1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/frame.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "trace.h"
14 #include "vmx.h"
15 #include "x86.h"
16
17 static bool __read_mostly enable_shadow_vmcs = 1;
18 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
19
20 static bool __read_mostly nested_early_check = 0;
21 module_param(nested_early_check, bool, S_IRUGO);
22
23 #define CC(consistency_check) \
24 ({ \
25 bool failed = (consistency_check); \
26 if (failed) \
27 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
28 failed; \
29 })
30
31 /*
32 * Hyper-V requires all of these, so mark them as supported even though
33 * they are just treated the same as all-context.
34 */
35 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
36 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
37 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
38 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
39 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40
41 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
42
43 enum {
44 VMX_VMREAD_BITMAP,
45 VMX_VMWRITE_BITMAP,
46 VMX_BITMAP_NR
47 };
48 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
49
50 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
51 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
52
53 struct shadow_vmcs_field {
54 u16 encoding;
55 u16 offset;
56 };
57 static struct shadow_vmcs_field shadow_read_only_fields[] = {
58 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
59 #include "vmcs_shadow_fields.h"
60 };
61 static int max_shadow_read_only_fields =
62 ARRAY_SIZE(shadow_read_only_fields);
63
64 static struct shadow_vmcs_field shadow_read_write_fields[] = {
65 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
66 #include "vmcs_shadow_fields.h"
67 };
68 static int max_shadow_read_write_fields =
69 ARRAY_SIZE(shadow_read_write_fields);
70
init_vmcs_shadow_fields(void)71 static void init_vmcs_shadow_fields(void)
72 {
73 int i, j;
74
75 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
76 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
77
78 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
79 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
80 u16 field = entry.encoding;
81
82 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
83 (i + 1 == max_shadow_read_only_fields ||
84 shadow_read_only_fields[i + 1].encoding != field + 1))
85 pr_err("Missing field from shadow_read_only_field %x\n",
86 field + 1);
87
88 clear_bit(field, vmx_vmread_bitmap);
89 if (field & 1)
90 #ifdef CONFIG_X86_64
91 continue;
92 #else
93 entry.offset += sizeof(u32);
94 #endif
95 shadow_read_only_fields[j++] = entry;
96 }
97 max_shadow_read_only_fields = j;
98
99 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
100 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
101 u16 field = entry.encoding;
102
103 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
104 (i + 1 == max_shadow_read_write_fields ||
105 shadow_read_write_fields[i + 1].encoding != field + 1))
106 pr_err("Missing field from shadow_read_write_field %x\n",
107 field + 1);
108
109 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
110 field <= GUEST_TR_AR_BYTES,
111 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
112
113 /*
114 * PML and the preemption timer can be emulated, but the
115 * processor cannot vmwrite to fields that don't exist
116 * on bare metal.
117 */
118 switch (field) {
119 case GUEST_PML_INDEX:
120 if (!cpu_has_vmx_pml())
121 continue;
122 break;
123 case VMX_PREEMPTION_TIMER_VALUE:
124 if (!cpu_has_vmx_preemption_timer())
125 continue;
126 break;
127 case GUEST_INTR_STATUS:
128 if (!cpu_has_vmx_apicv())
129 continue;
130 break;
131 default:
132 break;
133 }
134
135 clear_bit(field, vmx_vmwrite_bitmap);
136 clear_bit(field, vmx_vmread_bitmap);
137 if (field & 1)
138 #ifdef CONFIG_X86_64
139 continue;
140 #else
141 entry.offset += sizeof(u32);
142 #endif
143 shadow_read_write_fields[j++] = entry;
144 }
145 max_shadow_read_write_fields = j;
146 }
147
148 /*
149 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
150 * set the success or error code of an emulated VMX instruction (as specified
151 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
152 * instruction.
153 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)154 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
155 {
156 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
157 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
158 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
159 return kvm_skip_emulated_instruction(vcpu);
160 }
161
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)162 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
163 {
164 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
166 X86_EFLAGS_SF | X86_EFLAGS_OF))
167 | X86_EFLAGS_CF);
168 return kvm_skip_emulated_instruction(vcpu);
169 }
170
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)171 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
172 u32 vm_instruction_error)
173 {
174 struct vcpu_vmx *vmx = to_vmx(vcpu);
175
176 /*
177 * failValid writes the error number to the current VMCS, which
178 * can't be done if there isn't a current VMCS.
179 */
180 if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
181 return nested_vmx_failInvalid(vcpu);
182
183 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
184 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
185 X86_EFLAGS_SF | X86_EFLAGS_OF))
186 | X86_EFLAGS_ZF);
187 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
188 /*
189 * We don't need to force a shadow sync because
190 * VM_INSTRUCTION_ERROR is not shadowed
191 */
192 return kvm_skip_emulated_instruction(vcpu);
193 }
194
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)195 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
196 {
197 /* TODO: not to reset guest simply here. */
198 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
199 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
200 }
201
vmx_control_verify(u32 control,u32 low,u32 high)202 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
203 {
204 return fixed_bits_valid(control, low, high);
205 }
206
vmx_control_msr(u32 low,u32 high)207 static inline u64 vmx_control_msr(u32 low, u32 high)
208 {
209 return low | ((u64)high << 32);
210 }
211
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)212 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
213 {
214 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
215 vmcs_write64(VMCS_LINK_POINTER, -1ull);
216 vmx->nested.need_vmcs12_to_shadow_sync = false;
217 }
218
nested_release_evmcs(struct kvm_vcpu * vcpu)219 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
220 {
221 struct vcpu_vmx *vmx = to_vmx(vcpu);
222
223 if (!vmx->nested.hv_evmcs)
224 return;
225
226 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
227 vmx->nested.hv_evmcs_vmptr = 0;
228 vmx->nested.hv_evmcs = NULL;
229 }
230
231 /*
232 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
233 * just stops using VMX.
234 */
free_nested(struct kvm_vcpu * vcpu)235 static void free_nested(struct kvm_vcpu *vcpu)
236 {
237 struct vcpu_vmx *vmx = to_vmx(vcpu);
238
239 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
240 return;
241
242 kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
243
244 vmx->nested.vmxon = false;
245 vmx->nested.smm.vmxon = false;
246 free_vpid(vmx->nested.vpid02);
247 vmx->nested.posted_intr_nv = -1;
248 vmx->nested.current_vmptr = -1ull;
249 if (enable_shadow_vmcs) {
250 vmx_disable_shadow_vmcs(vmx);
251 vmcs_clear(vmx->vmcs01.shadow_vmcs);
252 free_vmcs(vmx->vmcs01.shadow_vmcs);
253 vmx->vmcs01.shadow_vmcs = NULL;
254 }
255 kfree(vmx->nested.cached_vmcs12);
256 vmx->nested.cached_vmcs12 = NULL;
257 kfree(vmx->nested.cached_shadow_vmcs12);
258 vmx->nested.cached_shadow_vmcs12 = NULL;
259 /* Unpin physical memory we referred to in the vmcs02 */
260 if (vmx->nested.apic_access_page) {
261 kvm_release_page_dirty(vmx->nested.apic_access_page);
262 vmx->nested.apic_access_page = NULL;
263 }
264 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
265 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
266 vmx->nested.pi_desc = NULL;
267
268 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
269
270 nested_release_evmcs(vcpu);
271
272 free_loaded_vmcs(&vmx->nested.vmcs02);
273 }
274
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)275 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
276 struct loaded_vmcs *prev)
277 {
278 struct vmcs_host_state *dest, *src;
279
280 if (unlikely(!vmx->guest_state_loaded))
281 return;
282
283 src = &prev->host_state;
284 dest = &vmx->loaded_vmcs->host_state;
285
286 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
287 dest->ldt_sel = src->ldt_sel;
288 #ifdef CONFIG_X86_64
289 dest->ds_sel = src->ds_sel;
290 dest->es_sel = src->es_sel;
291 #endif
292 }
293
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)294 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
295 {
296 struct vcpu_vmx *vmx = to_vmx(vcpu);
297 struct loaded_vmcs *prev;
298 int cpu;
299
300 if (vmx->loaded_vmcs == vmcs)
301 return;
302
303 cpu = get_cpu();
304 prev = vmx->loaded_vmcs;
305 vmx->loaded_vmcs = vmcs;
306 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
307 vmx_sync_vmcs_host_state(vmx, prev);
308 put_cpu();
309
310 vmx_segment_cache_clear(vmx);
311 }
312
313 /*
314 * Ensure that the current vmcs of the logical processor is the
315 * vmcs01 of the vcpu before calling free_nested().
316 */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)317 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
318 {
319 vcpu_load(vcpu);
320 vmx_leave_nested(vcpu);
321 vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
322 free_nested(vcpu);
323 vcpu_put(vcpu);
324 }
325
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)326 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
327 struct x86_exception *fault)
328 {
329 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
330 struct vcpu_vmx *vmx = to_vmx(vcpu);
331 u32 exit_reason;
332 unsigned long exit_qualification = vcpu->arch.exit_qualification;
333
334 if (vmx->nested.pml_full) {
335 exit_reason = EXIT_REASON_PML_FULL;
336 vmx->nested.pml_full = false;
337 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
338 } else if (fault->error_code & PFERR_RSVD_MASK)
339 exit_reason = EXIT_REASON_EPT_MISCONFIG;
340 else
341 exit_reason = EXIT_REASON_EPT_VIOLATION;
342
343 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
344 vmcs12->guest_physical_address = fault->address;
345 }
346
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)347 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
348 {
349 WARN_ON(mmu_is_nested(vcpu));
350
351 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
352 kvm_init_shadow_ept_mmu(vcpu,
353 to_vmx(vcpu)->nested.msrs.ept_caps &
354 VMX_EPT_EXECUTE_ONLY_BIT,
355 nested_ept_ad_enabled(vcpu),
356 nested_ept_get_cr3(vcpu));
357 vcpu->arch.mmu->set_cr3 = vmx_set_cr3;
358 vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3;
359 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
360 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
361
362 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
363 }
364
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)365 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
366 {
367 vcpu->arch.mmu = &vcpu->arch.root_mmu;
368 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
369 }
370
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)371 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
372 u16 error_code)
373 {
374 bool inequality, bit;
375
376 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
377 inequality =
378 (error_code & vmcs12->page_fault_error_code_mask) !=
379 vmcs12->page_fault_error_code_match;
380 return inequality ^ bit;
381 }
382
383
384 /*
385 * KVM wants to inject page-faults which it got to the guest. This function
386 * checks whether in a nested guest, we need to inject them to L1 or L2.
387 */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned long * exit_qual)388 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
389 {
390 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
391 unsigned int nr = vcpu->arch.exception.nr;
392 bool has_payload = vcpu->arch.exception.has_payload;
393 unsigned long payload = vcpu->arch.exception.payload;
394
395 if (nr == PF_VECTOR) {
396 if (vcpu->arch.exception.nested_apf) {
397 *exit_qual = vcpu->arch.apf.nested_apf_token;
398 return 1;
399 }
400 if (nested_vmx_is_page_fault_vmexit(vmcs12,
401 vcpu->arch.exception.error_code)) {
402 *exit_qual = has_payload ? payload : vcpu->arch.cr2;
403 return 1;
404 }
405 } else if (vmcs12->exception_bitmap & (1u << nr)) {
406 if (nr == DB_VECTOR) {
407 if (!has_payload) {
408 payload = vcpu->arch.dr6;
409 payload &= ~(DR6_FIXED_1 | DR6_BT);
410 payload ^= DR6_RTM;
411 }
412 *exit_qual = payload;
413 } else
414 *exit_qual = 0;
415 return 1;
416 }
417
418 return 0;
419 }
420
421
vmx_inject_page_fault_nested(struct kvm_vcpu * vcpu,struct x86_exception * fault)422 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
423 struct x86_exception *fault)
424 {
425 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
426
427 WARN_ON(!is_guest_mode(vcpu));
428
429 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
430 !to_vmx(vcpu)->nested.nested_run_pending) {
431 vmcs12->vm_exit_intr_error_code = fault->error_code;
432 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
433 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
434 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
435 fault->address);
436 } else {
437 kvm_inject_page_fault(vcpu, fault);
438 }
439 }
440
page_address_valid(struct kvm_vcpu * vcpu,gpa_t gpa)441 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
442 {
443 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
444 }
445
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)446 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
447 struct vmcs12 *vmcs12)
448 {
449 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
450 return 0;
451
452 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
453 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
454 return -EINVAL;
455
456 return 0;
457 }
458
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)459 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
460 struct vmcs12 *vmcs12)
461 {
462 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
463 return 0;
464
465 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
466 return -EINVAL;
467
468 return 0;
469 }
470
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)471 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
472 struct vmcs12 *vmcs12)
473 {
474 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
475 return 0;
476
477 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
478 return -EINVAL;
479
480 return 0;
481 }
482
483 /*
484 * Check if MSR is intercepted for L01 MSR bitmap.
485 */
msr_write_intercepted_l01(struct kvm_vcpu * vcpu,u32 msr)486 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
487 {
488 unsigned long *msr_bitmap;
489 int f = sizeof(unsigned long);
490
491 if (!cpu_has_vmx_msr_bitmap())
492 return true;
493
494 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
495
496 if (msr <= 0x1fff) {
497 return !!test_bit(msr, msr_bitmap + 0x800 / f);
498 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
499 msr &= 0x1fff;
500 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
501 }
502
503 return true;
504 }
505
506 /*
507 * If a msr is allowed by L0, we should check whether it is allowed by L1.
508 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
509 */
nested_vmx_disable_intercept_for_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_nested,u32 msr,int type)510 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
511 unsigned long *msr_bitmap_nested,
512 u32 msr, int type)
513 {
514 int f = sizeof(unsigned long);
515
516 /*
517 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
518 * have the write-low and read-high bitmap offsets the wrong way round.
519 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
520 */
521 if (msr <= 0x1fff) {
522 if (type & MSR_TYPE_R &&
523 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
524 /* read-low */
525 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
526
527 if (type & MSR_TYPE_W &&
528 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
529 /* write-low */
530 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
531
532 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
533 msr &= 0x1fff;
534 if (type & MSR_TYPE_R &&
535 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
536 /* read-high */
537 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
538
539 if (type & MSR_TYPE_W &&
540 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
541 /* write-high */
542 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
543
544 }
545 }
546
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)547 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
548 int msr;
549
550 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
551 unsigned word = msr / BITS_PER_LONG;
552
553 msr_bitmap[word] = ~0;
554 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
555 }
556 }
557
558 /*
559 * Merge L0's and L1's MSR bitmap, return false to indicate that
560 * we do not use the hardware.
561 */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)562 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
563 struct vmcs12 *vmcs12)
564 {
565 int msr;
566 unsigned long *msr_bitmap_l1;
567 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
568 struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
569
570 /* Nothing to do if the MSR bitmap is not in use. */
571 if (!cpu_has_vmx_msr_bitmap() ||
572 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
573 return false;
574
575 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
576 return false;
577
578 msr_bitmap_l1 = (unsigned long *)map->hva;
579
580 /*
581 * To keep the control flow simple, pay eight 8-byte writes (sixteen
582 * 4-byte writes on 32-bit systems) up front to enable intercepts for
583 * the x2APIC MSR range and selectively disable them below.
584 */
585 enable_x2apic_msr_intercepts(msr_bitmap_l0);
586
587 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
588 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
589 /*
590 * L0 need not intercept reads for MSRs between 0x800
591 * and 0x8ff, it just lets the processor take the value
592 * from the virtual-APIC page; take those 256 bits
593 * directly from the L1 bitmap.
594 */
595 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
596 unsigned word = msr / BITS_PER_LONG;
597
598 msr_bitmap_l0[word] = msr_bitmap_l1[word];
599 }
600 }
601
602 nested_vmx_disable_intercept_for_msr(
603 msr_bitmap_l1, msr_bitmap_l0,
604 X2APIC_MSR(APIC_TASKPRI),
605 MSR_TYPE_R | MSR_TYPE_W);
606
607 if (nested_cpu_has_vid(vmcs12)) {
608 nested_vmx_disable_intercept_for_msr(
609 msr_bitmap_l1, msr_bitmap_l0,
610 X2APIC_MSR(APIC_EOI),
611 MSR_TYPE_W);
612 nested_vmx_disable_intercept_for_msr(
613 msr_bitmap_l1, msr_bitmap_l0,
614 X2APIC_MSR(APIC_SELF_IPI),
615 MSR_TYPE_W);
616 }
617 }
618
619 /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
620 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
621 MSR_FS_BASE, MSR_TYPE_RW);
622
623 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
624 MSR_GS_BASE, MSR_TYPE_RW);
625
626 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
627 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
628
629 /*
630 * Checking the L0->L1 bitmap is trying to verify two things:
631 *
632 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
633 * ensures that we do not accidentally generate an L02 MSR bitmap
634 * from the L12 MSR bitmap that is too permissive.
635 * 2. That L1 or L2s have actually used the MSR. This avoids
636 * unnecessarily merging of the bitmap if the MSR is unused. This
637 * works properly because we only update the L01 MSR bitmap lazily.
638 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
639 * updated to reflect this when L1 (or its L2s) actually write to
640 * the MSR.
641 */
642 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
643 nested_vmx_disable_intercept_for_msr(
644 msr_bitmap_l1, msr_bitmap_l0,
645 MSR_IA32_SPEC_CTRL,
646 MSR_TYPE_R | MSR_TYPE_W);
647
648 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
649 nested_vmx_disable_intercept_for_msr(
650 msr_bitmap_l1, msr_bitmap_l0,
651 MSR_IA32_PRED_CMD,
652 MSR_TYPE_W);
653
654 kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
655
656 return true;
657 }
658
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)659 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
660 struct vmcs12 *vmcs12)
661 {
662 struct kvm_host_map map;
663 struct vmcs12 *shadow;
664
665 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
666 vmcs12->vmcs_link_pointer == -1ull)
667 return;
668
669 shadow = get_shadow_vmcs12(vcpu);
670
671 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
672 return;
673
674 memcpy(shadow, map.hva, VMCS12_SIZE);
675 kvm_vcpu_unmap(vcpu, &map, false);
676 }
677
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)678 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
679 struct vmcs12 *vmcs12)
680 {
681 struct vcpu_vmx *vmx = to_vmx(vcpu);
682
683 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
684 vmcs12->vmcs_link_pointer == -1ull)
685 return;
686
687 kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
688 get_shadow_vmcs12(vcpu), VMCS12_SIZE);
689 }
690
691 /*
692 * In nested virtualization, check if L1 has set
693 * VM_EXIT_ACK_INTR_ON_EXIT
694 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)695 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
696 {
697 return get_vmcs12(vcpu)->vm_exit_controls &
698 VM_EXIT_ACK_INTR_ON_EXIT;
699 }
700
nested_exit_on_nmi(struct kvm_vcpu * vcpu)701 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
702 {
703 return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
704 }
705
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)706 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
707 struct vmcs12 *vmcs12)
708 {
709 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
710 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
711 return -EINVAL;
712 else
713 return 0;
714 }
715
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)716 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
717 struct vmcs12 *vmcs12)
718 {
719 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
720 !nested_cpu_has_apic_reg_virt(vmcs12) &&
721 !nested_cpu_has_vid(vmcs12) &&
722 !nested_cpu_has_posted_intr(vmcs12))
723 return 0;
724
725 /*
726 * If virtualize x2apic mode is enabled,
727 * virtualize apic access must be disabled.
728 */
729 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
730 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
731 return -EINVAL;
732
733 /*
734 * If virtual interrupt delivery is enabled,
735 * we must exit on external interrupts.
736 */
737 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
738 return -EINVAL;
739
740 /*
741 * bits 15:8 should be zero in posted_intr_nv,
742 * the descriptor address has been already checked
743 * in nested_get_vmcs12_pages.
744 *
745 * bits 5:0 of posted_intr_desc_addr should be zero.
746 */
747 if (nested_cpu_has_posted_intr(vmcs12) &&
748 (CC(!nested_cpu_has_vid(vmcs12)) ||
749 CC(!nested_exit_intr_ack_set(vcpu)) ||
750 CC((vmcs12->posted_intr_nv & 0xff00)) ||
751 CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
752 CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
753 return -EINVAL;
754
755 /* tpr shadow is needed by all apicv features. */
756 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
757 return -EINVAL;
758
759 return 0;
760 }
761
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)762 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
763 u32 count, u64 addr)
764 {
765 int maxphyaddr;
766
767 if (count == 0)
768 return 0;
769 maxphyaddr = cpuid_maxphyaddr(vcpu);
770 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
771 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
772 return -EINVAL;
773
774 return 0;
775 }
776
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)777 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
778 struct vmcs12 *vmcs12)
779 {
780 if (CC(nested_vmx_check_msr_switch(vcpu,
781 vmcs12->vm_exit_msr_load_count,
782 vmcs12->vm_exit_msr_load_addr)) ||
783 CC(nested_vmx_check_msr_switch(vcpu,
784 vmcs12->vm_exit_msr_store_count,
785 vmcs12->vm_exit_msr_store_addr)))
786 return -EINVAL;
787
788 return 0;
789 }
790
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)791 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
792 struct vmcs12 *vmcs12)
793 {
794 if (CC(nested_vmx_check_msr_switch(vcpu,
795 vmcs12->vm_entry_msr_load_count,
796 vmcs12->vm_entry_msr_load_addr)))
797 return -EINVAL;
798
799 return 0;
800 }
801
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)802 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
803 struct vmcs12 *vmcs12)
804 {
805 if (!nested_cpu_has_pml(vmcs12))
806 return 0;
807
808 if (CC(!nested_cpu_has_ept(vmcs12)) ||
809 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
810 return -EINVAL;
811
812 return 0;
813 }
814
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)815 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
816 struct vmcs12 *vmcs12)
817 {
818 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
819 !nested_cpu_has_ept(vmcs12)))
820 return -EINVAL;
821 return 0;
822 }
823
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)824 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
825 struct vmcs12 *vmcs12)
826 {
827 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
828 !nested_cpu_has_ept(vmcs12)))
829 return -EINVAL;
830 return 0;
831 }
832
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)833 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
834 struct vmcs12 *vmcs12)
835 {
836 if (!nested_cpu_has_shadow_vmcs(vmcs12))
837 return 0;
838
839 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
840 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
841 return -EINVAL;
842
843 return 0;
844 }
845
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)846 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
847 struct vmx_msr_entry *e)
848 {
849 /* x2APIC MSR accesses are not allowed */
850 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
851 return -EINVAL;
852 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
853 CC(e->index == MSR_IA32_UCODE_REV))
854 return -EINVAL;
855 if (CC(e->reserved != 0))
856 return -EINVAL;
857 return 0;
858 }
859
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)860 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
861 struct vmx_msr_entry *e)
862 {
863 if (CC(e->index == MSR_FS_BASE) ||
864 CC(e->index == MSR_GS_BASE) ||
865 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
866 nested_vmx_msr_check_common(vcpu, e))
867 return -EINVAL;
868 return 0;
869 }
870
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)871 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
872 struct vmx_msr_entry *e)
873 {
874 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
875 nested_vmx_msr_check_common(vcpu, e))
876 return -EINVAL;
877 return 0;
878 }
879
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)880 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
881 {
882 struct vcpu_vmx *vmx = to_vmx(vcpu);
883 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
884 vmx->nested.msrs.misc_high);
885
886 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
887 }
888
889 /*
890 * Load guest's/host's msr at nested entry/exit.
891 * return 0 for success, entry index for failure.
892 *
893 * One of the failure modes for MSR load/store is when a list exceeds the
894 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
895 * as possible, process all valid entries before failing rather than precheck
896 * for a capacity violation.
897 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)898 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
899 {
900 u32 i;
901 struct vmx_msr_entry e;
902 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
903
904 for (i = 0; i < count; i++) {
905 if (unlikely(i >= max_msr_list_size))
906 goto fail;
907
908 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
909 &e, sizeof(e))) {
910 pr_debug_ratelimited(
911 "%s cannot read MSR entry (%u, 0x%08llx)\n",
912 __func__, i, gpa + i * sizeof(e));
913 goto fail;
914 }
915 if (nested_vmx_load_msr_check(vcpu, &e)) {
916 pr_debug_ratelimited(
917 "%s check failed (%u, 0x%x, 0x%x)\n",
918 __func__, i, e.index, e.reserved);
919 goto fail;
920 }
921 if (kvm_set_msr(vcpu, e.index, e.value)) {
922 pr_debug_ratelimited(
923 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
924 __func__, i, e.index, e.value);
925 goto fail;
926 }
927 }
928 return 0;
929 fail:
930 return i + 1;
931 }
932
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)933 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
934 {
935 u64 data;
936 u32 i;
937 struct vmx_msr_entry e;
938 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
939
940 for (i = 0; i < count; i++) {
941 if (unlikely(i >= max_msr_list_size))
942 return -EINVAL;
943
944 if (kvm_vcpu_read_guest(vcpu,
945 gpa + i * sizeof(e),
946 &e, 2 * sizeof(u32))) {
947 pr_debug_ratelimited(
948 "%s cannot read MSR entry (%u, 0x%08llx)\n",
949 __func__, i, gpa + i * sizeof(e));
950 return -EINVAL;
951 }
952 if (nested_vmx_store_msr_check(vcpu, &e)) {
953 pr_debug_ratelimited(
954 "%s check failed (%u, 0x%x, 0x%x)\n",
955 __func__, i, e.index, e.reserved);
956 return -EINVAL;
957 }
958 if (kvm_get_msr(vcpu, e.index, &data)) {
959 pr_debug_ratelimited(
960 "%s cannot read MSR (%u, 0x%x)\n",
961 __func__, i, e.index);
962 return -EINVAL;
963 }
964 if (kvm_vcpu_write_guest(vcpu,
965 gpa + i * sizeof(e) +
966 offsetof(struct vmx_msr_entry, value),
967 &data, sizeof(data))) {
968 pr_debug_ratelimited(
969 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
970 __func__, i, e.index, data);
971 return -EINVAL;
972 }
973 }
974 return 0;
975 }
976
nested_cr3_valid(struct kvm_vcpu * vcpu,unsigned long val)977 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
978 {
979 unsigned long invalid_mask;
980
981 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
982 return (val & invalid_mask) == 0;
983 }
984
985 /*
986 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
987 * emulating VM entry into a guest with EPT enabled.
988 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
989 * is assigned to entry_failure_code on failure.
990 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,u32 * entry_failure_code)991 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
992 u32 *entry_failure_code)
993 {
994 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
995 if (CC(!nested_cr3_valid(vcpu, cr3))) {
996 *entry_failure_code = ENTRY_FAIL_DEFAULT;
997 return -EINVAL;
998 }
999
1000 /*
1001 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1002 * must not be dereferenced.
1003 */
1004 if (is_pae_paging(vcpu) && !nested_ept) {
1005 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1006 *entry_failure_code = ENTRY_FAIL_PDPTE;
1007 return -EINVAL;
1008 }
1009 }
1010 }
1011
1012 if (!nested_ept)
1013 kvm_mmu_new_cr3(vcpu, cr3, false);
1014
1015 vcpu->arch.cr3 = cr3;
1016 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1017
1018 kvm_init_mmu(vcpu, false);
1019
1020 return 0;
1021 }
1022
1023 /*
1024 * Returns if KVM is able to config CPU to tag TLB entries
1025 * populated by L2 differently than TLB entries populated
1026 * by L1.
1027 *
1028 * If L1 uses EPT, then TLB entries are tagged with different EPTP.
1029 *
1030 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1031 * with different VPID (L1 entries are tagged with vmx->vpid
1032 * while L2 entries are tagged with vmx->nested.vpid02).
1033 */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1034 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1035 {
1036 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1037
1038 return nested_cpu_has_ept(vmcs12) ||
1039 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1040 }
1041
nested_get_vpid02(struct kvm_vcpu * vcpu)1042 static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1043 {
1044 struct vcpu_vmx *vmx = to_vmx(vcpu);
1045
1046 return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1047 }
1048
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1049 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1050 {
1051 superset &= mask;
1052 subset &= mask;
1053
1054 return (superset | subset) == superset;
1055 }
1056
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1057 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1058 {
1059 const u64 feature_and_reserved =
1060 /* feature (except bit 48; see below) */
1061 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1062 /* reserved */
1063 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1064 u64 vmx_basic = vmcs_config.nested.basic;
1065
1066 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1067 return -EINVAL;
1068
1069 /*
1070 * KVM does not emulate a version of VMX that constrains physical
1071 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1072 */
1073 if (data & BIT_ULL(48))
1074 return -EINVAL;
1075
1076 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1077 vmx_basic_vmcs_revision_id(data))
1078 return -EINVAL;
1079
1080 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1081 return -EINVAL;
1082
1083 vmx->nested.msrs.basic = data;
1084 return 0;
1085 }
1086
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1087 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1088 u32 **low, u32 **high)
1089 {
1090 switch (msr_index) {
1091 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1092 *low = &msrs->pinbased_ctls_low;
1093 *high = &msrs->pinbased_ctls_high;
1094 break;
1095 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1096 *low = &msrs->procbased_ctls_low;
1097 *high = &msrs->procbased_ctls_high;
1098 break;
1099 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1100 *low = &msrs->exit_ctls_low;
1101 *high = &msrs->exit_ctls_high;
1102 break;
1103 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1104 *low = &msrs->entry_ctls_low;
1105 *high = &msrs->entry_ctls_high;
1106 break;
1107 case MSR_IA32_VMX_PROCBASED_CTLS2:
1108 *low = &msrs->secondary_ctls_low;
1109 *high = &msrs->secondary_ctls_high;
1110 break;
1111 default:
1112 BUG();
1113 }
1114 }
1115
1116 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1117 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1118 {
1119 u32 *lowp, *highp;
1120 u64 supported;
1121
1122 vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1123
1124 supported = vmx_control_msr(*lowp, *highp);
1125
1126 /* Check must-be-1 bits are still 1. */
1127 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1128 return -EINVAL;
1129
1130 /* Check must-be-0 bits are still 0. */
1131 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1132 return -EINVAL;
1133
1134 vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1135 *lowp = data;
1136 *highp = data >> 32;
1137 return 0;
1138 }
1139
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1140 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1141 {
1142 const u64 feature_and_reserved_bits =
1143 /* feature */
1144 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1145 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1146 /* reserved */
1147 GENMASK_ULL(13, 9) | BIT_ULL(31);
1148 u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1149 vmcs_config.nested.misc_high);
1150
1151 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1152 return -EINVAL;
1153
1154 if ((vmx->nested.msrs.pinbased_ctls_high &
1155 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1156 vmx_misc_preemption_timer_rate(data) !=
1157 vmx_misc_preemption_timer_rate(vmx_misc))
1158 return -EINVAL;
1159
1160 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1161 return -EINVAL;
1162
1163 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1164 return -EINVAL;
1165
1166 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1167 return -EINVAL;
1168
1169 vmx->nested.msrs.misc_low = data;
1170 vmx->nested.msrs.misc_high = data >> 32;
1171
1172 return 0;
1173 }
1174
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1175 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1176 {
1177 u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1178 vmcs_config.nested.vpid_caps);
1179
1180 /* Every bit is either reserved or a feature bit. */
1181 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1182 return -EINVAL;
1183
1184 vmx->nested.msrs.ept_caps = data;
1185 vmx->nested.msrs.vpid_caps = data >> 32;
1186 return 0;
1187 }
1188
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1189 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1190 {
1191 switch (msr_index) {
1192 case MSR_IA32_VMX_CR0_FIXED0:
1193 return &msrs->cr0_fixed0;
1194 case MSR_IA32_VMX_CR4_FIXED0:
1195 return &msrs->cr4_fixed0;
1196 default:
1197 BUG();
1198 }
1199 }
1200
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1201 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1202 {
1203 const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1204
1205 /*
1206 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1207 * must be 1 in the restored value.
1208 */
1209 if (!is_bitwise_subset(data, *msr, -1ULL))
1210 return -EINVAL;
1211
1212 *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1213 return 0;
1214 }
1215
1216 /*
1217 * Called when userspace is restoring VMX MSRs.
1218 *
1219 * Returns 0 on success, non-0 otherwise.
1220 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1221 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1222 {
1223 struct vcpu_vmx *vmx = to_vmx(vcpu);
1224
1225 /*
1226 * Don't allow changes to the VMX capability MSRs while the vCPU
1227 * is in VMX operation.
1228 */
1229 if (vmx->nested.vmxon)
1230 return -EBUSY;
1231
1232 switch (msr_index) {
1233 case MSR_IA32_VMX_BASIC:
1234 return vmx_restore_vmx_basic(vmx, data);
1235 case MSR_IA32_VMX_PINBASED_CTLS:
1236 case MSR_IA32_VMX_PROCBASED_CTLS:
1237 case MSR_IA32_VMX_EXIT_CTLS:
1238 case MSR_IA32_VMX_ENTRY_CTLS:
1239 /*
1240 * The "non-true" VMX capability MSRs are generated from the
1241 * "true" MSRs, so we do not support restoring them directly.
1242 *
1243 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1244 * should restore the "true" MSRs with the must-be-1 bits
1245 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1246 * DEFAULT SETTINGS".
1247 */
1248 return -EINVAL;
1249 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1250 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1251 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1252 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1253 case MSR_IA32_VMX_PROCBASED_CTLS2:
1254 return vmx_restore_control_msr(vmx, msr_index, data);
1255 case MSR_IA32_VMX_MISC:
1256 return vmx_restore_vmx_misc(vmx, data);
1257 case MSR_IA32_VMX_CR0_FIXED0:
1258 case MSR_IA32_VMX_CR4_FIXED0:
1259 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1260 case MSR_IA32_VMX_CR0_FIXED1:
1261 case MSR_IA32_VMX_CR4_FIXED1:
1262 /*
1263 * These MSRs are generated based on the vCPU's CPUID, so we
1264 * do not support restoring them directly.
1265 */
1266 return -EINVAL;
1267 case MSR_IA32_VMX_EPT_VPID_CAP:
1268 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1269 case MSR_IA32_VMX_VMCS_ENUM:
1270 vmx->nested.msrs.vmcs_enum = data;
1271 return 0;
1272 case MSR_IA32_VMX_VMFUNC:
1273 if (data & ~vmcs_config.nested.vmfunc_controls)
1274 return -EINVAL;
1275 vmx->nested.msrs.vmfunc_controls = data;
1276 return 0;
1277 default:
1278 /*
1279 * The rest of the VMX capability MSRs do not support restore.
1280 */
1281 return -EINVAL;
1282 }
1283 }
1284
1285 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1286 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1287 {
1288 switch (msr_index) {
1289 case MSR_IA32_VMX_BASIC:
1290 *pdata = msrs->basic;
1291 break;
1292 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1293 case MSR_IA32_VMX_PINBASED_CTLS:
1294 *pdata = vmx_control_msr(
1295 msrs->pinbased_ctls_low,
1296 msrs->pinbased_ctls_high);
1297 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1298 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1299 break;
1300 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1301 case MSR_IA32_VMX_PROCBASED_CTLS:
1302 *pdata = vmx_control_msr(
1303 msrs->procbased_ctls_low,
1304 msrs->procbased_ctls_high);
1305 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1306 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1307 break;
1308 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1309 case MSR_IA32_VMX_EXIT_CTLS:
1310 *pdata = vmx_control_msr(
1311 msrs->exit_ctls_low,
1312 msrs->exit_ctls_high);
1313 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1314 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1315 break;
1316 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1317 case MSR_IA32_VMX_ENTRY_CTLS:
1318 *pdata = vmx_control_msr(
1319 msrs->entry_ctls_low,
1320 msrs->entry_ctls_high);
1321 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1322 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1323 break;
1324 case MSR_IA32_VMX_MISC:
1325 *pdata = vmx_control_msr(
1326 msrs->misc_low,
1327 msrs->misc_high);
1328 break;
1329 case MSR_IA32_VMX_CR0_FIXED0:
1330 *pdata = msrs->cr0_fixed0;
1331 break;
1332 case MSR_IA32_VMX_CR0_FIXED1:
1333 *pdata = msrs->cr0_fixed1;
1334 break;
1335 case MSR_IA32_VMX_CR4_FIXED0:
1336 *pdata = msrs->cr4_fixed0;
1337 break;
1338 case MSR_IA32_VMX_CR4_FIXED1:
1339 *pdata = msrs->cr4_fixed1;
1340 break;
1341 case MSR_IA32_VMX_VMCS_ENUM:
1342 *pdata = msrs->vmcs_enum;
1343 break;
1344 case MSR_IA32_VMX_PROCBASED_CTLS2:
1345 *pdata = vmx_control_msr(
1346 msrs->secondary_ctls_low,
1347 msrs->secondary_ctls_high);
1348 break;
1349 case MSR_IA32_VMX_EPT_VPID_CAP:
1350 *pdata = msrs->ept_caps |
1351 ((u64)msrs->vpid_caps << 32);
1352 break;
1353 case MSR_IA32_VMX_VMFUNC:
1354 *pdata = msrs->vmfunc_controls;
1355 break;
1356 default:
1357 return 1;
1358 }
1359
1360 return 0;
1361 }
1362
1363 /*
1364 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1365 * been modified by the L1 guest. Note, "writable" in this context means
1366 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1367 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1368 * VM-exit information fields (which are actually writable if the vCPU is
1369 * configured to support "VMWRITE to any supported field in the VMCS").
1370 */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1371 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1372 {
1373 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1374 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1375 struct shadow_vmcs_field field;
1376 unsigned long val;
1377 int i;
1378
1379 if (WARN_ON(!shadow_vmcs))
1380 return;
1381
1382 preempt_disable();
1383
1384 vmcs_load(shadow_vmcs);
1385
1386 for (i = 0; i < max_shadow_read_write_fields; i++) {
1387 field = shadow_read_write_fields[i];
1388 val = __vmcs_readl(field.encoding);
1389 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1390 }
1391
1392 vmcs_clear(shadow_vmcs);
1393 vmcs_load(vmx->loaded_vmcs->vmcs);
1394
1395 preempt_enable();
1396 }
1397
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1398 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1399 {
1400 const struct shadow_vmcs_field *fields[] = {
1401 shadow_read_write_fields,
1402 shadow_read_only_fields
1403 };
1404 const int max_fields[] = {
1405 max_shadow_read_write_fields,
1406 max_shadow_read_only_fields
1407 };
1408 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1409 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1410 struct shadow_vmcs_field field;
1411 unsigned long val;
1412 int i, q;
1413
1414 if (WARN_ON(!shadow_vmcs))
1415 return;
1416
1417 vmcs_load(shadow_vmcs);
1418
1419 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1420 for (i = 0; i < max_fields[q]; i++) {
1421 field = fields[q][i];
1422 val = vmcs12_read_any(vmcs12, field.encoding,
1423 field.offset);
1424 __vmcs_writel(field.encoding, val);
1425 }
1426 }
1427
1428 vmcs_clear(shadow_vmcs);
1429 vmcs_load(vmx->loaded_vmcs->vmcs);
1430 }
1431
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx)1432 static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1433 {
1434 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1435 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1436
1437 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1438 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1439 vmcs12->guest_rip = evmcs->guest_rip;
1440
1441 if (unlikely(!(evmcs->hv_clean_fields &
1442 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1443 vmcs12->guest_rsp = evmcs->guest_rsp;
1444 vmcs12->guest_rflags = evmcs->guest_rflags;
1445 vmcs12->guest_interruptibility_info =
1446 evmcs->guest_interruptibility_info;
1447 }
1448
1449 if (unlikely(!(evmcs->hv_clean_fields &
1450 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1451 vmcs12->cpu_based_vm_exec_control =
1452 evmcs->cpu_based_vm_exec_control;
1453 }
1454
1455 if (unlikely(!(evmcs->hv_clean_fields &
1456 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1457 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1458 }
1459
1460 if (unlikely(!(evmcs->hv_clean_fields &
1461 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1462 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1463 }
1464
1465 if (unlikely(!(evmcs->hv_clean_fields &
1466 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1467 vmcs12->vm_entry_intr_info_field =
1468 evmcs->vm_entry_intr_info_field;
1469 vmcs12->vm_entry_exception_error_code =
1470 evmcs->vm_entry_exception_error_code;
1471 vmcs12->vm_entry_instruction_len =
1472 evmcs->vm_entry_instruction_len;
1473 }
1474
1475 if (unlikely(!(evmcs->hv_clean_fields &
1476 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1477 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1478 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1479 vmcs12->host_cr0 = evmcs->host_cr0;
1480 vmcs12->host_cr3 = evmcs->host_cr3;
1481 vmcs12->host_cr4 = evmcs->host_cr4;
1482 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1483 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1484 vmcs12->host_rip = evmcs->host_rip;
1485 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1486 vmcs12->host_es_selector = evmcs->host_es_selector;
1487 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1488 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1489 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1490 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1491 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1492 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1493 }
1494
1495 if (unlikely(!(evmcs->hv_clean_fields &
1496 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1497 vmcs12->pin_based_vm_exec_control =
1498 evmcs->pin_based_vm_exec_control;
1499 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1500 vmcs12->secondary_vm_exec_control =
1501 evmcs->secondary_vm_exec_control;
1502 }
1503
1504 if (unlikely(!(evmcs->hv_clean_fields &
1505 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1506 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1507 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1508 }
1509
1510 if (unlikely(!(evmcs->hv_clean_fields &
1511 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1512 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1513 }
1514
1515 if (unlikely(!(evmcs->hv_clean_fields &
1516 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1517 vmcs12->guest_es_base = evmcs->guest_es_base;
1518 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1519 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1520 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1521 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1522 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1523 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1524 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1525 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1526 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1527 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1528 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1529 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1530 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1531 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1532 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1533 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1534 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1535 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1536 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1537 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1538 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1539 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1540 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1541 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1542 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1543 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1544 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1545 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1546 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1547 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1548 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1549 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1550 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1551 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1552 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1553 }
1554
1555 if (unlikely(!(evmcs->hv_clean_fields &
1556 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1557 vmcs12->tsc_offset = evmcs->tsc_offset;
1558 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1559 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1560 }
1561
1562 if (unlikely(!(evmcs->hv_clean_fields &
1563 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1564 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1565 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1566 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1567 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1568 vmcs12->guest_cr0 = evmcs->guest_cr0;
1569 vmcs12->guest_cr3 = evmcs->guest_cr3;
1570 vmcs12->guest_cr4 = evmcs->guest_cr4;
1571 vmcs12->guest_dr7 = evmcs->guest_dr7;
1572 }
1573
1574 if (unlikely(!(evmcs->hv_clean_fields &
1575 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1576 vmcs12->host_fs_base = evmcs->host_fs_base;
1577 vmcs12->host_gs_base = evmcs->host_gs_base;
1578 vmcs12->host_tr_base = evmcs->host_tr_base;
1579 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1580 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1581 vmcs12->host_rsp = evmcs->host_rsp;
1582 }
1583
1584 if (unlikely(!(evmcs->hv_clean_fields &
1585 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1586 vmcs12->ept_pointer = evmcs->ept_pointer;
1587 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1588 }
1589
1590 if (unlikely(!(evmcs->hv_clean_fields &
1591 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1592 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1593 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1594 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1595 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1596 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1597 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1598 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1599 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1600 vmcs12->guest_pending_dbg_exceptions =
1601 evmcs->guest_pending_dbg_exceptions;
1602 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1603 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1604 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1605 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1606 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1607 }
1608
1609 /*
1610 * Not used?
1611 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1612 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1613 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1614 * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1615 * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1616 * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1617 * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1618 * vmcs12->page_fault_error_code_mask =
1619 * evmcs->page_fault_error_code_mask;
1620 * vmcs12->page_fault_error_code_match =
1621 * evmcs->page_fault_error_code_match;
1622 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1623 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1624 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1625 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1626 */
1627
1628 /*
1629 * Read only fields:
1630 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1631 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1632 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1633 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1634 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1635 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1636 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1637 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1638 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1639 * vmcs12->exit_qualification = evmcs->exit_qualification;
1640 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1641 *
1642 * Not present in struct vmcs12:
1643 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1644 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1645 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1646 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1647 */
1648
1649 return 0;
1650 }
1651
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1652 static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1653 {
1654 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1655 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1656
1657 /*
1658 * Should not be changed by KVM:
1659 *
1660 * evmcs->host_es_selector = vmcs12->host_es_selector;
1661 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1662 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1663 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1664 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1665 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1666 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1667 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1668 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1669 * evmcs->host_cr0 = vmcs12->host_cr0;
1670 * evmcs->host_cr3 = vmcs12->host_cr3;
1671 * evmcs->host_cr4 = vmcs12->host_cr4;
1672 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1673 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1674 * evmcs->host_rip = vmcs12->host_rip;
1675 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1676 * evmcs->host_fs_base = vmcs12->host_fs_base;
1677 * evmcs->host_gs_base = vmcs12->host_gs_base;
1678 * evmcs->host_tr_base = vmcs12->host_tr_base;
1679 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1680 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1681 * evmcs->host_rsp = vmcs12->host_rsp;
1682 * sync_vmcs02_to_vmcs12() doesn't read these:
1683 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1684 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1685 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1686 * evmcs->ept_pointer = vmcs12->ept_pointer;
1687 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1688 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1689 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1690 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1691 * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1692 * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1693 * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1694 * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1695 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1696 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1697 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1698 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1699 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1700 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1701 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1702 * evmcs->page_fault_error_code_mask =
1703 * vmcs12->page_fault_error_code_mask;
1704 * evmcs->page_fault_error_code_match =
1705 * vmcs12->page_fault_error_code_match;
1706 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1707 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1708 * evmcs->tsc_offset = vmcs12->tsc_offset;
1709 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1710 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1711 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1712 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1713 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1714 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1715 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1716 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1717 *
1718 * Not present in struct vmcs12:
1719 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1720 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1721 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1722 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1723 */
1724
1725 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1726 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1727 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1728 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1729 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1730 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1731 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1732 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1733
1734 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1735 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1736 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1737 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1738 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1739 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1740 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1741 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1742 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1743 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1744
1745 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1746 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1747 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1748 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1749 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1750 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1751 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1752 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1753
1754 evmcs->guest_es_base = vmcs12->guest_es_base;
1755 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1756 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1757 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1758 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1759 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1760 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1761 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1762 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1763 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1764
1765 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1766 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1767
1768 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1769 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1770 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1771 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1772
1773 evmcs->guest_pending_dbg_exceptions =
1774 vmcs12->guest_pending_dbg_exceptions;
1775 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1776 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1777
1778 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1779 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1780
1781 evmcs->guest_cr0 = vmcs12->guest_cr0;
1782 evmcs->guest_cr3 = vmcs12->guest_cr3;
1783 evmcs->guest_cr4 = vmcs12->guest_cr4;
1784 evmcs->guest_dr7 = vmcs12->guest_dr7;
1785
1786 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1787
1788 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1789 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1790 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1791 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1792 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1793 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1794 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1795 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1796
1797 evmcs->exit_qualification = vmcs12->exit_qualification;
1798
1799 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1800 evmcs->guest_rsp = vmcs12->guest_rsp;
1801 evmcs->guest_rflags = vmcs12->guest_rflags;
1802
1803 evmcs->guest_interruptibility_info =
1804 vmcs12->guest_interruptibility_info;
1805 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1806 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1807 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1808 evmcs->vm_entry_exception_error_code =
1809 vmcs12->vm_entry_exception_error_code;
1810 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1811
1812 evmcs->guest_rip = vmcs12->guest_rip;
1813
1814 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1815
1816 return 0;
1817 }
1818
1819 /*
1820 * This is an equivalent of the nested hypervisor executing the vmptrld
1821 * instruction.
1822 */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)1823 static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1824 bool from_launch)
1825 {
1826 struct vcpu_vmx *vmx = to_vmx(vcpu);
1827 bool evmcs_gpa_changed = false;
1828 u64 evmcs_gpa;
1829
1830 if (likely(!vmx->nested.enlightened_vmcs_enabled))
1831 return 1;
1832
1833 if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
1834 return 1;
1835
1836 if (unlikely(!vmx->nested.hv_evmcs ||
1837 evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1838 if (!vmx->nested.hv_evmcs)
1839 vmx->nested.current_vmptr = -1ull;
1840
1841 nested_release_evmcs(vcpu);
1842
1843 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1844 &vmx->nested.hv_evmcs_map))
1845 return 0;
1846
1847 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1848
1849 /*
1850 * Currently, KVM only supports eVMCS version 1
1851 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1852 * value to first u32 field of eVMCS which should specify eVMCS
1853 * VersionNumber.
1854 *
1855 * Guest should be aware of supported eVMCS versions by host by
1856 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1857 * expected to set this CPUID leaf according to the value
1858 * returned in vmcs_version from nested_enable_evmcs().
1859 *
1860 * However, it turns out that Microsoft Hyper-V fails to comply
1861 * to their own invented interface: When Hyper-V use eVMCS, it
1862 * just sets first u32 field of eVMCS to revision_id specified
1863 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1864 * which is one of the supported versions specified in
1865 * CPUID.0x4000000A.EAX[0:15].
1866 *
1867 * To overcome Hyper-V bug, we accept here either a supported
1868 * eVMCS version or VMCS12 revision_id as valid values for first
1869 * u32 field of eVMCS.
1870 */
1871 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1872 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1873 nested_release_evmcs(vcpu);
1874 return 0;
1875 }
1876
1877 vmx->nested.dirty_vmcs12 = true;
1878 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1879
1880 evmcs_gpa_changed = true;
1881 /*
1882 * Unlike normal vmcs12, enlightened vmcs12 is not fully
1883 * reloaded from guest's memory (read only fields, fields not
1884 * present in struct hv_enlightened_vmcs, ...). Make sure there
1885 * are no leftovers.
1886 */
1887 if (from_launch) {
1888 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1889 memset(vmcs12, 0, sizeof(*vmcs12));
1890 vmcs12->hdr.revision_id = VMCS12_REVISION;
1891 }
1892
1893 }
1894
1895 /*
1896 * Clean fields data can't de used on VMLAUNCH and when we switch
1897 * between different L2 guests as KVM keeps a single VMCS12 per L1.
1898 */
1899 if (from_launch || evmcs_gpa_changed)
1900 vmx->nested.hv_evmcs->hv_clean_fields &=
1901 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1902
1903 return 1;
1904 }
1905
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)1906 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
1907 {
1908 struct vcpu_vmx *vmx = to_vmx(vcpu);
1909
1910 /*
1911 * hv_evmcs may end up being not mapped after migration (when
1912 * L2 was running), map it here to make sure vmcs12 changes are
1913 * properly reflected.
1914 */
1915 if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1916 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1917
1918 if (vmx->nested.hv_evmcs) {
1919 copy_vmcs12_to_enlightened(vmx);
1920 /* All fields are clean */
1921 vmx->nested.hv_evmcs->hv_clean_fields |=
1922 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1923 } else {
1924 copy_vmcs12_to_shadow(vmx);
1925 }
1926
1927 vmx->nested.need_vmcs12_to_shadow_sync = false;
1928 }
1929
vmx_preemption_timer_fn(struct hrtimer * timer)1930 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1931 {
1932 struct vcpu_vmx *vmx =
1933 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1934
1935 vmx->nested.preemption_timer_expired = true;
1936 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1937 kvm_vcpu_kick(&vmx->vcpu);
1938
1939 return HRTIMER_NORESTART;
1940 }
1941
vmx_start_preemption_timer(struct kvm_vcpu * vcpu)1942 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1943 {
1944 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1945 struct vcpu_vmx *vmx = to_vmx(vcpu);
1946
1947 /*
1948 * A timer value of zero is architecturally guaranteed to cause
1949 * a VMExit prior to executing any instructions in the guest.
1950 */
1951 if (preemption_timeout == 0) {
1952 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1953 return;
1954 }
1955
1956 if (vcpu->arch.virtual_tsc_khz == 0)
1957 return;
1958
1959 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1960 preemption_timeout *= 1000000;
1961 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1962 hrtimer_start(&vmx->nested.preemption_timer,
1963 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1964 }
1965
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)1966 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1967 {
1968 if (vmx->nested.nested_run_pending &&
1969 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1970 return vmcs12->guest_ia32_efer;
1971 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1972 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1973 else
1974 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1975 }
1976
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)1977 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1978 {
1979 /*
1980 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1981 * according to L0's settings (vmcs12 is irrelevant here). Host
1982 * fields that come from L0 and are not constant, e.g. HOST_CR3,
1983 * will be set as needed prior to VMLAUNCH/VMRESUME.
1984 */
1985 if (vmx->nested.vmcs02_initialized)
1986 return;
1987 vmx->nested.vmcs02_initialized = true;
1988
1989 /*
1990 * We don't care what the EPTP value is we just need to guarantee
1991 * it's valid so we don't get a false positive when doing early
1992 * consistency checks.
1993 */
1994 if (enable_ept && nested_early_check)
1995 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1996
1997 /* All VMFUNCs are currently emulated through L0 vmexits. */
1998 if (cpu_has_vmx_vmfunc())
1999 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2000
2001 if (cpu_has_vmx_posted_intr())
2002 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2003
2004 if (cpu_has_vmx_msr_bitmap())
2005 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2006
2007 /*
2008 * The PML address never changes, so it is constant in vmcs02.
2009 * Conceptually we want to copy the PML index from vmcs01 here,
2010 * and then back to vmcs01 on nested vmexit. But since we flush
2011 * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2012 * index is also effectively constant in vmcs02.
2013 */
2014 if (enable_pml) {
2015 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
2016 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2017 }
2018
2019 if (cpu_has_vmx_encls_vmexit())
2020 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2021
2022 /*
2023 * Set the MSR load/store lists to match L0's settings. Only the
2024 * addresses are constant (for vmcs02), the counts can change based
2025 * on L2's behavior, e.g. switching to/from long mode.
2026 */
2027 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2028 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2029 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2030
2031 vmx_set_constant_host_state(vmx);
2032 }
2033
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2034 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2035 struct vmcs12 *vmcs12)
2036 {
2037 prepare_vmcs02_constant_state(vmx);
2038
2039 vmcs_write64(VMCS_LINK_POINTER, -1ull);
2040
2041 if (enable_vpid) {
2042 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2043 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2044 else
2045 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2046 }
2047 }
2048
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2049 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2050 {
2051 u32 exec_control, vmcs12_exec_ctrl;
2052 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2053
2054 if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
2055 prepare_vmcs02_early_rare(vmx, vmcs12);
2056
2057 /*
2058 * PIN CONTROLS
2059 */
2060 exec_control = vmx_pin_based_exec_ctrl(vmx);
2061 exec_control |= (vmcs12->pin_based_vm_exec_control &
2062 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2063
2064 /* Posted interrupts setting is only taken from vmcs12. */
2065 vmx->nested.pi_pending = false;
2066 if (nested_cpu_has_posted_intr(vmcs12))
2067 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2068 else
2069 exec_control &= ~PIN_BASED_POSTED_INTR;
2070 pin_controls_set(vmx, exec_control);
2071
2072 /*
2073 * EXEC CONTROLS
2074 */
2075 exec_control = vmx_exec_control(vmx); /* L0's desires */
2076 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2077 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2078 exec_control &= ~CPU_BASED_TPR_SHADOW;
2079 exec_control |= vmcs12->cpu_based_vm_exec_control;
2080
2081 if (exec_control & CPU_BASED_TPR_SHADOW)
2082 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2083 #ifdef CONFIG_X86_64
2084 else
2085 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2086 CPU_BASED_CR8_STORE_EXITING;
2087 #endif
2088
2089 /*
2090 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2091 * for I/O port accesses.
2092 */
2093 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2094 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2095
2096 /*
2097 * This bit will be computed in nested_get_vmcs12_pages, because
2098 * we do not have access to L1's MSR bitmap yet. For now, keep
2099 * the same bit as before, hoping to avoid multiple VMWRITEs that
2100 * only set/clear this bit.
2101 */
2102 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2103 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2104
2105 exec_controls_set(vmx, exec_control);
2106
2107 /*
2108 * SECONDARY EXEC CONTROLS
2109 */
2110 if (cpu_has_secondary_exec_ctrls()) {
2111 exec_control = vmx->secondary_exec_control;
2112
2113 /* Take the following fields only from vmcs12 */
2114 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2115 SECONDARY_EXEC_ENABLE_INVPCID |
2116 SECONDARY_EXEC_RDTSCP |
2117 SECONDARY_EXEC_XSAVES |
2118 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2119 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2120 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2121 SECONDARY_EXEC_ENABLE_VMFUNC);
2122 if (nested_cpu_has(vmcs12,
2123 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2124 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2125 ~SECONDARY_EXEC_ENABLE_PML;
2126 exec_control |= vmcs12_exec_ctrl;
2127 }
2128
2129 /* VMCS shadowing for L2 is emulated for now */
2130 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2131
2132 /*
2133 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2134 * will not have to rewrite the controls just for this bit.
2135 */
2136 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2137 (vmcs12->guest_cr4 & X86_CR4_UMIP))
2138 exec_control |= SECONDARY_EXEC_DESC;
2139
2140 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2141 vmcs_write16(GUEST_INTR_STATUS,
2142 vmcs12->guest_intr_status);
2143
2144 secondary_exec_controls_set(vmx, exec_control);
2145 }
2146
2147 /*
2148 * ENTRY CONTROLS
2149 *
2150 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2151 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2152 * on the related bits (if supported by the CPU) in the hope that
2153 * we can avoid VMWrites during vmx_set_efer().
2154 */
2155 exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2156 ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2157 if (cpu_has_load_ia32_efer()) {
2158 if (guest_efer & EFER_LMA)
2159 exec_control |= VM_ENTRY_IA32E_MODE;
2160 if (guest_efer != host_efer)
2161 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2162 }
2163 vm_entry_controls_set(vmx, exec_control);
2164
2165 /*
2166 * EXIT CONTROLS
2167 *
2168 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2169 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2170 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2171 */
2172 exec_control = vmx_vmexit_ctrl();
2173 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2174 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2175 vm_exit_controls_set(vmx, exec_control);
2176
2177 /*
2178 * Interrupt/Exception Fields
2179 */
2180 if (vmx->nested.nested_run_pending) {
2181 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2182 vmcs12->vm_entry_intr_info_field);
2183 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2184 vmcs12->vm_entry_exception_error_code);
2185 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2186 vmcs12->vm_entry_instruction_len);
2187 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2188 vmcs12->guest_interruptibility_info);
2189 vmx->loaded_vmcs->nmi_known_unmasked =
2190 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2191 } else {
2192 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2193 }
2194 }
2195
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2196 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2197 {
2198 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2199
2200 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2201 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2202 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2203 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2204 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2205 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2206 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2207 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2208 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2209 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2210 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2211 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2212 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2213 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2214 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2215 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2216 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2217 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2218 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2219 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2220 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2221 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2222 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2223 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2224 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2225 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2226 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2227 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2228 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2229 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2230 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2231 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2232 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2233 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2234 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2235 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2236 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2237 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2238
2239 vmx->segment_cache.bitmask = 0;
2240 }
2241
2242 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2243 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2244 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2245 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2246 vmcs12->guest_pending_dbg_exceptions);
2247 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2248 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2249
2250 /*
2251 * L1 may access the L2's PDPTR, so save them to construct
2252 * vmcs12
2253 */
2254 if (enable_ept) {
2255 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2256 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2257 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2258 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2259 }
2260
2261 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2262 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2263 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2264 }
2265
2266 if (nested_cpu_has_xsaves(vmcs12))
2267 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2268
2269 /*
2270 * Whether page-faults are trapped is determined by a combination of
2271 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2272 * If enable_ept, L0 doesn't care about page faults and we should
2273 * set all of these to L1's desires. However, if !enable_ept, L0 does
2274 * care about (at least some) page faults, and because it is not easy
2275 * (if at all possible?) to merge L0 and L1's desires, we simply ask
2276 * to exit on each and every L2 page fault. This is done by setting
2277 * MASK=MATCH=0 and (see below) EB.PF=1.
2278 * Note that below we don't need special code to set EB.PF beyond the
2279 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2280 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2281 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2282 */
2283 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2284 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2285 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2286 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2287
2288 if (cpu_has_vmx_apicv()) {
2289 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2290 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2291 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2292 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2293 }
2294
2295 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2296 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2297
2298 set_cr4_guest_host_mask(vmx);
2299 }
2300
2301 /*
2302 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2303 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2304 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2305 * guest in a way that will both be appropriate to L1's requests, and our
2306 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2307 * function also has additional necessary side-effects, like setting various
2308 * vcpu->arch fields.
2309 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2310 * is assigned to entry_failure_code on failure.
2311 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 * entry_failure_code)2312 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2313 u32 *entry_failure_code)
2314 {
2315 struct vcpu_vmx *vmx = to_vmx(vcpu);
2316 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2317 bool load_guest_pdptrs_vmcs12 = false;
2318
2319 if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
2320 prepare_vmcs02_rare(vmx, vmcs12);
2321 vmx->nested.dirty_vmcs12 = false;
2322
2323 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2324 !(hv_evmcs->hv_clean_fields &
2325 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2326 }
2327
2328 if (vmx->nested.nested_run_pending &&
2329 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2330 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2331 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2332 } else {
2333 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2334 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2335 }
2336 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2337 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2338 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2339 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2340
2341 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2342 * bitwise-or of what L1 wants to trap for L2, and what we want to
2343 * trap. Note that CR0.TS also needs updating - we do this later.
2344 */
2345 update_exception_bitmap(vcpu);
2346 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2347 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2348
2349 if (vmx->nested.nested_run_pending &&
2350 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2351 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2352 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2353 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2354 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2355 }
2356
2357 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2358
2359 if (kvm_has_tsc_control)
2360 decache_tsc_multiplier(vmx);
2361
2362 if (enable_vpid) {
2363 /*
2364 * There is no direct mapping between vpid02 and vpid12, the
2365 * vpid02 is per-vCPU for L0 and reused while the value of
2366 * vpid12 is changed w/ one invvpid during nested vmentry.
2367 * The vpid12 is allocated by L1 for L2, so it will not
2368 * influence global bitmap(for vpid01 and vpid02 allocation)
2369 * even if spawn a lot of nested vCPUs.
2370 */
2371 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2372 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2373 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2374 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2375 }
2376 } else {
2377 /*
2378 * If L1 use EPT, then L0 needs to execute INVEPT on
2379 * EPTP02 instead of EPTP01. Therefore, delay TLB
2380 * flush until vmcs02->eptp is fully updated by
2381 * KVM_REQ_LOAD_CR3. Note that this assumes
2382 * KVM_REQ_TLB_FLUSH is evaluated after
2383 * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2384 */
2385 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2386 }
2387 }
2388
2389 if (nested_cpu_has_ept(vmcs12))
2390 nested_ept_init_mmu_context(vcpu);
2391 else if (nested_cpu_has2(vmcs12,
2392 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2393 vmx_flush_tlb(vcpu, true);
2394
2395 /*
2396 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2397 * bits which we consider mandatory enabled.
2398 * The CR0_READ_SHADOW is what L2 should have expected to read given
2399 * the specifications by L1; It's not enough to take
2400 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2401 * have more bits than L1 expected.
2402 */
2403 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2404 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2405
2406 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2407 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2408
2409 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2410 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2411 vmx_set_efer(vcpu, vcpu->arch.efer);
2412
2413 /*
2414 * Guest state is invalid and unrestricted guest is disabled,
2415 * which means L1 attempted VMEntry to L2 with invalid state.
2416 * Fail the VMEntry.
2417 */
2418 if (vmx->emulation_required) {
2419 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2420 return -EINVAL;
2421 }
2422
2423 /* Shadow page tables on either EPT or shadow page tables. */
2424 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2425 entry_failure_code))
2426 return -EINVAL;
2427
2428 /*
2429 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2430 * on nested VM-Exit, which can occur without actually running L2 and
2431 * thus without hitting vmx_set_cr3(), e.g. if L1 is entering L2 with
2432 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2433 * transition to HLT instead of running L2.
2434 */
2435 if (enable_ept)
2436 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2437
2438 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2439 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2440 is_pae_paging(vcpu)) {
2441 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2442 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2443 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2444 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2445 }
2446
2447 if (!enable_ept)
2448 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2449
2450 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2451 kvm_rip_write(vcpu, vmcs12->guest_rip);
2452 return 0;
2453 }
2454
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2455 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2456 {
2457 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2458 nested_cpu_has_virtual_nmis(vmcs12)))
2459 return -EINVAL;
2460
2461 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2462 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2463 return -EINVAL;
2464
2465 return 0;
2466 }
2467
valid_ept_address(struct kvm_vcpu * vcpu,u64 address)2468 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2469 {
2470 struct vcpu_vmx *vmx = to_vmx(vcpu);
2471 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2472
2473 /* Check for memory type validity */
2474 switch (address & VMX_EPTP_MT_MASK) {
2475 case VMX_EPTP_MT_UC:
2476 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2477 return false;
2478 break;
2479 case VMX_EPTP_MT_WB:
2480 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2481 return false;
2482 break;
2483 default:
2484 return false;
2485 }
2486
2487 /* only 4 levels page-walk length are valid */
2488 if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4))
2489 return false;
2490
2491 /* Reserved bits should not be set */
2492 if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f)))
2493 return false;
2494
2495 /* AD, if set, should be supported */
2496 if (address & VMX_EPTP_AD_ENABLE_BIT) {
2497 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2498 return false;
2499 }
2500
2501 return true;
2502 }
2503
2504 /*
2505 * Checks related to VM-Execution Control Fields
2506 */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2507 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2508 struct vmcs12 *vmcs12)
2509 {
2510 struct vcpu_vmx *vmx = to_vmx(vcpu);
2511
2512 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2513 vmx->nested.msrs.pinbased_ctls_low,
2514 vmx->nested.msrs.pinbased_ctls_high)) ||
2515 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2516 vmx->nested.msrs.procbased_ctls_low,
2517 vmx->nested.msrs.procbased_ctls_high)))
2518 return -EINVAL;
2519
2520 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2521 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2522 vmx->nested.msrs.secondary_ctls_low,
2523 vmx->nested.msrs.secondary_ctls_high)))
2524 return -EINVAL;
2525
2526 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2527 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2528 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2529 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2530 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2531 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2532 nested_vmx_check_nmi_controls(vmcs12) ||
2533 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2534 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2535 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2536 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2537 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2538 return -EINVAL;
2539
2540 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2541 nested_cpu_has_save_preemption_timer(vmcs12))
2542 return -EINVAL;
2543
2544 if (nested_cpu_has_ept(vmcs12) &&
2545 CC(!valid_ept_address(vcpu, vmcs12->ept_pointer)))
2546 return -EINVAL;
2547
2548 if (nested_cpu_has_vmfunc(vmcs12)) {
2549 if (CC(vmcs12->vm_function_control &
2550 ~vmx->nested.msrs.vmfunc_controls))
2551 return -EINVAL;
2552
2553 if (nested_cpu_has_eptp_switching(vmcs12)) {
2554 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2555 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2556 return -EINVAL;
2557 }
2558 }
2559
2560 return 0;
2561 }
2562
2563 /*
2564 * Checks related to VM-Exit Control Fields
2565 */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2566 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2567 struct vmcs12 *vmcs12)
2568 {
2569 struct vcpu_vmx *vmx = to_vmx(vcpu);
2570
2571 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2572 vmx->nested.msrs.exit_ctls_low,
2573 vmx->nested.msrs.exit_ctls_high)) ||
2574 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2575 return -EINVAL;
2576
2577 return 0;
2578 }
2579
2580 /*
2581 * Checks related to VM-Entry Control Fields
2582 */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2583 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2584 struct vmcs12 *vmcs12)
2585 {
2586 struct vcpu_vmx *vmx = to_vmx(vcpu);
2587
2588 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2589 vmx->nested.msrs.entry_ctls_low,
2590 vmx->nested.msrs.entry_ctls_high)))
2591 return -EINVAL;
2592
2593 /*
2594 * From the Intel SDM, volume 3:
2595 * Fields relevant to VM-entry event injection must be set properly.
2596 * These fields are the VM-entry interruption-information field, the
2597 * VM-entry exception error code, and the VM-entry instruction length.
2598 */
2599 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2600 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2601 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2602 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2603 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2604 bool should_have_error_code;
2605 bool urg = nested_cpu_has2(vmcs12,
2606 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2607 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2608
2609 /* VM-entry interruption-info field: interruption type */
2610 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2611 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2612 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2613 return -EINVAL;
2614
2615 /* VM-entry interruption-info field: vector */
2616 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2617 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2618 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2619 return -EINVAL;
2620
2621 /* VM-entry interruption-info field: deliver error code */
2622 should_have_error_code =
2623 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2624 x86_exception_has_error_code(vector);
2625 if (CC(has_error_code != should_have_error_code))
2626 return -EINVAL;
2627
2628 /* VM-entry exception error code */
2629 if (CC(has_error_code &&
2630 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2631 return -EINVAL;
2632
2633 /* VM-entry interruption-info field: reserved bits */
2634 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2635 return -EINVAL;
2636
2637 /* VM-entry instruction length */
2638 switch (intr_type) {
2639 case INTR_TYPE_SOFT_EXCEPTION:
2640 case INTR_TYPE_SOFT_INTR:
2641 case INTR_TYPE_PRIV_SW_EXCEPTION:
2642 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2643 CC(vmcs12->vm_entry_instruction_len == 0 &&
2644 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2645 return -EINVAL;
2646 }
2647 }
2648
2649 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2650 return -EINVAL;
2651
2652 return 0;
2653 }
2654
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2655 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2656 struct vmcs12 *vmcs12)
2657 {
2658 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2659 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2660 nested_check_vm_entry_controls(vcpu, vmcs12))
2661 return -EINVAL;
2662
2663 return 0;
2664 }
2665
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2666 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2667 struct vmcs12 *vmcs12)
2668 {
2669 bool ia32e;
2670
2671 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2672 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2673 CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
2674 return -EINVAL;
2675
2676 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2677 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2678 return -EINVAL;
2679
2680 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2681 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2682 return -EINVAL;
2683
2684 #ifdef CONFIG_X86_64
2685 ia32e = !!(vcpu->arch.efer & EFER_LMA);
2686 #else
2687 ia32e = false;
2688 #endif
2689
2690 if (ia32e) {
2691 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2692 CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2693 return -EINVAL;
2694 } else {
2695 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2696 CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2697 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2698 CC((vmcs12->host_rip) >> 32))
2699 return -EINVAL;
2700 }
2701
2702 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2703 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2704 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2705 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2706 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2707 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2708 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2709 CC(vmcs12->host_cs_selector == 0) ||
2710 CC(vmcs12->host_tr_selector == 0) ||
2711 CC(vmcs12->host_ss_selector == 0 && !ia32e))
2712 return -EINVAL;
2713
2714 #ifdef CONFIG_X86_64
2715 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2716 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2717 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2718 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2719 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2720 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2721 return -EINVAL;
2722 #endif
2723
2724 /*
2725 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2726 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2727 * the values of the LMA and LME bits in the field must each be that of
2728 * the host address-space size VM-exit control.
2729 */
2730 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2731 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2732 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2733 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2734 return -EINVAL;
2735 }
2736
2737 return 0;
2738 }
2739
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2740 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2741 struct vmcs12 *vmcs12)
2742 {
2743 int r = 0;
2744 struct vmcs12 *shadow;
2745 struct kvm_host_map map;
2746
2747 if (vmcs12->vmcs_link_pointer == -1ull)
2748 return 0;
2749
2750 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2751 return -EINVAL;
2752
2753 if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2754 return -EINVAL;
2755
2756 shadow = map.hva;
2757
2758 if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2759 CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2760 r = -EINVAL;
2761
2762 kvm_vcpu_unmap(vcpu, &map, false);
2763 return r;
2764 }
2765
2766 /*
2767 * Checks related to Guest Non-register State
2768 */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)2769 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2770 {
2771 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2772 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
2773 return -EINVAL;
2774
2775 return 0;
2776 }
2777
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 * exit_qual)2778 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2779 struct vmcs12 *vmcs12,
2780 u32 *exit_qual)
2781 {
2782 bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
2783
2784 *exit_qual = ENTRY_FAIL_DEFAULT;
2785
2786 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2787 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2788 return -EINVAL;
2789
2790 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2791 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2792 return -EINVAL;
2793
2794 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2795 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2796 return -EINVAL;
2797 }
2798
2799 if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
2800 return -EINVAL;
2801
2802 if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
2803 CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
2804 return -EINVAL;
2805
2806 /*
2807 * If the load IA32_EFER VM-entry control is 1, the following checks
2808 * are performed on the field for the IA32_EFER MSR:
2809 * - Bits reserved in the IA32_EFER MSR must be 0.
2810 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2811 * the IA-32e mode guest VM-exit control. It must also be identical
2812 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2813 * CR0.PG) is 1.
2814 */
2815 if (to_vmx(vcpu)->nested.nested_run_pending &&
2816 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2817 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2818 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2819 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2820 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2821 return -EINVAL;
2822 }
2823
2824 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2825 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2826 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2827 return -EINVAL;
2828
2829 if (nested_check_guest_non_reg_state(vmcs12))
2830 return -EINVAL;
2831
2832 return 0;
2833 }
2834
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)2835 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2836 {
2837 struct vcpu_vmx *vmx = to_vmx(vcpu);
2838 unsigned long cr3, cr4;
2839 bool vm_fail;
2840
2841 if (!nested_early_check)
2842 return 0;
2843
2844 if (vmx->msr_autoload.host.nr)
2845 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2846 if (vmx->msr_autoload.guest.nr)
2847 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2848
2849 preempt_disable();
2850
2851 vmx_prepare_switch_to_guest(vcpu);
2852
2853 /*
2854 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2855 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
2856 * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2857 * there is no need to preserve other bits or save/restore the field.
2858 */
2859 vmcs_writel(GUEST_RFLAGS, 0);
2860
2861 cr3 = __get_current_cr3_fast();
2862 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2863 vmcs_writel(HOST_CR3, cr3);
2864 vmx->loaded_vmcs->host_state.cr3 = cr3;
2865 }
2866
2867 cr4 = cr4_read_shadow();
2868 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2869 vmcs_writel(HOST_CR4, cr4);
2870 vmx->loaded_vmcs->host_state.cr4 = cr4;
2871 }
2872
2873 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
2874 __vmx_vcpu_run_flags(vmx));
2875
2876 if (vmx->msr_autoload.host.nr)
2877 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2878 if (vmx->msr_autoload.guest.nr)
2879 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2880
2881 if (vm_fail) {
2882 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
2883
2884 preempt_enable();
2885
2886 trace_kvm_nested_vmenter_failed(
2887 "early hardware check VM-instruction error: ", error);
2888 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2889 return 1;
2890 }
2891
2892 /*
2893 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2894 */
2895 local_irq_enable();
2896 if (hw_breakpoint_active())
2897 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2898 preempt_enable();
2899
2900 /*
2901 * A non-failing VMEntry means we somehow entered guest mode with
2902 * an illegal RIP, and that's just the tip of the iceberg. There
2903 * is no telling what memory has been modified or what state has
2904 * been exposed to unknown code. Hitting this all but guarantees
2905 * a (very critical) hardware issue.
2906 */
2907 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2908 VMX_EXIT_REASONS_FAILED_VMENTRY));
2909
2910 return 0;
2911 }
2912
2913 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2914 struct vmcs12 *vmcs12);
2915
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)2916 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2917 {
2918 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2919 struct vcpu_vmx *vmx = to_vmx(vcpu);
2920 struct kvm_host_map *map;
2921 struct page *page;
2922 u64 hpa;
2923
2924 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2925 /*
2926 * Translate L1 physical address to host physical
2927 * address for vmcs02. Keep the page pinned, so this
2928 * physical address remains valid. We keep a reference
2929 * to it so we can release it later.
2930 */
2931 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2932 kvm_release_page_dirty(vmx->nested.apic_access_page);
2933 vmx->nested.apic_access_page = NULL;
2934 }
2935 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2936 if (!is_error_page(page)) {
2937 vmx->nested.apic_access_page = page;
2938 hpa = page_to_phys(vmx->nested.apic_access_page);
2939 vmcs_write64(APIC_ACCESS_ADDR, hpa);
2940 } else {
2941 pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
2942 __func__);
2943 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2944 vcpu->run->internal.suberror =
2945 KVM_INTERNAL_ERROR_EMULATION;
2946 vcpu->run->internal.ndata = 0;
2947 return false;
2948 }
2949 }
2950
2951 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2952 map = &vmx->nested.virtual_apic_map;
2953
2954 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
2955 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
2956 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
2957 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
2958 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2959 /*
2960 * The processor will never use the TPR shadow, simply
2961 * clear the bit from the execution control. Such a
2962 * configuration is useless, but it happens in tests.
2963 * For any other configuration, failing the vm entry is
2964 * _not_ what the processor does but it's basically the
2965 * only possibility we have.
2966 */
2967 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
2968 } else {
2969 /*
2970 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
2971 * force VM-Entry to fail.
2972 */
2973 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2974 }
2975 }
2976
2977 if (nested_cpu_has_posted_intr(vmcs12)) {
2978 map = &vmx->nested.pi_desc_map;
2979
2980 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
2981 vmx->nested.pi_desc =
2982 (struct pi_desc *)(((void *)map->hva) +
2983 offset_in_page(vmcs12->posted_intr_desc_addr));
2984 vmcs_write64(POSTED_INTR_DESC_ADDR,
2985 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
2986 }
2987 }
2988 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2989 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2990 else
2991 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
2992 return true;
2993 }
2994
2995 /*
2996 * Intel's VMX Instruction Reference specifies a common set of prerequisites
2997 * for running VMX instructions (except VMXON, whose prerequisites are
2998 * slightly different). It also specifies what exception to inject otherwise.
2999 * Note that many of these exceptions have priority over VM exits, so they
3000 * don't have to be checked again here.
3001 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3002 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3003 {
3004 if (!to_vmx(vcpu)->nested.vmxon) {
3005 kvm_queue_exception(vcpu, UD_VECTOR);
3006 return 0;
3007 }
3008
3009 if (vmx_get_cpl(vcpu)) {
3010 kvm_inject_gp(vcpu, 0);
3011 return 0;
3012 }
3013
3014 return 1;
3015 }
3016
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)3017 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3018 {
3019 u8 rvi = vmx_get_rvi();
3020 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3021
3022 return ((rvi & 0xf0) > (vppr & 0xf0));
3023 }
3024
3025 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3026 struct vmcs12 *vmcs12);
3027
3028 /*
3029 * If from_vmentry is false, this is being called from state restore (either RSM
3030 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3031 *
3032 * Returns:
3033 * NVMX_ENTRY_SUCCESS: Entered VMX non-root mode
3034 * NVMX_ENTRY_VMFAIL: Consistency check VMFail
3035 * NVMX_ENTRY_VMEXIT: Consistency check VMExit
3036 * NVMX_ENTRY_KVM_INTERNAL_ERROR: KVM internal error
3037 */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3038 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3039 bool from_vmentry)
3040 {
3041 struct vcpu_vmx *vmx = to_vmx(vcpu);
3042 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3043 bool evaluate_pending_interrupts;
3044 u32 exit_reason = EXIT_REASON_INVALID_STATE;
3045 u32 exit_qual;
3046
3047 evaluate_pending_interrupts = exec_controls_get(vmx) &
3048 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3049 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3050 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3051
3052 if (!vmx->nested.nested_run_pending ||
3053 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3054 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3055 if (kvm_mpx_supported() &&
3056 (!vmx->nested.nested_run_pending ||
3057 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3058 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3059
3060 /*
3061 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3062 * nested early checks are disabled. In the event of a "late" VM-Fail,
3063 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3064 * software model to the pre-VMEntry host state. When EPT is disabled,
3065 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3066 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3067 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3068 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3069 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3070 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3071 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3072 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3073 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3074 * path would need to manually save/restore vmcs01.GUEST_CR3.
3075 */
3076 if (!enable_ept && !nested_early_check)
3077 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3078
3079 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3080
3081 prepare_vmcs02_early(vmx, vmcs12);
3082
3083 if (from_vmentry) {
3084 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3085 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3086 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3087 }
3088
3089 if (nested_vmx_check_vmentry_hw(vcpu)) {
3090 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3091 return NVMX_VMENTRY_VMFAIL;
3092 }
3093
3094 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
3095 goto vmentry_fail_vmexit;
3096 }
3097
3098 enter_guest_mode(vcpu);
3099 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3100 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3101
3102 if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3103 goto vmentry_fail_vmexit_guest_mode;
3104
3105 if (from_vmentry) {
3106 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3107 exit_qual = nested_vmx_load_msr(vcpu,
3108 vmcs12->vm_entry_msr_load_addr,
3109 vmcs12->vm_entry_msr_load_count);
3110 if (exit_qual)
3111 goto vmentry_fail_vmexit_guest_mode;
3112 } else {
3113 /*
3114 * The MMU is not initialized to point at the right entities yet and
3115 * "get pages" would need to read data from the guest (i.e. we will
3116 * need to perform gpa to hpa translation). Request a call
3117 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3118 * have already been set at vmentry time and should not be reset.
3119 */
3120 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3121 }
3122
3123 /*
3124 * If L1 had a pending IRQ/NMI until it executed
3125 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3126 * disallowed (e.g. interrupts disabled), L0 needs to
3127 * evaluate if this pending event should cause an exit from L2
3128 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3129 * intercept EXTERNAL_INTERRUPT).
3130 *
3131 * Usually this would be handled by the processor noticing an
3132 * IRQ/NMI window request, or checking RVI during evaluation of
3133 * pending virtual interrupts. However, this setting was done
3134 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3135 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3136 */
3137 if (unlikely(evaluate_pending_interrupts))
3138 kvm_make_request(KVM_REQ_EVENT, vcpu);
3139
3140 /*
3141 * Do not start the preemption timer hrtimer until after we know
3142 * we are successful, so that only nested_vmx_vmexit needs to cancel
3143 * the timer.
3144 */
3145 vmx->nested.preemption_timer_expired = false;
3146 if (nested_cpu_has_preemption_timer(vmcs12))
3147 vmx_start_preemption_timer(vcpu);
3148
3149 /*
3150 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3151 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3152 * returned as far as L1 is concerned. It will only return (and set
3153 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3154 */
3155 return NVMX_VMENTRY_SUCCESS;
3156
3157 /*
3158 * A failed consistency check that leads to a VMExit during L1's
3159 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3160 * 26.7 "VM-entry failures during or after loading guest state".
3161 */
3162 vmentry_fail_vmexit_guest_mode:
3163 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3164 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3165 leave_guest_mode(vcpu);
3166
3167 vmentry_fail_vmexit:
3168 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3169
3170 if (!from_vmentry)
3171 return NVMX_VMENTRY_VMEXIT;
3172
3173 load_vmcs12_host_state(vcpu, vmcs12);
3174 vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3175 vmcs12->exit_qualification = exit_qual;
3176 if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3177 vmx->nested.need_vmcs12_to_shadow_sync = true;
3178 return NVMX_VMENTRY_VMEXIT;
3179 }
3180
3181 /*
3182 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3183 * for running an L2 nested guest.
3184 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3185 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3186 {
3187 struct vmcs12 *vmcs12;
3188 enum nvmx_vmentry_status status;
3189 struct vcpu_vmx *vmx = to_vmx(vcpu);
3190 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3191
3192 if (!nested_vmx_check_permission(vcpu))
3193 return 1;
3194
3195 if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
3196 return 1;
3197
3198 if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3199 return nested_vmx_failInvalid(vcpu);
3200
3201 vmcs12 = get_vmcs12(vcpu);
3202
3203 /*
3204 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3205 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3206 * rather than RFLAGS.ZF, and no error number is stored to the
3207 * VM-instruction error field.
3208 */
3209 if (vmcs12->hdr.shadow_vmcs)
3210 return nested_vmx_failInvalid(vcpu);
3211
3212 if (vmx->nested.hv_evmcs) {
3213 copy_enlightened_to_vmcs12(vmx);
3214 /* Enlightened VMCS doesn't have launch state */
3215 vmcs12->launch_state = !launch;
3216 } else if (enable_shadow_vmcs) {
3217 copy_shadow_to_vmcs12(vmx);
3218 }
3219
3220 /*
3221 * The nested entry process starts with enforcing various prerequisites
3222 * on vmcs12 as required by the Intel SDM, and act appropriately when
3223 * they fail: As the SDM explains, some conditions should cause the
3224 * instruction to fail, while others will cause the instruction to seem
3225 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3226 * To speed up the normal (success) code path, we should avoid checking
3227 * for misconfigurations which will anyway be caught by the processor
3228 * when using the merged vmcs02.
3229 */
3230 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3231 return nested_vmx_failValid(vcpu,
3232 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3233
3234 if (vmcs12->launch_state == launch)
3235 return nested_vmx_failValid(vcpu,
3236 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3237 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3238
3239 if (nested_vmx_check_controls(vcpu, vmcs12))
3240 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3241
3242 if (nested_vmx_check_host_state(vcpu, vmcs12))
3243 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3244
3245 /*
3246 * We're finally done with prerequisite checking, and can start with
3247 * the nested entry.
3248 */
3249 vmx->nested.nested_run_pending = 1;
3250 status = nested_vmx_enter_non_root_mode(vcpu, true);
3251 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3252 goto vmentry_failed;
3253
3254 /* Hide L1D cache contents from the nested guest. */
3255 vmx->vcpu.arch.l1tf_flush_l1d = true;
3256
3257 /*
3258 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3259 * also be used as part of restoring nVMX state for
3260 * snapshot restore (migration).
3261 *
3262 * In this flow, it is assumed that vmcs12 cache was
3263 * trasferred as part of captured nVMX state and should
3264 * therefore not be read from guest memory (which may not
3265 * exist on destination host yet).
3266 */
3267 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3268
3269 /*
3270 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3271 * awakened by event injection or by an NMI-window VM-exit or
3272 * by an interrupt-window VM-exit, halt the vcpu.
3273 */
3274 if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
3275 !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3276 !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
3277 !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
3278 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3279 vmx->nested.nested_run_pending = 0;
3280 return kvm_vcpu_halt(vcpu);
3281 }
3282 return 1;
3283
3284 vmentry_failed:
3285 vmx->nested.nested_run_pending = 0;
3286 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3287 return 0;
3288 if (status == NVMX_VMENTRY_VMEXIT)
3289 return 1;
3290 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3291 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3292 }
3293
3294 /*
3295 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3296 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3297 * This function returns the new value we should put in vmcs12.guest_cr0.
3298 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3299 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3300 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3301 * didn't trap the bit, because if L1 did, so would L0).
3302 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3303 * been modified by L2, and L1 knows it. So just leave the old value of
3304 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3305 * isn't relevant, because if L0 traps this bit it can set it to anything.
3306 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3307 * changed these bits, and therefore they need to be updated, but L0
3308 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3309 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3310 */
3311 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3312 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3313 {
3314 return
3315 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3316 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3317 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3318 vcpu->arch.cr0_guest_owned_bits));
3319 }
3320
3321 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3322 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3323 {
3324 return
3325 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3326 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3327 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3328 vcpu->arch.cr4_guest_owned_bits));
3329 }
3330
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3331 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3332 struct vmcs12 *vmcs12)
3333 {
3334 u32 idt_vectoring;
3335 unsigned int nr;
3336
3337 if (vcpu->arch.exception.injected) {
3338 nr = vcpu->arch.exception.nr;
3339 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3340
3341 if (kvm_exception_is_soft(nr)) {
3342 vmcs12->vm_exit_instruction_len =
3343 vcpu->arch.event_exit_inst_len;
3344 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3345 } else
3346 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3347
3348 if (vcpu->arch.exception.has_error_code) {
3349 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3350 vmcs12->idt_vectoring_error_code =
3351 vcpu->arch.exception.error_code;
3352 }
3353
3354 vmcs12->idt_vectoring_info_field = idt_vectoring;
3355 } else if (vcpu->arch.nmi_injected) {
3356 vmcs12->idt_vectoring_info_field =
3357 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3358 } else if (vcpu->arch.interrupt.injected) {
3359 nr = vcpu->arch.interrupt.nr;
3360 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3361
3362 if (vcpu->arch.interrupt.soft) {
3363 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3364 vmcs12->vm_entry_instruction_len =
3365 vcpu->arch.event_exit_inst_len;
3366 } else
3367 idt_vectoring |= INTR_TYPE_EXT_INTR;
3368
3369 vmcs12->idt_vectoring_info_field = idt_vectoring;
3370 }
3371 }
3372
3373
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3374 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3375 {
3376 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3377 gfn_t gfn;
3378
3379 /*
3380 * Don't need to mark the APIC access page dirty; it is never
3381 * written to by the CPU during APIC virtualization.
3382 */
3383
3384 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3385 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3386 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3387 }
3388
3389 if (nested_cpu_has_posted_intr(vmcs12)) {
3390 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3391 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3392 }
3393 }
3394
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3395 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3396 {
3397 struct vcpu_vmx *vmx = to_vmx(vcpu);
3398 int max_irr;
3399 void *vapic_page;
3400 u16 status;
3401
3402 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3403 return;
3404
3405 vmx->nested.pi_pending = false;
3406 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3407 return;
3408
3409 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3410 if (max_irr != 256) {
3411 vapic_page = vmx->nested.virtual_apic_map.hva;
3412 if (!vapic_page)
3413 return;
3414
3415 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3416 vapic_page, &max_irr);
3417 status = vmcs_read16(GUEST_INTR_STATUS);
3418 if ((u8)max_irr > ((u8)status & 0xff)) {
3419 status &= ~0xff;
3420 status |= (u8)max_irr;
3421 vmcs_write16(GUEST_INTR_STATUS, status);
3422 }
3423 }
3424
3425 nested_mark_vmcs12_pages_dirty(vcpu);
3426 }
3427
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu,unsigned long exit_qual)3428 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3429 unsigned long exit_qual)
3430 {
3431 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3432 unsigned int nr = vcpu->arch.exception.nr;
3433 u32 intr_info = nr | INTR_INFO_VALID_MASK;
3434
3435 if (vcpu->arch.exception.has_error_code) {
3436 /*
3437 * Intel CPUs do not generate error codes with bits 31:16 set,
3438 * and more importantly VMX disallows setting bits 31:16 in the
3439 * injected error code for VM-Entry. Drop the bits to mimic
3440 * hardware and avoid inducing failure on nested VM-Entry if L1
3441 * chooses to inject the exception back to L2. AMD CPUs _do_
3442 * generate "full" 32-bit error codes, so KVM allows userspace
3443 * to inject exception error codes with bits 31:16 set.
3444 */
3445 vmcs12->vm_exit_intr_error_code = (u16)vcpu->arch.exception.error_code;
3446 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3447 }
3448
3449 if (kvm_exception_is_soft(nr))
3450 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3451 else
3452 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3453
3454 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3455 vmx_get_nmi_mask(vcpu))
3456 intr_info |= INTR_INFO_UNBLOCK_NMI;
3457
3458 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3459 }
3460
vmx_check_nested_events(struct kvm_vcpu * vcpu)3461 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3462 {
3463 struct vcpu_vmx *vmx = to_vmx(vcpu);
3464 unsigned long exit_qual;
3465 bool block_nested_events =
3466 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3467 struct kvm_lapic *apic = vcpu->arch.apic;
3468
3469 if (lapic_in_kernel(vcpu) &&
3470 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3471 if (block_nested_events)
3472 return -EBUSY;
3473 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3474 return 0;
3475 }
3476
3477 if (vcpu->arch.exception.pending &&
3478 nested_vmx_check_exception(vcpu, &exit_qual)) {
3479 if (block_nested_events)
3480 return -EBUSY;
3481 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3482 return 0;
3483 }
3484
3485 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3486 vmx->nested.preemption_timer_expired) {
3487 if (block_nested_events)
3488 return -EBUSY;
3489 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3490 return 0;
3491 }
3492
3493 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3494 if (block_nested_events)
3495 return -EBUSY;
3496 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3497 NMI_VECTOR | INTR_TYPE_NMI_INTR |
3498 INTR_INFO_VALID_MASK, 0);
3499 /*
3500 * The NMI-triggered VM exit counts as injection:
3501 * clear this one and block further NMIs.
3502 */
3503 vcpu->arch.nmi_pending = 0;
3504 vmx_set_nmi_mask(vcpu, true);
3505 return 0;
3506 }
3507
3508 if (kvm_cpu_has_interrupt(vcpu) && nested_exit_on_intr(vcpu)) {
3509 if (block_nested_events)
3510 return -EBUSY;
3511 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3512 return 0;
3513 }
3514
3515 vmx_complete_nested_posted_interrupt(vcpu);
3516 return 0;
3517 }
3518
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)3519 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3520 {
3521 ktime_t remaining =
3522 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3523 u64 value;
3524
3525 if (ktime_to_ns(remaining) <= 0)
3526 return 0;
3527
3528 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3529 do_div(value, 1000000);
3530 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3531 }
3532
is_vmcs12_ext_field(unsigned long field)3533 static bool is_vmcs12_ext_field(unsigned long field)
3534 {
3535 switch (field) {
3536 case GUEST_ES_SELECTOR:
3537 case GUEST_CS_SELECTOR:
3538 case GUEST_SS_SELECTOR:
3539 case GUEST_DS_SELECTOR:
3540 case GUEST_FS_SELECTOR:
3541 case GUEST_GS_SELECTOR:
3542 case GUEST_LDTR_SELECTOR:
3543 case GUEST_TR_SELECTOR:
3544 case GUEST_ES_LIMIT:
3545 case GUEST_CS_LIMIT:
3546 case GUEST_SS_LIMIT:
3547 case GUEST_DS_LIMIT:
3548 case GUEST_FS_LIMIT:
3549 case GUEST_GS_LIMIT:
3550 case GUEST_LDTR_LIMIT:
3551 case GUEST_TR_LIMIT:
3552 case GUEST_GDTR_LIMIT:
3553 case GUEST_IDTR_LIMIT:
3554 case GUEST_ES_AR_BYTES:
3555 case GUEST_DS_AR_BYTES:
3556 case GUEST_FS_AR_BYTES:
3557 case GUEST_GS_AR_BYTES:
3558 case GUEST_LDTR_AR_BYTES:
3559 case GUEST_TR_AR_BYTES:
3560 case GUEST_ES_BASE:
3561 case GUEST_CS_BASE:
3562 case GUEST_SS_BASE:
3563 case GUEST_DS_BASE:
3564 case GUEST_FS_BASE:
3565 case GUEST_GS_BASE:
3566 case GUEST_LDTR_BASE:
3567 case GUEST_TR_BASE:
3568 case GUEST_GDTR_BASE:
3569 case GUEST_IDTR_BASE:
3570 case GUEST_PENDING_DBG_EXCEPTIONS:
3571 case GUEST_BNDCFGS:
3572 return true;
3573 default:
3574 break;
3575 }
3576
3577 return false;
3578 }
3579
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3580 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3581 struct vmcs12 *vmcs12)
3582 {
3583 struct vcpu_vmx *vmx = to_vmx(vcpu);
3584
3585 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3586 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3587 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3588 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3589 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3590 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3591 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3592 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3593 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3594 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3595 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3596 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3597 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3598 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3599 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3600 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3601 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3602 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3603 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3604 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3605 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3606 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3607 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3608 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3609 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3610 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3611 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3612 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3613 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3614 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3615 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3616 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3617 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3618 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3619 vmcs12->guest_pending_dbg_exceptions =
3620 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3621 if (kvm_mpx_supported())
3622 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3623
3624 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3625 }
3626
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3627 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3628 struct vmcs12 *vmcs12)
3629 {
3630 struct vcpu_vmx *vmx = to_vmx(vcpu);
3631 int cpu;
3632
3633 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3634 return;
3635
3636
3637 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3638
3639 cpu = get_cpu();
3640 vmx->loaded_vmcs = &vmx->nested.vmcs02;
3641 vmx_vcpu_load(&vmx->vcpu, cpu);
3642
3643 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3644
3645 vmx->loaded_vmcs = &vmx->vmcs01;
3646 vmx_vcpu_load(&vmx->vcpu, cpu);
3647 put_cpu();
3648 }
3649
3650 /*
3651 * Update the guest state fields of vmcs12 to reflect changes that
3652 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3653 * VM-entry controls is also updated, since this is really a guest
3654 * state bit.)
3655 */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3656 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3657 {
3658 struct vcpu_vmx *vmx = to_vmx(vcpu);
3659
3660 if (vmx->nested.hv_evmcs)
3661 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3662
3663 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3664
3665 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3666 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3667
3668 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3669 vmcs12->guest_rip = kvm_rip_read(vcpu);
3670 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3671
3672 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3673 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3674
3675 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3676 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3677 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3678
3679 vmcs12->guest_interruptibility_info =
3680 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3681
3682 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3683 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3684 else
3685 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3686
3687 if (nested_cpu_has_preemption_timer(vmcs12) &&
3688 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3689 vmcs12->vmx_preemption_timer_value =
3690 vmx_get_preemption_timer_value(vcpu);
3691
3692 /*
3693 * In some cases (usually, nested EPT), L2 is allowed to change its
3694 * own CR3 without exiting. If it has changed it, we must keep it.
3695 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3696 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3697 *
3698 * Additionally, restore L2's PDPTR to vmcs12.
3699 */
3700 if (enable_ept) {
3701 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3702 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3703 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3704 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3705 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3706 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3707 }
3708 }
3709
3710 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3711
3712 if (nested_cpu_has_vid(vmcs12))
3713 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3714
3715 vmcs12->vm_entry_controls =
3716 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3717 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3718
3719 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
3720 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3721
3722 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3723 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3724 }
3725
3726 /*
3727 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3728 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3729 * and this function updates it to reflect the changes to the guest state while
3730 * L2 was running (and perhaps made some exits which were handled directly by L0
3731 * without going back to L1), and to reflect the exit reason.
3732 * Note that we do not have to copy here all VMCS fields, just those that
3733 * could have changed by the L2 guest or the exit - i.e., the guest-state and
3734 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3735 * which already writes to vmcs12 directly.
3736 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)3737 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3738 u32 exit_reason, u32 exit_intr_info,
3739 unsigned long exit_qualification)
3740 {
3741 /* update exit information fields: */
3742 vmcs12->vm_exit_reason = exit_reason;
3743 vmcs12->exit_qualification = exit_qualification;
3744
3745 /*
3746 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
3747 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
3748 * exit info fields are unmodified.
3749 */
3750 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3751 vmcs12->launch_state = 1;
3752
3753 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3754 * instead of reading the real value. */
3755 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3756
3757 /*
3758 * Transfer the event that L0 or L1 may wanted to inject into
3759 * L2 to IDT_VECTORING_INFO_FIELD.
3760 */
3761 vmcs12->idt_vectoring_info_field = 0;
3762 vmcs12_save_pending_event(vcpu, vmcs12);
3763
3764 vmcs12->vm_exit_intr_info = exit_intr_info;
3765 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3766 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3767
3768 /*
3769 * According to spec, there's no need to store the guest's
3770 * MSRs if the exit is due to a VM-entry failure that occurs
3771 * during or after loading the guest state. Since this exit
3772 * does not fall in that category, we need to save the MSRs.
3773 */
3774 if (nested_vmx_store_msr(vcpu,
3775 vmcs12->vm_exit_msr_store_addr,
3776 vmcs12->vm_exit_msr_store_count))
3777 nested_vmx_abort(vcpu,
3778 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
3779 }
3780 }
3781
3782 /*
3783 * A part of what we need to when the nested L2 guest exits and we want to
3784 * run its L1 parent, is to reset L1's guest state to the host state specified
3785 * in vmcs12.
3786 * This function is to be called not only on normal nested exit, but also on
3787 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3788 * Failures During or After Loading Guest State").
3789 * This function should be called when the active VMCS is L1's (vmcs01).
3790 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3791 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3792 struct vmcs12 *vmcs12)
3793 {
3794 struct kvm_segment seg;
3795 u32 entry_failure_code;
3796
3797 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3798 vcpu->arch.efer = vmcs12->host_ia32_efer;
3799 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3800 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3801 else
3802 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3803 vmx_set_efer(vcpu, vcpu->arch.efer);
3804
3805 kvm_rsp_write(vcpu, vmcs12->host_rsp);
3806 kvm_rip_write(vcpu, vmcs12->host_rip);
3807 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3808 vmx_set_interrupt_shadow(vcpu, 0);
3809
3810 /*
3811 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3812 * actually changed, because vmx_set_cr0 refers to efer set above.
3813 *
3814 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3815 * (KVM doesn't change it);
3816 */
3817 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3818 vmx_set_cr0(vcpu, vmcs12->host_cr0);
3819
3820 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
3821 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3822 vmx_set_cr4(vcpu, vmcs12->host_cr4);
3823
3824 nested_ept_uninit_mmu_context(vcpu);
3825
3826 /*
3827 * Only PDPTE load can fail as the value of cr3 was checked on entry and
3828 * couldn't have changed.
3829 */
3830 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3831 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3832
3833 if (!enable_ept)
3834 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3835
3836 /*
3837 * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3838 * VMEntry/VMExit. Thus, no need to flush TLB.
3839 *
3840 * If vmcs12 doesn't use VPID, L1 expects TLB to be
3841 * flushed on every VMEntry/VMExit.
3842 *
3843 * Otherwise, we can preserve TLB entries as long as we are
3844 * able to tag L1 TLB entries differently than L2 TLB entries.
3845 *
3846 * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3847 * and therefore we request the TLB flush to happen only after VMCS EPTP
3848 * has been set by KVM_REQ_LOAD_CR3.
3849 */
3850 if (enable_vpid &&
3851 (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3852 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3853 }
3854
3855 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3856 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3857 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3858 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3859 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3860 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3861 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3862
3863 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
3864 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3865 vmcs_write64(GUEST_BNDCFGS, 0);
3866
3867 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3868 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3869 vcpu->arch.pat = vmcs12->host_ia32_pat;
3870 }
3871 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3872 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3873 vmcs12->host_ia32_perf_global_ctrl);
3874
3875 /* Set L1 segment info according to Intel SDM
3876 27.5.2 Loading Host Segment and Descriptor-Table Registers */
3877 seg = (struct kvm_segment) {
3878 .base = 0,
3879 .limit = 0xFFFFFFFF,
3880 .selector = vmcs12->host_cs_selector,
3881 .type = 11,
3882 .present = 1,
3883 .s = 1,
3884 .g = 1
3885 };
3886 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3887 seg.l = 1;
3888 else
3889 seg.db = 1;
3890 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3891 seg = (struct kvm_segment) {
3892 .base = 0,
3893 .limit = 0xFFFFFFFF,
3894 .type = 3,
3895 .present = 1,
3896 .s = 1,
3897 .db = 1,
3898 .g = 1
3899 };
3900 seg.selector = vmcs12->host_ds_selector;
3901 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3902 seg.selector = vmcs12->host_es_selector;
3903 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3904 seg.selector = vmcs12->host_ss_selector;
3905 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3906 seg.selector = vmcs12->host_fs_selector;
3907 seg.base = vmcs12->host_fs_base;
3908 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3909 seg.selector = vmcs12->host_gs_selector;
3910 seg.base = vmcs12->host_gs_base;
3911 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3912 seg = (struct kvm_segment) {
3913 .base = vmcs12->host_tr_base,
3914 .limit = 0x67,
3915 .selector = vmcs12->host_tr_selector,
3916 .type = 11,
3917 .present = 1
3918 };
3919 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3920
3921 kvm_set_dr(vcpu, 7, 0x400);
3922 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3923
3924 if (cpu_has_vmx_msr_bitmap())
3925 vmx_update_msr_bitmap(vcpu);
3926
3927 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3928 vmcs12->vm_exit_msr_load_count))
3929 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3930 }
3931
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)3932 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3933 {
3934 struct shared_msr_entry *efer_msr;
3935 unsigned int i;
3936
3937 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3938 return vmcs_read64(GUEST_IA32_EFER);
3939
3940 if (cpu_has_load_ia32_efer())
3941 return host_efer;
3942
3943 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3944 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3945 return vmx->msr_autoload.guest.val[i].value;
3946 }
3947
3948 efer_msr = find_msr_entry(vmx, MSR_EFER);
3949 if (efer_msr)
3950 return efer_msr->data;
3951
3952 return host_efer;
3953 }
3954
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)3955 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3956 {
3957 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3958 struct vcpu_vmx *vmx = to_vmx(vcpu);
3959 struct vmx_msr_entry g, h;
3960 gpa_t gpa;
3961 u32 i, j;
3962
3963 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3964
3965 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3966 /*
3967 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3968 * as vmcs01.GUEST_DR7 contains a userspace defined value
3969 * and vcpu->arch.dr7 is not squirreled away before the
3970 * nested VMENTER (not worth adding a variable in nested_vmx).
3971 */
3972 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3973 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3974 else
3975 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3976 }
3977
3978 /*
3979 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3980 * handle a variety of side effects to KVM's software model.
3981 */
3982 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3983
3984 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3985 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3986
3987 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3988 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3989
3990 nested_ept_uninit_mmu_context(vcpu);
3991 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3992 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3993
3994 /*
3995 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3996 * from vmcs01 (if necessary). The PDPTRs are not loaded on
3997 * VMFail, like everything else we just need to ensure our
3998 * software model is up-to-date.
3999 */
4000 if (enable_ept)
4001 ept_save_pdptrs(vcpu);
4002
4003 kvm_mmu_reset_context(vcpu);
4004
4005 if (cpu_has_vmx_msr_bitmap())
4006 vmx_update_msr_bitmap(vcpu);
4007
4008 /*
4009 * This nasty bit of open coding is a compromise between blindly
4010 * loading L1's MSRs using the exit load lists (incorrect emulation
4011 * of VMFail), leaving the nested VM's MSRs in the software model
4012 * (incorrect behavior) and snapshotting the modified MSRs (too
4013 * expensive since the lists are unbound by hardware). For each
4014 * MSR that was (prematurely) loaded from the nested VMEntry load
4015 * list, reload it from the exit load list if it exists and differs
4016 * from the guest value. The intent is to stuff host state as
4017 * silently as possible, not to fully process the exit load list.
4018 */
4019 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4020 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4021 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4022 pr_debug_ratelimited(
4023 "%s read MSR index failed (%u, 0x%08llx)\n",
4024 __func__, i, gpa);
4025 goto vmabort;
4026 }
4027
4028 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4029 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4030 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4031 pr_debug_ratelimited(
4032 "%s read MSR failed (%u, 0x%08llx)\n",
4033 __func__, j, gpa);
4034 goto vmabort;
4035 }
4036 if (h.index != g.index)
4037 continue;
4038 if (h.value == g.value)
4039 break;
4040
4041 if (nested_vmx_load_msr_check(vcpu, &h)) {
4042 pr_debug_ratelimited(
4043 "%s check failed (%u, 0x%x, 0x%x)\n",
4044 __func__, j, h.index, h.reserved);
4045 goto vmabort;
4046 }
4047
4048 if (kvm_set_msr(vcpu, h.index, h.value)) {
4049 pr_debug_ratelimited(
4050 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4051 __func__, j, h.index, h.value);
4052 goto vmabort;
4053 }
4054 }
4055 }
4056
4057 return;
4058
4059 vmabort:
4060 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4061 }
4062
4063 /*
4064 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4065 * and modify vmcs12 to make it see what it would expect to see there if
4066 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4067 */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4068 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4069 u32 exit_intr_info, unsigned long exit_qualification)
4070 {
4071 struct vcpu_vmx *vmx = to_vmx(vcpu);
4072 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4073
4074 /* trying to cancel vmlaunch/vmresume is a bug */
4075 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4076
4077 leave_guest_mode(vcpu);
4078
4079 if (nested_cpu_has_preemption_timer(vmcs12))
4080 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4081
4082 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
4083 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4084
4085 if (likely(!vmx->fail)) {
4086 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4087
4088 if (exit_reason != -1)
4089 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4090 exit_qualification);
4091
4092 /*
4093 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4094 * also be used to capture vmcs12 cache as part of
4095 * capturing nVMX state for snapshot (migration).
4096 *
4097 * Otherwise, this flush will dirty guest memory at a
4098 * point it is already assumed by user-space to be
4099 * immutable.
4100 */
4101 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4102 } else {
4103 /*
4104 * The only expected VM-instruction error is "VM entry with
4105 * invalid control field(s)." Anything else indicates a
4106 * problem with L0. And we should never get here with a
4107 * VMFail of any type if early consistency checks are enabled.
4108 */
4109 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4110 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4111 WARN_ON_ONCE(nested_early_check);
4112 }
4113
4114 /*
4115 * Drop events/exceptions that were queued for re-injection to L2
4116 * (picked up via vmx_complete_interrupts()), as well as exceptions
4117 * that were pending for L2. Note, this must NOT be hoisted above
4118 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4119 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4120 */
4121 vcpu->arch.nmi_injected = false;
4122 kvm_clear_exception_queue(vcpu);
4123 kvm_clear_interrupt_queue(vcpu);
4124
4125 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4126
4127 /*
4128 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4129 * branch predictors when transitioning from L2 to L1, as L1 expects
4130 * hardware (KVM in this case) to provide separate predictor modes.
4131 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4132 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4133 * separate modes for L2 vs L1.
4134 */
4135 if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4136 indirect_branch_prediction_barrier();
4137
4138 /* Update any VMCS fields that might have changed while L2 ran */
4139 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4140 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4141 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4142
4143 if (kvm_has_tsc_control)
4144 decache_tsc_multiplier(vmx);
4145
4146 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4147 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4148 vmx_set_virtual_apic_mode(vcpu);
4149 } else if (!nested_cpu_has_ept(vmcs12) &&
4150 nested_cpu_has2(vmcs12,
4151 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
4152 vmx_flush_tlb(vcpu, true);
4153 }
4154
4155 /* Unpin physical memory we referred to in vmcs02 */
4156 if (vmx->nested.apic_access_page) {
4157 kvm_release_page_dirty(vmx->nested.apic_access_page);
4158 vmx->nested.apic_access_page = NULL;
4159 }
4160 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4161 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4162 vmx->nested.pi_desc = NULL;
4163
4164 /*
4165 * We are now running in L2, mmu_notifier will force to reload the
4166 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4167 */
4168 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4169
4170 if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
4171 vmx->nested.need_vmcs12_to_shadow_sync = true;
4172
4173 /* in case we halted in L2 */
4174 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4175
4176 if (likely(!vmx->fail)) {
4177 if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4178 nested_exit_intr_ack_set(vcpu)) {
4179 int irq = kvm_cpu_get_interrupt(vcpu);
4180 WARN_ON(irq < 0);
4181 vmcs12->vm_exit_intr_info = irq |
4182 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4183 }
4184
4185 if (exit_reason != -1)
4186 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4187 vmcs12->exit_qualification,
4188 vmcs12->idt_vectoring_info_field,
4189 vmcs12->vm_exit_intr_info,
4190 vmcs12->vm_exit_intr_error_code,
4191 KVM_ISA_VMX);
4192
4193 load_vmcs12_host_state(vcpu, vmcs12);
4194
4195 return;
4196 }
4197
4198 /*
4199 * After an early L2 VM-entry failure, we're now back
4200 * in L1 which thinks it just finished a VMLAUNCH or
4201 * VMRESUME instruction, so we need to set the failure
4202 * flag and the VM-instruction error field of the VMCS
4203 * accordingly, and skip the emulated instruction.
4204 */
4205 (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4206
4207 /*
4208 * Restore L1's host state to KVM's software model. We're here
4209 * because a consistency check was caught by hardware, which
4210 * means some amount of guest state has been propagated to KVM's
4211 * model and needs to be unwound to the host's state.
4212 */
4213 nested_vmx_restore_host_state(vcpu);
4214
4215 vmx->fail = 0;
4216 }
4217
4218 /*
4219 * Decode the memory-address operand of a vmx instruction, as recorded on an
4220 * exit caused by such an instruction (run by a guest hypervisor).
4221 * On success, returns 0. When the operand is invalid, returns 1 and throws
4222 * #UD or #GP.
4223 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)4224 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4225 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4226 {
4227 gva_t off;
4228 bool exn;
4229 struct kvm_segment s;
4230
4231 /*
4232 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4233 * Execution", on an exit, vmx_instruction_info holds most of the
4234 * addressing components of the operand. Only the displacement part
4235 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4236 * For how an actual address is calculated from all these components,
4237 * refer to Vol. 1, "Operand Addressing".
4238 */
4239 int scaling = vmx_instruction_info & 3;
4240 int addr_size = (vmx_instruction_info >> 7) & 7;
4241 bool is_reg = vmx_instruction_info & (1u << 10);
4242 int seg_reg = (vmx_instruction_info >> 15) & 7;
4243 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4244 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4245 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4246 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4247
4248 if (is_reg) {
4249 kvm_queue_exception(vcpu, UD_VECTOR);
4250 return 1;
4251 }
4252
4253 /* Addr = segment_base + offset */
4254 /* offset = base + [index * scale] + displacement */
4255 off = exit_qualification; /* holds the displacement */
4256 if (addr_size == 1)
4257 off = (gva_t)sign_extend64(off, 31);
4258 else if (addr_size == 0)
4259 off = (gva_t)sign_extend64(off, 15);
4260 if (base_is_valid)
4261 off += kvm_register_read(vcpu, base_reg);
4262 if (index_is_valid)
4263 off += kvm_register_read(vcpu, index_reg)<<scaling;
4264 vmx_get_segment(vcpu, &s, seg_reg);
4265
4266 /*
4267 * The effective address, i.e. @off, of a memory operand is truncated
4268 * based on the address size of the instruction. Note that this is
4269 * the *effective address*, i.e. the address prior to accounting for
4270 * the segment's base.
4271 */
4272 if (addr_size == 1) /* 32 bit */
4273 off &= 0xffffffff;
4274 else if (addr_size == 0) /* 16 bit */
4275 off &= 0xffff;
4276
4277 /* Checks for #GP/#SS exceptions. */
4278 exn = false;
4279 if (is_long_mode(vcpu)) {
4280 /*
4281 * The virtual/linear address is never truncated in 64-bit
4282 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4283 * address when using FS/GS with a non-zero base.
4284 */
4285 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4286 *ret = s.base + off;
4287 else
4288 *ret = off;
4289
4290 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4291 * non-canonical form. This is the only check on the memory
4292 * destination for long mode!
4293 */
4294 exn = is_noncanonical_address(*ret, vcpu);
4295 } else {
4296 /*
4297 * When not in long mode, the virtual/linear address is
4298 * unconditionally truncated to 32 bits regardless of the
4299 * address size.
4300 */
4301 *ret = (s.base + off) & 0xffffffff;
4302
4303 /* Protected mode: apply checks for segment validity in the
4304 * following order:
4305 * - segment type check (#GP(0) may be thrown)
4306 * - usability check (#GP(0)/#SS(0))
4307 * - limit check (#GP(0)/#SS(0))
4308 */
4309 if (wr)
4310 /* #GP(0) if the destination operand is located in a
4311 * read-only data segment or any code segment.
4312 */
4313 exn = ((s.type & 0xa) == 0 || (s.type & 8));
4314 else
4315 /* #GP(0) if the source operand is located in an
4316 * execute-only code segment
4317 */
4318 exn = ((s.type & 0xa) == 8);
4319 if (exn) {
4320 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4321 return 1;
4322 }
4323 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4324 */
4325 exn = (s.unusable != 0);
4326
4327 /*
4328 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4329 * outside the segment limit. All CPUs that support VMX ignore
4330 * limit checks for flat segments, i.e. segments with base==0,
4331 * limit==0xffffffff and of type expand-up data or code.
4332 */
4333 if (!(s.base == 0 && s.limit == 0xffffffff &&
4334 ((s.type & 8) || !(s.type & 4))))
4335 exn = exn || ((u64)off + len - 1 > s.limit);
4336 }
4337 if (exn) {
4338 kvm_queue_exception_e(vcpu,
4339 seg_reg == VCPU_SREG_SS ?
4340 SS_VECTOR : GP_VECTOR,
4341 0);
4342 return 1;
4343 }
4344
4345 return 0;
4346 }
4347
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer)4348 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4349 {
4350 gva_t gva;
4351 struct x86_exception e;
4352
4353 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4354 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4355 sizeof(*vmpointer), &gva))
4356 return 1;
4357
4358 if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4359 kvm_inject_page_fault(vcpu, &e);
4360 return 1;
4361 }
4362
4363 return 0;
4364 }
4365
4366 /*
4367 * Allocate a shadow VMCS and associate it with the currently loaded
4368 * VMCS, unless such a shadow VMCS already exists. The newly allocated
4369 * VMCS is also VMCLEARed, so that it is ready for use.
4370 */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)4371 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4372 {
4373 struct vcpu_vmx *vmx = to_vmx(vcpu);
4374 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4375
4376 /*
4377 * We should allocate a shadow vmcs for vmcs01 only when L1
4378 * executes VMXON and free it when L1 executes VMXOFF.
4379 * As it is invalid to execute VMXON twice, we shouldn't reach
4380 * here when vmcs01 already have an allocated shadow vmcs.
4381 */
4382 WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4383
4384 if (!loaded_vmcs->shadow_vmcs) {
4385 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4386 if (loaded_vmcs->shadow_vmcs)
4387 vmcs_clear(loaded_vmcs->shadow_vmcs);
4388 }
4389 return loaded_vmcs->shadow_vmcs;
4390 }
4391
enter_vmx_operation(struct kvm_vcpu * vcpu)4392 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4393 {
4394 struct vcpu_vmx *vmx = to_vmx(vcpu);
4395 int r;
4396
4397 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4398 if (r < 0)
4399 goto out_vmcs02;
4400
4401 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4402 if (!vmx->nested.cached_vmcs12)
4403 goto out_cached_vmcs12;
4404
4405 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4406 if (!vmx->nested.cached_shadow_vmcs12)
4407 goto out_cached_shadow_vmcs12;
4408
4409 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4410 goto out_shadow_vmcs;
4411
4412 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4413 HRTIMER_MODE_REL_PINNED);
4414 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4415
4416 vmx->nested.vpid02 = allocate_vpid();
4417
4418 vmx->nested.vmcs02_initialized = false;
4419 vmx->nested.vmxon = true;
4420
4421 if (pt_mode == PT_MODE_HOST_GUEST) {
4422 vmx->pt_desc.guest.ctl = 0;
4423 pt_update_intercept_for_msr(vmx);
4424 }
4425
4426 return 0;
4427
4428 out_shadow_vmcs:
4429 kfree(vmx->nested.cached_shadow_vmcs12);
4430
4431 out_cached_shadow_vmcs12:
4432 kfree(vmx->nested.cached_vmcs12);
4433
4434 out_cached_vmcs12:
4435 free_loaded_vmcs(&vmx->nested.vmcs02);
4436
4437 out_vmcs02:
4438 return -ENOMEM;
4439 }
4440
4441 /*
4442 * Emulate the VMXON instruction.
4443 * Currently, we just remember that VMX is active, and do not save or even
4444 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4445 * do not currently need to store anything in that guest-allocated memory
4446 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4447 * argument is different from the VMXON pointer (which the spec says they do).
4448 */
handle_vmon(struct kvm_vcpu * vcpu)4449 static int handle_vmon(struct kvm_vcpu *vcpu)
4450 {
4451 int ret;
4452 gpa_t vmptr;
4453 uint32_t revision;
4454 struct vcpu_vmx *vmx = to_vmx(vcpu);
4455 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4456 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4457
4458 /*
4459 * The Intel VMX Instruction Reference lists a bunch of bits that are
4460 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4461 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4462 * Otherwise, we should fail with #UD. But most faulting conditions
4463 * have already been checked by hardware, prior to the VM-exit for
4464 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
4465 * that bit set to 1 in non-root mode.
4466 */
4467 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4468 kvm_queue_exception(vcpu, UD_VECTOR);
4469 return 1;
4470 }
4471
4472 /* CPL=0 must be checked manually. */
4473 if (vmx_get_cpl(vcpu)) {
4474 kvm_inject_gp(vcpu, 0);
4475 return 1;
4476 }
4477
4478 if (vmx->nested.vmxon)
4479 return nested_vmx_failValid(vcpu,
4480 VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4481
4482 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4483 != VMXON_NEEDED_FEATURES) {
4484 kvm_inject_gp(vcpu, 0);
4485 return 1;
4486 }
4487
4488 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4489 return 1;
4490
4491 /*
4492 * SDM 3: 24.11.5
4493 * The first 4 bytes of VMXON region contain the supported
4494 * VMCS revision identifier
4495 *
4496 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4497 * which replaces physical address width with 32
4498 */
4499 if (!page_address_valid(vcpu, vmptr))
4500 return nested_vmx_failInvalid(vcpu);
4501
4502 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4503 revision != VMCS12_REVISION)
4504 return nested_vmx_failInvalid(vcpu);
4505
4506 vmx->nested.vmxon_ptr = vmptr;
4507 ret = enter_vmx_operation(vcpu);
4508 if (ret)
4509 return ret;
4510
4511 return nested_vmx_succeed(vcpu);
4512 }
4513
nested_release_vmcs12(struct kvm_vcpu * vcpu)4514 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4515 {
4516 struct vcpu_vmx *vmx = to_vmx(vcpu);
4517
4518 if (vmx->nested.current_vmptr == -1ull)
4519 return;
4520
4521 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4522
4523 if (enable_shadow_vmcs) {
4524 /* copy to memory all shadowed fields in case
4525 they were modified */
4526 copy_shadow_to_vmcs12(vmx);
4527 vmx_disable_shadow_vmcs(vmx);
4528 }
4529 vmx->nested.posted_intr_nv = -1;
4530
4531 /* Flush VMCS12 to guest memory */
4532 kvm_vcpu_write_guest_page(vcpu,
4533 vmx->nested.current_vmptr >> PAGE_SHIFT,
4534 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4535
4536 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4537
4538 vmx->nested.current_vmptr = -1ull;
4539 }
4540
4541 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)4542 static int handle_vmoff(struct kvm_vcpu *vcpu)
4543 {
4544 if (!nested_vmx_check_permission(vcpu))
4545 return 1;
4546
4547 free_nested(vcpu);
4548
4549 /* Process a latched INIT during time CPU was in VMX operation */
4550 kvm_make_request(KVM_REQ_EVENT, vcpu);
4551
4552 return nested_vmx_succeed(vcpu);
4553 }
4554
4555 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)4556 static int handle_vmclear(struct kvm_vcpu *vcpu)
4557 {
4558 struct vcpu_vmx *vmx = to_vmx(vcpu);
4559 u32 zero = 0;
4560 gpa_t vmptr;
4561 u64 evmcs_gpa;
4562
4563 if (!nested_vmx_check_permission(vcpu))
4564 return 1;
4565
4566 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4567 return 1;
4568
4569 if (!page_address_valid(vcpu, vmptr))
4570 return nested_vmx_failValid(vcpu,
4571 VMXERR_VMCLEAR_INVALID_ADDRESS);
4572
4573 if (vmptr == vmx->nested.vmxon_ptr)
4574 return nested_vmx_failValid(vcpu,
4575 VMXERR_VMCLEAR_VMXON_POINTER);
4576
4577 /*
4578 * When Enlightened VMEntry is enabled on the calling CPU we treat
4579 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4580 * way to distinguish it from VMCS12) and we must not corrupt it by
4581 * writing to the non-existent 'launch_state' field. The area doesn't
4582 * have to be the currently active EVMCS on the calling CPU and there's
4583 * nothing KVM has to do to transition it from 'active' to 'non-active'
4584 * state. It is possible that the area will stay mapped as
4585 * vmx->nested.hv_evmcs but this shouldn't be a problem.
4586 */
4587 if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4588 !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
4589 if (vmptr == vmx->nested.current_vmptr)
4590 nested_release_vmcs12(vcpu);
4591
4592 kvm_vcpu_write_guest(vcpu,
4593 vmptr + offsetof(struct vmcs12,
4594 launch_state),
4595 &zero, sizeof(zero));
4596 }
4597
4598 return nested_vmx_succeed(vcpu);
4599 }
4600
4601 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4602
4603 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)4604 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4605 {
4606 return nested_vmx_run(vcpu, true);
4607 }
4608
4609 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)4610 static int handle_vmresume(struct kvm_vcpu *vcpu)
4611 {
4612
4613 return nested_vmx_run(vcpu, false);
4614 }
4615
handle_vmread(struct kvm_vcpu * vcpu)4616 static int handle_vmread(struct kvm_vcpu *vcpu)
4617 {
4618 unsigned long field;
4619 u64 field_value;
4620 struct vcpu_vmx *vmx = to_vmx(vcpu);
4621 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4622 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4623 int len;
4624 gva_t gva = 0;
4625 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4626 : get_vmcs12(vcpu);
4627 struct x86_exception e;
4628 short offset;
4629
4630 if (!nested_vmx_check_permission(vcpu))
4631 return 1;
4632
4633 /*
4634 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4635 * any VMREAD sets the ALU flags for VMfailInvalid.
4636 */
4637 if (vmx->nested.current_vmptr == -1ull ||
4638 (is_guest_mode(vcpu) &&
4639 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4640 return nested_vmx_failInvalid(vcpu);
4641
4642 /* Decode instruction info and find the field to read */
4643 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4644
4645 offset = vmcs_field_to_offset(field);
4646 if (offset < 0)
4647 return nested_vmx_failValid(vcpu,
4648 VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4649
4650 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4651 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4652
4653 /* Read the field, zero-extended to a u64 field_value */
4654 field_value = vmcs12_read_any(vmcs12, field, offset);
4655
4656 /*
4657 * Now copy part of this value to register or memory, as requested.
4658 * Note that the number of bits actually copied is 32 or 64 depending
4659 * on the guest's mode (32 or 64 bit), not on the given field's length.
4660 */
4661 if (vmx_instruction_info & (1u << 10)) {
4662 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4663 field_value);
4664 } else {
4665 len = is_64_bit_mode(vcpu) ? 8 : 4;
4666 if (get_vmx_mem_address(vcpu, exit_qualification,
4667 vmx_instruction_info, true, len, &gva))
4668 return 1;
4669 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4670 if (kvm_write_guest_virt_system(vcpu, gva, &field_value, len, &e)) {
4671 kvm_inject_page_fault(vcpu, &e);
4672 return 1;
4673 }
4674 }
4675
4676 return nested_vmx_succeed(vcpu);
4677 }
4678
is_shadow_field_rw(unsigned long field)4679 static bool is_shadow_field_rw(unsigned long field)
4680 {
4681 switch (field) {
4682 #define SHADOW_FIELD_RW(x, y) case x:
4683 #include "vmcs_shadow_fields.h"
4684 return true;
4685 default:
4686 break;
4687 }
4688 return false;
4689 }
4690
is_shadow_field_ro(unsigned long field)4691 static bool is_shadow_field_ro(unsigned long field)
4692 {
4693 switch (field) {
4694 #define SHADOW_FIELD_RO(x, y) case x:
4695 #include "vmcs_shadow_fields.h"
4696 return true;
4697 default:
4698 break;
4699 }
4700 return false;
4701 }
4702
handle_vmwrite(struct kvm_vcpu * vcpu)4703 static int handle_vmwrite(struct kvm_vcpu *vcpu)
4704 {
4705 unsigned long field;
4706 int len;
4707 gva_t gva;
4708 struct vcpu_vmx *vmx = to_vmx(vcpu);
4709 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4710 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4711
4712 /* The value to write might be 32 or 64 bits, depending on L1's long
4713 * mode, and eventually we need to write that into a field of several
4714 * possible lengths. The code below first zero-extends the value to 64
4715 * bit (field_value), and then copies only the appropriate number of
4716 * bits into the vmcs12 field.
4717 */
4718 u64 field_value = 0;
4719 struct x86_exception e;
4720 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
4721 : get_vmcs12(vcpu);
4722 short offset;
4723
4724 if (!nested_vmx_check_permission(vcpu))
4725 return 1;
4726
4727 /*
4728 * In VMX non-root operation, when the VMCS-link pointer is -1ull,
4729 * any VMWRITE sets the ALU flags for VMfailInvalid.
4730 */
4731 if (vmx->nested.current_vmptr == -1ull ||
4732 (is_guest_mode(vcpu) &&
4733 get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
4734 return nested_vmx_failInvalid(vcpu);
4735
4736 if (vmx_instruction_info & (1u << 10))
4737 field_value = kvm_register_readl(vcpu,
4738 (((vmx_instruction_info) >> 3) & 0xf));
4739 else {
4740 len = is_64_bit_mode(vcpu) ? 8 : 4;
4741 if (get_vmx_mem_address(vcpu, exit_qualification,
4742 vmx_instruction_info, false, len, &gva))
4743 return 1;
4744 if (kvm_read_guest_virt(vcpu, gva, &field_value, len, &e)) {
4745 kvm_inject_page_fault(vcpu, &e);
4746 return 1;
4747 }
4748 }
4749
4750
4751 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4752
4753 offset = vmcs_field_to_offset(field);
4754 if (offset < 0)
4755 return nested_vmx_failValid(vcpu,
4756 VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4757
4758 /*
4759 * If the vCPU supports "VMWRITE to any supported field in the
4760 * VMCS," then the "read-only" fields are actually read/write.
4761 */
4762 if (vmcs_field_readonly(field) &&
4763 !nested_cpu_has_vmwrite_any_field(vcpu))
4764 return nested_vmx_failValid(vcpu,
4765 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4766
4767 /*
4768 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4769 * vmcs12, else we may crush a field or consume a stale value.
4770 */
4771 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
4772 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4773
4774 /*
4775 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4776 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
4777 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4778 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4779 * from L1 will return a different value than VMREAD from L2 (L1 sees
4780 * the stripped down value, L2 sees the full value as stored by KVM).
4781 */
4782 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4783 field_value &= 0x1f0ff;
4784
4785 vmcs12_write_any(vmcs12, field, offset, field_value);
4786
4787 /*
4788 * Do not track vmcs12 dirty-state if in guest-mode as we actually
4789 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
4790 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4791 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
4792 */
4793 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4794 /*
4795 * L1 can read these fields without exiting, ensure the
4796 * shadow VMCS is up-to-date.
4797 */
4798 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4799 preempt_disable();
4800 vmcs_load(vmx->vmcs01.shadow_vmcs);
4801
4802 __vmcs_writel(field, field_value);
4803
4804 vmcs_clear(vmx->vmcs01.shadow_vmcs);
4805 vmcs_load(vmx->loaded_vmcs->vmcs);
4806 preempt_enable();
4807 }
4808 vmx->nested.dirty_vmcs12 = true;
4809 }
4810
4811 return nested_vmx_succeed(vcpu);
4812 }
4813
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)4814 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4815 {
4816 vmx->nested.current_vmptr = vmptr;
4817 if (enable_shadow_vmcs) {
4818 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
4819 vmcs_write64(VMCS_LINK_POINTER,
4820 __pa(vmx->vmcs01.shadow_vmcs));
4821 vmx->nested.need_vmcs12_to_shadow_sync = true;
4822 }
4823 vmx->nested.dirty_vmcs12 = true;
4824 }
4825
4826 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)4827 static int handle_vmptrld(struct kvm_vcpu *vcpu)
4828 {
4829 struct vcpu_vmx *vmx = to_vmx(vcpu);
4830 gpa_t vmptr;
4831
4832 if (!nested_vmx_check_permission(vcpu))
4833 return 1;
4834
4835 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4836 return 1;
4837
4838 if (!page_address_valid(vcpu, vmptr))
4839 return nested_vmx_failValid(vcpu,
4840 VMXERR_VMPTRLD_INVALID_ADDRESS);
4841
4842 if (vmptr == vmx->nested.vmxon_ptr)
4843 return nested_vmx_failValid(vcpu,
4844 VMXERR_VMPTRLD_VMXON_POINTER);
4845
4846 /* Forbid normal VMPTRLD if Enlightened version was used */
4847 if (vmx->nested.hv_evmcs)
4848 return 1;
4849
4850 if (vmx->nested.current_vmptr != vmptr) {
4851 struct kvm_host_map map;
4852 struct vmcs12 *new_vmcs12;
4853
4854 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
4855 /*
4856 * Reads from an unbacked page return all 1s,
4857 * which means that the 32 bits located at the
4858 * given physical address won't match the required
4859 * VMCS12_REVISION identifier.
4860 */
4861 return nested_vmx_failValid(vcpu,
4862 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4863 }
4864
4865 new_vmcs12 = map.hva;
4866
4867 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4868 (new_vmcs12->hdr.shadow_vmcs &&
4869 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4870 kvm_vcpu_unmap(vcpu, &map, false);
4871 return nested_vmx_failValid(vcpu,
4872 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4873 }
4874
4875 nested_release_vmcs12(vcpu);
4876
4877 /*
4878 * Load VMCS12 from guest memory since it is not already
4879 * cached.
4880 */
4881 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4882 kvm_vcpu_unmap(vcpu, &map, false);
4883
4884 set_current_vmptr(vmx, vmptr);
4885 }
4886
4887 return nested_vmx_succeed(vcpu);
4888 }
4889
4890 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)4891 static int handle_vmptrst(struct kvm_vcpu *vcpu)
4892 {
4893 unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4894 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4895 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4896 struct x86_exception e;
4897 gva_t gva;
4898
4899 if (!nested_vmx_check_permission(vcpu))
4900 return 1;
4901
4902 if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4903 return 1;
4904
4905 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
4906 true, sizeof(gpa_t), &gva))
4907 return 1;
4908 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4909 if (kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
4910 sizeof(gpa_t), &e)) {
4911 kvm_inject_page_fault(vcpu, &e);
4912 return 1;
4913 }
4914 return nested_vmx_succeed(vcpu);
4915 }
4916
4917 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)4918 static int handle_invept(struct kvm_vcpu *vcpu)
4919 {
4920 struct vcpu_vmx *vmx = to_vmx(vcpu);
4921 u32 vmx_instruction_info, types;
4922 unsigned long type;
4923 gva_t gva;
4924 struct x86_exception e;
4925 struct {
4926 u64 eptp, gpa;
4927 } operand;
4928
4929 if (!(vmx->nested.msrs.secondary_ctls_high &
4930 SECONDARY_EXEC_ENABLE_EPT) ||
4931 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4932 kvm_queue_exception(vcpu, UD_VECTOR);
4933 return 1;
4934 }
4935
4936 if (!nested_vmx_check_permission(vcpu))
4937 return 1;
4938
4939 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4940 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4941
4942 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4943
4944 if (type >= 32 || !(types & (1 << type)))
4945 return nested_vmx_failValid(vcpu,
4946 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4947
4948 /* According to the Intel VMX instruction reference, the memory
4949 * operand is read even if it isn't needed (e.g., for type==global)
4950 */
4951 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4952 vmx_instruction_info, false, sizeof(operand), &gva))
4953 return 1;
4954 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4955 kvm_inject_page_fault(vcpu, &e);
4956 return 1;
4957 }
4958
4959 switch (type) {
4960 case VMX_EPT_EXTENT_GLOBAL:
4961 case VMX_EPT_EXTENT_CONTEXT:
4962 /*
4963 * TODO: Sync the necessary shadow EPT roots here, rather than
4964 * at the next emulated VM-entry.
4965 */
4966 break;
4967 default:
4968 BUG_ON(1);
4969 break;
4970 }
4971
4972 return nested_vmx_succeed(vcpu);
4973 }
4974
handle_invvpid(struct kvm_vcpu * vcpu)4975 static int handle_invvpid(struct kvm_vcpu *vcpu)
4976 {
4977 struct vcpu_vmx *vmx = to_vmx(vcpu);
4978 u32 vmx_instruction_info;
4979 unsigned long type, types;
4980 gva_t gva;
4981 struct x86_exception e;
4982 struct {
4983 u64 vpid;
4984 u64 gla;
4985 } operand;
4986 u16 vpid02;
4987
4988 if (!(vmx->nested.msrs.secondary_ctls_high &
4989 SECONDARY_EXEC_ENABLE_VPID) ||
4990 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4991 kvm_queue_exception(vcpu, UD_VECTOR);
4992 return 1;
4993 }
4994
4995 if (!nested_vmx_check_permission(vcpu))
4996 return 1;
4997
4998 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4999 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5000
5001 types = (vmx->nested.msrs.vpid_caps &
5002 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5003
5004 if (type >= 32 || !(types & (1 << type)))
5005 return nested_vmx_failValid(vcpu,
5006 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5007
5008 /* according to the intel vmx instruction reference, the memory
5009 * operand is read even if it isn't needed (e.g., for type==global)
5010 */
5011 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5012 vmx_instruction_info, false, sizeof(operand), &gva))
5013 return 1;
5014 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5015 kvm_inject_page_fault(vcpu, &e);
5016 return 1;
5017 }
5018 if (operand.vpid >> 16)
5019 return nested_vmx_failValid(vcpu,
5020 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5021
5022 vpid02 = nested_get_vpid02(vcpu);
5023 switch (type) {
5024 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5025 if (!operand.vpid ||
5026 is_noncanonical_address(operand.gla, vcpu))
5027 return nested_vmx_failValid(vcpu,
5028 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5029 if (cpu_has_vmx_invvpid_individual_addr()) {
5030 __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
5031 vpid02, operand.gla);
5032 } else
5033 __vmx_flush_tlb(vcpu, vpid02, false);
5034 break;
5035 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5036 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5037 if (!operand.vpid)
5038 return nested_vmx_failValid(vcpu,
5039 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5040 __vmx_flush_tlb(vcpu, vpid02, false);
5041 break;
5042 case VMX_VPID_EXTENT_ALL_CONTEXT:
5043 __vmx_flush_tlb(vcpu, vpid02, false);
5044 break;
5045 default:
5046 WARN_ON_ONCE(1);
5047 return kvm_skip_emulated_instruction(vcpu);
5048 }
5049
5050 return nested_vmx_succeed(vcpu);
5051 }
5052
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5053 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5054 struct vmcs12 *vmcs12)
5055 {
5056 u32 index = kvm_rcx_read(vcpu);
5057 u64 address;
5058 bool accessed_dirty;
5059 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5060
5061 if (!nested_cpu_has_eptp_switching(vmcs12) ||
5062 !nested_cpu_has_ept(vmcs12))
5063 return 1;
5064
5065 if (index >= VMFUNC_EPTP_ENTRIES)
5066 return 1;
5067
5068
5069 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5070 &address, index * 8, 8))
5071 return 1;
5072
5073 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
5074
5075 /*
5076 * If the (L2) guest does a vmfunc to the currently
5077 * active ept pointer, we don't have to do anything else
5078 */
5079 if (vmcs12->ept_pointer != address) {
5080 if (!valid_ept_address(vcpu, address))
5081 return 1;
5082
5083 kvm_mmu_unload(vcpu);
5084 mmu->ept_ad = accessed_dirty;
5085 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5086 vmcs12->ept_pointer = address;
5087 /*
5088 * TODO: Check what's the correct approach in case
5089 * mmu reload fails. Currently, we just let the next
5090 * reload potentially fail
5091 */
5092 kvm_mmu_reload(vcpu);
5093 }
5094
5095 return 0;
5096 }
5097
handle_vmfunc(struct kvm_vcpu * vcpu)5098 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5099 {
5100 struct vcpu_vmx *vmx = to_vmx(vcpu);
5101 struct vmcs12 *vmcs12;
5102 u32 function = kvm_rax_read(vcpu);
5103
5104 /*
5105 * VMFUNC is only supported for nested guests, but we always enable the
5106 * secondary control for simplicity; for non-nested mode, fake that we
5107 * didn't by injecting #UD.
5108 */
5109 if (!is_guest_mode(vcpu)) {
5110 kvm_queue_exception(vcpu, UD_VECTOR);
5111 return 1;
5112 }
5113
5114 vmcs12 = get_vmcs12(vcpu);
5115 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5116 goto fail;
5117
5118 switch (function) {
5119 case 0:
5120 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5121 goto fail;
5122 break;
5123 default:
5124 goto fail;
5125 }
5126 return kvm_skip_emulated_instruction(vcpu);
5127
5128 fail:
5129 nested_vmx_vmexit(vcpu, vmx->exit_reason,
5130 vmcs_read32(VM_EXIT_INTR_INFO),
5131 vmcs_readl(EXIT_QUALIFICATION));
5132 return 1;
5133 }
5134
5135 /*
5136 * Return true if an IO instruction with the specified port and size should cause
5137 * a VM-exit into L1.
5138 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)5139 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5140 int size)
5141 {
5142 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5143 gpa_t bitmap, last_bitmap;
5144 u8 b;
5145
5146 last_bitmap = (gpa_t)-1;
5147 b = -1;
5148
5149 while (size > 0) {
5150 if (port < 0x8000)
5151 bitmap = vmcs12->io_bitmap_a;
5152 else if (port < 0x10000)
5153 bitmap = vmcs12->io_bitmap_b;
5154 else
5155 return true;
5156 bitmap += (port & 0x7fff) / 8;
5157
5158 if (last_bitmap != bitmap)
5159 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5160 return true;
5161 if (b & (1 << (port & 7)))
5162 return true;
5163
5164 port++;
5165 size--;
5166 last_bitmap = bitmap;
5167 }
5168
5169 return false;
5170 }
5171
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5172 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5173 struct vmcs12 *vmcs12)
5174 {
5175 unsigned long exit_qualification;
5176 unsigned short port;
5177 int size;
5178
5179 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5180 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5181
5182 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5183
5184 port = exit_qualification >> 16;
5185 size = (exit_qualification & 7) + 1;
5186
5187 return nested_vmx_check_io_bitmaps(vcpu, port, size);
5188 }
5189
5190 /*
5191 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5192 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5193 * disinterest in the current event (read or write a specific MSR) by using an
5194 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5195 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason)5196 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5197 struct vmcs12 *vmcs12, u32 exit_reason)
5198 {
5199 u32 msr_index = kvm_rcx_read(vcpu);
5200 gpa_t bitmap;
5201
5202 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5203 return true;
5204
5205 /*
5206 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5207 * for the four combinations of read/write and low/high MSR numbers.
5208 * First we need to figure out which of the four to use:
5209 */
5210 bitmap = vmcs12->msr_bitmap;
5211 if (exit_reason == EXIT_REASON_MSR_WRITE)
5212 bitmap += 2048;
5213 if (msr_index >= 0xc0000000) {
5214 msr_index -= 0xc0000000;
5215 bitmap += 1024;
5216 }
5217
5218 /* Then read the msr_index'th bit from this bitmap: */
5219 if (msr_index < 1024*8) {
5220 unsigned char b;
5221 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5222 return true;
5223 return 1 & (b >> (msr_index & 7));
5224 } else
5225 return true; /* let L1 handle the wrong parameter */
5226 }
5227
5228 /*
5229 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5230 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5231 * intercept (via guest_host_mask etc.) the current event.
5232 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5233 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5234 struct vmcs12 *vmcs12)
5235 {
5236 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5237 int cr = exit_qualification & 15;
5238 int reg;
5239 unsigned long val;
5240
5241 switch ((exit_qualification >> 4) & 3) {
5242 case 0: /* mov to cr */
5243 reg = (exit_qualification >> 8) & 15;
5244 val = kvm_register_readl(vcpu, reg);
5245 switch (cr) {
5246 case 0:
5247 if (vmcs12->cr0_guest_host_mask &
5248 (val ^ vmcs12->cr0_read_shadow))
5249 return true;
5250 break;
5251 case 3:
5252 if ((vmcs12->cr3_target_count >= 1 &&
5253 vmcs12->cr3_target_value0 == val) ||
5254 (vmcs12->cr3_target_count >= 2 &&
5255 vmcs12->cr3_target_value1 == val) ||
5256 (vmcs12->cr3_target_count >= 3 &&
5257 vmcs12->cr3_target_value2 == val) ||
5258 (vmcs12->cr3_target_count >= 4 &&
5259 vmcs12->cr3_target_value3 == val))
5260 return false;
5261 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5262 return true;
5263 break;
5264 case 4:
5265 if (vmcs12->cr4_guest_host_mask &
5266 (vmcs12->cr4_read_shadow ^ val))
5267 return true;
5268 break;
5269 case 8:
5270 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5271 return true;
5272 break;
5273 }
5274 break;
5275 case 2: /* clts */
5276 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5277 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5278 return true;
5279 break;
5280 case 1: /* mov from cr */
5281 switch (cr) {
5282 case 3:
5283 if (vmcs12->cpu_based_vm_exec_control &
5284 CPU_BASED_CR3_STORE_EXITING)
5285 return true;
5286 break;
5287 case 8:
5288 if (vmcs12->cpu_based_vm_exec_control &
5289 CPU_BASED_CR8_STORE_EXITING)
5290 return true;
5291 break;
5292 }
5293 break;
5294 case 3: /* lmsw */
5295 /*
5296 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5297 * cr0. Other attempted changes are ignored, with no exit.
5298 */
5299 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5300 if (vmcs12->cr0_guest_host_mask & 0xe &
5301 (val ^ vmcs12->cr0_read_shadow))
5302 return true;
5303 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5304 !(vmcs12->cr0_read_shadow & 0x1) &&
5305 (val & 0x1))
5306 return true;
5307 break;
5308 }
5309 return false;
5310 }
5311
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)5312 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5313 struct vmcs12 *vmcs12, gpa_t bitmap)
5314 {
5315 u32 vmx_instruction_info;
5316 unsigned long field;
5317 u8 b;
5318
5319 if (!nested_cpu_has_shadow_vmcs(vmcs12))
5320 return true;
5321
5322 /* Decode instruction info and find the field to access */
5323 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5324 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5325
5326 /* Out-of-range fields always cause a VM exit from L2 to L1 */
5327 if (field >> 15)
5328 return true;
5329
5330 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5331 return true;
5332
5333 return 1 & (b >> (field & 7));
5334 }
5335
5336 /*
5337 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5338 * should handle it ourselves in L0 (and then continue L2). Only call this
5339 * when in is_guest_mode (L2).
5340 */
nested_vmx_exit_reflected(struct kvm_vcpu * vcpu,u32 exit_reason)5341 bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5342 {
5343 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5344 struct vcpu_vmx *vmx = to_vmx(vcpu);
5345 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5346
5347 if (vmx->nested.nested_run_pending)
5348 return false;
5349
5350 if (unlikely(vmx->fail)) {
5351 trace_kvm_nested_vmenter_failed(
5352 "hardware VM-instruction error: ",
5353 vmcs_read32(VM_INSTRUCTION_ERROR));
5354 return true;
5355 }
5356
5357 /*
5358 * The host physical addresses of some pages of guest memory
5359 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5360 * Page). The CPU may write to these pages via their host
5361 * physical address while L2 is running, bypassing any
5362 * address-translation-based dirty tracking (e.g. EPT write
5363 * protection).
5364 *
5365 * Mark them dirty on every exit from L2 to prevent them from
5366 * getting out of sync with dirty tracking.
5367 */
5368 nested_mark_vmcs12_pages_dirty(vcpu);
5369
5370 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5371 vmcs_readl(EXIT_QUALIFICATION),
5372 vmx->idt_vectoring_info,
5373 intr_info,
5374 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5375 KVM_ISA_VMX);
5376
5377 switch ((u16)exit_reason) {
5378 case EXIT_REASON_EXCEPTION_NMI:
5379 if (is_nmi(intr_info))
5380 return false;
5381 else if (is_page_fault(intr_info))
5382 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5383 else if (is_debug(intr_info) &&
5384 vcpu->guest_debug &
5385 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5386 return false;
5387 else if (is_breakpoint(intr_info) &&
5388 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5389 return false;
5390 return vmcs12->exception_bitmap &
5391 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5392 case EXIT_REASON_EXTERNAL_INTERRUPT:
5393 return false;
5394 case EXIT_REASON_TRIPLE_FAULT:
5395 return true;
5396 case EXIT_REASON_INTERRUPT_WINDOW:
5397 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5398 case EXIT_REASON_NMI_WINDOW:
5399 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5400 case EXIT_REASON_TASK_SWITCH:
5401 return true;
5402 case EXIT_REASON_CPUID:
5403 return true;
5404 case EXIT_REASON_HLT:
5405 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5406 case EXIT_REASON_INVD:
5407 return true;
5408 case EXIT_REASON_INVLPG:
5409 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5410 case EXIT_REASON_RDPMC:
5411 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5412 case EXIT_REASON_RDRAND:
5413 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5414 case EXIT_REASON_RDSEED:
5415 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5416 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5417 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5418 case EXIT_REASON_VMREAD:
5419 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5420 vmcs12->vmread_bitmap);
5421 case EXIT_REASON_VMWRITE:
5422 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5423 vmcs12->vmwrite_bitmap);
5424 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5425 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5426 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5427 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5428 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5429 /*
5430 * VMX instructions trap unconditionally. This allows L1 to
5431 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5432 */
5433 return true;
5434 case EXIT_REASON_CR_ACCESS:
5435 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5436 case EXIT_REASON_DR_ACCESS:
5437 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5438 case EXIT_REASON_IO_INSTRUCTION:
5439 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5440 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5441 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5442 case EXIT_REASON_MSR_READ:
5443 case EXIT_REASON_MSR_WRITE:
5444 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5445 case EXIT_REASON_INVALID_STATE:
5446 return true;
5447 case EXIT_REASON_MWAIT_INSTRUCTION:
5448 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5449 case EXIT_REASON_MONITOR_TRAP_FLAG:
5450 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5451 case EXIT_REASON_MONITOR_INSTRUCTION:
5452 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5453 case EXIT_REASON_PAUSE_INSTRUCTION:
5454 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5455 nested_cpu_has2(vmcs12,
5456 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5457 case EXIT_REASON_MCE_DURING_VMENTRY:
5458 return false;
5459 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5460 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5461 case EXIT_REASON_APIC_ACCESS:
5462 case EXIT_REASON_APIC_WRITE:
5463 case EXIT_REASON_EOI_INDUCED:
5464 /*
5465 * The controls for "virtualize APIC accesses," "APIC-
5466 * register virtualization," and "virtual-interrupt
5467 * delivery" only come from vmcs12.
5468 */
5469 return true;
5470 case EXIT_REASON_EPT_VIOLATION:
5471 /*
5472 * L0 always deals with the EPT violation. If nested EPT is
5473 * used, and the nested mmu code discovers that the address is
5474 * missing in the guest EPT table (EPT12), the EPT violation
5475 * will be injected with nested_ept_inject_page_fault()
5476 */
5477 return false;
5478 case EXIT_REASON_EPT_MISCONFIG:
5479 /*
5480 * L2 never uses directly L1's EPT, but rather L0's own EPT
5481 * table (shadow on EPT) or a merged EPT table that L0 built
5482 * (EPT on EPT). So any problems with the structure of the
5483 * table is L0's fault.
5484 */
5485 return false;
5486 case EXIT_REASON_INVPCID:
5487 return
5488 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5489 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5490 case EXIT_REASON_WBINVD:
5491 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5492 case EXIT_REASON_XSETBV:
5493 return true;
5494 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5495 /*
5496 * This should never happen, since it is not possible to
5497 * set XSS to a non-zero value---neither in L1 nor in L2.
5498 * If if it were, XSS would have to be checked against
5499 * the XSS exit bitmap in vmcs12.
5500 */
5501 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5502 case EXIT_REASON_PREEMPTION_TIMER:
5503 return false;
5504 case EXIT_REASON_PML_FULL:
5505 /* We emulate PML support to L1. */
5506 return false;
5507 case EXIT_REASON_VMFUNC:
5508 /* VM functions are emulated through L2->L0 vmexits. */
5509 return false;
5510 case EXIT_REASON_ENCLS:
5511 /* SGX is never exposed to L1 */
5512 return false;
5513 case EXIT_REASON_UMWAIT:
5514 case EXIT_REASON_TPAUSE:
5515 return nested_cpu_has2(vmcs12,
5516 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5517 default:
5518 return true;
5519 }
5520 }
5521
5522
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)5523 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5524 struct kvm_nested_state __user *user_kvm_nested_state,
5525 u32 user_data_size)
5526 {
5527 struct vcpu_vmx *vmx;
5528 struct vmcs12 *vmcs12;
5529 struct kvm_nested_state kvm_state = {
5530 .flags = 0,
5531 .format = KVM_STATE_NESTED_FORMAT_VMX,
5532 .size = sizeof(kvm_state),
5533 .hdr.vmx.vmxon_pa = -1ull,
5534 .hdr.vmx.vmcs12_pa = -1ull,
5535 };
5536 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5537 &user_kvm_nested_state->data.vmx[0];
5538
5539 if (!vcpu)
5540 return kvm_state.size + sizeof(*user_vmx_nested_state);
5541
5542 vmx = to_vmx(vcpu);
5543 vmcs12 = get_vmcs12(vcpu);
5544
5545 if (nested_vmx_allowed(vcpu) &&
5546 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5547 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5548 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
5549
5550 if (vmx_has_valid_vmcs12(vcpu)) {
5551 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
5552
5553 if (vmx->nested.hv_evmcs)
5554 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5555
5556 if (is_guest_mode(vcpu) &&
5557 nested_cpu_has_shadow_vmcs(vmcs12) &&
5558 vmcs12->vmcs_link_pointer != -1ull)
5559 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
5560 }
5561
5562 if (vmx->nested.smm.vmxon)
5563 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5564
5565 if (vmx->nested.smm.guest_mode)
5566 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5567
5568 if (is_guest_mode(vcpu)) {
5569 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5570
5571 if (vmx->nested.nested_run_pending)
5572 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5573 }
5574 }
5575
5576 if (user_data_size < kvm_state.size)
5577 goto out;
5578
5579 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5580 return -EFAULT;
5581
5582 if (!vmx_has_valid_vmcs12(vcpu))
5583 goto out;
5584
5585 /*
5586 * When running L2, the authoritative vmcs12 state is in the
5587 * vmcs02. When running L1, the authoritative vmcs12 state is
5588 * in the shadow or enlightened vmcs linked to vmcs01, unless
5589 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
5590 * vmcs12 state is in the vmcs12 already.
5591 */
5592 if (is_guest_mode(vcpu)) {
5593 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
5594 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5595 } else {
5596 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5597 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
5598 if (vmx->nested.hv_evmcs)
5599 copy_enlightened_to_vmcs12(vmx);
5600 else if (enable_shadow_vmcs)
5601 copy_shadow_to_vmcs12(vmx);
5602 }
5603 }
5604
5605 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5606 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5607
5608 /*
5609 * Copy over the full allocated size of vmcs12 rather than just the size
5610 * of the struct.
5611 */
5612 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
5613 return -EFAULT;
5614
5615 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5616 vmcs12->vmcs_link_pointer != -1ull) {
5617 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
5618 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
5619 return -EFAULT;
5620 }
5621
5622 out:
5623 return kvm_state.size;
5624 }
5625
5626 /*
5627 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5628 */
vmx_leave_nested(struct kvm_vcpu * vcpu)5629 void vmx_leave_nested(struct kvm_vcpu *vcpu)
5630 {
5631 if (is_guest_mode(vcpu)) {
5632 to_vmx(vcpu)->nested.nested_run_pending = 0;
5633 nested_vmx_vmexit(vcpu, -1, 0, 0);
5634 }
5635 free_nested(vcpu);
5636 }
5637
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)5638 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5639 struct kvm_nested_state __user *user_kvm_nested_state,
5640 struct kvm_nested_state *kvm_state)
5641 {
5642 struct vcpu_vmx *vmx = to_vmx(vcpu);
5643 struct vmcs12 *vmcs12;
5644 u32 exit_qual;
5645 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5646 &user_kvm_nested_state->data.vmx[0];
5647 int ret;
5648
5649 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
5650 return -EINVAL;
5651
5652 if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5653 if (kvm_state->hdr.vmx.smm.flags)
5654 return -EINVAL;
5655
5656 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
5657 return -EINVAL;
5658
5659 /*
5660 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5661 * enable eVMCS capability on vCPU. However, since then
5662 * code was changed such that flag signals vmcs12 should
5663 * be copied into eVMCS in guest memory.
5664 *
5665 * To preserve backwards compatability, allow user
5666 * to set this flag even when there is no VMXON region.
5667 */
5668 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5669 return -EINVAL;
5670 } else {
5671 if (!nested_vmx_allowed(vcpu))
5672 return -EINVAL;
5673
5674 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5675 return -EINVAL;
5676 }
5677
5678 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5679 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5680 return -EINVAL;
5681
5682 if (kvm_state->hdr.vmx.smm.flags &
5683 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5684 return -EINVAL;
5685
5686 /*
5687 * SMM temporarily disables VMX, so we cannot be in guest mode,
5688 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
5689 * must be zero.
5690 */
5691 if (is_smm(vcpu) ?
5692 (kvm_state->flags &
5693 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5694 : kvm_state->hdr.vmx.smm.flags)
5695 return -EINVAL;
5696
5697 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5698 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5699 return -EINVAL;
5700
5701 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5702 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
5703 return -EINVAL;
5704
5705 vmx_leave_nested(vcpu);
5706
5707 if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5708 return 0;
5709
5710 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
5711 ret = enter_vmx_operation(vcpu);
5712 if (ret)
5713 return ret;
5714
5715 /* Empty 'VMXON' state is permitted */
5716 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
5717 return 0;
5718
5719 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5720 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5721 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
5722 return -EINVAL;
5723
5724 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
5725 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5726 /*
5727 * Sync eVMCS upon entry as we may not have
5728 * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5729 */
5730 vmx->nested.need_vmcs12_to_shadow_sync = true;
5731 } else {
5732 return -EINVAL;
5733 }
5734
5735 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5736 vmx->nested.smm.vmxon = true;
5737 vmx->nested.vmxon = false;
5738
5739 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5740 vmx->nested.smm.guest_mode = true;
5741 }
5742
5743 vmcs12 = get_vmcs12(vcpu);
5744 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
5745 return -EFAULT;
5746
5747 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5748 return -EINVAL;
5749
5750 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5751 return 0;
5752
5753 vmx->nested.nested_run_pending =
5754 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5755
5756 ret = -EINVAL;
5757 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5758 vmcs12->vmcs_link_pointer != -1ull) {
5759 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5760
5761 if (kvm_state->size <
5762 sizeof(*kvm_state) +
5763 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
5764 goto error_guest_mode;
5765
5766 if (copy_from_user(shadow_vmcs12,
5767 user_vmx_nested_state->shadow_vmcs12,
5768 sizeof(*shadow_vmcs12))) {
5769 ret = -EFAULT;
5770 goto error_guest_mode;
5771 }
5772
5773 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5774 !shadow_vmcs12->hdr.shadow_vmcs)
5775 goto error_guest_mode;
5776 }
5777
5778 if (nested_vmx_check_controls(vcpu, vmcs12) ||
5779 nested_vmx_check_host_state(vcpu, vmcs12) ||
5780 nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
5781 goto error_guest_mode;
5782
5783 vmx->nested.dirty_vmcs12 = true;
5784 ret = nested_vmx_enter_non_root_mode(vcpu, false);
5785 if (ret)
5786 goto error_guest_mode;
5787
5788 return 0;
5789
5790 error_guest_mode:
5791 vmx->nested.nested_run_pending = 0;
5792 return ret;
5793 }
5794
nested_vmx_vcpu_setup(void)5795 void nested_vmx_vcpu_setup(void)
5796 {
5797 if (enable_shadow_vmcs) {
5798 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5799 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5800 }
5801 }
5802
5803 /*
5804 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5805 * returned for the various VMX controls MSRs when nested VMX is enabled.
5806 * The same values should also be used to verify that vmcs12 control fields are
5807 * valid during nested entry from L1 to L2.
5808 * Each of these control msrs has a low and high 32-bit half: A low bit is on
5809 * if the corresponding bit in the (32-bit) control field *must* be on, and a
5810 * bit in the high half is on if the corresponding bit in the control field
5811 * may be on. See also vmx_control_verify().
5812 */
nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs * msrs,u32 ept_caps)5813 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
5814 {
5815 /*
5816 * Note that as a general rule, the high half of the MSRs (bits in
5817 * the control fields which may be 1) should be initialized by the
5818 * intersection of the underlying hardware's MSR (i.e., features which
5819 * can be supported) and the list of features we want to expose -
5820 * because they are known to be properly supported in our code.
5821 * Also, usually, the low half of the MSRs (bits which must be 1) can
5822 * be set to 0, meaning that L1 may turn off any of these bits. The
5823 * reason is that if one of these bits is necessary, it will appear
5824 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5825 * fields of vmcs01 and vmcs02, will turn these bits off - and
5826 * nested_vmx_exit_reflected() will not pass related exits to L1.
5827 * These rules have exceptions below.
5828 */
5829
5830 /* pin-based controls */
5831 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5832 msrs->pinbased_ctls_low,
5833 msrs->pinbased_ctls_high);
5834 msrs->pinbased_ctls_low |=
5835 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5836 msrs->pinbased_ctls_high &=
5837 PIN_BASED_EXT_INTR_MASK |
5838 PIN_BASED_NMI_EXITING |
5839 PIN_BASED_VIRTUAL_NMIS |
5840 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
5841 msrs->pinbased_ctls_high |=
5842 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5843 PIN_BASED_VMX_PREEMPTION_TIMER;
5844
5845 /* exit controls */
5846 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5847 msrs->exit_ctls_low,
5848 msrs->exit_ctls_high);
5849 msrs->exit_ctls_low =
5850 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5851
5852 msrs->exit_ctls_high &=
5853 #ifdef CONFIG_X86_64
5854 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5855 #endif
5856 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5857 msrs->exit_ctls_high |=
5858 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5859 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5860 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5861
5862 /* We support free control of debug control saving. */
5863 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5864
5865 /* entry controls */
5866 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5867 msrs->entry_ctls_low,
5868 msrs->entry_ctls_high);
5869 msrs->entry_ctls_low =
5870 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5871 msrs->entry_ctls_high &=
5872 #ifdef CONFIG_X86_64
5873 VM_ENTRY_IA32E_MODE |
5874 #endif
5875 VM_ENTRY_LOAD_IA32_PAT;
5876 msrs->entry_ctls_high |=
5877 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5878
5879 /* We support free control of debug control loading. */
5880 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5881
5882 /* cpu-based controls */
5883 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5884 msrs->procbased_ctls_low,
5885 msrs->procbased_ctls_high);
5886 msrs->procbased_ctls_low =
5887 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5888 msrs->procbased_ctls_high &=
5889 CPU_BASED_INTR_WINDOW_EXITING |
5890 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
5891 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5892 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5893 CPU_BASED_CR3_STORE_EXITING |
5894 #ifdef CONFIG_X86_64
5895 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5896 #endif
5897 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5898 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5899 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5900 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5901 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5902 /*
5903 * We can allow some features even when not supported by the
5904 * hardware. For example, L1 can specify an MSR bitmap - and we
5905 * can use it to avoid exits to L1 - even when L0 runs L2
5906 * without MSR bitmaps.
5907 */
5908 msrs->procbased_ctls_high |=
5909 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5910 CPU_BASED_USE_MSR_BITMAPS;
5911
5912 /* We support free control of CR3 access interception. */
5913 msrs->procbased_ctls_low &=
5914 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5915
5916 /*
5917 * secondary cpu-based controls. Do not include those that
5918 * depend on CPUID bits, they are added later by vmx_cpuid_update.
5919 */
5920 if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5921 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5922 msrs->secondary_ctls_low,
5923 msrs->secondary_ctls_high);
5924
5925 msrs->secondary_ctls_low = 0;
5926 msrs->secondary_ctls_high &=
5927 SECONDARY_EXEC_DESC |
5928 SECONDARY_EXEC_RDTSCP |
5929 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5930 SECONDARY_EXEC_WBINVD_EXITING |
5931 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5932 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5933 SECONDARY_EXEC_RDRAND_EXITING |
5934 SECONDARY_EXEC_ENABLE_INVPCID |
5935 SECONDARY_EXEC_RDSEED_EXITING |
5936 SECONDARY_EXEC_XSAVES |
5937 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
5938
5939 /*
5940 * We can emulate "VMCS shadowing," even if the hardware
5941 * doesn't support it.
5942 */
5943 msrs->secondary_ctls_high |=
5944 SECONDARY_EXEC_SHADOW_VMCS;
5945
5946 if (enable_ept) {
5947 /* nested EPT: emulate EPT also to L1 */
5948 msrs->secondary_ctls_high |=
5949 SECONDARY_EXEC_ENABLE_EPT;
5950 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5951 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5952 if (cpu_has_vmx_ept_execute_only())
5953 msrs->ept_caps |=
5954 VMX_EPT_EXECUTE_ONLY_BIT;
5955 msrs->ept_caps &= ept_caps;
5956 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5957 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5958 VMX_EPT_1GB_PAGE_BIT;
5959 if (enable_ept_ad_bits) {
5960 msrs->secondary_ctls_high |=
5961 SECONDARY_EXEC_ENABLE_PML;
5962 msrs->ept_caps |= VMX_EPT_AD_BIT;
5963 }
5964 }
5965
5966 if (cpu_has_vmx_vmfunc()) {
5967 msrs->secondary_ctls_high |=
5968 SECONDARY_EXEC_ENABLE_VMFUNC;
5969 /*
5970 * Advertise EPTP switching unconditionally
5971 * since we emulate it
5972 */
5973 if (enable_ept)
5974 msrs->vmfunc_controls =
5975 VMX_VMFUNC_EPTP_SWITCHING;
5976 }
5977
5978 /*
5979 * Old versions of KVM use the single-context version without
5980 * checking for support, so declare that it is supported even
5981 * though it is treated as global context. The alternative is
5982 * not failing the single-context invvpid, and it is worse.
5983 */
5984 if (enable_vpid) {
5985 msrs->secondary_ctls_high |=
5986 SECONDARY_EXEC_ENABLE_VPID;
5987 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5988 VMX_VPID_EXTENT_SUPPORTED_MASK;
5989 }
5990
5991 if (enable_unrestricted_guest)
5992 msrs->secondary_ctls_high |=
5993 SECONDARY_EXEC_UNRESTRICTED_GUEST;
5994
5995 if (flexpriority_enabled)
5996 msrs->secondary_ctls_high |=
5997 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5998
5999 /* miscellaneous data */
6000 rdmsr(MSR_IA32_VMX_MISC,
6001 msrs->misc_low,
6002 msrs->misc_high);
6003 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6004 msrs->misc_low |=
6005 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6006 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6007 VMX_MISC_ACTIVITY_HLT;
6008 msrs->misc_high = 0;
6009
6010 /*
6011 * This MSR reports some information about VMX support. We
6012 * should return information about the VMX we emulate for the
6013 * guest, and the VMCS structure we give it - not about the
6014 * VMX support of the underlying hardware.
6015 */
6016 msrs->basic =
6017 VMCS12_REVISION |
6018 VMX_BASIC_TRUE_CTLS |
6019 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6020 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6021
6022 if (cpu_has_vmx_basic_inout())
6023 msrs->basic |= VMX_BASIC_INOUT;
6024
6025 /*
6026 * These MSRs specify bits which the guest must keep fixed on
6027 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6028 * We picked the standard core2 setting.
6029 */
6030 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6031 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
6032 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6033 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6034
6035 /* These MSRs specify bits which the guest must keep fixed off. */
6036 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6037 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6038
6039 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6040 msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6041 }
6042
nested_vmx_hardware_unsetup(void)6043 void nested_vmx_hardware_unsetup(void)
6044 {
6045 int i;
6046
6047 if (enable_shadow_vmcs) {
6048 for (i = 0; i < VMX_BITMAP_NR; i++)
6049 free_page((unsigned long)vmx_bitmap[i]);
6050 }
6051 }
6052
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))6053 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6054 {
6055 int i;
6056
6057 if (!cpu_has_vmx_shadow_vmcs())
6058 enable_shadow_vmcs = 0;
6059 if (enable_shadow_vmcs) {
6060 for (i = 0; i < VMX_BITMAP_NR; i++) {
6061 /*
6062 * The vmx_bitmap is not tied to a VM and so should
6063 * not be charged to a memcg.
6064 */
6065 vmx_bitmap[i] = (unsigned long *)
6066 __get_free_page(GFP_KERNEL);
6067 if (!vmx_bitmap[i]) {
6068 nested_vmx_hardware_unsetup();
6069 return -ENOMEM;
6070 }
6071 }
6072
6073 init_vmcs_shadow_fields();
6074 }
6075
6076 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear,
6077 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
6078 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld,
6079 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst,
6080 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread,
6081 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume,
6082 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite,
6083 exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff,
6084 exit_handlers[EXIT_REASON_VMON] = handle_vmon,
6085 exit_handlers[EXIT_REASON_INVEPT] = handle_invept,
6086 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid,
6087 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc,
6088
6089 kvm_x86_ops->check_nested_events = vmx_check_nested_events;
6090 kvm_x86_ops->get_nested_state = vmx_get_nested_state;
6091 kvm_x86_ops->set_nested_state = vmx_set_nested_state;
6092 kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
6093 kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
6094 kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
6095
6096 return 0;
6097 }
6098