3422
3423 if (svm->nrips_enabled)
3424 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3425
3426 /*
3427 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3428 * to make sure that we do not lose injected events. So check event_inj
3429 * here and copy it to exit_int_info if it is valid.
3430 * Exit_int_info and event_inj can't be both valid because the case
3431 * below only happens on a VMRUN instruction intercept which has
3432 * no valid exit_int_info set.
3433 */
3434 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3435 struct vmcb_control_area *nc = &nested_vmcb->control;
3436
3437 nc->exit_int_info = vmcb->control.event_inj;
3438 nc->exit_int_info_err = vmcb->control.event_inj_err;
3439 }
3440
3441 nested_vmcb->control.tlb_ctl = 0;
3442 nested_vmcb->control.event_inj = 0;
3443 nested_vmcb->control.event_inj_err = 0;
3444
3445 nested_vmcb->control.pause_filter_count =
3446 svm->vmcb->control.pause_filter_count;
3447 nested_vmcb->control.pause_filter_thresh =
3448 svm->vmcb->control.pause_filter_thresh;
3449
3450 /* We always set V_INTR_MASKING and remember the old value in hflags */
3451 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3452 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3453
3454 /* Restore the original control entries */
3455 copy_vmcb_control_area(vmcb, hsave);
3456
3457 svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3458 kvm_clear_exception_queue(&svm->vcpu);
3459 kvm_clear_interrupt_queue(&svm->vcpu);
3460
3461 svm->nested.nested_cr3 = 0;
3462
3463 /* Restore selected save entries */
3464 svm->vmcb->save.es = hsave->save.es;
3465 svm->vmcb->save.cs = hsave->save.cs;
3466 svm->vmcb->save.ss = hsave->save.ss;
3467 svm->vmcb->save.ds = hsave->save.ds;
3468 svm->vmcb->save.gdtr = hsave->save.gdtr;
3469 svm->vmcb->save.idtr = hsave->save.idtr;
3470 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3471 svm_set_efer(&svm->vcpu, hsave->save.efer);
3472 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3473 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3474 if (npt_enabled) {
3475 svm->vmcb->save.cr3 = hsave->save.cr3;
3476 svm->vcpu.arch.cr3 = hsave->save.cr3;
3477 } else {
3478 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3479 }
3480 kvm_rax_write(&svm->vcpu, hsave->save.rax);
3481 kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
3482 kvm_rip_write(&svm->vcpu, hsave->save.rip);
3483 svm->vmcb->save.dr7 = 0;
3484 svm->vmcb->save.cpl = 0;
3485 svm->vmcb->control.exit_int_info = 0;
3486
3487 mark_all_dirty(svm->vmcb);
3488
3489 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3490
3491 nested_svm_uninit_mmu_context(&svm->vcpu);
3492 kvm_mmu_reset_context(&svm->vcpu);
3493 kvm_mmu_load(&svm->vcpu);
3494
3495 /*
3496 * Drop what we picked up for L2 via svm_complete_interrupts() so it
3497 * doesn't end up in L1.
3498 */
3499 svm->vcpu.arch.nmi_injected = false;
3500 kvm_clear_exception_queue(&svm->vcpu);
3501 kvm_clear_interrupt_queue(&svm->vcpu);
3502
3503 return 0;
3504 }
3505
nested_svm_vmrun_msrpm(struct vcpu_svm * svm)3506 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3507 {
3508 /*
3509 * This function merges the msr permission bitmaps of kvm and the
3510 * nested vmcb. It is optimized in that it only merges the parts where
3511 * the kvm msr permission bitmap may contain zero bits
3512 */
3513 int i;
3514
3515 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3516 return true;
3517
3518 for (i = 0; i < MSRPM_OFFSETS; i++) {
3519 u32 value, p;
3520 u64 offset;
3521
3522 if (msrpm_offsets[i] == 0xffffffff)
3523 break;
3524
3525 p = msrpm_offsets[i];
3526 offset = svm->nested.vmcb_msrpm + (p * 4);
3527
3528 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3529 return false;
3530
3531 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3532 }
3533
3534 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3535
3536 return true;
3537 }
3538
nested_vmcb_checks(struct vmcb * vmcb)3539 static bool nested_vmcb_checks(struct vmcb *vmcb)
3540 {
3541 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3542 return false;
3543
3544 if (vmcb->control.asid == 0)
3545 return false;
3546
3547 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3548 !npt_enabled)
3549 return false;
3550
3551 return true;
3552 }
3553
enter_svm_guest_mode(struct vcpu_svm * svm,u64 vmcb_gpa,struct vmcb * nested_vmcb,struct kvm_host_map * map)3554 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3555 struct vmcb *nested_vmcb, struct kvm_host_map *map)
3556 {
3557 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3558 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3559 else
3560 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3561
3562 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3563 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3564 nested_svm_init_mmu_context(&svm->vcpu);
3565 }
3566
3567 /* Load the nested guest state */
3568 svm->vmcb->save.es = nested_vmcb->save.es;
3569 svm->vmcb->save.cs = nested_vmcb->save.cs;
3570 svm->vmcb->save.ss = nested_vmcb->save.ss;
3571 svm->vmcb->save.ds = nested_vmcb->save.ds;
3572 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3573 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3574 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3575 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3576 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3577 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3578 if (npt_enabled) {
3579 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3580 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3581 } else
3582 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3583
3584 /* Guest paging mode is active - reset mmu */
3585 kvm_mmu_reset_context(&svm->vcpu);
3586
3587 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3588 kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
3589 kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
3590 kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
3591
3592 /* In case we don't even reach vcpu_run, the fields are not updated */
3593 svm->vmcb->save.rax = nested_vmcb->save.rax;
3594 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3595 svm->vmcb->save.rip = nested_vmcb->save.rip;
3596 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3597 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3598 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3599
3600 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3601 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3602
3603 /* cache intercepts */
3604 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3605 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3606 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3607 svm->nested.intercept = nested_vmcb->control.intercept;
3608
3609 svm_flush_tlb(&svm->vcpu, true);
3610
3611 svm->vmcb->control.int_ctl &=
3612 V_INTR_MASKING_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK;
3613
3614 svm->vmcb->control.int_ctl |= nested_vmcb->control.int_ctl &
3615 (V_TPR_MASK | V_IRQ_INJECTION_BITS_MASK);
3616
3617 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3618 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3619 else
3620 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3621
3622 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3623 /* We only want the cr8 intercept bits of the guest */
3624 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3625 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3626 }
3627
3628 /* We don't want to see VMMCALLs from a nested guest */
3629 clr_intercept(svm, INTERCEPT_VMMCALL);
3630
3631 svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3632 svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3633
3634 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3635 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3636 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3637 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3638 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3639
3640 svm->vmcb->control.pause_filter_count =
3641 nested_vmcb->control.pause_filter_count;
3642 svm->vmcb->control.pause_filter_thresh =
3643 nested_vmcb->control.pause_filter_thresh;
3644
3645 kvm_vcpu_unmap(&svm->vcpu, map, true);
3646
3647 /* Enter Guest-Mode */
3648 enter_guest_mode(&svm->vcpu);
3649
3650 /*
3651 * Merge guest and host intercepts - must be called with vcpu in
3652 * guest-mode to take affect here
3653 */
3654 recalc_intercepts(svm);
3655
3656 svm->nested.vmcb = vmcb_gpa;
3657
3658 enable_gif(svm);
3659
3660 mark_all_dirty(svm->vmcb);
3661 }
3662
nested_svm_vmrun(struct vcpu_svm * svm)3663 static int nested_svm_vmrun(struct vcpu_svm *svm)
3664 {
3665 int ret;
3666 struct vmcb *nested_vmcb;
3667 struct vmcb *hsave = svm->nested.hsave;
3668 struct vmcb *vmcb = svm->vmcb;
3669 struct kvm_host_map map;
3670 u64 vmcb_gpa;
3671
3672 vmcb_gpa = svm->vmcb->save.rax;
3673
3674 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
3675 if (ret == -EINVAL) {
3676 kvm_inject_gp(&svm->vcpu, 0);
3677 return 1;
3678 } else if (ret) {
3679 return kvm_skip_emulated_instruction(&svm->vcpu);
3680 }
3681
3682 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3683
3684 nested_vmcb = map.hva;
3685
3686 if (!nested_vmcb_checks(nested_vmcb)) {
3687 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3688 nested_vmcb->control.exit_code_hi = 0;
3689 nested_vmcb->control.exit_info_1 = 0;
3690 nested_vmcb->control.exit_info_2 = 0;
3691
3692 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3693
3694 return ret;
3695 }
3696
3697 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3698 nested_vmcb->save.rip,
3699 nested_vmcb->control.int_ctl,
3700 nested_vmcb->control.event_inj,
3701 nested_vmcb->control.nested_ctl);
3702
3703 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3704 nested_vmcb->control.intercept_cr >> 16,
3705 nested_vmcb->control.intercept_exceptions,
3706 nested_vmcb->control.intercept);
3707
3708 /* Clear internal status */
3709 kvm_clear_exception_queue(&svm->vcpu);
3710 kvm_clear_interrupt_queue(&svm->vcpu);
3711
3712 /*
3713 * Save the old vmcb, so we don't need to pick what we save, but can
3714 * restore everything when a VMEXIT occurs
3715 */
3716 hsave->save.es = vmcb->save.es;
3717 hsave->save.cs = vmcb->save.cs;
3718 hsave->save.ss = vmcb->save.ss;
3719 hsave->save.ds = vmcb->save.ds;
3720 hsave->save.gdtr = vmcb->save.gdtr;
3721 hsave->save.idtr = vmcb->save.idtr;
3722 hsave->save.efer = svm->vcpu.arch.efer;
3723 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3724 hsave->save.cr4 = svm->vcpu.arch.cr4;
3725 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3726 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3727 hsave->save.rsp = vmcb->save.rsp;
3728 hsave->save.rax = vmcb->save.rax;
3729 if (npt_enabled)
3730 hsave->save.cr3 = vmcb->save.cr3;
3731 else
3732 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3733
3734 copy_vmcb_control_area(hsave, vmcb);
3735
3736 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
3737
3738 if (!nested_svm_vmrun_msrpm(svm)) {
3739 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3740 svm->vmcb->control.exit_code_hi = 0;
3741 svm->vmcb->control.exit_info_1 = 0;
3742 svm->vmcb->control.exit_info_2 = 0;
3743
3744 nested_svm_vmexit(svm);
3745 }
3746
3747 return ret;
3748 }
3749
nested_svm_vmloadsave(struct vmcb * from_vmcb,struct vmcb * to_vmcb)3750 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3751 {
3752 to_vmcb->save.fs = from_vmcb->save.fs;
3753 to_vmcb->save.gs = from_vmcb->save.gs;
3754 to_vmcb->save.tr = from_vmcb->save.tr;
3755 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3756 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3757 to_vmcb->save.star = from_vmcb->save.star;
3758 to_vmcb->save.lstar = from_vmcb->save.lstar;
3759 to_vmcb->save.cstar = from_vmcb->save.cstar;
3760 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3761 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3762 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3763 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3764 }
3765
vmload_interception(struct vcpu_svm * svm)3766 static int vmload_interception(struct vcpu_svm *svm)
3767 {
3768 struct vmcb *nested_vmcb;
3769 struct kvm_host_map map;
3770 int ret;
3771
3772 if (nested_svm_check_permissions(svm))
3773 return 1;
3774
3775 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3776 if (ret) {
3777 if (ret == -EINVAL)
3778 kvm_inject_gp(&svm->vcpu, 0);
3779 return 1;
3780 }
3781
3782 nested_vmcb = map.hva;
3783
3784 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3785
3786 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3787 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3788
3789 return ret;
3790 }
3791
vmsave_interception(struct vcpu_svm * svm)3792 static int vmsave_interception(struct vcpu_svm *svm)
3793 {
3794 struct vmcb *nested_vmcb;
3795 struct kvm_host_map map;
3796 int ret;
3797
3798 if (nested_svm_check_permissions(svm))
3799 return 1;
3800
3801 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3802 if (ret) {
3803 if (ret == -EINVAL)
3804 kvm_inject_gp(&svm->vcpu, 0);
3805 return 1;
3806 }
3807
3808 nested_vmcb = map.hva;
3809
3810 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3811
3812 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3813 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3814
3815 return ret;
3816 }
3817
vmrun_interception(struct vcpu_svm * svm)3818 static int vmrun_interception(struct vcpu_svm *svm)
3819 {
3820 if (nested_svm_check_permissions(svm))
3821 return 1;
3822
3823 return nested_svm_vmrun(svm);
3824 }
3825
stgi_interception(struct vcpu_svm * svm)3826 static int stgi_interception(struct vcpu_svm *svm)
3827 {
3828 int ret;
3829
3830 if (nested_svm_check_permissions(svm))
3831 return 1;
3832
3833 /*
3834 * If VGIF is enabled, the STGI intercept is only added to
3835 * detect the opening of the SMI/NMI window; remove it now.
3836 */
3837 if (vgif_enabled(svm))
3838 clr_intercept(svm, INTERCEPT_STGI);
3839
3840 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3841 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3842
3843 enable_gif(svm);
3844
3845 return ret;
3846 }
3847
clgi_interception(struct vcpu_svm * svm)3848 static int clgi_interception(struct vcpu_svm *svm)
3849 {
3850 int ret;
3851
3852 if (nested_svm_check_permissions(svm))
3853 return 1;
3854
3855 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3856
3857 disable_gif(svm);
3858
3859 /* After a CLGI no interrupts should come */
3860 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3861 svm_clear_vintr(svm);
3862 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3863 mark_dirty(svm->vmcb, VMCB_INTR);
3864 }
3865
3866 return ret;
3867 }
3868
invlpga_interception(struct vcpu_svm * svm)3869 static int invlpga_interception(struct vcpu_svm *svm)
3870 {
3871 struct kvm_vcpu *vcpu = &svm->vcpu;
3872
3873 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
3874 kvm_rax_read(&svm->vcpu));
3875
3876 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3877 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
3878
3879 return kvm_skip_emulated_instruction(&svm->vcpu);
3880 }
3881
skinit_interception(struct vcpu_svm * svm)3882 static int skinit_interception(struct vcpu_svm *svm)
3883 {
3884 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
3885
3886 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3887 return 1;
3888 }
3889
wbinvd_interception(struct vcpu_svm * svm)3890 static int wbinvd_interception(struct vcpu_svm *svm)
3891 {
3892 return kvm_emulate_wbinvd(&svm->vcpu);
3893 }
3894
xsetbv_interception(struct vcpu_svm * svm)3895 static int xsetbv_interception(struct vcpu_svm *svm)
3896 {
3897 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3898 u32 index = kvm_rcx_read(&svm->vcpu);
3899
3900 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3901 return kvm_skip_emulated_instruction(&svm->vcpu);
3902 }
3903
3904 return 1;
3905 }
3906
rdpru_interception(struct vcpu_svm * svm)3907 static int rdpru_interception(struct vcpu_svm *svm)
3908 {
3909 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3910 return 1;
3911 }
3912
task_switch_interception(struct vcpu_svm * svm)3913 static int task_switch_interception(struct vcpu_svm *svm)
3914 {
3915 u16 tss_selector;
3916 int reason;
3917 int int_type = svm->vmcb->control.exit_int_info &
3918 SVM_EXITINTINFO_TYPE_MASK;
3919 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3920 uint32_t type =
3921 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3922 uint32_t idt_v =
3923 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3924 bool has_error_code = false;
3925 u32 error_code = 0;
3926
3927 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3928
3929 if (svm->vmcb->control.exit_info_2 &
3930 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3931 reason = TASK_SWITCH_IRET;
3932 else if (svm->vmcb->control.exit_info_2 &
3933 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3934 reason = TASK_SWITCH_JMP;
3935 else if (idt_v)
3936 reason = TASK_SWITCH_GATE;
3937 else
3938 reason = TASK_SWITCH_CALL;
3939
3940 if (reason == TASK_SWITCH_GATE) {
3941 switch (type) {
3942 case SVM_EXITINTINFO_TYPE_NMI:
3943 svm->vcpu.arch.nmi_injected = false;
3944 break;
3945 case SVM_EXITINTINFO_TYPE_EXEPT:
3946 if (svm->vmcb->control.exit_info_2 &
3947 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3948 has_error_code = true;
3949 error_code =
3950 (u32)svm->vmcb->control.exit_info_2;
3951 }
3952 kvm_clear_exception_queue(&svm->vcpu);
3953 break;
3954 case SVM_EXITINTINFO_TYPE_INTR:
3955 kvm_clear_interrupt_queue(&svm->vcpu);
3956 break;
3957 default:
3958 break;
3959 }
3960 }
3961
3962 if (reason != TASK_SWITCH_GATE ||
3963 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3964 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3965 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
3966 if (!skip_emulated_instruction(&svm->vcpu))
3967 return 0;
3968 }
3969
3970 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3971 int_vec = -1;
3972
3973 return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3974 has_error_code, error_code);
3975 }
3976
cpuid_interception(struct vcpu_svm * svm)3977 static int cpuid_interception(struct vcpu_svm *svm)
3978 {
3979 return kvm_emulate_cpuid(&svm->vcpu);
3980 }
3981
iret_interception(struct vcpu_svm * svm)3982 static int iret_interception(struct vcpu_svm *svm)
3983 {
3984 ++svm->vcpu.stat.nmi_window_exits;
3985 clr_intercept(svm, INTERCEPT_IRET);
3986 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3987 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3988 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3989 return 1;
3990 }
3991
invd_interception(struct vcpu_svm * svm)3992 static int invd_interception(struct vcpu_svm *svm)
3993 {
3994 /* Treat an INVD instruction as a NOP and just skip it. */
3995 return kvm_skip_emulated_instruction(&svm->vcpu);
3996 }
3997
invlpg_interception(struct vcpu_svm * svm)3998 static int invlpg_interception(struct vcpu_svm *svm)
3999 {
4000 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
4001 return kvm_emulate_instruction(&svm->vcpu, 0);
4002
4003 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
4004 return kvm_skip_emulated_instruction(&svm->vcpu);
4005 }
4006
emulate_on_interception(struct vcpu_svm * svm)4007 static int emulate_on_interception(struct vcpu_svm *svm)
4008 {
4009 return kvm_emulate_instruction(&svm->vcpu, 0);
4010 }
4011
rsm_interception(struct vcpu_svm * svm)4012 static int rsm_interception(struct vcpu_svm *svm)
4013 {
4014 return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
4015 }
4016
rdpmc_interception(struct vcpu_svm * svm)4017 static int rdpmc_interception(struct vcpu_svm *svm)
4018 {
4019 int err;
4020
4021 if (!nrips)
4022 return emulate_on_interception(svm);
4023
4024 err = kvm_rdpmc(&svm->vcpu);
4025 return kvm_complete_insn_gp(&svm->vcpu, err);
4026 }
4027
check_selective_cr0_intercepted(struct vcpu_svm * svm,unsigned long val)4028 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
4029 unsigned long val)
4030 {
4031 unsigned long cr0 = svm->vcpu.arch.cr0;
4032 bool ret = false;
4033 u64 intercept;
4034
4035 intercept = svm->nested.intercept;
4036
4037 if (!is_guest_mode(&svm->vcpu) ||
4038 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
4039 return false;
4040
4041 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
4042 val &= ~SVM_CR0_SELECTIVE_MASK;
4043
4044 if (cr0 ^ val) {
4045 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4046 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
4047 }
4048
4049 return ret;
4050 }
4051
4052 #define CR_VALID (1ULL << 63)
4053
cr_interception(struct vcpu_svm * svm)4054 static int cr_interception(struct vcpu_svm *svm)
4055 {
4056 int reg, cr;
4057 unsigned long val;
4058 int err;
4059
4060 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
4061 return emulate_on_interception(svm);
4062
4063 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
4064 return emulate_on_interception(svm);
4065
4066 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4067 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
4068 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
4069 else
4070 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
4071
4072 err = 0;
4073 if (cr >= 16) { /* mov to cr */
4074 cr -= 16;
4075 val = kvm_register_readl(&svm->vcpu, reg);
4076 switch (cr) {
4077 case 0:
4078 if (!check_selective_cr0_intercepted(svm, val))
4079 err = kvm_set_cr0(&svm->vcpu, val);
4080 else
4081 return 1;
4082
4083 break;
4084 case 3:
4085 err = kvm_set_cr3(&svm->vcpu, val);
4086 break;
4087 case 4:
4088 err = kvm_set_cr4(&svm->vcpu, val);
4089 break;
4090 case 8:
4091 err = kvm_set_cr8(&svm->vcpu, val);
4092 break;
4093 default:
4094 WARN(1, "unhandled write to CR%d", cr);
4095 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4096 return 1;
4097 }
4098 } else { /* mov from cr */
4099 switch (cr) {
4100 case 0:
4101 val = kvm_read_cr0(&svm->vcpu);
4102 break;
4103 case 2:
4104 val = svm->vcpu.arch.cr2;
4105 break;
4106 case 3:
4107 val = kvm_read_cr3(&svm->vcpu);
4108 break;
4109 case 4:
4110 val = kvm_read_cr4(&svm->vcpu);
4111 break;
4112 case 8:
4113 val = kvm_get_cr8(&svm->vcpu);
4114 break;
4115 default:
4116 WARN(1, "unhandled read from CR%d", cr);
4117 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4118 return 1;
4119 }
4120 kvm_register_writel(&svm->vcpu, reg, val);
4121 }
4122 return kvm_complete_insn_gp(&svm->vcpu, err);
4123 }
4124
dr_interception(struct vcpu_svm * svm)4125 static int dr_interception(struct vcpu_svm *svm)
4126 {
4127 int reg, dr;
4128 unsigned long val;
4129
4130 if (svm->vcpu.guest_debug == 0) {
4131 /*
4132 * No more DR vmexits; force a reload of the debug registers
4133 * and reenter on this instruction. The next vmexit will
4134 * retrieve the full state of the debug registers.
4135 */
4136 clr_dr_intercepts(svm);
4137 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4138 return 1;
4139 }
4140
4141 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4142 return emulate_on_interception(svm);
4143
4144 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4145 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4146
4147 if (dr >= 16) { /* mov to DRn */
4148 if (!kvm_require_dr(&svm->vcpu, dr - 16))
4149 return 1;
4150 val = kvm_register_readl(&svm->vcpu, reg);
4151 kvm_set_dr(&svm->vcpu, dr - 16, val);
4152 } else {
4153 if (!kvm_require_dr(&svm->vcpu, dr))
4154 return 1;
4155 kvm_get_dr(&svm->vcpu, dr, &val);
4156 kvm_register_writel(&svm->vcpu, reg, val);
4157 }
4158
4159 return kvm_skip_emulated_instruction(&svm->vcpu);
4160 }
4161
cr8_write_interception(struct vcpu_svm * svm)4162 static int cr8_write_interception(struct vcpu_svm *svm)
4163 {
4164 struct kvm_run *kvm_run = svm->vcpu.run;
4165 int r;
4166
4167 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4168 /* instruction emulation calls kvm_set_cr8() */
4169 r = cr_interception(svm);
4170 if (lapic_in_kernel(&svm->vcpu))
4171 return r;
4172 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4173 return r;
4174 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4175 return 0;
4176 }
4177
svm_get_msr_feature(struct kvm_msr_entry * msr)4178 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4179 {
4180 msr->data = 0;
4181
4182 switch (msr->index) {
4183 case MSR_AMD64_DE_CFG:
4184 if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
4185 msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
4186 break;
4187 default:
4188 return 1;
4189 }
4190
4191 return 0;
4192 }
4193
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)4194 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4195 {
4196 struct vcpu_svm *svm = to_svm(vcpu);
4197
4198 switch (msr_info->index) {
4199 case MSR_STAR:
4200 msr_info->data = svm->vmcb->save.star;
4201 break;
4202 #ifdef CONFIG_X86_64
4203 case MSR_LSTAR:
4204 msr_info->data = svm->vmcb->save.lstar;
4205 break;
4206 case MSR_CSTAR:
4207 msr_info->data = svm->vmcb->save.cstar;
4208 break;
4209 case MSR_KERNEL_GS_BASE:
4210 msr_info->data = svm->vmcb->save.kernel_gs_base;
4211 break;
4212 case MSR_SYSCALL_MASK:
4213 msr_info->data = svm->vmcb->save.sfmask;
4214 break;
4215 #endif
4216 case MSR_IA32_SYSENTER_CS:
4217 msr_info->data = svm->vmcb->save.sysenter_cs;
4218 break;
4219 case MSR_IA32_SYSENTER_EIP:
4220 msr_info->data = svm->sysenter_eip;
4221 break;
4222 case MSR_IA32_SYSENTER_ESP:
4223 msr_info->data = svm->sysenter_esp;
4224 break;
4225 case MSR_TSC_AUX:
4226 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4227 return 1;
4228 msr_info->data = svm->tsc_aux;
4229 break;
4230 /*
4231 * Nobody will change the following 5 values in the VMCB so we can
4232 * safely return them on rdmsr. They will always be 0 until LBRV is
4233 * implemented.
4234 */
4235 case MSR_IA32_DEBUGCTLMSR:
4236 msr_info->data = svm->vmcb->save.dbgctl;
4237 break;
4238 case MSR_IA32_LASTBRANCHFROMIP:
4239 msr_info->data = svm->vmcb->save.br_from;
4240 break;
4241 case MSR_IA32_LASTBRANCHTOIP:
4242 msr_info->data = svm->vmcb->save.br_to;
4243 break;
4244 case MSR_IA32_LASTINTFROMIP:
4245 msr_info->data = svm->vmcb->save.last_excp_from;
4246 break;
4247 case MSR_IA32_LASTINTTOIP:
4248 msr_info->data = svm->vmcb->save.last_excp_to;
4249 break;
4250 case MSR_VM_HSAVE_PA:
4251 msr_info->data = svm->nested.hsave_msr;
4252 break;
4253 case MSR_VM_CR:
4254 msr_info->data = svm->nested.vm_cr_msr;
4255 break;
4256 case MSR_IA32_SPEC_CTRL:
4257 if (!msr_info->host_initiated &&
4258 !guest_has_spec_ctrl_msr(vcpu))
4259 return 1;
4260
4261 msr_info->data = svm->spec_ctrl;
4262 break;
4263 case MSR_AMD64_VIRT_SPEC_CTRL:
4264 if (!msr_info->host_initiated &&
4265 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4266 return 1;
4267
4268 msr_info->data = svm->virt_spec_ctrl;
4269 break;
4270 case MSR_F15H_IC_CFG: {
4271
4272 int family, model;
4273
4274 family = guest_cpuid_family(vcpu);
4275 model = guest_cpuid_model(vcpu);
4276
4277 if (family < 0 || model < 0)
4278 return kvm_get_msr_common(vcpu, msr_info);
4279
4280 msr_info->data = 0;
4281
4282 if (family == 0x15 &&
4283 (model >= 0x2 && model < 0x20))
4284 msr_info->data = 0x1E;
4285 }
4286 break;
4287 case MSR_AMD64_DE_CFG:
4288 msr_info->data = svm->msr_decfg;
4289 break;
4290 default:
4291 return kvm_get_msr_common(vcpu, msr_info);
4292 }
4293 return 0;
4294 }
4295
rdmsr_interception(struct vcpu_svm * svm)4296 static int rdmsr_interception(struct vcpu_svm *svm)
4297 {
4298 return kvm_emulate_rdmsr(&svm->vcpu);
4299 }
4300
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)4301 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4302 {
4303 struct vcpu_svm *svm = to_svm(vcpu);
4304 int svm_dis, chg_mask;
4305
4306 if (data & ~SVM_VM_CR_VALID_MASK)
4307 return 1;
4308
4309 chg_mask = SVM_VM_CR_VALID_MASK;
4310
4311 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4312 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4313
4314 svm->nested.vm_cr_msr &= ~chg_mask;
4315 svm->nested.vm_cr_msr |= (data & chg_mask);
4316
4317 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4318
4319 /* check for svm_disable while efer.svme is set */
4320 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4321 return 1;
4322
4323 return 0;
4324 }
4325
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)4326 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4327 {
4328 struct vcpu_svm *svm = to_svm(vcpu);
4329
4330 u32 ecx = msr->index;
4331 u64 data = msr->data;
4332 switch (ecx) {
4333 case MSR_IA32_CR_PAT:
4334 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4335 return 1;
4336 vcpu->arch.pat = data;
4337 svm->vmcb->save.g_pat = data;
4338 mark_dirty(svm->vmcb, VMCB_NPT);
4339 break;
4340 case MSR_IA32_SPEC_CTRL:
4341 if (!msr->host_initiated &&
4342 !guest_has_spec_ctrl_msr(vcpu))
4343 return 1;
4344
4345 if (kvm_spec_ctrl_test_value(data))
4346 return 1;
4347
4348 svm->spec_ctrl = data;
4349 if (!data)
4350 break;
4351
4352 /*
4353 * For non-nested:
4354 * When it's written (to non-zero) for the first time, pass
4355 * it through.
4356 *
4357 * For nested:
4358 * The handling of the MSR bitmap for L2 guests is done in
4359 * nested_svm_vmrun_msrpm.
4360 * We update the L1 MSR bit as well since it will end up
4361 * touching the MSR anyway now.
4362 */
4363 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4364 break;
4365 case MSR_IA32_PRED_CMD:
4366 if (!msr->host_initiated &&
4367 !guest_has_pred_cmd_msr(vcpu))
4368 return 1;
4369
4370 if (data & ~PRED_CMD_IBPB)
4371 return 1;
4372 if (!boot_cpu_has(X86_FEATURE_IBPB))
4373 return 1;
4374 if (!data)
4375 break;
4376
4377 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4378 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4379 break;
4380 case MSR_AMD64_VIRT_SPEC_CTRL:
4381 if (!msr->host_initiated &&
4382 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4383 return 1;
4384
4385 if (data & ~SPEC_CTRL_SSBD)
4386 return 1;
4387
4388 svm->virt_spec_ctrl = data;
4389 break;
4390 case MSR_STAR:
4391 svm->vmcb->save.star = data;
4392 break;
4393 #ifdef CONFIG_X86_64
4394 case MSR_LSTAR:
4395 svm->vmcb->save.lstar = data;
4396 break;
4397 case MSR_CSTAR:
4398 svm->vmcb->save.cstar = data;
4399 break;
4400 case MSR_KERNEL_GS_BASE:
4401 svm->vmcb->save.kernel_gs_base = data;
4402 break;
4403 case MSR_SYSCALL_MASK:
4404 svm->vmcb->save.sfmask = data;
4405 break;
4406 #endif
4407 case MSR_IA32_SYSENTER_CS:
4408 svm->vmcb->save.sysenter_cs = data;
4409 break;
4410 case MSR_IA32_SYSENTER_EIP:
4411 svm->sysenter_eip = data;
4412 svm->vmcb->save.sysenter_eip = data;
4413 break;
4414 case MSR_IA32_SYSENTER_ESP:
4415 svm->sysenter_esp = data;
4416 svm->vmcb->save.sysenter_esp = data;
4417 break;
4418 case MSR_TSC_AUX:
4419 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4420 return 1;
4421
4422 /*
4423 * This is rare, so we update the MSR here instead of using
4424 * direct_access_msrs. Doing that would require a rdmsr in
4425 * svm_vcpu_put.
4426 */
4427 svm->tsc_aux = data;
4428 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4429 break;
4430 case MSR_IA32_DEBUGCTLMSR:
4431 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4432 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4433 __func__, data);
4434 break;
4435 }
4436 if (data & DEBUGCTL_RESERVED_BITS)
4437 return 1;
4438
4439 svm->vmcb->save.dbgctl = data;
4440 mark_dirty(svm->vmcb, VMCB_LBR);
4441 if (data & (1ULL<<0))
4442 svm_enable_lbrv(svm);
4443 else
4444 svm_disable_lbrv(svm);
4445 break;
4446 case MSR_VM_HSAVE_PA:
4447 svm->nested.hsave_msr = data;
4448 break;
4449 case MSR_VM_CR:
4450 return svm_set_vm_cr(vcpu, data);
4451 case MSR_VM_IGNNE:
4452 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4453 break;
4454 case MSR_AMD64_DE_CFG: {
4455 struct kvm_msr_entry msr_entry;
4456
4457 msr_entry.index = msr->index;
4458 if (svm_get_msr_feature(&msr_entry))
4459 return 1;
4460
4461 /* Check the supported bits */
4462 if (data & ~msr_entry.data)
4463 return 1;
4464
4465 /* Don't allow the guest to change a bit, #GP */
4466 if (!msr->host_initiated && (data ^ msr_entry.data))
4467 return 1;
4468
4469 svm->msr_decfg = data;
4470 break;
4471 }
4472 case MSR_IA32_APICBASE:
4473 if (kvm_vcpu_apicv_active(vcpu))
4474 avic_update_vapic_bar(to_svm(vcpu), data);
4475 /* Fall through */
4476 default:
4477 return kvm_set_msr_common(vcpu, msr);
4478 }
4479 return 0;
4480 }
4481
wrmsr_interception(struct vcpu_svm * svm)4482 static int wrmsr_interception(struct vcpu_svm *svm)
4483 {
4484 return kvm_emulate_wrmsr(&svm->vcpu);
4485 }
4486
msr_interception(struct vcpu_svm * svm)4487 static int msr_interception(struct vcpu_svm *svm)
4488 {
4489 if (svm->vmcb->control.exit_info_1)
4490 return wrmsr_interception(svm);
4491 else
4492 return rdmsr_interception(svm);
4493 }
4494
interrupt_window_interception(struct vcpu_svm * svm)4495 static int interrupt_window_interception(struct vcpu_svm *svm)
4496 {
4497 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4498 svm_clear_vintr(svm);
4499 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4500 mark_dirty(svm->vmcb, VMCB_INTR);
4501 ++svm->vcpu.stat.irq_window_exits;
4502 return 1;
4503 }
4504
pause_interception(struct vcpu_svm * svm)4505 static int pause_interception(struct vcpu_svm *svm)
4506 {
4507 struct kvm_vcpu *vcpu = &svm->vcpu;
4508 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4509
4510 if (pause_filter_thresh)
4511 grow_ple_window(vcpu);
4512
4513 kvm_vcpu_on_spin(vcpu, in_kernel);
4514 return 1;
4515 }
4516
nop_interception(struct vcpu_svm * svm)4517 static int nop_interception(struct vcpu_svm *svm)
4518 {
4519 return kvm_skip_emulated_instruction(&(svm->vcpu));
4520 }
4521
monitor_interception(struct vcpu_svm * svm)4522 static int monitor_interception(struct vcpu_svm *svm)
4523 {
4524 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4525 return nop_interception(svm);
4526 }
4527
mwait_interception(struct vcpu_svm * svm)4528 static int mwait_interception(struct vcpu_svm *svm)
4529 {
4530 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4531 return nop_interception(svm);
4532 }
4533
4534 enum avic_ipi_failure_cause {
4535 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4536 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4537 AVIC_IPI_FAILURE_INVALID_TARGET,
4538 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4539 };
4540
avic_incomplete_ipi_interception(struct vcpu_svm * svm)4541 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4542 {
4543 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4544 u32 icrl = svm->vmcb->control.exit_info_1;
4545 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4546 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4547 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4548
4549 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4550
4551 switch (id) {
4552 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4553 /*
4554 * AVIC hardware handles the generation of
4555 * IPIs when the specified Message Type is Fixed
4556 * (also known as fixed delivery mode) and
4557 * the Trigger Mode is edge-triggered. The hardware
4558 * also supports self and broadcast delivery modes
4559 * specified via the Destination Shorthand(DSH)
4560 * field of the ICRL. Logical and physical APIC ID
4561 * formats are supported. All other IPI types cause
4562 * a #VMEXIT, which needs to emulated.
4563 */
4564 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4565 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4566 break;
4567 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4568 int i;
4569 struct kvm_vcpu *vcpu;
4570 struct kvm *kvm = svm->vcpu.kvm;
4571 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4572
4573 /*
4574 * At this point, we expect that the AVIC HW has already
4575 * set the appropriate IRR bits on the valid target
4576 * vcpus. So, we just need to kick the appropriate vcpu.
4577 */
4578 kvm_for_each_vcpu(i, vcpu, kvm) {
4579 bool m = kvm_apic_match_dest(vcpu, apic,
4580 icrl & KVM_APIC_SHORT_MASK,
4581 GET_APIC_DEST_FIELD(icrh),
4582 icrl & KVM_APIC_DEST_MASK);
4583
4584 if (m && !avic_vcpu_is_running(vcpu))
4585 kvm_vcpu_wake_up(vcpu);
4586 }
4587 break;
4588 }
4589 case AVIC_IPI_FAILURE_INVALID_TARGET:
4590 break;
4591 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4592 WARN_ONCE(1, "Invalid backing page\n");
4593 break;
4594 default:
4595 pr_err("Unknown IPI interception\n");
4596 }
4597
4598 return 1;
4599 }
4600
avic_get_logical_id_entry(struct kvm_vcpu * vcpu,u32 ldr,bool flat)4601 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4602 {
4603 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4604 int index;
4605 u32 *logical_apic_id_table;
4606 int dlid = GET_APIC_LOGICAL_ID(ldr);
4607
4608 if (!dlid)
4609 return NULL;
4610
4611 if (flat) { /* flat */
4612 index = ffs(dlid) - 1;
4613 if (index > 7)
4614 return NULL;
4615 } else { /* cluster */
4616 int cluster = (dlid & 0xf0) >> 4;
4617 int apic = ffs(dlid & 0x0f) - 1;
4618
4619 if ((apic < 0) || (apic > 7) ||
4620 (cluster >= 0xf))
4621 return NULL;
4622 index = (cluster << 2) + apic;
4623 }
4624
4625 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4626
4627 return &logical_apic_id_table[index];
4628 }
4629
avic_ldr_write(struct kvm_vcpu * vcpu,u8 g_physical_id,u32 ldr)4630 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
4631 {
4632 bool flat;
4633 u32 *entry, new_entry;
4634
4635 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4636 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4637 if (!entry)
4638 return -EINVAL;
4639
4640 new_entry = READ_ONCE(*entry);
4641 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4642 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4643 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4644 WRITE_ONCE(*entry, new_entry);
4645
4646 return 0;
4647 }
4648
avic_invalidate_logical_id_entry(struct kvm_vcpu * vcpu)4649 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
4650 {
4651 struct vcpu_svm *svm = to_svm(vcpu);
4652 bool flat = svm->dfr_reg == APIC_DFR_FLAT;
4653 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
4654
4655 if (entry)
4656 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
4657 }
4658
avic_handle_ldr_update(struct kvm_vcpu * vcpu)4659 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4660 {
4661 int ret = 0;
4662 struct vcpu_svm *svm = to_svm(vcpu);
4663 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4664 u32 id = kvm_xapic_id(vcpu->arch.apic);
4665
4666 if (ldr == svm->ldr_reg)
4667 return 0;
4668
4669 avic_invalidate_logical_id_entry(vcpu);
4670
4671 if (ldr)
4672 ret = avic_ldr_write(vcpu, id, ldr);
4673
4674 if (!ret)
4675 svm->ldr_reg = ldr;
4676
4677 return ret;
4678 }
4679
avic_handle_apic_id_update(struct kvm_vcpu * vcpu)4680 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4681 {
4682 u64 *old, *new;
4683 struct vcpu_svm *svm = to_svm(vcpu);
4684 u32 id = kvm_xapic_id(vcpu->arch.apic);
4685
4686 if (vcpu->vcpu_id == id)
4687 return 0;
4688
4689 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4690 new = avic_get_physical_id_entry(vcpu, id);
4691 if (!new || !old)
4692 return 1;
4693
4694 /* We need to move physical_id_entry to new offset */
4695 *new = *old;
4696 *old = 0ULL;
4697 to_svm(vcpu)->avic_physical_id_cache = new;
4698
4699 /*
4700 * Also update the guest physical APIC ID in the logical
4701 * APIC ID table entry if already setup the LDR.
4702 */
4703 if (svm->ldr_reg)
4704 avic_handle_ldr_update(vcpu);
4705
4706 return 0;
4707 }
4708
avic_handle_dfr_update(struct kvm_vcpu * vcpu)4709 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4710 {
4711 struct vcpu_svm *svm = to_svm(vcpu);
4712 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4713
4714 if (svm->dfr_reg == dfr)
4715 return;
4716
4717 avic_invalidate_logical_id_entry(vcpu);
4718 svm->dfr_reg = dfr;
4719 }
4720
avic_unaccel_trap_write(struct vcpu_svm * svm)4721 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4722 {
4723 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4724 u32 offset = svm->vmcb->control.exit_info_1 &
4725 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4726
4727 switch (offset) {
4728 case APIC_ID:
4729 if (avic_handle_apic_id_update(&svm->vcpu))
4730 return 0;
4731 break;
4732 case APIC_LDR:
4733 if (avic_handle_ldr_update(&svm->vcpu))
4734 return 0;
4735 break;
4736 case APIC_DFR:
4737 avic_handle_dfr_update(&svm->vcpu);
4738 break;
4739 default:
4740 break;
4741 }
4742
4743 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4744
4745 return 1;
4746 }
4747
is_avic_unaccelerated_access_trap(u32 offset)4748 static bool is_avic_unaccelerated_access_trap(u32 offset)
4749 {
4750 bool ret = false;
4751
4752 switch (offset) {
4753 case APIC_ID:
4754 case APIC_EOI:
4755 case APIC_RRR:
4756 case APIC_LDR:
4757 case APIC_DFR:
4758 case APIC_SPIV:
4759 case APIC_ESR:
4760 case APIC_ICR:
4761 case APIC_LVTT:
4762 case APIC_LVTTHMR:
4763 case APIC_LVTPC:
4764 case APIC_LVT0:
4765 case APIC_LVT1:
4766 case APIC_LVTERR:
4767 case APIC_TMICT:
4768 case APIC_TDCR:
4769 ret = true;
4770 break;
4771 default:
4772 break;
4773 }
4774 return ret;
4775 }
4776
avic_unaccelerated_access_interception(struct vcpu_svm * svm)4777 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4778 {
4779 int ret = 0;
4780 u32 offset = svm->vmcb->control.exit_info_1 &
4781 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4782 u32 vector = svm->vmcb->control.exit_info_2 &
4783 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4784 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4785 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4786 bool trap = is_avic_unaccelerated_access_trap(offset);
4787
4788 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4789 trap, write, vector);
4790 if (trap) {
4791 /* Handling Trap */
4792 WARN_ONCE(!write, "svm: Handling trap read.\n");
4793 ret = avic_unaccel_trap_write(svm);
4794 } else {
4795 /* Handling Fault */
4796 ret = kvm_emulate_instruction(&svm->vcpu, 0);
4797 }
4798
4799 return ret;
4800 }
4801
4802 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4803 [SVM_EXIT_READ_CR0] = cr_interception,
4804 [SVM_EXIT_READ_CR3] = cr_interception,
4805 [SVM_EXIT_READ_CR4] = cr_interception,
4806 [SVM_EXIT_READ_CR8] = cr_interception,
4807 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4808 [SVM_EXIT_WRITE_CR0] = cr_interception,
4809 [SVM_EXIT_WRITE_CR3] = cr_interception,
4810 [SVM_EXIT_WRITE_CR4] = cr_interception,
4811 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4812 [SVM_EXIT_READ_DR0] = dr_interception,
4813 [SVM_EXIT_READ_DR1] = dr_interception,
4814 [SVM_EXIT_READ_DR2] = dr_interception,
4815 [SVM_EXIT_READ_DR3] = dr_interception,
4816 [SVM_EXIT_READ_DR4] = dr_interception,
4817 [SVM_EXIT_READ_DR5] = dr_interception,
4818 [SVM_EXIT_READ_DR6] = dr_interception,
4819 [SVM_EXIT_READ_DR7] = dr_interception,
4820 [SVM_EXIT_WRITE_DR0] = dr_interception,
4821 [SVM_EXIT_WRITE_DR1] = dr_interception,
4822 [SVM_EXIT_WRITE_DR2] = dr_interception,
4823 [SVM_EXIT_WRITE_DR3] = dr_interception,
4824 [SVM_EXIT_WRITE_DR4] = dr_interception,
4825 [SVM_EXIT_WRITE_DR5] = dr_interception,
4826 [SVM_EXIT_WRITE_DR6] = dr_interception,
4827 [SVM_EXIT_WRITE_DR7] = dr_interception,
4828 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4829 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4830 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4831 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4832 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4833 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4834 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
4835 [SVM_EXIT_INTR] = intr_interception,
4836 [SVM_EXIT_NMI] = nmi_interception,
4837 [SVM_EXIT_SMI] = nop_on_interception,
4838 [SVM_EXIT_INIT] = nop_on_interception,
4839 [SVM_EXIT_VINTR] = interrupt_window_interception,
4840 [SVM_EXIT_RDPMC] = rdpmc_interception,
4841 [SVM_EXIT_CPUID] = cpuid_interception,
4842 [SVM_EXIT_IRET] = iret_interception,
4843 [SVM_EXIT_INVD] = invd_interception,
4844 [SVM_EXIT_PAUSE] = pause_interception,
4845 [SVM_EXIT_HLT] = halt_interception,
4846 [SVM_EXIT_INVLPG] = invlpg_interception,
4847 [SVM_EXIT_INVLPGA] = invlpga_interception,
4848 [SVM_EXIT_IOIO] = io_interception,
4849 [SVM_EXIT_MSR] = msr_interception,
4850 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4851 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4852 [SVM_EXIT_VMRUN] = vmrun_interception,
4853 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4854 [SVM_EXIT_VMLOAD] = vmload_interception,
4855 [SVM_EXIT_VMSAVE] = vmsave_interception,
4856 [SVM_EXIT_STGI] = stgi_interception,
4857 [SVM_EXIT_CLGI] = clgi_interception,
4858 [SVM_EXIT_SKINIT] = skinit_interception,
4859 [SVM_EXIT_WBINVD] = wbinvd_interception,
4860 [SVM_EXIT_MONITOR] = monitor_interception,
4861 [SVM_EXIT_MWAIT] = mwait_interception,
4862 [SVM_EXIT_XSETBV] = xsetbv_interception,
4863 [SVM_EXIT_RDPRU] = rdpru_interception,
4864 [SVM_EXIT_NPF] = npf_interception,
4865 [SVM_EXIT_RSM] = rsm_interception,
4866 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4867 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4868 };
4869
dump_vmcb(struct kvm_vcpu * vcpu)4870 static void dump_vmcb(struct kvm_vcpu *vcpu)
4871 {
4872 struct vcpu_svm *svm = to_svm(vcpu);
4873 struct vmcb_control_area *control = &svm->vmcb->control;
4874 struct vmcb_save_area *save = &svm->vmcb->save;
4875
4876 if (!dump_invalid_vmcb) {
4877 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
4878 return;
4879 }
4880
4881 pr_err("VMCB Control Area:\n");
4882 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4883 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4884 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4885 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4886 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4887 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4888 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4889 pr_err("%-20s%d\n", "pause filter threshold:",
4890 control->pause_filter_thresh);
4891 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4892 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4893 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4894 pr_err("%-20s%d\n", "asid:", control->asid);
4895 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4896 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4897 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4898 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4899 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4900 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4901 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4902 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4903 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4904 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4905 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4906 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4907 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4908 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4909 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4910 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4911 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4912 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4913 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4914 pr_err("VMCB State Save Area:\n");
4915 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4916 "es:",
4917 save->es.selector, save->es.attrib,
4918 save->es.limit, save->es.base);
4919 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4920 "cs:",
4921 save->cs.selector, save->cs.attrib,
4922 save->cs.limit, save->cs.base);
4923 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4924 "ss:",
4925 save->ss.selector, save->ss.attrib,
4926 save->ss.limit, save->ss.base);
4927 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4928 "ds:",
4929 save->ds.selector, save->ds.attrib,
4930 save->ds.limit, save->ds.base);
4931 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4932 "fs:",
4933 save->fs.selector, save->fs.attrib,
4934 save->fs.limit, save->fs.base);
4935 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4936 "gs:",
4937 save->gs.selector, save->gs.attrib,
4938 save->gs.limit, save->gs.base);
4939 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4940 "gdtr:",
4941 save->gdtr.selector, save->gdtr.attrib,
4942 save->gdtr.limit, save->gdtr.base);
4943 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4944 "ldtr:",
4945 save->ldtr.selector, save->ldtr.attrib,
4946 save->ldtr.limit, save->ldtr.base);
4947 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4948 "idtr:",
4949 save->idtr.selector, save->idtr.attrib,
4950 save->idtr.limit, save->idtr.base);
4951 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4952 "tr:",
4953 save->tr.selector, save->tr.attrib,
4954 save->tr.limit, save->tr.base);
4955 pr_err("cpl: %d efer: %016llx\n",
4956 save->cpl, save->efer);
4957 pr_err("%-15s %016llx %-13s %016llx\n",
4958 "cr0:", save->cr0, "cr2:", save->cr2);
4959 pr_err("%-15s %016llx %-13s %016llx\n",
4960 "cr3:", save->cr3, "cr4:", save->cr4);
4961 pr_err("%-15s %016llx %-13s %016llx\n",
4962 "dr6:", save->dr6, "dr7:", save->dr7);
4963 pr_err("%-15s %016llx %-13s %016llx\n",
4964 "rip:", save->rip, "rflags:", save->rflags);
4965 pr_err("%-15s %016llx %-13s %016llx\n",
4966 "rsp:", save->rsp, "rax:", save->rax);
4967 pr_err("%-15s %016llx %-13s %016llx\n",
4968 "star:", save->star, "lstar:", save->lstar);
4969 pr_err("%-15s %016llx %-13s %016llx\n",
4970 "cstar:", save->cstar, "sfmask:", save->sfmask);
4971 pr_err("%-15s %016llx %-13s %016llx\n",
4972 "kernel_gs_base:", save->kernel_gs_base,
4973 "sysenter_cs:", save->sysenter_cs);
4974 pr_err("%-15s %016llx %-13s %016llx\n",
4975 "sysenter_esp:", save->sysenter_esp,
4976 "sysenter_eip:", save->sysenter_eip);
4977 pr_err("%-15s %016llx %-13s %016llx\n",
4978 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4979 pr_err("%-15s %016llx %-13s %016llx\n",
4980 "br_from:", save->br_from, "br_to:", save->br_to);
4981 pr_err("%-15s %016llx %-13s %016llx\n",
4982 "excp_from:", save->last_excp_from,
4983 "excp_to:", save->last_excp_to);
4984 }
4985
svm_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)4986 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4987 {
4988 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4989
4990 *info1 = control->exit_info_1;
4991 *info2 = control->exit_info_2;
4992 }
4993
handle_exit(struct kvm_vcpu * vcpu)4994 static int handle_exit(struct kvm_vcpu *vcpu)
4995 {
4996 struct vcpu_svm *svm = to_svm(vcpu);
4997 struct kvm_run *kvm_run = vcpu->run;
4998 u32 exit_code = svm->vmcb->control.exit_code;
4999
5000 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
5001
5002 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
5003 vcpu->arch.cr0 = svm->vmcb->save.cr0;
5004 if (npt_enabled)
5005 vcpu->arch.cr3 = svm->vmcb->save.cr3;
5006
5007 if (unlikely(svm->nested.exit_required)) {
5008 nested_svm_vmexit(svm);
5009 svm->nested.exit_required = false;
5010
5011 return 1;
5012 }
5013
5014 if (is_guest_mode(vcpu)) {
5015 int vmexit;
5016
5017 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
5018 svm->vmcb->control.exit_info_1,
5019 svm->vmcb->control.exit_info_2,
5020 svm->vmcb->control.exit_int_info,
5021 svm->vmcb->control.exit_int_info_err,
5022 KVM_ISA_SVM);
5023
5024 vmexit = nested_svm_exit_special(svm);
5025
5026 if (vmexit == NESTED_EXIT_CONTINUE)
5027 vmexit = nested_svm_exit_handled(svm);
5028
5029 if (vmexit == NESTED_EXIT_DONE)
5030 return 1;
5031 }
5032
5033 svm_complete_interrupts(svm);
5034
5035 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
5036 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5037 kvm_run->fail_entry.hardware_entry_failure_reason
5038 = svm->vmcb->control.exit_code;
5039 dump_vmcb(vcpu);
5040 return 0;
5041 }
5042
5043 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
5044 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
5045 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
5046 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
5047 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
5048 "exit_code 0x%x\n",
5049 __func__, svm->vmcb->control.exit_int_info,
5050 exit_code);
5051
5052 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
5053 || !svm_exit_handlers[exit_code]) {
5054 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
5055 dump_vmcb(vcpu);
5056 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5057 vcpu->run->internal.suberror =
5058 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5059 vcpu->run->internal.ndata = 1;
5060 vcpu->run->internal.data[0] = exit_code;
5061 return 0;
5062 }
5063
5064 return svm_exit_handlers[exit_code](svm);
5065 }
5066
reload_tss(struct kvm_vcpu * vcpu)5067 static void reload_tss(struct kvm_vcpu *vcpu)
5068 {
5069 int cpu = raw_smp_processor_id();
5070
5071 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5072 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5073 load_TR_desc();
5074 }
5075
pre_sev_run(struct vcpu_svm * svm,int cpu)5076 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5077 {
5078 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5079 int asid = sev_get_asid(svm->vcpu.kvm);
5080
5081 /* Assign the asid allocated with this SEV guest */
5082 svm->vmcb->control.asid = asid;
5083
5084 /*
5085 * Flush guest TLB:
5086 *
5087 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5088 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5089 */
5090 if (sd->sev_vmcbs[asid] == svm->vmcb &&
5091 svm->last_cpu == cpu)
5092 return;
5093
5094 svm->last_cpu = cpu;
5095 sd->sev_vmcbs[asid] = svm->vmcb;
5096 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5097 mark_dirty(svm->vmcb, VMCB_ASID);
5098 }
5099
pre_svm_run(struct vcpu_svm * svm)5100 static void pre_svm_run(struct vcpu_svm *svm)
5101 {
5102 int cpu = raw_smp_processor_id();
5103
5104 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5105
5106 if (sev_guest(svm->vcpu.kvm))
5107 return pre_sev_run(svm, cpu);
5108
5109 /* FIXME: handle wraparound of asid_generation */
5110 if (svm->asid_generation != sd->asid_generation)
5111 new_asid(svm, sd);
5112 }
5113
svm_inject_nmi(struct kvm_vcpu * vcpu)5114 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5115 {
5116 struct vcpu_svm *svm = to_svm(vcpu);
5117
5118 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5119 vcpu->arch.hflags |= HF_NMI_MASK;
5120 set_intercept(svm, INTERCEPT_IRET);
5121 ++vcpu->stat.nmi_injections;
5122 }
5123
svm_inject_irq(struct vcpu_svm * svm,int irq)5124 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5125 {
5126 struct vmcb_control_area *control;
5127
5128 /* The following fields are ignored when AVIC is enabled */
5129 control = &svm->vmcb->control;
5130 control->int_vector = irq;
5131 control->int_ctl &= ~V_INTR_PRIO_MASK;
5132 control->int_ctl |= V_IRQ_MASK |
5133 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5134 mark_dirty(svm->vmcb, VMCB_INTR);
5135 }
5136
svm_set_irq(struct kvm_vcpu * vcpu)5137 static void svm_set_irq(struct kvm_vcpu *vcpu)
5138 {
5139 struct vcpu_svm *svm = to_svm(vcpu);
5140
5141 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5142 ++vcpu->stat.irq_injections;
5143
5144 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5145 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5146 }
5147
svm_nested_virtualize_tpr(struct kvm_vcpu * vcpu)5148 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5149 {
5150 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5151 }
5152
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)5153 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5154 {
5155 struct vcpu_svm *svm = to_svm(vcpu);
5156
5157 if (svm_nested_virtualize_tpr(vcpu) ||
5158 kvm_vcpu_apicv_active(vcpu))
5159 return;
5160
5161 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5162
5163 if (irr == -1)
5164 return;
5165
5166 if (tpr >= irr)
5167 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5168 }
5169
svm_set_virtual_apic_mode(struct kvm_vcpu * vcpu)5170 static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5171 {
5172 return;
5173 }
5174
svm_get_enable_apicv(struct kvm_vcpu * vcpu)5175 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5176 {
5177 return avic && irqchip_split(vcpu->kvm);
5178 }
5179
svm_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)5180 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5181 {
5182 }
5183
svm_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)5184 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5185 {
5186 }
5187
5188 /* Note: Currently only used by Hyper-V. */
svm_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)5189 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5190 {
5191 struct vcpu_svm *svm = to_svm(vcpu);
5192 struct vmcb *vmcb = svm->vmcb;
5193
5194 if (kvm_vcpu_apicv_active(vcpu))
5195 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
5196 else
5197 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5198 mark_dirty(vmcb, VMCB_AVIC);
5199 }
5200
svm_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)5201 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5202 {
5203 return;
5204 }
5205
svm_deliver_avic_intr(struct kvm_vcpu * vcpu,int vec)5206 static int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5207 {
5208 if (!vcpu->arch.apicv_active)
5209 return -1;
5210
5211 kvm_lapic_set_irr(vec, vcpu->arch.apic);
5212 smp_mb__after_atomic();
5213
5214 if (avic_vcpu_is_running(vcpu)) {
5215 int cpuid = vcpu->cpu;
5216
5217 if (cpuid != get_cpu())
5218 wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
5219 put_cpu();
5220 } else
5221 kvm_vcpu_wake_up(vcpu);
5222
5223 return 0;
5224 }
5225
svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu * vcpu)5226 static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
5227 {
5228 return false;
5229 }
5230
svm_ir_list_del(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)5231 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5232 {
5233 unsigned long flags;
5234 struct amd_svm_iommu_ir *cur;
5235
5236 spin_lock_irqsave(&svm->ir_list_lock, flags);
5237 list_for_each_entry(cur, &svm->ir_list, node) {
5238 if (cur->data != pi->ir_data)
5239 continue;
5240 list_del(&cur->node);
5241 kfree(cur);
5242 break;
5243 }
5244 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5245 }
5246
svm_ir_list_add(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)5247 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5248 {
5249 int ret = 0;
5250 unsigned long flags;
5251 struct amd_svm_iommu_ir *ir;
5252
5253 /**
5254 * In some cases, the existing irte is updaed and re-set,
5255 * so we need to check here if it's already been * added
5256 * to the ir_list.
5257 */
5258 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5259 struct kvm *kvm = svm->vcpu.kvm;
5260 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5261 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5262 struct vcpu_svm *prev_svm;
5263
5264 if (!prev_vcpu) {
5265 ret = -EINVAL;
5266 goto out;
5267 }
5268
5269 prev_svm = to_svm(prev_vcpu);
5270 svm_ir_list_del(prev_svm, pi);
5271 }
5272
5273 /**
5274 * Allocating new amd_iommu_pi_data, which will get
5275 * add to the per-vcpu ir_list.
5276 */
5277 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
5278 if (!ir) {
5279 ret = -ENOMEM;
5280 goto out;
5281 }
5282 ir->data = pi->ir_data;
5283
5284 spin_lock_irqsave(&svm->ir_list_lock, flags);
5285 list_add(&ir->node, &svm->ir_list);
5286 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5287 out:
5288 return ret;
5289 }
5290
5291 /**
5292 * Note:
5293 * The HW cannot support posting multicast/broadcast
5294 * interrupts to a vCPU. So, we still use legacy interrupt
5295 * remapping for these kind of interrupts.
5296 *
5297 * For lowest-priority interrupts, we only support
5298 * those with single CPU as the destination, e.g. user
5299 * configures the interrupts via /proc/irq or uses
5300 * irqbalance to make the interrupts single-CPU.
5301 */
5302 static int
get_pi_vcpu_info(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,struct vcpu_data * vcpu_info,struct vcpu_svm ** svm)5303 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5304 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5305 {
5306 struct kvm_lapic_irq irq;
5307 struct kvm_vcpu *vcpu = NULL;
5308
5309 kvm_set_msi_irq(kvm, e, &irq);
5310
5311 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
5312 !kvm_irq_is_postable(&irq)) {
5313 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5314 __func__, irq.vector);
5315 return -1;
5316 }
5317
5318 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5319 irq.vector);
5320 *svm = to_svm(vcpu);
5321 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5322 vcpu_info->vector = irq.vector;
5323
5324 return 0;
5325 }
5326
5327 /*
5328 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5329 *
5330 * @kvm: kvm
5331 * @host_irq: host irq of the interrupt
5332 * @guest_irq: gsi of the interrupt
5333 * @set: set or unset PI
5334 * returns 0 on success, < 0 on failure
5335 */
svm_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)5336 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5337 uint32_t guest_irq, bool set)
5338 {
5339 struct kvm_kernel_irq_routing_entry *e;
5340 struct kvm_irq_routing_table *irq_rt;
5341 int idx, ret = -EINVAL;
5342
5343 if (!kvm_arch_has_assigned_device(kvm) ||
5344 !irq_remapping_cap(IRQ_POSTING_CAP))
5345 return 0;
5346
5347 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5348 __func__, host_irq, guest_irq, set);
5349
5350 idx = srcu_read_lock(&kvm->irq_srcu);
5351 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5352 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5353
5354 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5355 struct vcpu_data vcpu_info;
5356 struct vcpu_svm *svm = NULL;
5357
5358 if (e->type != KVM_IRQ_ROUTING_MSI)
5359 continue;
5360
5361 /**
5362 * Here, we setup with legacy mode in the following cases:
5363 * 1. When cannot target interrupt to a specific vcpu.
5364 * 2. Unsetting posted interrupt.
5365 * 3. APIC virtialization is disabled for the vcpu.
5366 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
5367 */
5368 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5369 kvm_vcpu_apicv_active(&svm->vcpu)) {
5370 struct amd_iommu_pi_data pi;
5371
5372 /* Try to enable guest_mode in IRTE */
5373 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5374 AVIC_HPA_MASK);
5375 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5376 svm->vcpu.vcpu_id);
5377 pi.is_guest_mode = true;
5378 pi.vcpu_data = &vcpu_info;
5379 ret = irq_set_vcpu_affinity(host_irq, &pi);
5380
5381 /**
5382 * Here, we successfully setting up vcpu affinity in
5383 * IOMMU guest mode. Now, we need to store the posted
5384 * interrupt information in a per-vcpu ir_list so that
5385 * we can reference to them directly when we update vcpu
5386 * scheduling information in IOMMU irte.
5387 */
5388 if (!ret && pi.is_guest_mode)
5389 svm_ir_list_add(svm, &pi);
5390 } else {
5391 /* Use legacy mode in IRTE */
5392 struct amd_iommu_pi_data pi;
5393
5394 /**
5395 * Here, pi is used to:
5396 * - Tell IOMMU to use legacy mode for this interrupt.
5397 * - Retrieve ga_tag of prior interrupt remapping data.
5398 */
5399 pi.prev_ga_tag = 0;
5400 pi.is_guest_mode = false;
5401 ret = irq_set_vcpu_affinity(host_irq, &pi);
5402
5403 /**
5404 * Check if the posted interrupt was previously
5405 * setup with the guest_mode by checking if the ga_tag
5406 * was cached. If so, we need to clean up the per-vcpu
5407 * ir_list.
5408 */
5409 if (!ret && pi.prev_ga_tag) {
5410 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5411 struct kvm_vcpu *vcpu;
5412
5413 vcpu = kvm_get_vcpu_by_id(kvm, id);
5414 if (vcpu)
5415 svm_ir_list_del(to_svm(vcpu), &pi);
5416 }
5417 }
5418
5419 if (!ret && svm) {
5420 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5421 e->gsi, vcpu_info.vector,
5422 vcpu_info.pi_desc_addr, set);
5423 }
5424
5425 if (ret < 0) {
5426 pr_err("%s: failed to update PI IRTE\n", __func__);
5427 goto out;
5428 }
5429 }
5430
5431 ret = 0;
5432 out:
5433 srcu_read_unlock(&kvm->irq_srcu, idx);
5434 return ret;
5435 }
5436
svm_nmi_allowed(struct kvm_vcpu * vcpu)5437 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5438 {
5439 struct vcpu_svm *svm = to_svm(vcpu);
5440 struct vmcb *vmcb = svm->vmcb;
5441 int ret;
5442 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5443 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5444 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5445
5446 return ret;
5447 }
5448
svm_get_nmi_mask(struct kvm_vcpu * vcpu)5449 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5450 {
5451 struct vcpu_svm *svm = to_svm(vcpu);
5452
5453 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5454 }
5455
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5456 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5457 {
5458 struct vcpu_svm *svm = to_svm(vcpu);
5459
5460 if (masked) {
5461 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5462 set_intercept(svm, INTERCEPT_IRET);
5463 } else {
5464 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5465 clr_intercept(svm, INTERCEPT_IRET);
5466 }
5467 }
5468
svm_interrupt_allowed(struct kvm_vcpu * vcpu)5469 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5470 {
5471 struct vcpu_svm *svm = to_svm(vcpu);
5472 struct vmcb *vmcb = svm->vmcb;
5473 int ret;
5474
5475 if (!gif_set(svm) ||
5476 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5477 return 0;
5478
5479 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5480
5481 if (is_guest_mode(vcpu))
5482 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5483
5484 return ret;
5485 }
5486
enable_irq_window(struct kvm_vcpu * vcpu)5487 static void enable_irq_window(struct kvm_vcpu *vcpu)
5488 {
5489 struct vcpu_svm *svm = to_svm(vcpu);
5490
5491 if (kvm_vcpu_apicv_active(vcpu))
5492 return;
5493
5494 /*
5495 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5496 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5497 * get that intercept, this function will be called again though and
5498 * we'll get the vintr intercept. However, if the vGIF feature is
5499 * enabled, the STGI interception will not occur. Enable the irq
5500 * window under the assumption that the hardware will set the GIF.
5501 */
5502 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5503 svm_set_vintr(svm);
5504 svm_inject_irq(svm, 0x0);
5505 }
5506 }
5507
enable_nmi_window(struct kvm_vcpu * vcpu)5508 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5509 {
5510 struct vcpu_svm *svm = to_svm(vcpu);
5511
5512 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5513 == HF_NMI_MASK)
5514 return; /* IRET will cause a vm exit */
5515
5516 if (!gif_set(svm)) {
5517 if (vgif_enabled(svm))
5518 set_intercept(svm, INTERCEPT_STGI);
5519 return; /* STGI will cause a vm exit */
5520 }
5521
5522 if (svm->nested.exit_required)
5523 return; /* we're not going to run the guest yet */
5524
5525 /*
5526 * Something prevents NMI from been injected. Single step over possible
5527 * problem (IRET or exception injection or interrupt shadow)
5528 */
5529 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5530 svm->nmi_singlestep = true;
5531 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5532 }
5533
svm_set_tss_addr(struct kvm * kvm,unsigned int addr)5534 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5535 {
5536 return 0;
5537 }
5538
svm_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5539 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5540 {
5541 return 0;
5542 }
5543
svm_flush_tlb(struct kvm_vcpu * vcpu,bool invalidate_gpa)5544 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5545 {
5546 struct vcpu_svm *svm = to_svm(vcpu);
5547
5548 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5549 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5550 else
5551 svm->asid_generation--;
5552 }
5553
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)5554 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5555 {
5556 struct vcpu_svm *svm = to_svm(vcpu);
5557
5558 invlpga(gva, svm->vmcb->control.asid);
5559 }
5560
svm_prepare_guest_switch(struct kvm_vcpu * vcpu)5561 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5562 {
5563 }
5564
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)5565 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5566 {
5567 struct vcpu_svm *svm = to_svm(vcpu);
5568
5569 if (svm_nested_virtualize_tpr(vcpu))
5570 return;
5571
5572 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5573 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5574 kvm_set_cr8(vcpu, cr8);
5575 }
5576 }
5577
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)5578 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5579 {
5580 struct vcpu_svm *svm = to_svm(vcpu);
5581 u64 cr8;
5582
5583 if (svm_nested_virtualize_tpr(vcpu) ||
5584 kvm_vcpu_apicv_active(vcpu))
5585 return;
5586
5587 cr8 = kvm_get_cr8(vcpu);
5588 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5589 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5590 }
5591
svm_complete_interrupts(struct vcpu_svm * svm)5592 static void svm_complete_interrupts(struct vcpu_svm *svm)
5593 {
5594 u8 vector;
5595 int type;
5596 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5597 unsigned int3_injected = svm->int3_injected;
5598
5599 svm->int3_injected = 0;
5600
5601 /*
5602 * If we've made progress since setting HF_IRET_MASK, we've
5603 * executed an IRET and can allow NMI injection.
5604 */
5605 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5606 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5607 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5608 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5609 }
5610
5611 svm->vcpu.arch.nmi_injected = false;
5612 kvm_clear_exception_queue(&svm->vcpu);
5613 kvm_clear_interrupt_queue(&svm->vcpu);
5614
5615 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5616 return;
5617
5618 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5619
5620 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5621 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5622
5623 switch (type) {
5624 case SVM_EXITINTINFO_TYPE_NMI:
5625 svm->vcpu.arch.nmi_injected = true;
5626 break;
5627 case SVM_EXITINTINFO_TYPE_EXEPT:
5628 /*
5629 * In case of software exceptions, do not reinject the vector,
5630 * but re-execute the instruction instead. Rewind RIP first
5631 * if we emulated INT3 before.
5632 */
5633 if (kvm_exception_is_soft(vector)) {
5634 if (vector == BP_VECTOR && int3_injected &&
5635 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5636 kvm_rip_write(&svm->vcpu,
5637 kvm_rip_read(&svm->vcpu) -
5638 int3_injected);
5639 break;
5640 }
5641 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5642 u32 err = svm->vmcb->control.exit_int_info_err;
5643 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5644
5645 } else
5646 kvm_requeue_exception(&svm->vcpu, vector);
5647 break;
5648 case SVM_EXITINTINFO_TYPE_INTR:
5649 kvm_queue_interrupt(&svm->vcpu, vector, false);
5650 break;
5651 default:
5652 break;
5653 }
5654 }
5655
svm_cancel_injection(struct kvm_vcpu * vcpu)5656 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5657 {
5658 struct vcpu_svm *svm = to_svm(vcpu);
5659 struct vmcb_control_area *control = &svm->vmcb->control;
5660
5661 control->exit_int_info = control->event_inj;
5662 control->exit_int_info_err = control->event_inj_err;
5663 control->event_inj = 0;
5664 svm_complete_interrupts(svm);
5665 }
5666
svm_vcpu_run(struct kvm_vcpu * vcpu)5667 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5668 {
5669 struct vcpu_svm *svm = to_svm(vcpu);
5670
5671 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5672 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5673 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5674
5675 /*
5676 * A vmexit emulation is required before the vcpu can be executed
5677 * again.
5678 */
5679 if (unlikely(svm->nested.exit_required))
5680 return;
5681
5682 /*
5683 * Disable singlestep if we're injecting an interrupt/exception.
5684 * We don't want our modified rflags to be pushed on the stack where
5685 * we might not be able to easily reset them if we disabled NMI
5686 * singlestep later.
5687 */
5688 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5689 /*
5690 * Event injection happens before external interrupts cause a
5691 * vmexit and interrupts are disabled here, so smp_send_reschedule
5692 * is enough to force an immediate vmexit.
5693 */
5694 disable_nmi_singlestep(svm);
5695 smp_send_reschedule(vcpu->cpu);
5696 }
5697
5698 pre_svm_run(svm);
5699
5700 sync_lapic_to_cr8(vcpu);
5701
5702 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5703
5704 clgi();
5705 kvm_load_guest_xcr0(vcpu);
5706
5707 if (lapic_in_kernel(vcpu) &&
5708 vcpu->arch.apic->lapic_timer.timer_advance_ns)
5709 kvm_wait_lapic_expire(vcpu);
5710
5711 /*
5712 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5713 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5714 * is no need to worry about the conditional branch over the wrmsr
5715 * being speculatively taken.
5716 */
5717 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5718
5719 local_irq_enable();
5720
5721 asm volatile (
5722 "push %%" _ASM_BP "; \n\t"
5723 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5724 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5725 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5726 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5727 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5728 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5729 #ifdef CONFIG_X86_64
5730 "mov %c[r8](%[svm]), %%r8 \n\t"
5731 "mov %c[r9](%[svm]), %%r9 \n\t"
5732 "mov %c[r10](%[svm]), %%r10 \n\t"
5733 "mov %c[r11](%[svm]), %%r11 \n\t"
5734 "mov %c[r12](%[svm]), %%r12 \n\t"
5735 "mov %c[r13](%[svm]), %%r13 \n\t"
5736 "mov %c[r14](%[svm]), %%r14 \n\t"
5737 "mov %c[r15](%[svm]), %%r15 \n\t"
5738 #endif
5739
5740 /* Enter guest mode */
5741 "push %%" _ASM_AX " \n\t"
5742 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5743 __ex("vmload %%" _ASM_AX) "\n\t"
5744 __ex("vmrun %%" _ASM_AX) "\n\t"
5745 __ex("vmsave %%" _ASM_AX) "\n\t"
5746 "pop %%" _ASM_AX " \n\t"
5747
5748 /* Save guest registers, load host registers */
5749 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5750 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5751 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5752 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5753 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5754 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5755 #ifdef CONFIG_X86_64
5756 "mov %%r8, %c[r8](%[svm]) \n\t"
5757 "mov %%r9, %c[r9](%[svm]) \n\t"
5758 "mov %%r10, %c[r10](%[svm]) \n\t"
5759 "mov %%r11, %c[r11](%[svm]) \n\t"
5760 "mov %%r12, %c[r12](%[svm]) \n\t"
5761 "mov %%r13, %c[r13](%[svm]) \n\t"
5762 "mov %%r14, %c[r14](%[svm]) \n\t"
5763 "mov %%r15, %c[r15](%[svm]) \n\t"
5764 /*
5765 * Clear host registers marked as clobbered to prevent
5766 * speculative use.
5767 */
5768 "xor %%r8d, %%r8d \n\t"
5769 "xor %%r9d, %%r9d \n\t"
5770 "xor %%r10d, %%r10d \n\t"
5771 "xor %%r11d, %%r11d \n\t"
5772 "xor %%r12d, %%r12d \n\t"
5773 "xor %%r13d, %%r13d \n\t"
5774 "xor %%r14d, %%r14d \n\t"
5775 "xor %%r15d, %%r15d \n\t"
5776 #endif
5777 "xor %%ebx, %%ebx \n\t"
5778 "xor %%ecx, %%ecx \n\t"
5779 "xor %%edx, %%edx \n\t"
5780 "xor %%esi, %%esi \n\t"
5781 "xor %%edi, %%edi \n\t"
5782 "pop %%" _ASM_BP
5783 :
5784 : [svm]"a"(svm),
5785 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5786 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5787 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5788 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5789 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5790 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5791 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5792 #ifdef CONFIG_X86_64
5793 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5794 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5795 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5796 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5797 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5798 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5799 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5800 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5801 #endif
5802 : "cc", "memory"
5803 #ifdef CONFIG_X86_64
5804 , "rbx", "rcx", "rdx", "rsi", "rdi"
5805 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5806 #else
5807 , "ebx", "ecx", "edx", "esi", "edi"
5808 #endif
5809 );
5810
5811 /* Eliminate branch target predictions from guest mode */
5812 vmexit_fill_RSB();
5813
5814 #ifdef CONFIG_X86_64
5815 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5816 #else
5817 loadsegment(fs, svm->host.fs);
5818 #ifndef CONFIG_X86_32_LAZY_GS
5819 loadsegment(gs, svm->host.gs);
5820 #endif
5821 #endif
5822
5823 /*
5824 * We do not use IBRS in the kernel. If this vCPU has used the
5825 * SPEC_CTRL MSR it may have left it on; save the value and
5826 * turn it off. This is much more efficient than blindly adding
5827 * it to the atomic save/restore list. Especially as the former
5828 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5829 *
5830 * For non-nested case:
5831 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5832 * save it.
5833 *
5834 * For nested case:
5835 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5836 * save it.
5837 */
5838 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5839 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5840
5841 reload_tss(vcpu);
5842
5843 local_irq_disable();
5844
5845 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5846
5847 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5848 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5849 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5850 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5851
5852 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5853 kvm_before_interrupt(&svm->vcpu);
5854
5855 kvm_put_guest_xcr0(vcpu);
5856 stgi();
5857
5858 /* Any pending NMI will happen here */
5859
5860 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5861 kvm_after_interrupt(&svm->vcpu);
5862
5863 sync_cr8_to_lapic(vcpu);
5864
5865 svm->next_rip = 0;
5866
5867 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5868
5869 /* if exit due to PF check for async PF */
5870 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5871 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5872
5873 if (npt_enabled) {
5874 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5875 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5876 }
5877
5878 /*
5879 * We need to handle MC intercepts here before the vcpu has a chance to
5880 * change the physical cpu
5881 */
5882 if (unlikely(svm->vmcb->control.exit_code ==
5883 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5884 svm_handle_mce(svm);
5885
5886 mark_all_clean(svm->vmcb);
5887 }
5888 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5889
svm_set_cr3(struct kvm_vcpu * vcpu,unsigned long root)5890 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5891 {
5892 struct vcpu_svm *svm = to_svm(vcpu);
5893
5894 svm->vmcb->save.cr3 = __sme_set(root);
5895 mark_dirty(svm->vmcb, VMCB_CR);
5896 }
5897
set_tdp_cr3(struct kvm_vcpu * vcpu,unsigned long root)5898 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5899 {
5900 struct vcpu_svm *svm = to_svm(vcpu);
5901
5902 svm->vmcb->control.nested_cr3 = __sme_set(root);
5903 mark_dirty(svm->vmcb, VMCB_NPT);
5904
5905 /* Also sync guest cr3 here in case we live migrate */
5906 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5907 mark_dirty(svm->vmcb, VMCB_CR);
5908 }
5909
is_disabled(void)5910 static int is_disabled(void)
5911 {
5912 u64 vm_cr;
5913
5914 rdmsrl(MSR_VM_CR, vm_cr);
5915 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5916 return 1;
5917
5918 return 0;
5919 }
5920
5921 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5922 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5923 {
5924 /*
5925 * Patch in the VMMCALL instruction:
5926 */
5927 hypercall[0] = 0x0f;
5928 hypercall[1] = 0x01;
5929 hypercall[2] = 0xd9;
5930 }
5931
svm_check_processor_compat(void)5932 static int __init svm_check_processor_compat(void)
5933 {
5934 return 0;
5935 }
5936
svm_cpu_has_accelerated_tpr(void)5937 static bool svm_cpu_has_accelerated_tpr(void)
5938 {
5939 return false;
5940 }
5941
svm_has_emulated_msr(int index)5942 static bool svm_has_emulated_msr(int index)
5943 {
5944 switch (index) {
5945 case MSR_IA32_MCG_EXT_CTL:
5946 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
5947 return false;
5948 default:
5949 break;
5950 }
5951
5952 return true;
5953 }
5954
svm_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)5955 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5956 {
5957 return 0;
5958 }
5959
svm_cpuid_update(struct kvm_vcpu * vcpu)5960 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5961 {
5962 struct vcpu_svm *svm = to_svm(vcpu);
5963
5964 /* Update nrips enabled cache */
5965 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5966
5967 if (!kvm_vcpu_apicv_active(vcpu))
5968 return;
5969
5970 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5971 }
5972
5973 #define F(x) bit(X86_FEATURE_##x)
5974
svm_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)5975 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5976 {
5977 switch (func) {
5978 case 0x1:
5979 if (avic)
5980 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5981 break;
5982 case 0x80000001:
5983 if (nested)
5984 entry->ecx |= (1 << 2); /* Set SVM bit */
5985 break;
5986 case 0x80000008:
5987 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5988 boot_cpu_has(X86_FEATURE_AMD_SSBD))
5989 entry->ebx |= F(VIRT_SSBD);
5990 break;
5991 case 0x8000000A:
5992 entry->eax = 1; /* SVM revision 1 */
5993 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5994 ASID emulation to nested SVM */
5995 entry->ecx = 0; /* Reserved */
5996 entry->edx = 0; /* Per default do not support any
5997 additional features */
5998
5999 /* Support next_rip if host supports it */
6000 if (boot_cpu_has(X86_FEATURE_NRIPS))
6001 entry->edx |= F(NRIPS);
6002
6003 /* Support NPT for the guest if enabled */
6004 if (npt_enabled)
6005 entry->edx |= F(NPT);
6006
6007 break;
6008 case 0x8000001F:
6009 /* Support memory encryption cpuid if host supports it */
6010 if (boot_cpu_has(X86_FEATURE_SEV))
6011 cpuid(0x8000001f, &entry->eax, &entry->ebx,
6012 &entry->ecx, &entry->edx);
6013
6014 }
6015 }
6016
svm_get_lpage_level(void)6017 static int svm_get_lpage_level(void)
6018 {
6019 return PT_PDPE_LEVEL;
6020 }
6021
svm_rdtscp_supported(void)6022 static bool svm_rdtscp_supported(void)
6023 {
6024 return boot_cpu_has(X86_FEATURE_RDTSCP);
6025 }
6026
svm_invpcid_supported(void)6027 static bool svm_invpcid_supported(void)
6028 {
6029 return false;
6030 }
6031
svm_mpx_supported(void)6032 static bool svm_mpx_supported(void)
6033 {
6034 return false;
6035 }
6036
svm_xsaves_supported(void)6037 static bool svm_xsaves_supported(void)
6038 {
6039 return false;
6040 }
6041
svm_umip_emulated(void)6042 static bool svm_umip_emulated(void)
6043 {
6044 return false;
6045 }
6046
svm_pt_supported(void)6047 static bool svm_pt_supported(void)
6048 {
6049 return false;
6050 }
6051
svm_has_wbinvd_exit(void)6052 static bool svm_has_wbinvd_exit(void)
6053 {
6054 return true;
6055 }
6056
svm_pku_supported(void)6057 static bool svm_pku_supported(void)
6058 {
6059 return false;
6060 }
6061
6062 #define PRE_EX(exit) { .exit_code = (exit), \
6063 .stage = X86_ICPT_PRE_EXCEPT, }
6064 #define POST_EX(exit) { .exit_code = (exit), \
6065 .stage = X86_ICPT_POST_EXCEPT, }
6066 #define POST_MEM(exit) { .exit_code = (exit), \
6067 .stage = X86_ICPT_POST_MEMACCESS, }
6068
6069 static const struct __x86_intercept {
6070 u32 exit_code;
6071 enum x86_intercept_stage stage;
6072 } x86_intercept_map[] = {
6073 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
6074 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
6075 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
6076 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
6077 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
6078 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
6079 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
6080 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
6081 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
6082 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
6083 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
6084 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
6085 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
6086 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
6087 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
6088 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
6089 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
6090 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
6091 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
6092 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
6093 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
6094 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
6095 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
6096 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
6097 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
6098 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
6099 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
6100 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
6101 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
6102 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
6103 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
6104 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
6105 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
6106 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
6107 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
6108 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
6109 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
6110 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
6111 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
6112 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
6113 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
6114 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
6115 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
6116 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
6117 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
6118 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
6119 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
6120 };
6121
6122 #undef PRE_EX
6123 #undef POST_EX
6124 #undef POST_MEM
6125
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)6126 static int svm_check_intercept(struct kvm_vcpu *vcpu,
6127 struct x86_instruction_info *info,
6128 enum x86_intercept_stage stage)
6129 {
6130 struct vcpu_svm *svm = to_svm(vcpu);
6131 int vmexit, ret = X86EMUL_CONTINUE;
6132 struct __x86_intercept icpt_info;
6133 struct vmcb *vmcb = svm->vmcb;
6134
6135 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6136 goto out;
6137
6138 icpt_info = x86_intercept_map[info->intercept];
6139
6140 if (stage != icpt_info.stage)
6141 goto out;
6142
6143 switch (icpt_info.exit_code) {
6144 case SVM_EXIT_READ_CR0:
6145 if (info->intercept == x86_intercept_cr_read)
6146 icpt_info.exit_code += info->modrm_reg;
6147 break;
6148 case SVM_EXIT_WRITE_CR0: {
6149 unsigned long cr0, val;
6150 u64 intercept;
6151
6152 if (info->intercept == x86_intercept_cr_write)
6153 icpt_info.exit_code += info->modrm_reg;
6154
6155 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6156 info->intercept == x86_intercept_clts)
6157 break;
6158
6159 intercept = svm->nested.intercept;
6160
6161 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6162 break;
6163
6164 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6165 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
6166
6167 if (info->intercept == x86_intercept_lmsw) {
6168 cr0 &= 0xfUL;
6169 val &= 0xfUL;
6170 /* lmsw can't clear PE - catch this here */
6171 if (cr0 & X86_CR0_PE)
6172 val |= X86_CR0_PE;
6173 }
6174
6175 if (cr0 ^ val)
6176 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6177
6178 break;
6179 }
6180 case SVM_EXIT_READ_DR0:
6181 case SVM_EXIT_WRITE_DR0:
6182 icpt_info.exit_code += info->modrm_reg;
6183 break;
6184 case SVM_EXIT_MSR:
6185 if (info->intercept == x86_intercept_wrmsr)
6186 vmcb->control.exit_info_1 = 1;
6187 else
6188 vmcb->control.exit_info_1 = 0;
6189 break;
6190 case SVM_EXIT_PAUSE:
6191 /*
6192 * We get this for NOP only, but pause
6193 * is rep not, check this here
6194 */
6195 if (info->rep_prefix != REPE_PREFIX)
6196 goto out;
6197 break;
6198 case SVM_EXIT_IOIO: {
6199 u64 exit_info;
6200 u32 bytes;
6201
6202 if (info->intercept == x86_intercept_in ||
6203 info->intercept == x86_intercept_ins) {
6204 exit_info = ((info->src_val & 0xffff) << 16) |
6205 SVM_IOIO_TYPE_MASK;
6206 bytes = info->dst_bytes;
6207 } else {
6208 exit_info = (info->dst_val & 0xffff) << 16;
6209 bytes = info->src_bytes;
6210 }
6211
6212 if (info->intercept == x86_intercept_outs ||
6213 info->intercept == x86_intercept_ins)
6214 exit_info |= SVM_IOIO_STR_MASK;
6215
6216 if (info->rep_prefix)
6217 exit_info |= SVM_IOIO_REP_MASK;
6218
6219 bytes = min(bytes, 4u);
6220
6221 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6222
6223 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6224
6225 vmcb->control.exit_info_1 = exit_info;
6226 vmcb->control.exit_info_2 = info->next_rip;
6227
6228 break;
6229 }
6230 default:
6231 break;
6232 }
6233
6234 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6235 if (static_cpu_has(X86_FEATURE_NRIPS))
6236 vmcb->control.next_rip = info->next_rip;
6237 vmcb->control.exit_code = icpt_info.exit_code;
6238 vmexit = nested_svm_exit_handled(svm);
6239
6240 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6241 : X86EMUL_CONTINUE;
6242
6243 out:
6244 return ret;
6245 }
6246
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)6247 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6248 {
6249 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
6250 vcpu->arch.at_instruction_boundary = true;
6251 }
6252
svm_sched_in(struct kvm_vcpu * vcpu,int cpu)6253 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6254 {
6255 if (pause_filter_thresh)
6256 shrink_ple_window(vcpu);
6257 }
6258
avic_post_state_restore(struct kvm_vcpu * vcpu)6259 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6260 {
6261 if (avic_handle_apic_id_update(vcpu) != 0)
6262 return;
6263 avic_handle_dfr_update(vcpu);
6264 avic_handle_ldr_update(vcpu);
6265 }
6266
svm_setup_mce(struct kvm_vcpu * vcpu)6267 static void svm_setup_mce(struct kvm_vcpu *vcpu)
6268 {
6269 /* [63:9] are reserved. */
6270 vcpu->arch.mcg_cap &= 0x1ff;
6271 }
6272
svm_smi_allowed(struct kvm_vcpu * vcpu)6273 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6274 {
6275 struct vcpu_svm *svm = to_svm(vcpu);
6276
6277 /* Per APM Vol.2 15.22.2 "Response to SMI" */
6278 if (!gif_set(svm))
6279 return 0;
6280
6281 if (is_guest_mode(&svm->vcpu) &&
6282 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6283 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
6284 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6285 svm->nested.exit_required = true;
6286 return 0;
6287 }
6288
6289 return 1;
6290 }
6291
svm_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)6292 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6293 {
6294 struct vcpu_svm *svm = to_svm(vcpu);
6295 int ret;
6296
6297 if (is_guest_mode(vcpu)) {
6298 /* FED8h - SVM Guest */
6299 put_smstate(u64, smstate, 0x7ed8, 1);
6300 /* FEE0h - SVM Guest VMCB Physical Address */
6301 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6302
6303 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6304 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6305 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6306
6307 ret = nested_svm_vmexit(svm);
6308 if (ret)
6309 return ret;
6310 }
6311 return 0;
6312 }
6313
svm_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)6314 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
6315 {
6316 struct vcpu_svm *svm = to_svm(vcpu);
6317 struct vmcb *nested_vmcb;
6318 struct kvm_host_map map;
6319 u64 guest;
6320 u64 vmcb;
6321
6322 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
6323 vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
6324
6325 if (guest) {
6326 if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
6327 return 1;
6328 nested_vmcb = map.hva;
6329 enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
6330 }
6331 return 0;
6332 }
6333
enable_smi_window(struct kvm_vcpu * vcpu)6334 static int enable_smi_window(struct kvm_vcpu *vcpu)
6335 {
6336 struct vcpu_svm *svm = to_svm(vcpu);
6337
6338 if (!gif_set(svm)) {
6339 if (vgif_enabled(svm))
6340 set_intercept(svm, INTERCEPT_STGI);
6341 /* STGI will cause a vm exit */
6342 return 1;
6343 }
6344 return 0;
6345 }
6346
sev_asid_new(void)6347 static int sev_asid_new(void)
6348 {
6349 int pos;
6350
6351 /*
6352 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6353 */
6354 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6355 if (pos >= max_sev_asid)
6356 return -EBUSY;
6357
6358 set_bit(pos, sev_asid_bitmap);
6359 return pos + 1;
6360 }
6361
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)6362 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6363 {
6364 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6365 int asid, ret;
6366
6367 ret = -EBUSY;
6368 if (unlikely(sev->active))
6369 return ret;
6370
6371 asid = sev_asid_new();
6372 if (asid < 0)
6373 return ret;
6374
6375 ret = sev_platform_init(&argp->error);
6376 if (ret)
6377 goto e_free;
6378
6379 sev->active = true;
6380 sev->asid = asid;
6381 INIT_LIST_HEAD(&sev->regions_list);
6382
6383 return 0;
6384
6385 e_free:
6386 __sev_asid_free(asid);
6387 return ret;
6388 }
6389
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)6390 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6391 {
6392 struct sev_data_activate *data;
6393 int asid = sev_get_asid(kvm);
6394 int ret;
6395
6396 wbinvd_on_all_cpus();
6397
6398 ret = sev_guest_df_flush(error);
6399 if (ret)
6400 return ret;
6401
6402 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6403 if (!data)
6404 return -ENOMEM;
6405
6406 /* activate ASID on the given handle */
6407 data->handle = handle;
6408 data->asid = asid;
6409 ret = sev_guest_activate(data, error);
6410 kfree(data);
6411
6412 return ret;
6413 }
6414
__sev_issue_cmd(int fd,int id,void * data,int * error)6415 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6416 {
6417 struct fd f;
6418 int ret;
6419
6420 f = fdget(fd);
6421 if (!f.file)
6422 return -EBADF;
6423
6424 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6425
6426 fdput(f);
6427 return ret;
6428 }
6429
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)6430 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6431 {
6432 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6433
6434 return __sev_issue_cmd(sev->fd, id, data, error);
6435 }
6436
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)6437 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6438 {
6439 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6440 struct sev_data_launch_start *start;
6441 struct kvm_sev_launch_start params;
6442 void *dh_blob, *session_blob;
6443 int *error = &argp->error;
6444 int ret;
6445
6446 if (!sev_guest(kvm))
6447 return -ENOTTY;
6448
6449 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6450 return -EFAULT;
6451
6452 start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
6453 if (!start)
6454 return -ENOMEM;
6455
6456 dh_blob = NULL;
6457 if (params.dh_uaddr) {
6458 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6459 if (IS_ERR(dh_blob)) {
6460 ret = PTR_ERR(dh_blob);
6461 goto e_free;
6462 }
6463
6464 start->dh_cert_address = __sme_set(__pa(dh_blob));
6465 start->dh_cert_len = params.dh_len;
6466 }
6467
6468 session_blob = NULL;
6469 if (params.session_uaddr) {
6470 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6471 if (IS_ERR(session_blob)) {
6472 ret = PTR_ERR(session_blob);
6473 goto e_free_dh;
6474 }
6475
6476 start->session_address = __sme_set(__pa(session_blob));
6477 start->session_len = params.session_len;
6478 }
6479
6480 start->handle = params.handle;
6481 start->policy = params.policy;
6482
6483 /* create memory encryption context */
6484 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6485 if (ret)
6486 goto e_free_session;
6487
6488 /* Bind ASID to this guest */
6489 ret = sev_bind_asid(kvm, start->handle, error);
6490 if (ret) {
6491 sev_decommission(start->handle);
6492 goto e_free_session;
6493 }
6494
6495 /* return handle to userspace */
6496 params.handle = start->handle;
6497 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
6498 sev_unbind_asid(kvm, start->handle);
6499 ret = -EFAULT;
6500 goto e_free_session;
6501 }
6502
6503 sev->handle = start->handle;
6504 sev->fd = argp->sev_fd;
6505
6506 e_free_session:
6507 kfree(session_blob);
6508 e_free_dh:
6509 kfree(dh_blob);
6510 e_free:
6511 kfree(start);
6512 return ret;
6513 }
6514
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)6515 static unsigned long get_num_contig_pages(unsigned long idx,
6516 struct page **inpages, unsigned long npages)
6517 {
6518 unsigned long paddr, next_paddr;
6519 unsigned long i = idx + 1, pages = 1;
6520
6521 /* find the number of contiguous pages starting from idx */
6522 paddr = __sme_page_pa(inpages[idx]);
6523 while (i < npages) {
6524 next_paddr = __sme_page_pa(inpages[i++]);
6525 if ((paddr + PAGE_SIZE) == next_paddr) {
6526 pages++;
6527 paddr = next_paddr;
6528 continue;
6529 }
6530 break;
6531 }
6532
6533 return pages;
6534 }
6535
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)6536 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6537 {
6538 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6539 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6540 struct kvm_sev_launch_update_data params;
6541 struct sev_data_launch_update_data *data;
6542 struct page **inpages;
6543 int ret;
6544
6545 if (!sev_guest(kvm))
6546 return -ENOTTY;
6547
6548 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6549 return -EFAULT;
6550
6551 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6552 if (!data)
6553 return -ENOMEM;
6554
6555 vaddr = params.uaddr;
6556 size = params.len;
6557 vaddr_end = vaddr + size;
6558
6559 /* Lock the user memory. */
6560 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6561 if (!inpages) {
6562 ret = -ENOMEM;
6563 goto e_free;
6564 }
6565
6566 /*
6567 * The LAUNCH_UPDATE command will perform in-place encryption of the
6568 * memory content (i.e it will write the same memory region with C=1).
6569 * It's possible that the cache may contain the data with C=0, i.e.,
6570 * unencrypted so invalidate it first.
6571 */
6572 sev_clflush_pages(inpages, npages);
6573
6574 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6575 int offset, len;
6576
6577 /*
6578 * If the user buffer is not page-aligned, calculate the offset
6579 * within the page.
6580 */
6581 offset = vaddr & (PAGE_SIZE - 1);
6582
6583 /* Calculate the number of pages that can be encrypted in one go. */
6584 pages = get_num_contig_pages(i, inpages, npages);
6585
6586 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6587
6588 data->handle = sev->handle;
6589 data->len = len;
6590 data->address = __sme_page_pa(inpages[i]) + offset;
6591 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6592 if (ret)
6593 goto e_unpin;
6594
6595 size -= len;
6596 next_vaddr = vaddr + len;
6597 }
6598
6599 e_unpin:
6600 /* content of memory is updated, mark pages dirty */
6601 for (i = 0; i < npages; i++) {
6602 set_page_dirty_lock(inpages[i]);
6603 mark_page_accessed(inpages[i]);
6604 }
6605 /* unlock the user pages */
6606 sev_unpin_memory(kvm, inpages, npages);
6607 e_free:
6608 kfree(data);
6609 return ret;
6610 }
6611
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)6612 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6613 {
6614 void __user *measure = (void __user *)(uintptr_t)argp->data;
6615 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6616 struct sev_data_launch_measure *data;
6617 struct kvm_sev_launch_measure params;
6618 void __user *p = NULL;
6619 void *blob = NULL;
6620 int ret;
6621
6622 if (!sev_guest(kvm))
6623 return -ENOTTY;
6624
6625 if (copy_from_user(¶ms, measure, sizeof(params)))
6626 return -EFAULT;
6627
6628 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6629 if (!data)
6630 return -ENOMEM;
6631
6632 /* User wants to query the blob length */
6633 if (!params.len)
6634 goto cmd;
6635
6636 p = (void __user *)(uintptr_t)params.uaddr;
6637 if (p) {
6638 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6639 ret = -EINVAL;
6640 goto e_free;
6641 }
6642
6643 ret = -ENOMEM;
6644 blob = kmalloc(params.len, GFP_KERNEL);
6645 if (!blob)
6646 goto e_free;
6647
6648 data->address = __psp_pa(blob);
6649 data->len = params.len;
6650 }
6651
6652 cmd:
6653 data->handle = sev->handle;
6654 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6655
6656 /*
6657 * If we query the session length, FW responded with expected data.
6658 */
6659 if (!params.len)
6660 goto done;
6661
6662 if (ret)
6663 goto e_free_blob;
6664
6665 if (blob) {
6666 if (copy_to_user(p, blob, params.len))
6667 ret = -EFAULT;
6668 }
6669
6670 done:
6671 params.len = data->len;
6672 if (copy_to_user(measure, ¶ms, sizeof(params)))
6673 ret = -EFAULT;
6674 e_free_blob:
6675 kfree(blob);
6676 e_free:
6677 kfree(data);
6678 return ret;
6679 }
6680
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)6681 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6682 {
6683 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6684 struct sev_data_launch_finish *data;
6685 int ret;
6686
6687 if (!sev_guest(kvm))
6688 return -ENOTTY;
6689
6690 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6691 if (!data)
6692 return -ENOMEM;
6693
6694 data->handle = sev->handle;
6695 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6696
6697 kfree(data);
6698 return ret;
6699 }
6700
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)6701 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6702 {
6703 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6704 struct kvm_sev_guest_status params;
6705 struct sev_data_guest_status *data;
6706 int ret;
6707
6708 if (!sev_guest(kvm))
6709 return -ENOTTY;
6710
6711 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6712 if (!data)
6713 return -ENOMEM;
6714
6715 data->handle = sev->handle;
6716 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6717 if (ret)
6718 goto e_free;
6719
6720 params.policy = data->policy;
6721 params.state = data->state;
6722 params.handle = data->handle;
6723
6724 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
6725 ret = -EFAULT;
6726 e_free:
6727 kfree(data);
6728 return ret;
6729 }
6730
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)6731 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6732 unsigned long dst, int size,
6733 int *error, bool enc)
6734 {
6735 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6736 struct sev_data_dbg *data;
6737 int ret;
6738
6739 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6740 if (!data)
6741 return -ENOMEM;
6742
6743 data->handle = sev->handle;
6744 data->dst_addr = dst;
6745 data->src_addr = src;
6746 data->len = size;
6747
6748 ret = sev_issue_cmd(kvm,
6749 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6750 data, error);
6751 kfree(data);
6752 return ret;
6753 }
6754
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)6755 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6756 unsigned long dst_paddr, int sz, int *err)
6757 {
6758 int offset;
6759
6760 /*
6761 * Its safe to read more than we are asked, caller should ensure that
6762 * destination has enough space.
6763 */
6764 src_paddr = round_down(src_paddr, 16);
6765 offset = src_paddr & 15;
6766 sz = round_up(sz + offset, 16);
6767
6768 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6769 }
6770
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,unsigned long __user dst_uaddr,unsigned long dst_paddr,int size,int * err)6771 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6772 unsigned long __user dst_uaddr,
6773 unsigned long dst_paddr,
6774 int size, int *err)
6775 {
6776 struct page *tpage = NULL;
6777 int ret, offset;
6778
6779 /* if inputs are not 16-byte then use intermediate buffer */
6780 if (!IS_ALIGNED(dst_paddr, 16) ||
6781 !IS_ALIGNED(paddr, 16) ||
6782 !IS_ALIGNED(size, 16)) {
6783 tpage = (void *)alloc_page(GFP_KERNEL);
6784 if (!tpage)
6785 return -ENOMEM;
6786
6787 dst_paddr = __sme_page_pa(tpage);
6788 }
6789
6790 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6791 if (ret)
6792 goto e_free;
6793
6794 if (tpage) {
6795 offset = paddr & 15;
6796 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6797 page_address(tpage) + offset, size))
6798 ret = -EFAULT;
6799 }
6800
6801 e_free:
6802 if (tpage)
6803 __free_page(tpage);
6804
6805 return ret;
6806 }
6807
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,unsigned long __user vaddr,unsigned long dst_paddr,unsigned long __user dst_vaddr,int size,int * error)6808 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6809 unsigned long __user vaddr,
6810 unsigned long dst_paddr,
6811 unsigned long __user dst_vaddr,
6812 int size, int *error)
6813 {
6814 struct page *src_tpage = NULL;
6815 struct page *dst_tpage = NULL;
6816 int ret, len = size;
6817
6818 /* If source buffer is not aligned then use an intermediate buffer */
6819 if (!IS_ALIGNED(vaddr, 16)) {
6820 src_tpage = alloc_page(GFP_KERNEL);
6821 if (!src_tpage)
6822 return -ENOMEM;
6823
6824 if (copy_from_user(page_address(src_tpage),
6825 (void __user *)(uintptr_t)vaddr, size)) {
6826 __free_page(src_tpage);
6827 return -EFAULT;
6828 }
6829
6830 paddr = __sme_page_pa(src_tpage);
6831 }
6832
6833 /*
6834 * If destination buffer or length is not aligned then do read-modify-write:
6835 * - decrypt destination in an intermediate buffer
6836 * - copy the source buffer in an intermediate buffer
6837 * - use the intermediate buffer as source buffer
6838 */
6839 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6840 int dst_offset;
6841
6842 dst_tpage = alloc_page(GFP_KERNEL);
6843 if (!dst_tpage) {
6844 ret = -ENOMEM;
6845 goto e_free;
6846 }
6847
6848 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6849 __sme_page_pa(dst_tpage), size, error);
6850 if (ret)
6851 goto e_free;
6852
6853 /*
6854 * If source is kernel buffer then use memcpy() otherwise
6855 * copy_from_user().
6856 */
6857 dst_offset = dst_paddr & 15;
6858
6859 if (src_tpage)
6860 memcpy(page_address(dst_tpage) + dst_offset,
6861 page_address(src_tpage), size);
6862 else {
6863 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6864 (void __user *)(uintptr_t)vaddr, size)) {
6865 ret = -EFAULT;
6866 goto e_free;
6867 }
6868 }
6869
6870 paddr = __sme_page_pa(dst_tpage);
6871 dst_paddr = round_down(dst_paddr, 16);
6872 len = round_up(size, 16);
6873 }
6874
6875 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6876
6877 e_free:
6878 if (src_tpage)
6879 __free_page(src_tpage);
6880 if (dst_tpage)
6881 __free_page(dst_tpage);
6882 return ret;
6883 }
6884
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)6885 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6886 {
6887 unsigned long vaddr, vaddr_end, next_vaddr;
6888 unsigned long dst_vaddr;
6889 struct page **src_p, **dst_p;
6890 struct kvm_sev_dbg debug;
6891 unsigned long n;
6892 unsigned int size;
6893 int ret;
6894
6895 if (!sev_guest(kvm))
6896 return -ENOTTY;
6897
6898 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6899 return -EFAULT;
6900
6901 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
6902 return -EINVAL;
6903 if (!debug.dst_uaddr)
6904 return -EINVAL;
6905
6906 vaddr = debug.src_uaddr;
6907 size = debug.len;
6908 vaddr_end = vaddr + size;
6909 dst_vaddr = debug.dst_uaddr;
6910
6911 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6912 int len, s_off, d_off;
6913
6914 /* lock userspace source and destination page */
6915 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6916 if (!src_p)
6917 return -EFAULT;
6918
6919 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6920 if (!dst_p) {
6921 sev_unpin_memory(kvm, src_p, n);
6922 return -EFAULT;
6923 }
6924
6925 /*
6926 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6927 * memory content (i.e it will write the same memory region with C=1).
6928 * It's possible that the cache may contain the data with C=0, i.e.,
6929 * unencrypted so invalidate it first.
6930 */
6931 sev_clflush_pages(src_p, 1);
6932 sev_clflush_pages(dst_p, 1);
6933
6934 /*
6935 * Since user buffer may not be page aligned, calculate the
6936 * offset within the page.
6937 */
6938 s_off = vaddr & ~PAGE_MASK;
6939 d_off = dst_vaddr & ~PAGE_MASK;
6940 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6941
6942 if (dec)
6943 ret = __sev_dbg_decrypt_user(kvm,
6944 __sme_page_pa(src_p[0]) + s_off,
6945 dst_vaddr,
6946 __sme_page_pa(dst_p[0]) + d_off,
6947 len, &argp->error);
6948 else
6949 ret = __sev_dbg_encrypt_user(kvm,
6950 __sme_page_pa(src_p[0]) + s_off,
6951 vaddr,
6952 __sme_page_pa(dst_p[0]) + d_off,
6953 dst_vaddr,
6954 len, &argp->error);
6955
6956 sev_unpin_memory(kvm, src_p, n);
6957 sev_unpin_memory(kvm, dst_p, n);
6958
6959 if (ret)
6960 goto err;
6961
6962 next_vaddr = vaddr + len;
6963 dst_vaddr = dst_vaddr + len;
6964 size -= len;
6965 }
6966 err:
6967 return ret;
6968 }
6969
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)6970 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6971 {
6972 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6973 struct sev_data_launch_secret *data;
6974 struct kvm_sev_launch_secret params;
6975 struct page **pages;
6976 void *blob, *hdr;
6977 unsigned long n;
6978 int ret, offset;
6979
6980 if (!sev_guest(kvm))
6981 return -ENOTTY;
6982
6983 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6984 return -EFAULT;
6985
6986 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6987 if (!pages)
6988 return -ENOMEM;
6989
6990 /*
6991 * The secret must be copied into contiguous memory region, lets verify
6992 * that userspace memory pages are contiguous before we issue command.
6993 */
6994 if (get_num_contig_pages(0, pages, n) != n) {
6995 ret = -EINVAL;
6996 goto e_unpin_memory;
6997 }
6998
6999 ret = -ENOMEM;
7000 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
7001 if (!data)
7002 goto e_unpin_memory;
7003
7004 offset = params.guest_uaddr & (PAGE_SIZE - 1);
7005 data->guest_address = __sme_page_pa(pages[0]) + offset;
7006 data->guest_len = params.guest_len;
7007
7008 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
7009 if (IS_ERR(blob)) {
7010 ret = PTR_ERR(blob);
7011 goto e_free;
7012 }
7013
7014 data->trans_address = __psp_pa(blob);
7015 data->trans_len = params.trans_len;
7016
7017 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
7018 if (IS_ERR(hdr)) {
7019 ret = PTR_ERR(hdr);
7020 goto e_free_blob;
7021 }
7022 data->hdr_address = __psp_pa(hdr);
7023 data->hdr_len = params.hdr_len;
7024
7025 data->handle = sev->handle;
7026 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
7027
7028 kfree(hdr);
7029
7030 e_free_blob:
7031 kfree(blob);
7032 e_free:
7033 kfree(data);
7034 e_unpin_memory:
7035 sev_unpin_memory(kvm, pages, n);
7036 return ret;
7037 }
7038
svm_mem_enc_op(struct kvm * kvm,void __user * argp)7039 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
7040 {
7041 struct kvm_sev_cmd sev_cmd;
7042 int r;
7043
7044 if (!svm_sev_enabled())
7045 return -ENOTTY;
7046
7047 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
7048 return -EFAULT;
7049
7050 mutex_lock(&kvm->lock);
7051
7052 switch (sev_cmd.id) {
7053 case KVM_SEV_INIT:
7054 r = sev_guest_init(kvm, &sev_cmd);
7055 break;
7056 case KVM_SEV_LAUNCH_START:
7057 r = sev_launch_start(kvm, &sev_cmd);
7058 break;
7059 case KVM_SEV_LAUNCH_UPDATE_DATA:
7060 r = sev_launch_update_data(kvm, &sev_cmd);
7061 break;
7062 case KVM_SEV_LAUNCH_MEASURE:
7063 r = sev_launch_measure(kvm, &sev_cmd);
7064 break;
7065 case KVM_SEV_LAUNCH_FINISH:
7066 r = sev_launch_finish(kvm, &sev_cmd);
7067 break;
7068 case KVM_SEV_GUEST_STATUS:
7069 r = sev_guest_status(kvm, &sev_cmd);
7070 break;
7071 case KVM_SEV_DBG_DECRYPT:
7072 r = sev_dbg_crypt(kvm, &sev_cmd, true);
7073 break;
7074 case KVM_SEV_DBG_ENCRYPT:
7075 r = sev_dbg_crypt(kvm, &sev_cmd, false);
7076 break;
7077 case KVM_SEV_LAUNCH_SECRET:
7078 r = sev_launch_secret(kvm, &sev_cmd);
7079 break;
7080 default:
7081 r = -EINVAL;
7082 goto out;
7083 }
7084
7085 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
7086 r = -EFAULT;
7087
7088 out:
7089 mutex_unlock(&kvm->lock);
7090 return r;
7091 }
7092
svm_register_enc_region(struct kvm * kvm,struct kvm_enc_region * range)7093 static int svm_register_enc_region(struct kvm *kvm,
7094 struct kvm_enc_region *range)
7095 {
7096 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7097 struct enc_region *region;
7098 int ret = 0;
7099
7100 if (!sev_guest(kvm))
7101 return -ENOTTY;
7102
7103 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7104 return -EINVAL;
7105
7106 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
7107 if (!region)
7108 return -ENOMEM;
7109
7110 mutex_lock(&kvm->lock);
7111 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
7112 if (!region->pages) {
7113 ret = -ENOMEM;
7114 mutex_unlock(&kvm->lock);
7115 goto e_free;
7116 }
7117
7118 region->uaddr = range->addr;
7119 region->size = range->size;
7120
7121 list_add_tail(®ion->list, &sev->regions_list);
7122 mutex_unlock(&kvm->lock);
7123
7124 /*
7125 * The guest may change the memory encryption attribute from C=0 -> C=1
7126 * or vice versa for this memory range. Lets make sure caches are
7127 * flushed to ensure that guest data gets written into memory with
7128 * correct C-bit.
7129 */
7130 sev_clflush_pages(region->pages, region->npages);
7131
7132 return ret;
7133
7134 e_free:
7135 kfree(region);
7136 return ret;
7137 }
7138
7139 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)7140 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7141 {
7142 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7143 struct list_head *head = &sev->regions_list;
7144 struct enc_region *i;
7145
7146 list_for_each_entry(i, head, list) {
7147 if (i->uaddr == range->addr &&
7148 i->size == range->size)
7149 return i;
7150 }
7151
7152 return NULL;
7153 }
7154
7155
svm_unregister_enc_region(struct kvm * kvm,struct kvm_enc_region * range)7156 static int svm_unregister_enc_region(struct kvm *kvm,
7157 struct kvm_enc_region *range)
7158 {
7159 struct enc_region *region;
7160 int ret;
7161
7162 mutex_lock(&kvm->lock);
7163
7164 if (!sev_guest(kvm)) {
7165 ret = -ENOTTY;
7166 goto failed;
7167 }
7168
7169 region = find_enc_region(kvm, range);
7170 if (!region) {
7171 ret = -EINVAL;
7172 goto failed;
7173 }
7174
7175 __unregister_enc_region_locked(kvm, region);
7176
7177 mutex_unlock(&kvm->lock);
7178 return 0;
7179
7180 failed:
7181 mutex_unlock(&kvm->lock);
7182 return ret;
7183 }
7184
svm_need_emulation_on_page_fault(struct kvm_vcpu * vcpu)7185 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7186 {
7187 unsigned long cr4 = kvm_read_cr4(vcpu);
7188 bool smep = cr4 & X86_CR4_SMEP;
7189 bool smap = cr4 & X86_CR4_SMAP;
7190 bool is_user = svm_get_cpl(vcpu) == 3;
7191
7192 /*
7193 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
7194 *
7195 * Errata:
7196 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
7197 * possible that CPU microcode implementing DecodeAssist will fail
7198 * to read bytes of instruction which caused #NPF. In this case,
7199 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
7200 * return 0 instead of the correct guest instruction bytes.
7201 *
7202 * This happens because CPU microcode reading instruction bytes
7203 * uses a special opcode which attempts to read data using CPL=0
7204 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
7205 * fault, it gives up and returns no instruction bytes.
7206 *
7207 * Detection:
7208 * We reach here in case CPU supports DecodeAssist, raised #NPF and
7209 * returned 0 in GuestIntrBytes field of the VMCB.
7210 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
7211 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
7212 * in case vCPU CPL==3 (Because otherwise guest would have triggered
7213 * a SMEP fault instead of #NPF).
7214 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
7215 * As most guests enable SMAP if they have also enabled SMEP, use above
7216 * logic in order to attempt minimize false-positive of detecting errata
7217 * while still preserving all cases semantic correctness.
7218 *
7219 * Workaround:
7220 * To determine what instruction the guest was executing, the hypervisor
7221 * will have to decode the instruction at the instruction pointer.
7222 *
7223 * In non SEV guest, hypervisor will be able to read the guest
7224 * memory to decode the instruction pointer when insn_len is zero
7225 * so we return true to indicate that decoding is possible.
7226 *
7227 * But in the SEV guest, the guest memory is encrypted with the
7228 * guest specific key and hypervisor will not be able to decode the
7229 * instruction pointer so we will not able to workaround it. Lets
7230 * print the error and request to kill the guest.
7231 */
7232 if (smap && (!smep || is_user)) {
7233 if (!sev_guest(vcpu->kvm))
7234 return true;
7235
7236 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
7237 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7238 }
7239
7240 return false;
7241 }
7242
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7243 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7244 {
7245 struct vcpu_svm *svm = to_svm(vcpu);
7246
7247 /*
7248 * TODO: Last condition latch INIT signals on vCPU when
7249 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
7250 * To properly emulate the INIT intercept, SVM should implement
7251 * kvm_x86_ops->check_nested_events() and call nested_svm_vmexit()
7252 * there if an INIT signal is pending.
7253 */
7254 return !gif_set(svm) ||
7255 (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
7256 }
7257
7258 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7259 .cpu_has_kvm_support = has_svm,
7260 .disabled_by_bios = is_disabled,
7261 .hardware_setup = svm_hardware_setup,
7262 .hardware_unsetup = svm_hardware_unsetup,
7263 .check_processor_compatibility = svm_check_processor_compat,
7264 .hardware_enable = svm_hardware_enable,
7265 .hardware_disable = svm_hardware_disable,
7266 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7267 .has_emulated_msr = svm_has_emulated_msr,
7268
7269 .vcpu_create = svm_create_vcpu,
7270 .vcpu_free = svm_free_vcpu,
7271 .vcpu_reset = svm_vcpu_reset,
7272
7273 .vm_alloc = svm_vm_alloc,
7274 .vm_free = svm_vm_free,
7275 .vm_init = avic_vm_init,
7276 .vm_destroy = svm_vm_destroy,
7277
7278 .prepare_guest_switch = svm_prepare_guest_switch,
7279 .vcpu_load = svm_vcpu_load,
7280 .vcpu_put = svm_vcpu_put,
7281 .vcpu_blocking = svm_vcpu_blocking,
7282 .vcpu_unblocking = svm_vcpu_unblocking,
7283
7284 .update_bp_intercept = update_bp_intercept,
7285 .get_msr_feature = svm_get_msr_feature,
7286 .get_msr = svm_get_msr,
7287 .set_msr = svm_set_msr,
7288 .get_segment_base = svm_get_segment_base,
7289 .get_segment = svm_get_segment,
7290 .set_segment = svm_set_segment,
7291 .get_cpl = svm_get_cpl,
7292 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7293 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7294 .decache_cr3 = svm_decache_cr3,
7295 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7296 .set_cr0 = svm_set_cr0,
7297 .set_cr3 = svm_set_cr3,
7298 .set_cr4 = svm_set_cr4,
7299 .set_efer = svm_set_efer,
7300 .get_idt = svm_get_idt,
7301 .set_idt = svm_set_idt,
7302 .get_gdt = svm_get_gdt,
7303 .set_gdt = svm_set_gdt,
7304 .get_dr6 = svm_get_dr6,
7305 .set_dr6 = svm_set_dr6,
7306 .set_dr7 = svm_set_dr7,
7307 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7308 .cache_reg = svm_cache_reg,
7309 .get_rflags = svm_get_rflags,
7310 .set_rflags = svm_set_rflags,
7311
7312 .tlb_flush = svm_flush_tlb,
7313 .tlb_flush_gva = svm_flush_tlb_gva,
7314
7315 .run = svm_vcpu_run,
7316 .handle_exit = handle_exit,
7317 .skip_emulated_instruction = skip_emulated_instruction,
7318 .set_interrupt_shadow = svm_set_interrupt_shadow,
7319 .get_interrupt_shadow = svm_get_interrupt_shadow,
7320 .patch_hypercall = svm_patch_hypercall,
7321 .set_irq = svm_set_irq,
7322 .set_nmi = svm_inject_nmi,
7323 .queue_exception = svm_queue_exception,
7324 .cancel_injection = svm_cancel_injection,
7325 .interrupt_allowed = svm_interrupt_allowed,
7326 .nmi_allowed = svm_nmi_allowed,
7327 .get_nmi_mask = svm_get_nmi_mask,
7328 .set_nmi_mask = svm_set_nmi_mask,
7329 .enable_nmi_window = enable_nmi_window,
7330 .enable_irq_window = enable_irq_window,
7331 .update_cr8_intercept = update_cr8_intercept,
7332 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
7333 .get_enable_apicv = svm_get_enable_apicv,
7334 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7335 .load_eoi_exitmap = svm_load_eoi_exitmap,
7336 .hwapic_irr_update = svm_hwapic_irr_update,
7337 .hwapic_isr_update = svm_hwapic_isr_update,
7338 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
7339 .apicv_post_state_restore = avic_post_state_restore,
7340
7341 .set_tss_addr = svm_set_tss_addr,
7342 .set_identity_map_addr = svm_set_identity_map_addr,
7343 .get_tdp_level = get_npt_level,
7344 .get_mt_mask = svm_get_mt_mask,
7345
7346 .get_exit_info = svm_get_exit_info,
7347
7348 .get_lpage_level = svm_get_lpage_level,
7349
7350 .cpuid_update = svm_cpuid_update,
7351
7352 .rdtscp_supported = svm_rdtscp_supported,
7353 .invpcid_supported = svm_invpcid_supported,
7354 .mpx_supported = svm_mpx_supported,
7355 .xsaves_supported = svm_xsaves_supported,
7356 .umip_emulated = svm_umip_emulated,
7357 .pt_supported = svm_pt_supported,
7358 .pku_supported = svm_pku_supported,
7359
7360 .set_supported_cpuid = svm_set_supported_cpuid,
7361
7362 .has_wbinvd_exit = svm_has_wbinvd_exit,
7363
7364 .read_l1_tsc_offset = svm_read_l1_tsc_offset,
7365 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
7366
7367 .set_tdp_cr3 = set_tdp_cr3,
7368
7369 .check_intercept = svm_check_intercept,
7370 .handle_exit_irqoff = svm_handle_exit_irqoff,
7371
7372 .request_immediate_exit = __kvm_request_immediate_exit,
7373
7374 .sched_in = svm_sched_in,
7375
7376 .pmu_ops = &amd_pmu_ops,
7377 .deliver_posted_interrupt = svm_deliver_avic_intr,
7378 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
7379 .update_pi_irte = svm_update_pi_irte,
7380 .setup_mce = svm_setup_mce,
7381
7382 .smi_allowed = svm_smi_allowed,
7383 .pre_enter_smm = svm_pre_enter_smm,
7384 .pre_leave_smm = svm_pre_leave_smm,
7385 .enable_smi_window = enable_smi_window,
7386
7387 .mem_enc_op = svm_mem_enc_op,
7388 .mem_enc_reg_region = svm_register_enc_region,
7389 .mem_enc_unreg_region = svm_unregister_enc_region,
7390
7391 .nested_enable_evmcs = NULL,
7392 .nested_get_evmcs_version = NULL,
7393
7394 .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
7395
7396 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
7397 };
7398
svm_init(void)7399 static int __init svm_init(void)
7400 {
7401 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7402 __alignof__(struct vcpu_svm), THIS_MODULE);
7403 }
7404
svm_exit(void)7405 static void __exit svm_exit(void)
7406 {
7407 kvm_exit();
7408 }
7409
7410 module_init(svm_init)
7411 module_exit(svm_exit)
7412