1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 #include <linux/sched/mm.h>
11
12 #include <asm/set_memory.h>
13 #include <asm/cpu_device_id.h>
14 #include <asm/e820/api.h>
15 #include <asm/init.h>
16 #include <asm/page.h>
17 #include <asm/page_types.h>
18 #include <asm/sections.h>
19 #include <asm/setup.h>
20 #include <asm/tlbflush.h>
21 #include <asm/tlb.h>
22 #include <asm/proto.h>
23 #include <asm/dma.h> /* for MAX_DMA_PFN */
24 #include <asm/microcode.h>
25 #include <asm/kaslr.h>
26 #include <asm/hypervisor.h>
27 #include <asm/cpufeature.h>
28 #include <asm/pti.h>
29 #include <asm/text-patching.h>
30 #include <asm/paravirt.h>
31
32 /*
33 * We need to define the tracepoints somewhere, and tlb.c
34 * is only compied when SMP=y.
35 */
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/tlb.h>
38
39 #include "mm_internal.h"
40
41 /*
42 * Tables translating between page_cache_type_t and pte encoding.
43 *
44 * The default values are defined statically as minimal supported mode;
45 * WC and WT fall back to UC-. pat_init() updates these values to support
46 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
47 * for the details. Note, __early_ioremap() used during early boot-time
48 * takes pgprot_t (pte encoding) and does not use these tables.
49 *
50 * Index into __cachemode2pte_tbl[] is the cachemode.
51 *
52 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
53 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
54 */
55 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
56 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
57 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
58 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
59 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
60 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
61 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
62 };
63 EXPORT_SYMBOL(__cachemode2pte_tbl);
64
65 uint8_t __pte2cachemode_tbl[8] = {
66 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
67 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
68 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
69 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
70 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
71 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
72 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
73 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
74 };
75 EXPORT_SYMBOL(__pte2cachemode_tbl);
76
77 static unsigned long __initdata pgt_buf_start;
78 static unsigned long __initdata pgt_buf_end;
79 static unsigned long __initdata pgt_buf_top;
80
81 static unsigned long min_pfn_mapped;
82
83 static bool __initdata can_use_brk_pgt = true;
84
85 /*
86 * Pages returned are already directly mapped.
87 *
88 * Changing that is likely to break Xen, see commit:
89 *
90 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
91 *
92 * for detailed information.
93 */
alloc_low_pages(unsigned int num)94 __ref void *alloc_low_pages(unsigned int num)
95 {
96 unsigned long pfn;
97 int i;
98
99 if (after_bootmem) {
100 unsigned int order;
101
102 order = get_order((unsigned long)num << PAGE_SHIFT);
103 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
104 }
105
106 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
107 unsigned long ret = 0;
108
109 if (min_pfn_mapped < max_pfn_mapped) {
110 ret = memblock_find_in_range(
111 min_pfn_mapped << PAGE_SHIFT,
112 max_pfn_mapped << PAGE_SHIFT,
113 PAGE_SIZE * num , PAGE_SIZE);
114 }
115 if (ret)
116 memblock_reserve(ret, PAGE_SIZE * num);
117 else if (can_use_brk_pgt)
118 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
119
120 if (!ret)
121 panic("alloc_low_pages: can not alloc memory");
122
123 pfn = ret >> PAGE_SHIFT;
124 } else {
125 pfn = pgt_buf_end;
126 pgt_buf_end += num;
127 }
128
129 for (i = 0; i < num; i++) {
130 void *adr;
131
132 adr = __va((pfn + i) << PAGE_SHIFT);
133 clear_page(adr);
134 }
135
136 return __va(pfn << PAGE_SHIFT);
137 }
138
139 /*
140 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
141 * With KASLR memory randomization, depending on the machine e820 memory
142 * and the PUD alignment. We may need twice more pages when KASLR memory
143 * randomization is enabled.
144 */
145 #ifndef CONFIG_RANDOMIZE_MEMORY
146 #define INIT_PGD_PAGE_COUNT 6
147 #else
148 #define INIT_PGD_PAGE_COUNT 12
149 #endif
150 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
151 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)152 void __init early_alloc_pgt_buf(void)
153 {
154 unsigned long tables = INIT_PGT_BUF_SIZE;
155 phys_addr_t base;
156
157 base = __pa(extend_brk(tables, PAGE_SIZE));
158
159 pgt_buf_start = base >> PAGE_SHIFT;
160 pgt_buf_end = pgt_buf_start;
161 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
162 }
163
164 int after_bootmem;
165
166 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
167
168 struct map_range {
169 unsigned long start;
170 unsigned long end;
171 unsigned page_size_mask;
172 };
173
174 static int page_size_mask;
175
probe_page_size_mask(void)176 static void __init probe_page_size_mask(void)
177 {
178 /*
179 * For pagealloc debugging, identity mapping will use small pages.
180 * This will simplify cpa(), which otherwise needs to support splitting
181 * large pages into small in interrupt context, etc.
182 */
183 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
184 page_size_mask |= 1 << PG_LEVEL_2M;
185 else
186 direct_gbpages = 0;
187
188 /* Enable PSE if available */
189 if (boot_cpu_has(X86_FEATURE_PSE))
190 cr4_set_bits_and_update_boot(X86_CR4_PSE);
191
192 /* Enable PGE if available */
193 __supported_pte_mask &= ~_PAGE_GLOBAL;
194 if (boot_cpu_has(X86_FEATURE_PGE)) {
195 cr4_set_bits_and_update_boot(X86_CR4_PGE);
196 __supported_pte_mask |= _PAGE_GLOBAL;
197 }
198
199 /* By the default is everything supported: */
200 __default_kernel_pte_mask = __supported_pte_mask;
201 /* Except when with PTI where the kernel is mostly non-Global: */
202 if (cpu_feature_enabled(X86_FEATURE_PTI))
203 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
204
205 /* Enable 1 GB linear kernel mappings if available: */
206 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
207 printk(KERN_INFO "Using GB pages for direct mapping\n");
208 page_size_mask |= 1 << PG_LEVEL_1G;
209 } else {
210 direct_gbpages = 0;
211 }
212 }
213
214 #define INTEL_MATCH(_model) { .vendor = X86_VENDOR_INTEL, \
215 .family = 6, \
216 .model = _model, \
217 }
218 /*
219 * INVLPG may not properly flush Global entries
220 * on these CPUs when PCIDs are enabled.
221 */
222 static const struct x86_cpu_id invlpg_miss_ids[] = {
223 INTEL_MATCH(INTEL_FAM6_ALDERLAKE ),
224 INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
225 INTEL_MATCH(INTEL_FAM6_ALDERLAKE_N ),
226 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE ),
227 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
228 INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
229 {}
230 };
231
setup_pcid(void)232 static void setup_pcid(void)
233 {
234 if (!IS_ENABLED(CONFIG_X86_64))
235 return;
236
237 if (!boot_cpu_has(X86_FEATURE_PCID))
238 return;
239
240 if (x86_match_cpu(invlpg_miss_ids)) {
241 pr_info("Incomplete global flushes, disabling PCID");
242 setup_clear_cpu_cap(X86_FEATURE_PCID);
243 return;
244 }
245
246 if (boot_cpu_has(X86_FEATURE_PGE)) {
247 /*
248 * This can't be cr4_set_bits_and_update_boot() -- the
249 * trampoline code can't handle CR4.PCIDE and it wouldn't
250 * do any good anyway. Despite the name,
251 * cr4_set_bits_and_update_boot() doesn't actually cause
252 * the bits in question to remain set all the way through
253 * the secondary boot asm.
254 *
255 * Instead, we brute-force it and set CR4.PCIDE manually in
256 * start_secondary().
257 */
258 cr4_set_bits(X86_CR4_PCIDE);
259
260 /*
261 * INVPCID's single-context modes (2/3) only work if we set
262 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
263 * on systems that have X86_CR4_PCIDE clear, or that have
264 * no INVPCID support at all.
265 */
266 if (boot_cpu_has(X86_FEATURE_INVPCID))
267 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
268 } else {
269 /*
270 * flush_tlb_all(), as currently implemented, won't work if
271 * PCID is on but PGE is not. Since that combination
272 * doesn't exist on real hardware, there's no reason to try
273 * to fully support it, but it's polite to avoid corrupting
274 * data if we're on an improperly configured VM.
275 */
276 setup_clear_cpu_cap(X86_FEATURE_PCID);
277 }
278 }
279
280 #ifdef CONFIG_X86_32
281 #define NR_RANGE_MR 3
282 #else /* CONFIG_X86_64 */
283 #define NR_RANGE_MR 5
284 #endif
285
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)286 static int __meminit save_mr(struct map_range *mr, int nr_range,
287 unsigned long start_pfn, unsigned long end_pfn,
288 unsigned long page_size_mask)
289 {
290 if (start_pfn < end_pfn) {
291 if (nr_range >= NR_RANGE_MR)
292 panic("run out of range for init_memory_mapping\n");
293 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
294 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
295 mr[nr_range].page_size_mask = page_size_mask;
296 nr_range++;
297 }
298
299 return nr_range;
300 }
301
302 /*
303 * adjust the page_size_mask for small range to go with
304 * big page size instead small one if nearby are ram too.
305 */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)306 static void __ref adjust_range_page_size_mask(struct map_range *mr,
307 int nr_range)
308 {
309 int i;
310
311 for (i = 0; i < nr_range; i++) {
312 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
313 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
314 unsigned long start = round_down(mr[i].start, PMD_SIZE);
315 unsigned long end = round_up(mr[i].end, PMD_SIZE);
316
317 #ifdef CONFIG_X86_32
318 if ((end >> PAGE_SHIFT) > max_low_pfn)
319 continue;
320 #endif
321
322 if (memblock_is_region_memory(start, end - start))
323 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
324 }
325 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
326 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
327 unsigned long start = round_down(mr[i].start, PUD_SIZE);
328 unsigned long end = round_up(mr[i].end, PUD_SIZE);
329
330 if (memblock_is_region_memory(start, end - start))
331 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
332 }
333 }
334 }
335
page_size_string(struct map_range * mr)336 static const char *page_size_string(struct map_range *mr)
337 {
338 static const char str_1g[] = "1G";
339 static const char str_2m[] = "2M";
340 static const char str_4m[] = "4M";
341 static const char str_4k[] = "4k";
342
343 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
344 return str_1g;
345 /*
346 * 32-bit without PAE has a 4M large page size.
347 * PG_LEVEL_2M is misnamed, but we can at least
348 * print out the right size in the string.
349 */
350 if (IS_ENABLED(CONFIG_X86_32) &&
351 !IS_ENABLED(CONFIG_X86_PAE) &&
352 mr->page_size_mask & (1<<PG_LEVEL_2M))
353 return str_4m;
354
355 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
356 return str_2m;
357
358 return str_4k;
359 }
360
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)361 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
362 unsigned long start,
363 unsigned long end)
364 {
365 unsigned long start_pfn, end_pfn, limit_pfn;
366 unsigned long pfn;
367 int i;
368
369 limit_pfn = PFN_DOWN(end);
370
371 /* head if not big page alignment ? */
372 pfn = start_pfn = PFN_DOWN(start);
373 #ifdef CONFIG_X86_32
374 /*
375 * Don't use a large page for the first 2/4MB of memory
376 * because there are often fixed size MTRRs in there
377 * and overlapping MTRRs into large pages can cause
378 * slowdowns.
379 */
380 if (pfn == 0)
381 end_pfn = PFN_DOWN(PMD_SIZE);
382 else
383 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
384 #else /* CONFIG_X86_64 */
385 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
386 #endif
387 if (end_pfn > limit_pfn)
388 end_pfn = limit_pfn;
389 if (start_pfn < end_pfn) {
390 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
391 pfn = end_pfn;
392 }
393
394 /* big page (2M) range */
395 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
396 #ifdef CONFIG_X86_32
397 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
398 #else /* CONFIG_X86_64 */
399 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
400 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
401 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
402 #endif
403
404 if (start_pfn < end_pfn) {
405 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
406 page_size_mask & (1<<PG_LEVEL_2M));
407 pfn = end_pfn;
408 }
409
410 #ifdef CONFIG_X86_64
411 /* big page (1G) range */
412 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
413 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
414 if (start_pfn < end_pfn) {
415 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
416 page_size_mask &
417 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
418 pfn = end_pfn;
419 }
420
421 /* tail is not big page (1G) alignment */
422 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
423 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
424 if (start_pfn < end_pfn) {
425 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
426 page_size_mask & (1<<PG_LEVEL_2M));
427 pfn = end_pfn;
428 }
429 #endif
430
431 /* tail is not big page (2M) alignment */
432 start_pfn = pfn;
433 end_pfn = limit_pfn;
434 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
435
436 if (!after_bootmem)
437 adjust_range_page_size_mask(mr, nr_range);
438
439 /* try to merge same page size and continuous */
440 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
441 unsigned long old_start;
442 if (mr[i].end != mr[i+1].start ||
443 mr[i].page_size_mask != mr[i+1].page_size_mask)
444 continue;
445 /* move it */
446 old_start = mr[i].start;
447 memmove(&mr[i], &mr[i+1],
448 (nr_range - 1 - i) * sizeof(struct map_range));
449 mr[i--].start = old_start;
450 nr_range--;
451 }
452
453 for (i = 0; i < nr_range; i++)
454 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
455 mr[i].start, mr[i].end - 1,
456 page_size_string(&mr[i]));
457
458 return nr_range;
459 }
460
461 struct range pfn_mapped[E820_MAX_ENTRIES];
462 int nr_pfn_mapped;
463
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)464 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
465 {
466 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
467 nr_pfn_mapped, start_pfn, end_pfn);
468 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
469
470 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
471
472 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
473 max_low_pfn_mapped = max(max_low_pfn_mapped,
474 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
475 }
476
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)477 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
478 {
479 int i;
480
481 for (i = 0; i < nr_pfn_mapped; i++)
482 if ((start_pfn >= pfn_mapped[i].start) &&
483 (end_pfn <= pfn_mapped[i].end))
484 return true;
485
486 return false;
487 }
488
489 /*
490 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
491 * This runs before bootmem is initialized and gets pages directly from
492 * the physical memory. To access them they are temporarily mapped.
493 */
init_memory_mapping(unsigned long start,unsigned long end)494 unsigned long __ref init_memory_mapping(unsigned long start,
495 unsigned long end)
496 {
497 struct map_range mr[NR_RANGE_MR];
498 unsigned long ret = 0;
499 int nr_range, i;
500
501 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
502 start, end - 1);
503
504 memset(mr, 0, sizeof(mr));
505 nr_range = split_mem_range(mr, 0, start, end);
506
507 for (i = 0; i < nr_range; i++)
508 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
509 mr[i].page_size_mask);
510
511 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
512
513 return ret >> PAGE_SHIFT;
514 }
515
516 /*
517 * We need to iterate through the E820 memory map and create direct mappings
518 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
519 * create direct mappings for all pfns from [0 to max_low_pfn) and
520 * [4GB to max_pfn) because of possible memory holes in high addresses
521 * that cannot be marked as UC by fixed/variable range MTRRs.
522 * Depending on the alignment of E820 ranges, this may possibly result
523 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
524 *
525 * init_mem_mapping() calls init_range_memory_mapping() with big range.
526 * That range would have hole in the middle or ends, and only ram parts
527 * will be mapped in init_range_memory_mapping().
528 */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)529 static unsigned long __init init_range_memory_mapping(
530 unsigned long r_start,
531 unsigned long r_end)
532 {
533 unsigned long start_pfn, end_pfn;
534 unsigned long mapped_ram_size = 0;
535 int i;
536
537 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
538 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
539 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
540 if (start >= end)
541 continue;
542
543 /*
544 * if it is overlapping with brk pgt, we need to
545 * alloc pgt buf from memblock instead.
546 */
547 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
548 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
549 init_memory_mapping(start, end);
550 mapped_ram_size += end - start;
551 can_use_brk_pgt = true;
552 }
553
554 return mapped_ram_size;
555 }
556
get_new_step_size(unsigned long step_size)557 static unsigned long __init get_new_step_size(unsigned long step_size)
558 {
559 /*
560 * Initial mapped size is PMD_SIZE (2M).
561 * We can not set step_size to be PUD_SIZE (1G) yet.
562 * In worse case, when we cross the 1G boundary, and
563 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
564 * to map 1G range with PTE. Hence we use one less than the
565 * difference of page table level shifts.
566 *
567 * Don't need to worry about overflow in the top-down case, on 32bit,
568 * when step_size is 0, round_down() returns 0 for start, and that
569 * turns it into 0x100000000ULL.
570 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
571 * needs to be taken into consideration by the code below.
572 */
573 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
574 }
575
576 /**
577 * memory_map_top_down - Map [map_start, map_end) top down
578 * @map_start: start address of the target memory range
579 * @map_end: end address of the target memory range
580 *
581 * This function will setup direct mapping for memory range
582 * [map_start, map_end) in top-down. That said, the page tables
583 * will be allocated at the end of the memory, and we map the
584 * memory in top-down.
585 */
memory_map_top_down(unsigned long map_start,unsigned long map_end)586 static void __init memory_map_top_down(unsigned long map_start,
587 unsigned long map_end)
588 {
589 unsigned long real_end, start, last_start;
590 unsigned long step_size;
591 unsigned long addr;
592 unsigned long mapped_ram_size = 0;
593
594 /* xen has big range in reserved near end of ram, skip it at first.*/
595 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
596 real_end = addr + PMD_SIZE;
597
598 /* step_size need to be small so pgt_buf from BRK could cover it */
599 step_size = PMD_SIZE;
600 max_pfn_mapped = 0; /* will get exact value next */
601 min_pfn_mapped = real_end >> PAGE_SHIFT;
602 last_start = start = real_end;
603
604 /*
605 * We start from the top (end of memory) and go to the bottom.
606 * The memblock_find_in_range() gets us a block of RAM from the
607 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
608 * for page table.
609 */
610 while (last_start > map_start) {
611 if (last_start > step_size) {
612 start = round_down(last_start - 1, step_size);
613 if (start < map_start)
614 start = map_start;
615 } else
616 start = map_start;
617 mapped_ram_size += init_range_memory_mapping(start,
618 last_start);
619 last_start = start;
620 min_pfn_mapped = last_start >> PAGE_SHIFT;
621 if (mapped_ram_size >= step_size)
622 step_size = get_new_step_size(step_size);
623 }
624
625 if (real_end < map_end)
626 init_range_memory_mapping(real_end, map_end);
627 }
628
629 /**
630 * memory_map_bottom_up - Map [map_start, map_end) bottom up
631 * @map_start: start address of the target memory range
632 * @map_end: end address of the target memory range
633 *
634 * This function will setup direct mapping for memory range
635 * [map_start, map_end) in bottom-up. Since we have limited the
636 * bottom-up allocation above the kernel, the page tables will
637 * be allocated just above the kernel and we map the memory
638 * in [map_start, map_end) in bottom-up.
639 */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)640 static void __init memory_map_bottom_up(unsigned long map_start,
641 unsigned long map_end)
642 {
643 unsigned long next, start;
644 unsigned long mapped_ram_size = 0;
645 /* step_size need to be small so pgt_buf from BRK could cover it */
646 unsigned long step_size = PMD_SIZE;
647
648 start = map_start;
649 min_pfn_mapped = start >> PAGE_SHIFT;
650
651 /*
652 * We start from the bottom (@map_start) and go to the top (@map_end).
653 * The memblock_find_in_range() gets us a block of RAM from the
654 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
655 * for page table.
656 */
657 while (start < map_end) {
658 if (step_size && map_end - start > step_size) {
659 next = round_up(start + 1, step_size);
660 if (next > map_end)
661 next = map_end;
662 } else {
663 next = map_end;
664 }
665
666 mapped_ram_size += init_range_memory_mapping(start, next);
667 start = next;
668
669 if (mapped_ram_size >= step_size)
670 step_size = get_new_step_size(step_size);
671 }
672 }
673
init_mem_mapping(void)674 void __init init_mem_mapping(void)
675 {
676 unsigned long end;
677
678 pti_check_boottime_disable();
679 probe_page_size_mask();
680 setup_pcid();
681
682 #ifdef CONFIG_X86_64
683 end = max_pfn << PAGE_SHIFT;
684 #else
685 end = max_low_pfn << PAGE_SHIFT;
686 #endif
687
688 /* the ISA range is always mapped regardless of memory holes */
689 init_memory_mapping(0, ISA_END_ADDRESS);
690
691 /* Init the trampoline, possibly with KASLR memory offset */
692 init_trampoline();
693
694 /*
695 * If the allocation is in bottom-up direction, we setup direct mapping
696 * in bottom-up, otherwise we setup direct mapping in top-down.
697 */
698 if (memblock_bottom_up()) {
699 unsigned long kernel_end = __pa_symbol(_end);
700
701 /*
702 * we need two separate calls here. This is because we want to
703 * allocate page tables above the kernel. So we first map
704 * [kernel_end, end) to make memory above the kernel be mapped
705 * as soon as possible. And then use page tables allocated above
706 * the kernel to map [ISA_END_ADDRESS, kernel_end).
707 */
708 memory_map_bottom_up(kernel_end, end);
709 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
710 } else {
711 memory_map_top_down(ISA_END_ADDRESS, end);
712 }
713
714 #ifdef CONFIG_X86_64
715 if (max_pfn > max_low_pfn) {
716 /* can we preseve max_low_pfn ?*/
717 max_low_pfn = max_pfn;
718 }
719 #else
720 early_ioremap_page_table_range_init();
721 #endif
722
723 load_cr3(swapper_pg_dir);
724 __flush_tlb_all();
725
726 x86_init.hyper.init_mem_mapping();
727
728 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
729 }
730
731 /*
732 * Initialize an mm_struct to be used during poking and a pointer to be used
733 * during patching.
734 */
poking_init(void)735 void __init poking_init(void)
736 {
737 spinlock_t *ptl;
738 pte_t *ptep;
739
740 poking_mm = mm_alloc();
741 BUG_ON(!poking_mm);
742
743 /* Xen PV guests need the PGD to be pinned. */
744 paravirt_arch_dup_mmap(NULL, poking_mm);
745
746 /*
747 * Randomize the poking address, but make sure that the following page
748 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
749 * and adjust the address if the PMD ends after the first one.
750 */
751 poking_addr = TASK_UNMAPPED_BASE;
752 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
753 poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
754 (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
755
756 if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
757 poking_addr += PAGE_SIZE;
758
759 /*
760 * We need to trigger the allocation of the page-tables that will be
761 * needed for poking now. Later, poking may be performed in an atomic
762 * section, which might cause allocation to fail.
763 */
764 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
765 BUG_ON(!ptep);
766 pte_unmap_unlock(ptep, ptl);
767 }
768
769 /*
770 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
771 * is valid. The argument is a physical page number.
772 *
773 * On x86, access has to be given to the first megabyte of RAM because that
774 * area traditionally contains BIOS code and data regions used by X, dosemu,
775 * and similar apps. Since they map the entire memory range, the whole range
776 * must be allowed (for mapping), but any areas that would otherwise be
777 * disallowed are flagged as being "zero filled" instead of rejected.
778 * Access has to be given to non-kernel-ram areas as well, these contain the
779 * PCI mmio resources as well as potential bios/acpi data regions.
780 */
devmem_is_allowed(unsigned long pagenr)781 int devmem_is_allowed(unsigned long pagenr)
782 {
783 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
784 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
785 != REGION_DISJOINT) {
786 /*
787 * For disallowed memory regions in the low 1MB range,
788 * request that the page be shown as all zeros.
789 */
790 if (pagenr < 256)
791 return 2;
792
793 return 0;
794 }
795
796 /*
797 * This must follow RAM test, since System RAM is considered a
798 * restricted resource under CONFIG_STRICT_IOMEM.
799 */
800 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
801 /* Low 1MB bypasses iomem restrictions. */
802 if (pagenr < 256)
803 return 1;
804
805 return 0;
806 }
807
808 return 1;
809 }
810
free_init_pages(const char * what,unsigned long begin,unsigned long end)811 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
812 {
813 unsigned long begin_aligned, end_aligned;
814
815 /* Make sure boundaries are page aligned */
816 begin_aligned = PAGE_ALIGN(begin);
817 end_aligned = end & PAGE_MASK;
818
819 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
820 begin = begin_aligned;
821 end = end_aligned;
822 }
823
824 if (begin >= end)
825 return;
826
827 /*
828 * If debugging page accesses then do not free this memory but
829 * mark them not present - any buggy init-section access will
830 * create a kernel page fault:
831 */
832 if (debug_pagealloc_enabled()) {
833 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
834 begin, end - 1);
835 /*
836 * Inform kmemleak about the hole in the memory since the
837 * corresponding pages will be unmapped.
838 */
839 kmemleak_free_part((void *)begin, end - begin);
840 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
841 } else {
842 /*
843 * We just marked the kernel text read only above, now that
844 * we are going to free part of that, we need to make that
845 * writeable and non-executable first.
846 */
847 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
848 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
849
850 free_reserved_area((void *)begin, (void *)end,
851 POISON_FREE_INITMEM, what);
852 }
853 }
854
855 /*
856 * begin/end can be in the direct map or the "high kernel mapping"
857 * used for the kernel image only. free_init_pages() will do the
858 * right thing for either kind of address.
859 */
free_kernel_image_pages(void * begin,void * end)860 void free_kernel_image_pages(void *begin, void *end)
861 {
862 unsigned long begin_ul = (unsigned long)begin;
863 unsigned long end_ul = (unsigned long)end;
864 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
865
866
867 free_init_pages("unused kernel image", begin_ul, end_ul);
868
869 /*
870 * PTI maps some of the kernel into userspace. For performance,
871 * this includes some kernel areas that do not contain secrets.
872 * Those areas might be adjacent to the parts of the kernel image
873 * being freed, which may contain secrets. Remove the "high kernel
874 * image mapping" for these freed areas, ensuring they are not even
875 * potentially vulnerable to Meltdown regardless of the specific
876 * optimizations PTI is currently using.
877 *
878 * The "noalias" prevents unmapping the direct map alias which is
879 * needed to access the freed pages.
880 *
881 * This is only valid for 64bit kernels. 32bit has only one mapping
882 * which can't be treated in this way for obvious reasons.
883 */
884 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
885 set_memory_np_noalias(begin_ul, len_pages);
886 }
887
mem_encrypt_free_decrypted_mem(void)888 void __weak mem_encrypt_free_decrypted_mem(void) { }
889
free_initmem(void)890 void __ref free_initmem(void)
891 {
892 e820__reallocate_tables();
893
894 mem_encrypt_free_decrypted_mem();
895
896 free_kernel_image_pages(&__init_begin, &__init_end);
897 }
898
899 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)900 void __init free_initrd_mem(unsigned long start, unsigned long end)
901 {
902 /*
903 * end could be not aligned, and We can not align that,
904 * decompresser could be confused by aligned initrd_end
905 * We already reserve the end partial page before in
906 * - i386_start_kernel()
907 * - x86_64_start_kernel()
908 * - relocate_initrd()
909 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
910 */
911 free_init_pages("initrd", start, PAGE_ALIGN(end));
912 }
913 #endif
914
915 /*
916 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
917 * and pass it to the MM layer - to help it set zone watermarks more
918 * accurately.
919 *
920 * Done on 64-bit systems only for the time being, although 32-bit systems
921 * might benefit from this as well.
922 */
memblock_find_dma_reserve(void)923 void __init memblock_find_dma_reserve(void)
924 {
925 #ifdef CONFIG_X86_64
926 u64 nr_pages = 0, nr_free_pages = 0;
927 unsigned long start_pfn, end_pfn;
928 phys_addr_t start_addr, end_addr;
929 int i;
930 u64 u;
931
932 /*
933 * Iterate over all memory ranges (free and reserved ones alike),
934 * to calculate the total number of pages in the first 16 MB of RAM:
935 */
936 nr_pages = 0;
937 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
938 start_pfn = min(start_pfn, MAX_DMA_PFN);
939 end_pfn = min(end_pfn, MAX_DMA_PFN);
940
941 nr_pages += end_pfn - start_pfn;
942 }
943
944 /*
945 * Iterate over free memory ranges to calculate the number of free
946 * pages in the DMA zone, while not counting potential partial
947 * pages at the beginning or the end of the range:
948 */
949 nr_free_pages = 0;
950 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
951 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
952 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
953
954 if (start_pfn < end_pfn)
955 nr_free_pages += end_pfn - start_pfn;
956 }
957
958 set_dma_reserve(nr_pages - nr_free_pages);
959 #endif
960 }
961
zone_sizes_init(void)962 void __init zone_sizes_init(void)
963 {
964 unsigned long max_zone_pfns[MAX_NR_ZONES];
965
966 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
967
968 #ifdef CONFIG_ZONE_DMA
969 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
970 #endif
971 #ifdef CONFIG_ZONE_DMA32
972 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
973 #endif
974 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
975 #ifdef CONFIG_HIGHMEM
976 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
977 #endif
978
979 free_area_init_nodes(max_zone_pfns);
980 }
981
982 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
983 .loaded_mm = &init_mm,
984 .next_asid = 1,
985 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
986 };
987 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
988
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)989 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
990 {
991 /* entry 0 MUST be WB (hardwired to speed up translations) */
992 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
993
994 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
995 __pte2cachemode_tbl[entry] = cache;
996 }
997
998 #ifdef CONFIG_SWAP
max_swapfile_size(void)999 unsigned long max_swapfile_size(void)
1000 {
1001 unsigned long pages;
1002
1003 pages = generic_max_swapfile_size();
1004
1005 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1006 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1007 unsigned long long l1tf_limit = l1tf_pfn_limit();
1008 /*
1009 * We encode swap offsets also with 3 bits below those for pfn
1010 * which makes the usable limit higher.
1011 */
1012 #if CONFIG_PGTABLE_LEVELS > 2
1013 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1014 #endif
1015 pages = min_t(unsigned long long, l1tf_limit, pages);
1016 }
1017 return pages;
1018 }
1019 #endif
1020