• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Just-In-Time compiler for eBPF filters on IA32 (32bit x86)
4  *
5  * Author: Wang YanQing (udknight@gmail.com)
6  * The code based on code and ideas from:
7  * Eric Dumazet (eric.dumazet@gmail.com)
8  * and from:
9  * Shubham Bansal <illusionist.neo@gmail.com>
10  */
11 
12 #include <linux/netdevice.h>
13 #include <linux/filter.h>
14 #include <linux/if_vlan.h>
15 #include <asm/cacheflush.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <linux/bpf.h>
19 
20 /*
21  * eBPF prog stack layout:
22  *
23  *                         high
24  * original ESP =>        +-----+
25  *                        |     | callee saved registers
26  *                        +-----+
27  *                        | ... | eBPF JIT scratch space
28  * BPF_FP,IA32_EBP  =>    +-----+
29  *                        | ... | eBPF prog stack
30  *                        +-----+
31  *                        |RSVD | JIT scratchpad
32  * current ESP =>         +-----+
33  *                        |     |
34  *                        | ... | Function call stack
35  *                        |     |
36  *                        +-----+
37  *                          low
38  *
39  * The callee saved registers:
40  *
41  *                                high
42  * original ESP =>        +------------------+ \
43  *                        |        ebp       | |
44  * current EBP =>         +------------------+ } callee saved registers
45  *                        |    ebx,esi,edi   | |
46  *                        +------------------+ /
47  *                                low
48  */
49 
emit_code(u8 * ptr,u32 bytes,unsigned int len)50 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
51 {
52 	if (len == 1)
53 		*ptr = bytes;
54 	else if (len == 2)
55 		*(u16 *)ptr = bytes;
56 	else {
57 		*(u32 *)ptr = bytes;
58 		barrier();
59 	}
60 	return ptr + len;
61 }
62 
63 #define EMIT(bytes, len) \
64 	do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
65 
66 #define EMIT1(b1)		EMIT(b1, 1)
67 #define EMIT2(b1, b2)		EMIT((b1) + ((b2) << 8), 2)
68 #define EMIT3(b1, b2, b3)	EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
69 #define EMIT4(b1, b2, b3, b4)   \
70 	EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
71 
72 #define EMIT1_off32(b1, off) \
73 	do { EMIT1(b1); EMIT(off, 4); } while (0)
74 #define EMIT2_off32(b1, b2, off) \
75 	do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
76 #define EMIT3_off32(b1, b2, b3, off) \
77 	do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
78 #define EMIT4_off32(b1, b2, b3, b4, off) \
79 	do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
80 
81 #define jmp_label(label, jmp_insn_len) (label - cnt - jmp_insn_len)
82 
is_imm8(int value)83 static bool is_imm8(int value)
84 {
85 	return value <= 127 && value >= -128;
86 }
87 
is_simm32(s64 value)88 static bool is_simm32(s64 value)
89 {
90 	return value == (s64) (s32) value;
91 }
92 
93 #define STACK_OFFSET(k)	(k)
94 #define TCALL_CNT	(MAX_BPF_JIT_REG + 0)	/* Tail Call Count */
95 
96 #define IA32_EAX	(0x0)
97 #define IA32_EBX	(0x3)
98 #define IA32_ECX	(0x1)
99 #define IA32_EDX	(0x2)
100 #define IA32_ESI	(0x6)
101 #define IA32_EDI	(0x7)
102 #define IA32_EBP	(0x5)
103 #define IA32_ESP	(0x4)
104 
105 /*
106  * List of x86 cond jumps opcodes (. + s8)
107  * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
108  */
109 #define IA32_JB  0x72
110 #define IA32_JAE 0x73
111 #define IA32_JE  0x74
112 #define IA32_JNE 0x75
113 #define IA32_JBE 0x76
114 #define IA32_JA  0x77
115 #define IA32_JL  0x7C
116 #define IA32_JGE 0x7D
117 #define IA32_JLE 0x7E
118 #define IA32_JG  0x7F
119 
120 #define COND_JMP_OPCODE_INVALID	(0xFF)
121 
122 /*
123  * Map eBPF registers to IA32 32bit registers or stack scratch space.
124  *
125  * 1. All the registers, R0-R10, are mapped to scratch space on stack.
126  * 2. We need two 64 bit temp registers to do complex operations on eBPF
127  *    registers.
128  * 3. For performance reason, the BPF_REG_AX for blinding constant, is
129  *    mapped to real hardware register pair, IA32_ESI and IA32_EDI.
130  *
131  * As the eBPF registers are all 64 bit registers and IA32 has only 32 bit
132  * registers, we have to map each eBPF registers with two IA32 32 bit regs
133  * or scratch memory space and we have to build eBPF 64 bit register from those.
134  *
135  * We use IA32_EAX, IA32_EDX, IA32_ECX, IA32_EBX as temporary registers.
136  */
137 static const u8 bpf2ia32[][2] = {
138 	/* Return value from in-kernel function, and exit value from eBPF */
139 	[BPF_REG_0] = {STACK_OFFSET(0), STACK_OFFSET(4)},
140 
141 	/* The arguments from eBPF program to in-kernel function */
142 	/* Stored on stack scratch space */
143 	[BPF_REG_1] = {STACK_OFFSET(8), STACK_OFFSET(12)},
144 	[BPF_REG_2] = {STACK_OFFSET(16), STACK_OFFSET(20)},
145 	[BPF_REG_3] = {STACK_OFFSET(24), STACK_OFFSET(28)},
146 	[BPF_REG_4] = {STACK_OFFSET(32), STACK_OFFSET(36)},
147 	[BPF_REG_5] = {STACK_OFFSET(40), STACK_OFFSET(44)},
148 
149 	/* Callee saved registers that in-kernel function will preserve */
150 	/* Stored on stack scratch space */
151 	[BPF_REG_6] = {STACK_OFFSET(48), STACK_OFFSET(52)},
152 	[BPF_REG_7] = {STACK_OFFSET(56), STACK_OFFSET(60)},
153 	[BPF_REG_8] = {STACK_OFFSET(64), STACK_OFFSET(68)},
154 	[BPF_REG_9] = {STACK_OFFSET(72), STACK_OFFSET(76)},
155 
156 	/* Read only Frame Pointer to access Stack */
157 	[BPF_REG_FP] = {STACK_OFFSET(80), STACK_OFFSET(84)},
158 
159 	/* Temporary register for blinding constants. */
160 	[BPF_REG_AX] = {IA32_ESI, IA32_EDI},
161 
162 	/* Tail call count. Stored on stack scratch space. */
163 	[TCALL_CNT] = {STACK_OFFSET(88), STACK_OFFSET(92)},
164 };
165 
166 #define dst_lo	dst[0]
167 #define dst_hi	dst[1]
168 #define src_lo	src[0]
169 #define src_hi	src[1]
170 
171 #define STACK_ALIGNMENT	8
172 /*
173  * Stack space for BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4,
174  * BPF_REG_5, BPF_REG_6, BPF_REG_7, BPF_REG_8, BPF_REG_9,
175  * BPF_REG_FP, BPF_REG_AX and Tail call counts.
176  */
177 #define SCRATCH_SIZE 96
178 
179 /* Total stack size used in JITed code */
180 #define _STACK_SIZE	(stack_depth + SCRATCH_SIZE)
181 
182 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
183 
184 /* Get the offset of eBPF REGISTERs stored on scratch space. */
185 #define STACK_VAR(off) (off)
186 
187 /* Encode 'dst_reg' register into IA32 opcode 'byte' */
add_1reg(u8 byte,u32 dst_reg)188 static u8 add_1reg(u8 byte, u32 dst_reg)
189 {
190 	return byte + dst_reg;
191 }
192 
193 /* Encode 'dst_reg' and 'src_reg' registers into IA32 opcode 'byte' */
add_2reg(u8 byte,u32 dst_reg,u32 src_reg)194 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
195 {
196 	return byte + dst_reg + (src_reg << 3);
197 }
198 
jit_fill_hole(void * area,unsigned int size)199 static void jit_fill_hole(void *area, unsigned int size)
200 {
201 	/* Fill whole space with int3 instructions */
202 	memset(area, 0xcc, size);
203 }
204 
emit_ia32_mov_i(const u8 dst,const u32 val,bool dstk,u8 ** pprog)205 static inline void emit_ia32_mov_i(const u8 dst, const u32 val, bool dstk,
206 				   u8 **pprog)
207 {
208 	u8 *prog = *pprog;
209 	int cnt = 0;
210 
211 	if (dstk) {
212 		if (val == 0) {
213 			/* xor eax,eax */
214 			EMIT2(0x33, add_2reg(0xC0, IA32_EAX, IA32_EAX));
215 			/* mov dword ptr [ebp+off],eax */
216 			EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
217 			      STACK_VAR(dst));
218 		} else {
219 			EMIT3_off32(0xC7, add_1reg(0x40, IA32_EBP),
220 				    STACK_VAR(dst), val);
221 		}
222 	} else {
223 		if (val == 0)
224 			EMIT2(0x33, add_2reg(0xC0, dst, dst));
225 		else
226 			EMIT2_off32(0xC7, add_1reg(0xC0, dst),
227 				    val);
228 	}
229 	*pprog = prog;
230 }
231 
232 /* dst = imm (4 bytes)*/
emit_ia32_mov_r(const u8 dst,const u8 src,bool dstk,bool sstk,u8 ** pprog)233 static inline void emit_ia32_mov_r(const u8 dst, const u8 src, bool dstk,
234 				   bool sstk, u8 **pprog)
235 {
236 	u8 *prog = *pprog;
237 	int cnt = 0;
238 	u8 sreg = sstk ? IA32_EAX : src;
239 
240 	if (sstk)
241 		/* mov eax,dword ptr [ebp+off] */
242 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
243 	if (dstk)
244 		/* mov dword ptr [ebp+off],eax */
245 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, sreg), STACK_VAR(dst));
246 	else
247 		/* mov dst,sreg */
248 		EMIT2(0x89, add_2reg(0xC0, dst, sreg));
249 
250 	*pprog = prog;
251 }
252 
253 /* dst = src */
emit_ia32_mov_r64(const bool is64,const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog,const struct bpf_prog_aux * aux)254 static inline void emit_ia32_mov_r64(const bool is64, const u8 dst[],
255 				     const u8 src[], bool dstk,
256 				     bool sstk, u8 **pprog,
257 				     const struct bpf_prog_aux *aux)
258 {
259 	emit_ia32_mov_r(dst_lo, src_lo, dstk, sstk, pprog);
260 	if (is64)
261 		/* complete 8 byte move */
262 		emit_ia32_mov_r(dst_hi, src_hi, dstk, sstk, pprog);
263 	else if (!aux->verifier_zext)
264 		/* zero out high 4 bytes */
265 		emit_ia32_mov_i(dst_hi, 0, dstk, pprog);
266 }
267 
268 /* Sign extended move */
emit_ia32_mov_i64(const bool is64,const u8 dst[],const u32 val,bool dstk,u8 ** pprog)269 static inline void emit_ia32_mov_i64(const bool is64, const u8 dst[],
270 				     const u32 val, bool dstk, u8 **pprog)
271 {
272 	u32 hi = 0;
273 
274 	if (is64 && (val & (1<<31)))
275 		hi = (u32)~0;
276 	emit_ia32_mov_i(dst_lo, val, dstk, pprog);
277 	emit_ia32_mov_i(dst_hi, hi, dstk, pprog);
278 }
279 
280 /*
281  * ALU operation (32 bit)
282  * dst = dst * src
283  */
emit_ia32_mul_r(const u8 dst,const u8 src,bool dstk,bool sstk,u8 ** pprog)284 static inline void emit_ia32_mul_r(const u8 dst, const u8 src, bool dstk,
285 				   bool sstk, u8 **pprog)
286 {
287 	u8 *prog = *pprog;
288 	int cnt = 0;
289 	u8 sreg = sstk ? IA32_ECX : src;
290 
291 	if (sstk)
292 		/* mov ecx,dword ptr [ebp+off] */
293 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
294 
295 	if (dstk)
296 		/* mov eax,dword ptr [ebp+off] */
297 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
298 	else
299 		/* mov eax,dst */
300 		EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
301 
302 
303 	EMIT2(0xF7, add_1reg(0xE0, sreg));
304 
305 	if (dstk)
306 		/* mov dword ptr [ebp+off],eax */
307 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
308 		      STACK_VAR(dst));
309 	else
310 		/* mov dst,eax */
311 		EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
312 
313 	*pprog = prog;
314 }
315 
emit_ia32_to_le_r64(const u8 dst[],s32 val,bool dstk,u8 ** pprog,const struct bpf_prog_aux * aux)316 static inline void emit_ia32_to_le_r64(const u8 dst[], s32 val,
317 					 bool dstk, u8 **pprog,
318 					 const struct bpf_prog_aux *aux)
319 {
320 	u8 *prog = *pprog;
321 	int cnt = 0;
322 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
323 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
324 
325 	if (dstk && val != 64) {
326 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
327 		      STACK_VAR(dst_lo));
328 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
329 		      STACK_VAR(dst_hi));
330 	}
331 	switch (val) {
332 	case 16:
333 		/*
334 		 * Emit 'movzwl eax,ax' to zero extend 16-bit
335 		 * into 64 bit
336 		 */
337 		EMIT2(0x0F, 0xB7);
338 		EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
339 		if (!aux->verifier_zext)
340 			/* xor dreg_hi,dreg_hi */
341 			EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
342 		break;
343 	case 32:
344 		if (!aux->verifier_zext)
345 			/* xor dreg_hi,dreg_hi */
346 			EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
347 		break;
348 	case 64:
349 		/* nop */
350 		break;
351 	}
352 
353 	if (dstk && val != 64) {
354 		/* mov dword ptr [ebp+off],dreg_lo */
355 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
356 		      STACK_VAR(dst_lo));
357 		/* mov dword ptr [ebp+off],dreg_hi */
358 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
359 		      STACK_VAR(dst_hi));
360 	}
361 	*pprog = prog;
362 }
363 
emit_ia32_to_be_r64(const u8 dst[],s32 val,bool dstk,u8 ** pprog,const struct bpf_prog_aux * aux)364 static inline void emit_ia32_to_be_r64(const u8 dst[], s32 val,
365 				       bool dstk, u8 **pprog,
366 				       const struct bpf_prog_aux *aux)
367 {
368 	u8 *prog = *pprog;
369 	int cnt = 0;
370 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
371 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
372 
373 	if (dstk) {
374 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
375 		      STACK_VAR(dst_lo));
376 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
377 		      STACK_VAR(dst_hi));
378 	}
379 	switch (val) {
380 	case 16:
381 		/* Emit 'ror %ax, 8' to swap lower 2 bytes */
382 		EMIT1(0x66);
383 		EMIT3(0xC1, add_1reg(0xC8, dreg_lo), 8);
384 
385 		EMIT2(0x0F, 0xB7);
386 		EMIT1(add_2reg(0xC0, dreg_lo, dreg_lo));
387 
388 		if (!aux->verifier_zext)
389 			/* xor dreg_hi,dreg_hi */
390 			EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
391 		break;
392 	case 32:
393 		/* Emit 'bswap eax' to swap lower 4 bytes */
394 		EMIT1(0x0F);
395 		EMIT1(add_1reg(0xC8, dreg_lo));
396 
397 		if (!aux->verifier_zext)
398 			/* xor dreg_hi,dreg_hi */
399 			EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
400 		break;
401 	case 64:
402 		/* Emit 'bswap eax' to swap lower 4 bytes */
403 		EMIT1(0x0F);
404 		EMIT1(add_1reg(0xC8, dreg_lo));
405 
406 		/* Emit 'bswap edx' to swap lower 4 bytes */
407 		EMIT1(0x0F);
408 		EMIT1(add_1reg(0xC8, dreg_hi));
409 
410 		/* mov ecx,dreg_hi */
411 		EMIT2(0x89, add_2reg(0xC0, IA32_ECX, dreg_hi));
412 		/* mov dreg_hi,dreg_lo */
413 		EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
414 		/* mov dreg_lo,ecx */
415 		EMIT2(0x89, add_2reg(0xC0, dreg_lo, IA32_ECX));
416 
417 		break;
418 	}
419 	if (dstk) {
420 		/* mov dword ptr [ebp+off],dreg_lo */
421 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
422 		      STACK_VAR(dst_lo));
423 		/* mov dword ptr [ebp+off],dreg_hi */
424 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
425 		      STACK_VAR(dst_hi));
426 	}
427 	*pprog = prog;
428 }
429 
430 /*
431  * ALU operation (32 bit)
432  * dst = dst (div|mod) src
433  */
emit_ia32_div_mod_r(const u8 op,const u8 dst,const u8 src,bool dstk,bool sstk,u8 ** pprog)434 static inline void emit_ia32_div_mod_r(const u8 op, const u8 dst, const u8 src,
435 				       bool dstk, bool sstk, u8 **pprog)
436 {
437 	u8 *prog = *pprog;
438 	int cnt = 0;
439 
440 	if (sstk)
441 		/* mov ecx,dword ptr [ebp+off] */
442 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
443 		      STACK_VAR(src));
444 	else if (src != IA32_ECX)
445 		/* mov ecx,src */
446 		EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
447 
448 	if (dstk)
449 		/* mov eax,dword ptr [ebp+off] */
450 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
451 		      STACK_VAR(dst));
452 	else
453 		/* mov eax,dst */
454 		EMIT2(0x8B, add_2reg(0xC0, dst, IA32_EAX));
455 
456 	/* xor edx,edx */
457 	EMIT2(0x31, add_2reg(0xC0, IA32_EDX, IA32_EDX));
458 	/* div ecx */
459 	EMIT2(0xF7, add_1reg(0xF0, IA32_ECX));
460 
461 	if (op == BPF_MOD) {
462 		if (dstk)
463 			EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
464 			      STACK_VAR(dst));
465 		else
466 			EMIT2(0x89, add_2reg(0xC0, dst, IA32_EDX));
467 	} else {
468 		if (dstk)
469 			EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
470 			      STACK_VAR(dst));
471 		else
472 			EMIT2(0x89, add_2reg(0xC0, dst, IA32_EAX));
473 	}
474 	*pprog = prog;
475 }
476 
477 /*
478  * ALU operation (32 bit)
479  * dst = dst (shift) src
480  */
emit_ia32_shift_r(const u8 op,const u8 dst,const u8 src,bool dstk,bool sstk,u8 ** pprog)481 static inline void emit_ia32_shift_r(const u8 op, const u8 dst, const u8 src,
482 				     bool dstk, bool sstk, u8 **pprog)
483 {
484 	u8 *prog = *pprog;
485 	int cnt = 0;
486 	u8 dreg = dstk ? IA32_EAX : dst;
487 	u8 b2;
488 
489 	if (dstk)
490 		/* mov eax,dword ptr [ebp+off] */
491 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
492 
493 	if (sstk)
494 		/* mov ecx,dword ptr [ebp+off] */
495 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src));
496 	else if (src != IA32_ECX)
497 		/* mov ecx,src */
498 		EMIT2(0x8B, add_2reg(0xC0, src, IA32_ECX));
499 
500 	switch (op) {
501 	case BPF_LSH:
502 		b2 = 0xE0; break;
503 	case BPF_RSH:
504 		b2 = 0xE8; break;
505 	case BPF_ARSH:
506 		b2 = 0xF8; break;
507 	default:
508 		return;
509 	}
510 	EMIT2(0xD3, add_1reg(b2, dreg));
511 
512 	if (dstk)
513 		/* mov dword ptr [ebp+off],dreg */
514 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg), STACK_VAR(dst));
515 	*pprog = prog;
516 }
517 
518 /*
519  * ALU operation (32 bit)
520  * dst = dst (op) src
521  */
emit_ia32_alu_r(const bool is64,const bool hi,const u8 op,const u8 dst,const u8 src,bool dstk,bool sstk,u8 ** pprog)522 static inline void emit_ia32_alu_r(const bool is64, const bool hi, const u8 op,
523 				   const u8 dst, const u8 src, bool dstk,
524 				   bool sstk, u8 **pprog)
525 {
526 	u8 *prog = *pprog;
527 	int cnt = 0;
528 	u8 sreg = sstk ? IA32_EAX : src;
529 	u8 dreg = dstk ? IA32_EDX : dst;
530 
531 	if (sstk)
532 		/* mov eax,dword ptr [ebp+off] */
533 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(src));
534 
535 	if (dstk)
536 		/* mov eax,dword ptr [ebp+off] */
537 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(dst));
538 
539 	switch (BPF_OP(op)) {
540 	/* dst = dst + src */
541 	case BPF_ADD:
542 		if (hi && is64)
543 			EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
544 		else
545 			EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
546 		break;
547 	/* dst = dst - src */
548 	case BPF_SUB:
549 		if (hi && is64)
550 			EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
551 		else
552 			EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
553 		break;
554 	/* dst = dst | src */
555 	case BPF_OR:
556 		EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
557 		break;
558 	/* dst = dst & src */
559 	case BPF_AND:
560 		EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
561 		break;
562 	/* dst = dst ^ src */
563 	case BPF_XOR:
564 		EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
565 		break;
566 	}
567 
568 	if (dstk)
569 		/* mov dword ptr [ebp+off],dreg */
570 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
571 		      STACK_VAR(dst));
572 	*pprog = prog;
573 }
574 
575 /* ALU operation (64 bit) */
emit_ia32_alu_r64(const bool is64,const u8 op,const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog,const struct bpf_prog_aux * aux)576 static inline void emit_ia32_alu_r64(const bool is64, const u8 op,
577 				     const u8 dst[], const u8 src[],
578 				     bool dstk,  bool sstk,
579 				     u8 **pprog, const struct bpf_prog_aux *aux)
580 {
581 	u8 *prog = *pprog;
582 
583 	emit_ia32_alu_r(is64, false, op, dst_lo, src_lo, dstk, sstk, &prog);
584 	if (is64)
585 		emit_ia32_alu_r(is64, true, op, dst_hi, src_hi, dstk, sstk,
586 				&prog);
587 	else if (!aux->verifier_zext)
588 		emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
589 	*pprog = prog;
590 }
591 
592 /*
593  * ALU operation (32 bit)
594  * dst = dst (op) val
595  */
emit_ia32_alu_i(const bool is64,const bool hi,const u8 op,const u8 dst,const s32 val,bool dstk,u8 ** pprog)596 static inline void emit_ia32_alu_i(const bool is64, const bool hi, const u8 op,
597 				   const u8 dst, const s32 val, bool dstk,
598 				   u8 **pprog)
599 {
600 	u8 *prog = *pprog;
601 	int cnt = 0;
602 	u8 dreg = dstk ? IA32_EAX : dst;
603 	u8 sreg = IA32_EDX;
604 
605 	if (dstk)
606 		/* mov eax,dword ptr [ebp+off] */
607 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(dst));
608 
609 	if (!is_imm8(val))
610 		/* mov edx,imm32*/
611 		EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EDX), val);
612 
613 	switch (op) {
614 	/* dst = dst + val */
615 	case BPF_ADD:
616 		if (hi && is64) {
617 			if (is_imm8(val))
618 				EMIT3(0x83, add_1reg(0xD0, dreg), val);
619 			else
620 				EMIT2(0x11, add_2reg(0xC0, dreg, sreg));
621 		} else {
622 			if (is_imm8(val))
623 				EMIT3(0x83, add_1reg(0xC0, dreg), val);
624 			else
625 				EMIT2(0x01, add_2reg(0xC0, dreg, sreg));
626 		}
627 		break;
628 	/* dst = dst - val */
629 	case BPF_SUB:
630 		if (hi && is64) {
631 			if (is_imm8(val))
632 				EMIT3(0x83, add_1reg(0xD8, dreg), val);
633 			else
634 				EMIT2(0x19, add_2reg(0xC0, dreg, sreg));
635 		} else {
636 			if (is_imm8(val))
637 				EMIT3(0x83, add_1reg(0xE8, dreg), val);
638 			else
639 				EMIT2(0x29, add_2reg(0xC0, dreg, sreg));
640 		}
641 		break;
642 	/* dst = dst | val */
643 	case BPF_OR:
644 		if (is_imm8(val))
645 			EMIT3(0x83, add_1reg(0xC8, dreg), val);
646 		else
647 			EMIT2(0x09, add_2reg(0xC0, dreg, sreg));
648 		break;
649 	/* dst = dst & val */
650 	case BPF_AND:
651 		if (is_imm8(val))
652 			EMIT3(0x83, add_1reg(0xE0, dreg), val);
653 		else
654 			EMIT2(0x21, add_2reg(0xC0, dreg, sreg));
655 		break;
656 	/* dst = dst ^ val */
657 	case BPF_XOR:
658 		if (is_imm8(val))
659 			EMIT3(0x83, add_1reg(0xF0, dreg), val);
660 		else
661 			EMIT2(0x31, add_2reg(0xC0, dreg, sreg));
662 		break;
663 	case BPF_NEG:
664 		EMIT2(0xF7, add_1reg(0xD8, dreg));
665 		break;
666 	}
667 
668 	if (dstk)
669 		/* mov dword ptr [ebp+off],dreg */
670 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg),
671 		      STACK_VAR(dst));
672 	*pprog = prog;
673 }
674 
675 /* ALU operation (64 bit) */
emit_ia32_alu_i64(const bool is64,const u8 op,const u8 dst[],const u32 val,bool dstk,u8 ** pprog,const struct bpf_prog_aux * aux)676 static inline void emit_ia32_alu_i64(const bool is64, const u8 op,
677 				     const u8 dst[], const u32 val,
678 				     bool dstk, u8 **pprog,
679 				     const struct bpf_prog_aux *aux)
680 {
681 	u8 *prog = *pprog;
682 	u32 hi = 0;
683 
684 	if (is64 && (val & (1<<31)))
685 		hi = (u32)~0;
686 
687 	emit_ia32_alu_i(is64, false, op, dst_lo, val, dstk, &prog);
688 	if (is64)
689 		emit_ia32_alu_i(is64, true, op, dst_hi, hi, dstk, &prog);
690 	else if (!aux->verifier_zext)
691 		emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
692 
693 	*pprog = prog;
694 }
695 
696 /* dst = ~dst (64 bit) */
emit_ia32_neg64(const u8 dst[],bool dstk,u8 ** pprog)697 static inline void emit_ia32_neg64(const u8 dst[], bool dstk, u8 **pprog)
698 {
699 	u8 *prog = *pprog;
700 	int cnt = 0;
701 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
702 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
703 
704 	if (dstk) {
705 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
706 		      STACK_VAR(dst_lo));
707 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
708 		      STACK_VAR(dst_hi));
709 	}
710 
711 	/* neg dreg_lo */
712 	EMIT2(0xF7, add_1reg(0xD8, dreg_lo));
713 	/* adc dreg_hi,0x0 */
714 	EMIT3(0x83, add_1reg(0xD0, dreg_hi), 0x00);
715 	/* neg dreg_hi */
716 	EMIT2(0xF7, add_1reg(0xD8, dreg_hi));
717 
718 	if (dstk) {
719 		/* mov dword ptr [ebp+off],dreg_lo */
720 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
721 		      STACK_VAR(dst_lo));
722 		/* mov dword ptr [ebp+off],dreg_hi */
723 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
724 		      STACK_VAR(dst_hi));
725 	}
726 	*pprog = prog;
727 }
728 
729 /* dst = dst << src */
emit_ia32_lsh_r64(const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog)730 static inline void emit_ia32_lsh_r64(const u8 dst[], const u8 src[],
731 				     bool dstk, bool sstk, u8 **pprog)
732 {
733 	u8 *prog = *pprog;
734 	int cnt = 0;
735 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
736 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
737 
738 	if (dstk) {
739 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
740 		      STACK_VAR(dst_lo));
741 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
742 		      STACK_VAR(dst_hi));
743 	}
744 
745 	if (sstk)
746 		/* mov ecx,dword ptr [ebp+off] */
747 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
748 		      STACK_VAR(src_lo));
749 	else
750 		/* mov ecx,src_lo */
751 		EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
752 
753 	/* shld dreg_hi,dreg_lo,cl */
754 	EMIT3(0x0F, 0xA5, add_2reg(0xC0, dreg_hi, dreg_lo));
755 	/* shl dreg_lo,cl */
756 	EMIT2(0xD3, add_1reg(0xE0, dreg_lo));
757 
758 	/* if ecx >= 32, mov dreg_lo into dreg_hi and clear dreg_lo */
759 
760 	/* cmp ecx,32 */
761 	EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
762 	/* skip the next two instructions (4 bytes) when < 32 */
763 	EMIT2(IA32_JB, 4);
764 
765 	/* mov dreg_hi,dreg_lo */
766 	EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
767 	/* xor dreg_lo,dreg_lo */
768 	EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
769 
770 	if (dstk) {
771 		/* mov dword ptr [ebp+off],dreg_lo */
772 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
773 		      STACK_VAR(dst_lo));
774 		/* mov dword ptr [ebp+off],dreg_hi */
775 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
776 		      STACK_VAR(dst_hi));
777 	}
778 	/* out: */
779 	*pprog = prog;
780 }
781 
782 /* dst = dst >> src (signed)*/
emit_ia32_arsh_r64(const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog)783 static inline void emit_ia32_arsh_r64(const u8 dst[], const u8 src[],
784 				      bool dstk, bool sstk, u8 **pprog)
785 {
786 	u8 *prog = *pprog;
787 	int cnt = 0;
788 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
789 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
790 
791 	if (dstk) {
792 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
793 		      STACK_VAR(dst_lo));
794 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
795 		      STACK_VAR(dst_hi));
796 	}
797 
798 	if (sstk)
799 		/* mov ecx,dword ptr [ebp+off] */
800 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
801 		      STACK_VAR(src_lo));
802 	else
803 		/* mov ecx,src_lo */
804 		EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
805 
806 	/* shrd dreg_lo,dreg_hi,cl */
807 	EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
808 	/* sar dreg_hi,cl */
809 	EMIT2(0xD3, add_1reg(0xF8, dreg_hi));
810 
811 	/* if ecx >= 32, mov dreg_hi to dreg_lo and set/clear dreg_hi depending on sign */
812 
813 	/* cmp ecx,32 */
814 	EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
815 	/* skip the next two instructions (5 bytes) when < 32 */
816 	EMIT2(IA32_JB, 5);
817 
818 	/* mov dreg_lo,dreg_hi */
819 	EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
820 	/* sar dreg_hi,31 */
821 	EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
822 
823 	if (dstk) {
824 		/* mov dword ptr [ebp+off],dreg_lo */
825 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
826 		      STACK_VAR(dst_lo));
827 		/* mov dword ptr [ebp+off],dreg_hi */
828 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
829 		      STACK_VAR(dst_hi));
830 	}
831 	/* out: */
832 	*pprog = prog;
833 }
834 
835 /* dst = dst >> src */
emit_ia32_rsh_r64(const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog)836 static inline void emit_ia32_rsh_r64(const u8 dst[], const u8 src[], bool dstk,
837 				     bool sstk, u8 **pprog)
838 {
839 	u8 *prog = *pprog;
840 	int cnt = 0;
841 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
842 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
843 
844 	if (dstk) {
845 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
846 		      STACK_VAR(dst_lo));
847 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
848 		      STACK_VAR(dst_hi));
849 	}
850 
851 	if (sstk)
852 		/* mov ecx,dword ptr [ebp+off] */
853 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
854 		      STACK_VAR(src_lo));
855 	else
856 		/* mov ecx,src_lo */
857 		EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_ECX));
858 
859 	/* shrd dreg_lo,dreg_hi,cl */
860 	EMIT3(0x0F, 0xAD, add_2reg(0xC0, dreg_lo, dreg_hi));
861 	/* shr dreg_hi,cl */
862 	EMIT2(0xD3, add_1reg(0xE8, dreg_hi));
863 
864 	/* if ecx >= 32, mov dreg_hi to dreg_lo and clear dreg_hi */
865 
866 	/* cmp ecx,32 */
867 	EMIT3(0x83, add_1reg(0xF8, IA32_ECX), 32);
868 	/* skip the next two instructions (4 bytes) when < 32 */
869 	EMIT2(IA32_JB, 4);
870 
871 	/* mov dreg_lo,dreg_hi */
872 	EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
873 	/* xor dreg_hi,dreg_hi */
874 	EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
875 
876 	if (dstk) {
877 		/* mov dword ptr [ebp+off],dreg_lo */
878 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
879 		      STACK_VAR(dst_lo));
880 		/* mov dword ptr [ebp+off],dreg_hi */
881 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
882 		      STACK_VAR(dst_hi));
883 	}
884 	/* out: */
885 	*pprog = prog;
886 }
887 
888 /* dst = dst << val */
emit_ia32_lsh_i64(const u8 dst[],const u32 val,bool dstk,u8 ** pprog)889 static inline void emit_ia32_lsh_i64(const u8 dst[], const u32 val,
890 				     bool dstk, u8 **pprog)
891 {
892 	u8 *prog = *pprog;
893 	int cnt = 0;
894 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
895 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
896 
897 	if (dstk) {
898 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
899 		      STACK_VAR(dst_lo));
900 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
901 		      STACK_VAR(dst_hi));
902 	}
903 	/* Do LSH operation */
904 	if (val < 32) {
905 		/* shld dreg_hi,dreg_lo,imm8 */
906 		EMIT4(0x0F, 0xA4, add_2reg(0xC0, dreg_hi, dreg_lo), val);
907 		/* shl dreg_lo,imm8 */
908 		EMIT3(0xC1, add_1reg(0xE0, dreg_lo), val);
909 	} else if (val >= 32 && val < 64) {
910 		u32 value = val - 32;
911 
912 		/* shl dreg_lo,imm8 */
913 		EMIT3(0xC1, add_1reg(0xE0, dreg_lo), value);
914 		/* mov dreg_hi,dreg_lo */
915 		EMIT2(0x89, add_2reg(0xC0, dreg_hi, dreg_lo));
916 		/* xor dreg_lo,dreg_lo */
917 		EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
918 	} else {
919 		/* xor dreg_lo,dreg_lo */
920 		EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
921 		/* xor dreg_hi,dreg_hi */
922 		EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
923 	}
924 
925 	if (dstk) {
926 		/* mov dword ptr [ebp+off],dreg_lo */
927 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
928 		      STACK_VAR(dst_lo));
929 		/* mov dword ptr [ebp+off],dreg_hi */
930 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
931 		      STACK_VAR(dst_hi));
932 	}
933 	*pprog = prog;
934 }
935 
936 /* dst = dst >> val */
emit_ia32_rsh_i64(const u8 dst[],const u32 val,bool dstk,u8 ** pprog)937 static inline void emit_ia32_rsh_i64(const u8 dst[], const u32 val,
938 				     bool dstk, u8 **pprog)
939 {
940 	u8 *prog = *pprog;
941 	int cnt = 0;
942 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
943 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
944 
945 	if (dstk) {
946 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
947 		      STACK_VAR(dst_lo));
948 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
949 		      STACK_VAR(dst_hi));
950 	}
951 
952 	/* Do RSH operation */
953 	if (val < 32) {
954 		/* shrd dreg_lo,dreg_hi,imm8 */
955 		EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
956 		/* shr dreg_hi,imm8 */
957 		EMIT3(0xC1, add_1reg(0xE8, dreg_hi), val);
958 	} else if (val >= 32 && val < 64) {
959 		u32 value = val - 32;
960 
961 		/* shr dreg_hi,imm8 */
962 		EMIT3(0xC1, add_1reg(0xE8, dreg_hi), value);
963 		/* mov dreg_lo,dreg_hi */
964 		EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
965 		/* xor dreg_hi,dreg_hi */
966 		EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
967 	} else {
968 		/* xor dreg_lo,dreg_lo */
969 		EMIT2(0x33, add_2reg(0xC0, dreg_lo, dreg_lo));
970 		/* xor dreg_hi,dreg_hi */
971 		EMIT2(0x33, add_2reg(0xC0, dreg_hi, dreg_hi));
972 	}
973 
974 	if (dstk) {
975 		/* mov dword ptr [ebp+off],dreg_lo */
976 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
977 		      STACK_VAR(dst_lo));
978 		/* mov dword ptr [ebp+off],dreg_hi */
979 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
980 		      STACK_VAR(dst_hi));
981 	}
982 	*pprog = prog;
983 }
984 
985 /* dst = dst >> val (signed) */
emit_ia32_arsh_i64(const u8 dst[],const u32 val,bool dstk,u8 ** pprog)986 static inline void emit_ia32_arsh_i64(const u8 dst[], const u32 val,
987 				      bool dstk, u8 **pprog)
988 {
989 	u8 *prog = *pprog;
990 	int cnt = 0;
991 	u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
992 	u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
993 
994 	if (dstk) {
995 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
996 		      STACK_VAR(dst_lo));
997 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
998 		      STACK_VAR(dst_hi));
999 	}
1000 	/* Do RSH operation */
1001 	if (val < 32) {
1002 		/* shrd dreg_lo,dreg_hi,imm8 */
1003 		EMIT4(0x0F, 0xAC, add_2reg(0xC0, dreg_lo, dreg_hi), val);
1004 		/* ashr dreg_hi,imm8 */
1005 		EMIT3(0xC1, add_1reg(0xF8, dreg_hi), val);
1006 	} else if (val >= 32 && val < 64) {
1007 		u32 value = val - 32;
1008 
1009 		/* ashr dreg_hi,imm8 */
1010 		EMIT3(0xC1, add_1reg(0xF8, dreg_hi), value);
1011 		/* mov dreg_lo,dreg_hi */
1012 		EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
1013 
1014 		/* ashr dreg_hi,imm8 */
1015 		EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
1016 	} else {
1017 		/* ashr dreg_hi,imm8 */
1018 		EMIT3(0xC1, add_1reg(0xF8, dreg_hi), 31);
1019 		/* mov dreg_lo,dreg_hi */
1020 		EMIT2(0x89, add_2reg(0xC0, dreg_lo, dreg_hi));
1021 	}
1022 
1023 	if (dstk) {
1024 		/* mov dword ptr [ebp+off],dreg_lo */
1025 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_lo),
1026 		      STACK_VAR(dst_lo));
1027 		/* mov dword ptr [ebp+off],dreg_hi */
1028 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, dreg_hi),
1029 		      STACK_VAR(dst_hi));
1030 	}
1031 	*pprog = prog;
1032 }
1033 
emit_ia32_mul_r64(const u8 dst[],const u8 src[],bool dstk,bool sstk,u8 ** pprog)1034 static inline void emit_ia32_mul_r64(const u8 dst[], const u8 src[], bool dstk,
1035 				     bool sstk, u8 **pprog)
1036 {
1037 	u8 *prog = *pprog;
1038 	int cnt = 0;
1039 
1040 	if (dstk)
1041 		/* mov eax,dword ptr [ebp+off] */
1042 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1043 		      STACK_VAR(dst_hi));
1044 	else
1045 		/* mov eax,dst_hi */
1046 		EMIT2(0x8B, add_2reg(0xC0, dst_hi, IA32_EAX));
1047 
1048 	if (sstk)
1049 		/* mul dword ptr [ebp+off] */
1050 		EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
1051 	else
1052 		/* mul src_lo */
1053 		EMIT2(0xF7, add_1reg(0xE0, src_lo));
1054 
1055 	/* mov ecx,eax */
1056 	EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1057 
1058 	if (dstk)
1059 		/* mov eax,dword ptr [ebp+off] */
1060 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1061 		      STACK_VAR(dst_lo));
1062 	else
1063 		/* mov eax,dst_lo */
1064 		EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1065 
1066 	if (sstk)
1067 		/* mul dword ptr [ebp+off] */
1068 		EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_hi));
1069 	else
1070 		/* mul src_hi */
1071 		EMIT2(0xF7, add_1reg(0xE0, src_hi));
1072 
1073 	/* add eax,eax */
1074 	EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1075 
1076 	if (dstk)
1077 		/* mov eax,dword ptr [ebp+off] */
1078 		EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1079 		      STACK_VAR(dst_lo));
1080 	else
1081 		/* mov eax,dst_lo */
1082 		EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1083 
1084 	if (sstk)
1085 		/* mul dword ptr [ebp+off] */
1086 		EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(src_lo));
1087 	else
1088 		/* mul src_lo */
1089 		EMIT2(0xF7, add_1reg(0xE0, src_lo));
1090 
1091 	/* add ecx,edx */
1092 	EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
1093 
1094 	if (dstk) {
1095 		/* mov dword ptr [ebp+off],eax */
1096 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
1097 		      STACK_VAR(dst_lo));
1098 		/* mov dword ptr [ebp+off],ecx */
1099 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
1100 		      STACK_VAR(dst_hi));
1101 	} else {
1102 		/* mov dst_lo,eax */
1103 		EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
1104 		/* mov dst_hi,ecx */
1105 		EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
1106 	}
1107 
1108 	*pprog = prog;
1109 }
1110 
emit_ia32_mul_i64(const u8 dst[],const u32 val,bool dstk,u8 ** pprog)1111 static inline void emit_ia32_mul_i64(const u8 dst[], const u32 val,
1112 				     bool dstk, u8 **pprog)
1113 {
1114 	u8 *prog = *pprog;
1115 	int cnt = 0;
1116 	u32 hi;
1117 
1118 	hi = val & (1<<31) ? (u32)~0 : 0;
1119 	/* movl eax,imm32 */
1120 	EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
1121 	if (dstk)
1122 		/* mul dword ptr [ebp+off] */
1123 		EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_hi));
1124 	else
1125 		/* mul dst_hi */
1126 		EMIT2(0xF7, add_1reg(0xE0, dst_hi));
1127 
1128 	/* mov ecx,eax */
1129 	EMIT2(0x89, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1130 
1131 	/* movl eax,imm32 */
1132 	EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), hi);
1133 	if (dstk)
1134 		/* mul dword ptr [ebp+off] */
1135 		EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
1136 	else
1137 		/* mul dst_lo */
1138 		EMIT2(0xF7, add_1reg(0xE0, dst_lo));
1139 	/* add ecx,eax */
1140 	EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EAX));
1141 
1142 	/* movl eax,imm32 */
1143 	EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EAX), val);
1144 	if (dstk)
1145 		/* mul dword ptr [ebp+off] */
1146 		EMIT3(0xF7, add_1reg(0x60, IA32_EBP), STACK_VAR(dst_lo));
1147 	else
1148 		/* mul dst_lo */
1149 		EMIT2(0xF7, add_1reg(0xE0, dst_lo));
1150 
1151 	/* add ecx,edx */
1152 	EMIT2(0x01, add_2reg(0xC0, IA32_ECX, IA32_EDX));
1153 
1154 	if (dstk) {
1155 		/* mov dword ptr [ebp+off],eax */
1156 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
1157 		      STACK_VAR(dst_lo));
1158 		/* mov dword ptr [ebp+off],ecx */
1159 		EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX),
1160 		      STACK_VAR(dst_hi));
1161 	} else {
1162 		/* mov dword ptr [ebp+off],eax */
1163 		EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EAX));
1164 		/* mov dword ptr [ebp+off],ecx */
1165 		EMIT2(0x89, add_2reg(0xC0, dst_hi, IA32_ECX));
1166 	}
1167 
1168 	*pprog = prog;
1169 }
1170 
bpf_size_to_x86_bytes(int bpf_size)1171 static int bpf_size_to_x86_bytes(int bpf_size)
1172 {
1173 	if (bpf_size == BPF_W)
1174 		return 4;
1175 	else if (bpf_size == BPF_H)
1176 		return 2;
1177 	else if (bpf_size == BPF_B)
1178 		return 1;
1179 	else if (bpf_size == BPF_DW)
1180 		return 4; /* imm32 */
1181 	else
1182 		return 0;
1183 }
1184 
1185 struct jit_context {
1186 	int cleanup_addr; /* Epilogue code offset */
1187 };
1188 
1189 /* Maximum number of bytes emitted while JITing one eBPF insn */
1190 #define BPF_MAX_INSN_SIZE	128
1191 #define BPF_INSN_SAFETY		64
1192 
1193 #define PROLOGUE_SIZE 35
1194 
1195 /*
1196  * Emit prologue code for BPF program and check it's size.
1197  * bpf_tail_call helper will skip it while jumping into another program.
1198  */
emit_prologue(u8 ** pprog,u32 stack_depth)1199 static void emit_prologue(u8 **pprog, u32 stack_depth)
1200 {
1201 	u8 *prog = *pprog;
1202 	int cnt = 0;
1203 	const u8 *r1 = bpf2ia32[BPF_REG_1];
1204 	const u8 fplo = bpf2ia32[BPF_REG_FP][0];
1205 	const u8 fphi = bpf2ia32[BPF_REG_FP][1];
1206 	const u8 *tcc = bpf2ia32[TCALL_CNT];
1207 
1208 	/* push ebp */
1209 	EMIT1(0x55);
1210 	/* mov ebp,esp */
1211 	EMIT2(0x89, 0xE5);
1212 	/* push edi */
1213 	EMIT1(0x57);
1214 	/* push esi */
1215 	EMIT1(0x56);
1216 	/* push ebx */
1217 	EMIT1(0x53);
1218 
1219 	/* sub esp,STACK_SIZE */
1220 	EMIT2_off32(0x81, 0xEC, STACK_SIZE);
1221 	/* sub ebp,SCRATCH_SIZE+12*/
1222 	EMIT3(0x83, add_1reg(0xE8, IA32_EBP), SCRATCH_SIZE + 12);
1223 	/* xor ebx,ebx */
1224 	EMIT2(0x31, add_2reg(0xC0, IA32_EBX, IA32_EBX));
1225 
1226 	/* Set up BPF prog stack base register */
1227 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBP), STACK_VAR(fplo));
1228 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(fphi));
1229 
1230 	/* Move BPF_CTX (EAX) to BPF_REG_R1 */
1231 	/* mov dword ptr [ebp+off],eax */
1232 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
1233 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(r1[1]));
1234 
1235 	/* Initialize Tail Count */
1236 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[0]));
1237 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
1238 
1239 	BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
1240 	*pprog = prog;
1241 }
1242 
1243 /* Emit epilogue code for BPF program */
emit_epilogue(u8 ** pprog,u32 stack_depth)1244 static void emit_epilogue(u8 **pprog, u32 stack_depth)
1245 {
1246 	u8 *prog = *pprog;
1247 	const u8 *r0 = bpf2ia32[BPF_REG_0];
1248 	int cnt = 0;
1249 
1250 	/* mov eax,dword ptr [ebp+off]*/
1251 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r0[0]));
1252 	/* mov edx,dword ptr [ebp+off]*/
1253 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r0[1]));
1254 
1255 	/* add ebp,SCRATCH_SIZE+12*/
1256 	EMIT3(0x83, add_1reg(0xC0, IA32_EBP), SCRATCH_SIZE + 12);
1257 
1258 	/* mov ebx,dword ptr [ebp-12]*/
1259 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), -12);
1260 	/* mov esi,dword ptr [ebp-8]*/
1261 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ESI), -8);
1262 	/* mov edi,dword ptr [ebp-4]*/
1263 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDI), -4);
1264 
1265 	EMIT1(0xC9); /* leave */
1266 	EMIT1(0xC3); /* ret */
1267 	*pprog = prog;
1268 }
1269 
1270 /*
1271  * Generate the following code:
1272  * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
1273  *   if (index >= array->map.max_entries)
1274  *     goto out;
1275  *   if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
1276  *     goto out;
1277  *   prog = array->ptrs[index];
1278  *   if (prog == NULL)
1279  *     goto out;
1280  *   goto *(prog->bpf_func + prologue_size);
1281  * out:
1282  */
emit_bpf_tail_call(u8 ** pprog)1283 static void emit_bpf_tail_call(u8 **pprog)
1284 {
1285 	u8 *prog = *pprog;
1286 	int cnt = 0;
1287 	const u8 *r1 = bpf2ia32[BPF_REG_1];
1288 	const u8 *r2 = bpf2ia32[BPF_REG_2];
1289 	const u8 *r3 = bpf2ia32[BPF_REG_3];
1290 	const u8 *tcc = bpf2ia32[TCALL_CNT];
1291 	u32 lo, hi;
1292 	static int jmp_label1 = -1;
1293 
1294 	/*
1295 	 * if (index >= array->map.max_entries)
1296 	 *     goto out;
1297 	 */
1298 	/* mov eax,dword ptr [ebp+off] */
1299 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r2[0]));
1300 	/* mov edx,dword ptr [ebp+off] */
1301 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX), STACK_VAR(r3[0]));
1302 
1303 	/* cmp dword ptr [eax+off],edx */
1304 	EMIT3(0x39, add_2reg(0x40, IA32_EAX, IA32_EDX),
1305 	      offsetof(struct bpf_array, map.max_entries));
1306 	/* jbe out */
1307 	EMIT2(IA32_JBE, jmp_label(jmp_label1, 2));
1308 
1309 	/*
1310 	 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1311 	 *     goto out;
1312 	 */
1313 	lo = (u32)MAX_TAIL_CALL_CNT;
1314 	hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1315 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
1316 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
1317 
1318 	/* cmp edx,hi */
1319 	EMIT3(0x83, add_1reg(0xF8, IA32_EBX), hi);
1320 	EMIT2(IA32_JNE, 3);
1321 	/* cmp ecx,lo */
1322 	EMIT3(0x83, add_1reg(0xF8, IA32_ECX), lo);
1323 
1324 	/* ja out */
1325 	EMIT2(IA32_JAE, jmp_label(jmp_label1, 2));
1326 
1327 	/* add eax,0x1 */
1328 	EMIT3(0x83, add_1reg(0xC0, IA32_ECX), 0x01);
1329 	/* adc ebx,0x0 */
1330 	EMIT3(0x83, add_1reg(0xD0, IA32_EBX), 0x00);
1331 
1332 	/* mov dword ptr [ebp+off],eax */
1333 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(tcc[0]));
1334 	/* mov dword ptr [ebp+off],edx */
1335 	EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EBX), STACK_VAR(tcc[1]));
1336 
1337 	/* prog = array->ptrs[index]; */
1338 	/* mov edx, [eax + edx * 4 + offsetof(...)] */
1339 	EMIT3_off32(0x8B, 0x94, 0x90, offsetof(struct bpf_array, ptrs));
1340 
1341 	/*
1342 	 * if (prog == NULL)
1343 	 *     goto out;
1344 	 */
1345 	/* test edx,edx */
1346 	EMIT2(0x85, add_2reg(0xC0, IA32_EDX, IA32_EDX));
1347 	/* je out */
1348 	EMIT2(IA32_JE, jmp_label(jmp_label1, 2));
1349 
1350 	/* goto *(prog->bpf_func + prologue_size); */
1351 	/* mov edx, dword ptr [edx + 32] */
1352 	EMIT3(0x8B, add_2reg(0x40, IA32_EDX, IA32_EDX),
1353 	      offsetof(struct bpf_prog, bpf_func));
1354 	/* add edx,prologue_size */
1355 	EMIT3(0x83, add_1reg(0xC0, IA32_EDX), PROLOGUE_SIZE);
1356 
1357 	/* mov eax,dword ptr [ebp+off] */
1358 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX), STACK_VAR(r1[0]));
1359 
1360 	/*
1361 	 * Now we're ready to jump into next BPF program:
1362 	 * eax == ctx (1st arg)
1363 	 * edx == prog->bpf_func + prologue_size
1364 	 */
1365 	RETPOLINE_EDX_BPF_JIT();
1366 
1367 	if (jmp_label1 == -1)
1368 		jmp_label1 = cnt;
1369 
1370 	/* out: */
1371 	*pprog = prog;
1372 }
1373 
1374 /* Push the scratch stack register on top of the stack. */
emit_push_r64(const u8 src[],u8 ** pprog)1375 static inline void emit_push_r64(const u8 src[], u8 **pprog)
1376 {
1377 	u8 *prog = *pprog;
1378 	int cnt = 0;
1379 
1380 	/* mov ecx,dword ptr [ebp+off] */
1381 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_hi));
1382 	/* push ecx */
1383 	EMIT1(0x51);
1384 
1385 	/* mov ecx,dword ptr [ebp+off] */
1386 	EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX), STACK_VAR(src_lo));
1387 	/* push ecx */
1388 	EMIT1(0x51);
1389 
1390 	*pprog = prog;
1391 }
1392 
get_cond_jmp_opcode(const u8 op,bool is_cmp_lo)1393 static u8 get_cond_jmp_opcode(const u8 op, bool is_cmp_lo)
1394 {
1395 	u8 jmp_cond;
1396 
1397 	/* Convert BPF opcode to x86 */
1398 	switch (op) {
1399 	case BPF_JEQ:
1400 		jmp_cond = IA32_JE;
1401 		break;
1402 	case BPF_JSET:
1403 	case BPF_JNE:
1404 		jmp_cond = IA32_JNE;
1405 		break;
1406 	case BPF_JGT:
1407 		/* GT is unsigned '>', JA in x86 */
1408 		jmp_cond = IA32_JA;
1409 		break;
1410 	case BPF_JLT:
1411 		/* LT is unsigned '<', JB in x86 */
1412 		jmp_cond = IA32_JB;
1413 		break;
1414 	case BPF_JGE:
1415 		/* GE is unsigned '>=', JAE in x86 */
1416 		jmp_cond = IA32_JAE;
1417 		break;
1418 	case BPF_JLE:
1419 		/* LE is unsigned '<=', JBE in x86 */
1420 		jmp_cond = IA32_JBE;
1421 		break;
1422 	case BPF_JSGT:
1423 		if (!is_cmp_lo)
1424 			/* Signed '>', GT in x86 */
1425 			jmp_cond = IA32_JG;
1426 		else
1427 			/* GT is unsigned '>', JA in x86 */
1428 			jmp_cond = IA32_JA;
1429 		break;
1430 	case BPF_JSLT:
1431 		if (!is_cmp_lo)
1432 			/* Signed '<', LT in x86 */
1433 			jmp_cond = IA32_JL;
1434 		else
1435 			/* LT is unsigned '<', JB in x86 */
1436 			jmp_cond = IA32_JB;
1437 		break;
1438 	case BPF_JSGE:
1439 		if (!is_cmp_lo)
1440 			/* Signed '>=', GE in x86 */
1441 			jmp_cond = IA32_JGE;
1442 		else
1443 			/* GE is unsigned '>=', JAE in x86 */
1444 			jmp_cond = IA32_JAE;
1445 		break;
1446 	case BPF_JSLE:
1447 		if (!is_cmp_lo)
1448 			/* Signed '<=', LE in x86 */
1449 			jmp_cond = IA32_JLE;
1450 		else
1451 			/* LE is unsigned '<=', JBE in x86 */
1452 			jmp_cond = IA32_JBE;
1453 		break;
1454 	default: /* to silence GCC warning */
1455 		jmp_cond = COND_JMP_OPCODE_INVALID;
1456 		break;
1457 	}
1458 
1459 	return jmp_cond;
1460 }
1461 
do_jit(struct bpf_prog * bpf_prog,int * addrs,u8 * image,int oldproglen,struct jit_context * ctx)1462 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
1463 		  int oldproglen, struct jit_context *ctx)
1464 {
1465 	struct bpf_insn *insn = bpf_prog->insnsi;
1466 	int insn_cnt = bpf_prog->len;
1467 	bool seen_exit = false;
1468 	u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1469 	int i, cnt = 0;
1470 	int proglen = 0;
1471 	u8 *prog = temp;
1472 
1473 	emit_prologue(&prog, bpf_prog->aux->stack_depth);
1474 
1475 	for (i = 0; i < insn_cnt; i++, insn++) {
1476 		const s32 imm32 = insn->imm;
1477 		const bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1478 		const bool dstk = insn->dst_reg == BPF_REG_AX ? false : true;
1479 		const bool sstk = insn->src_reg == BPF_REG_AX ? false : true;
1480 		const u8 code = insn->code;
1481 		const u8 *dst = bpf2ia32[insn->dst_reg];
1482 		const u8 *src = bpf2ia32[insn->src_reg];
1483 		const u8 *r0 = bpf2ia32[BPF_REG_0];
1484 		s64 jmp_offset;
1485 		u8 jmp_cond;
1486 		int ilen;
1487 		u8 *func;
1488 
1489 		switch (code) {
1490 		/* ALU operations */
1491 		/* dst = src */
1492 		case BPF_ALU | BPF_MOV | BPF_K:
1493 		case BPF_ALU | BPF_MOV | BPF_X:
1494 		case BPF_ALU64 | BPF_MOV | BPF_K:
1495 		case BPF_ALU64 | BPF_MOV | BPF_X:
1496 			switch (BPF_SRC(code)) {
1497 			case BPF_X:
1498 				if (imm32 == 1) {
1499 					/* Special mov32 for zext. */
1500 					emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1501 					break;
1502 				}
1503 				emit_ia32_mov_r64(is64, dst, src, dstk, sstk,
1504 						  &prog, bpf_prog->aux);
1505 				break;
1506 			case BPF_K:
1507 				/* Sign-extend immediate value to dst reg */
1508 				emit_ia32_mov_i64(is64, dst, imm32,
1509 						  dstk, &prog);
1510 				break;
1511 			}
1512 			break;
1513 		/* dst = dst + src/imm */
1514 		/* dst = dst - src/imm */
1515 		/* dst = dst | src/imm */
1516 		/* dst = dst & src/imm */
1517 		/* dst = dst ^ src/imm */
1518 		/* dst = dst * src/imm */
1519 		/* dst = dst << src */
1520 		/* dst = dst >> src */
1521 		case BPF_ALU | BPF_ADD | BPF_K:
1522 		case BPF_ALU | BPF_ADD | BPF_X:
1523 		case BPF_ALU | BPF_SUB | BPF_K:
1524 		case BPF_ALU | BPF_SUB | BPF_X:
1525 		case BPF_ALU | BPF_OR | BPF_K:
1526 		case BPF_ALU | BPF_OR | BPF_X:
1527 		case BPF_ALU | BPF_AND | BPF_K:
1528 		case BPF_ALU | BPF_AND | BPF_X:
1529 		case BPF_ALU | BPF_XOR | BPF_K:
1530 		case BPF_ALU | BPF_XOR | BPF_X:
1531 		case BPF_ALU64 | BPF_ADD | BPF_K:
1532 		case BPF_ALU64 | BPF_ADD | BPF_X:
1533 		case BPF_ALU64 | BPF_SUB | BPF_K:
1534 		case BPF_ALU64 | BPF_SUB | BPF_X:
1535 		case BPF_ALU64 | BPF_OR | BPF_K:
1536 		case BPF_ALU64 | BPF_OR | BPF_X:
1537 		case BPF_ALU64 | BPF_AND | BPF_K:
1538 		case BPF_ALU64 | BPF_AND | BPF_X:
1539 		case BPF_ALU64 | BPF_XOR | BPF_K:
1540 		case BPF_ALU64 | BPF_XOR | BPF_X:
1541 			switch (BPF_SRC(code)) {
1542 			case BPF_X:
1543 				emit_ia32_alu_r64(is64, BPF_OP(code), dst,
1544 						  src, dstk, sstk, &prog,
1545 						  bpf_prog->aux);
1546 				break;
1547 			case BPF_K:
1548 				emit_ia32_alu_i64(is64, BPF_OP(code), dst,
1549 						  imm32, dstk, &prog,
1550 						  bpf_prog->aux);
1551 				break;
1552 			}
1553 			break;
1554 		case BPF_ALU | BPF_MUL | BPF_K:
1555 		case BPF_ALU | BPF_MUL | BPF_X:
1556 			switch (BPF_SRC(code)) {
1557 			case BPF_X:
1558 				emit_ia32_mul_r(dst_lo, src_lo, dstk,
1559 						sstk, &prog);
1560 				break;
1561 			case BPF_K:
1562 				/* mov ecx,imm32*/
1563 				EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
1564 					    imm32);
1565 				emit_ia32_mul_r(dst_lo, IA32_ECX, dstk,
1566 						false, &prog);
1567 				break;
1568 			}
1569 			if (!bpf_prog->aux->verifier_zext)
1570 				emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1571 			break;
1572 		case BPF_ALU | BPF_LSH | BPF_X:
1573 		case BPF_ALU | BPF_RSH | BPF_X:
1574 		case BPF_ALU | BPF_ARSH | BPF_K:
1575 		case BPF_ALU | BPF_ARSH | BPF_X:
1576 			switch (BPF_SRC(code)) {
1577 			case BPF_X:
1578 				emit_ia32_shift_r(BPF_OP(code), dst_lo, src_lo,
1579 						  dstk, sstk, &prog);
1580 				break;
1581 			case BPF_K:
1582 				/* mov ecx,imm32*/
1583 				EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
1584 					    imm32);
1585 				emit_ia32_shift_r(BPF_OP(code), dst_lo,
1586 						  IA32_ECX, dstk, false,
1587 						  &prog);
1588 				break;
1589 			}
1590 			if (!bpf_prog->aux->verifier_zext)
1591 				emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1592 			break;
1593 		/* dst = dst / src(imm) */
1594 		/* dst = dst % src(imm) */
1595 		case BPF_ALU | BPF_DIV | BPF_K:
1596 		case BPF_ALU | BPF_DIV | BPF_X:
1597 		case BPF_ALU | BPF_MOD | BPF_K:
1598 		case BPF_ALU | BPF_MOD | BPF_X:
1599 			switch (BPF_SRC(code)) {
1600 			case BPF_X:
1601 				emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
1602 						    src_lo, dstk, sstk, &prog);
1603 				break;
1604 			case BPF_K:
1605 				/* mov ecx,imm32*/
1606 				EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX),
1607 					    imm32);
1608 				emit_ia32_div_mod_r(BPF_OP(code), dst_lo,
1609 						    IA32_ECX, dstk, false,
1610 						    &prog);
1611 				break;
1612 			}
1613 			if (!bpf_prog->aux->verifier_zext)
1614 				emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1615 			break;
1616 		case BPF_ALU64 | BPF_DIV | BPF_K:
1617 		case BPF_ALU64 | BPF_DIV | BPF_X:
1618 		case BPF_ALU64 | BPF_MOD | BPF_K:
1619 		case BPF_ALU64 | BPF_MOD | BPF_X:
1620 			goto notyet;
1621 		/* dst = dst >> imm */
1622 		/* dst = dst << imm */
1623 		case BPF_ALU | BPF_RSH | BPF_K:
1624 		case BPF_ALU | BPF_LSH | BPF_K:
1625 			if (unlikely(imm32 > 31))
1626 				return -EINVAL;
1627 			/* mov ecx,imm32*/
1628 			EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
1629 			emit_ia32_shift_r(BPF_OP(code), dst_lo, IA32_ECX, dstk,
1630 					  false, &prog);
1631 			if (!bpf_prog->aux->verifier_zext)
1632 				emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1633 			break;
1634 		/* dst = dst << imm */
1635 		case BPF_ALU64 | BPF_LSH | BPF_K:
1636 			if (unlikely(imm32 > 63))
1637 				return -EINVAL;
1638 			emit_ia32_lsh_i64(dst, imm32, dstk, &prog);
1639 			break;
1640 		/* dst = dst >> imm */
1641 		case BPF_ALU64 | BPF_RSH | BPF_K:
1642 			if (unlikely(imm32 > 63))
1643 				return -EINVAL;
1644 			emit_ia32_rsh_i64(dst, imm32, dstk, &prog);
1645 			break;
1646 		/* dst = dst << src */
1647 		case BPF_ALU64 | BPF_LSH | BPF_X:
1648 			emit_ia32_lsh_r64(dst, src, dstk, sstk, &prog);
1649 			break;
1650 		/* dst = dst >> src */
1651 		case BPF_ALU64 | BPF_RSH | BPF_X:
1652 			emit_ia32_rsh_r64(dst, src, dstk, sstk, &prog);
1653 			break;
1654 		/* dst = dst >> src (signed) */
1655 		case BPF_ALU64 | BPF_ARSH | BPF_X:
1656 			emit_ia32_arsh_r64(dst, src, dstk, sstk, &prog);
1657 			break;
1658 		/* dst = dst >> imm (signed) */
1659 		case BPF_ALU64 | BPF_ARSH | BPF_K:
1660 			if (unlikely(imm32 > 63))
1661 				return -EINVAL;
1662 			emit_ia32_arsh_i64(dst, imm32, dstk, &prog);
1663 			break;
1664 		/* dst = ~dst */
1665 		case BPF_ALU | BPF_NEG:
1666 			emit_ia32_alu_i(is64, false, BPF_OP(code),
1667 					dst_lo, 0, dstk, &prog);
1668 			if (!bpf_prog->aux->verifier_zext)
1669 				emit_ia32_mov_i(dst_hi, 0, dstk, &prog);
1670 			break;
1671 		/* dst = ~dst (64 bit) */
1672 		case BPF_ALU64 | BPF_NEG:
1673 			emit_ia32_neg64(dst, dstk, &prog);
1674 			break;
1675 		/* dst = dst * src/imm */
1676 		case BPF_ALU64 | BPF_MUL | BPF_X:
1677 		case BPF_ALU64 | BPF_MUL | BPF_K:
1678 			switch (BPF_SRC(code)) {
1679 			case BPF_X:
1680 				emit_ia32_mul_r64(dst, src, dstk, sstk, &prog);
1681 				break;
1682 			case BPF_K:
1683 				emit_ia32_mul_i64(dst, imm32, dstk, &prog);
1684 				break;
1685 			}
1686 			break;
1687 		/* dst = htole(dst) */
1688 		case BPF_ALU | BPF_END | BPF_FROM_LE:
1689 			emit_ia32_to_le_r64(dst, imm32, dstk, &prog,
1690 					    bpf_prog->aux);
1691 			break;
1692 		/* dst = htobe(dst) */
1693 		case BPF_ALU | BPF_END | BPF_FROM_BE:
1694 			emit_ia32_to_be_r64(dst, imm32, dstk, &prog,
1695 					    bpf_prog->aux);
1696 			break;
1697 		/* dst = imm64 */
1698 		case BPF_LD | BPF_IMM | BPF_DW: {
1699 			s32 hi, lo = imm32;
1700 
1701 			hi = insn[1].imm;
1702 			emit_ia32_mov_i(dst_lo, lo, dstk, &prog);
1703 			emit_ia32_mov_i(dst_hi, hi, dstk, &prog);
1704 			insn++;
1705 			i++;
1706 			break;
1707 		}
1708 		/* speculation barrier */
1709 		case BPF_ST | BPF_NOSPEC:
1710 			if (boot_cpu_has(X86_FEATURE_XMM2))
1711 				/* Emit 'lfence' */
1712 				EMIT3(0x0F, 0xAE, 0xE8);
1713 			break;
1714 		/* ST: *(u8*)(dst_reg + off) = imm */
1715 		case BPF_ST | BPF_MEM | BPF_H:
1716 		case BPF_ST | BPF_MEM | BPF_B:
1717 		case BPF_ST | BPF_MEM | BPF_W:
1718 		case BPF_ST | BPF_MEM | BPF_DW:
1719 			if (dstk)
1720 				/* mov eax,dword ptr [ebp+off] */
1721 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1722 				      STACK_VAR(dst_lo));
1723 			else
1724 				/* mov eax,dst_lo */
1725 				EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1726 
1727 			switch (BPF_SIZE(code)) {
1728 			case BPF_B:
1729 				EMIT(0xC6, 1); break;
1730 			case BPF_H:
1731 				EMIT2(0x66, 0xC7); break;
1732 			case BPF_W:
1733 			case BPF_DW:
1734 				EMIT(0xC7, 1); break;
1735 			}
1736 
1737 			if (is_imm8(insn->off))
1738 				EMIT2(add_1reg(0x40, IA32_EAX), insn->off);
1739 			else
1740 				EMIT1_off32(add_1reg(0x80, IA32_EAX),
1741 					    insn->off);
1742 			EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(code)));
1743 
1744 			if (BPF_SIZE(code) == BPF_DW) {
1745 				u32 hi;
1746 
1747 				hi = imm32 & (1<<31) ? (u32)~0 : 0;
1748 				EMIT2_off32(0xC7, add_1reg(0x80, IA32_EAX),
1749 					    insn->off + 4);
1750 				EMIT(hi, 4);
1751 			}
1752 			break;
1753 
1754 		/* STX: *(u8*)(dst_reg + off) = src_reg */
1755 		case BPF_STX | BPF_MEM | BPF_B:
1756 		case BPF_STX | BPF_MEM | BPF_H:
1757 		case BPF_STX | BPF_MEM | BPF_W:
1758 		case BPF_STX | BPF_MEM | BPF_DW:
1759 			if (dstk)
1760 				/* mov eax,dword ptr [ebp+off] */
1761 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1762 				      STACK_VAR(dst_lo));
1763 			else
1764 				/* mov eax,dst_lo */
1765 				EMIT2(0x8B, add_2reg(0xC0, dst_lo, IA32_EAX));
1766 
1767 			if (sstk)
1768 				/* mov edx,dword ptr [ebp+off] */
1769 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
1770 				      STACK_VAR(src_lo));
1771 			else
1772 				/* mov edx,src_lo */
1773 				EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EDX));
1774 
1775 			switch (BPF_SIZE(code)) {
1776 			case BPF_B:
1777 				EMIT(0x88, 1); break;
1778 			case BPF_H:
1779 				EMIT2(0x66, 0x89); break;
1780 			case BPF_W:
1781 			case BPF_DW:
1782 				EMIT(0x89, 1); break;
1783 			}
1784 
1785 			if (is_imm8(insn->off))
1786 				EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
1787 				      insn->off);
1788 			else
1789 				EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
1790 					    insn->off);
1791 
1792 			if (BPF_SIZE(code) == BPF_DW) {
1793 				if (sstk)
1794 					/* mov edi,dword ptr [ebp+off] */
1795 					EMIT3(0x8B, add_2reg(0x40, IA32_EBP,
1796 							     IA32_EDX),
1797 					      STACK_VAR(src_hi));
1798 				else
1799 					/* mov edi,src_hi */
1800 					EMIT2(0x8B, add_2reg(0xC0, src_hi,
1801 							     IA32_EDX));
1802 				EMIT1(0x89);
1803 				if (is_imm8(insn->off + 4)) {
1804 					EMIT2(add_2reg(0x40, IA32_EAX,
1805 						       IA32_EDX),
1806 					      insn->off + 4);
1807 				} else {
1808 					EMIT1(add_2reg(0x80, IA32_EAX,
1809 						       IA32_EDX));
1810 					EMIT(insn->off + 4, 4);
1811 				}
1812 			}
1813 			break;
1814 
1815 		/* LDX: dst_reg = *(u8*)(src_reg + off) */
1816 		case BPF_LDX | BPF_MEM | BPF_B:
1817 		case BPF_LDX | BPF_MEM | BPF_H:
1818 		case BPF_LDX | BPF_MEM | BPF_W:
1819 		case BPF_LDX | BPF_MEM | BPF_DW:
1820 			if (sstk)
1821 				/* mov eax,dword ptr [ebp+off] */
1822 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1823 				      STACK_VAR(src_lo));
1824 			else
1825 				/* mov eax,dword ptr [ebp+off] */
1826 				EMIT2(0x8B, add_2reg(0xC0, src_lo, IA32_EAX));
1827 
1828 			switch (BPF_SIZE(code)) {
1829 			case BPF_B:
1830 				EMIT2(0x0F, 0xB6); break;
1831 			case BPF_H:
1832 				EMIT2(0x0F, 0xB7); break;
1833 			case BPF_W:
1834 			case BPF_DW:
1835 				EMIT(0x8B, 1); break;
1836 			}
1837 
1838 			if (is_imm8(insn->off))
1839 				EMIT2(add_2reg(0x40, IA32_EAX, IA32_EDX),
1840 				      insn->off);
1841 			else
1842 				EMIT1_off32(add_2reg(0x80, IA32_EAX, IA32_EDX),
1843 					    insn->off);
1844 
1845 			if (dstk)
1846 				/* mov dword ptr [ebp+off],edx */
1847 				EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
1848 				      STACK_VAR(dst_lo));
1849 			else
1850 				/* mov dst_lo,edx */
1851 				EMIT2(0x89, add_2reg(0xC0, dst_lo, IA32_EDX));
1852 			switch (BPF_SIZE(code)) {
1853 			case BPF_B:
1854 			case BPF_H:
1855 			case BPF_W:
1856 				if (bpf_prog->aux->verifier_zext)
1857 					break;
1858 				if (dstk) {
1859 					EMIT3(0xC7, add_1reg(0x40, IA32_EBP),
1860 					      STACK_VAR(dst_hi));
1861 					EMIT(0x0, 4);
1862 				} else {
1863 					/* xor dst_hi,dst_hi */
1864 					EMIT2(0x33,
1865 					      add_2reg(0xC0, dst_hi, dst_hi));
1866 				}
1867 				break;
1868 			case BPF_DW:
1869 				EMIT2_off32(0x8B,
1870 					    add_2reg(0x80, IA32_EAX, IA32_EDX),
1871 					    insn->off + 4);
1872 				if (dstk)
1873 					EMIT3(0x89,
1874 					      add_2reg(0x40, IA32_EBP,
1875 						       IA32_EDX),
1876 					      STACK_VAR(dst_hi));
1877 				else
1878 					EMIT2(0x89,
1879 					      add_2reg(0xC0, dst_hi, IA32_EDX));
1880 				break;
1881 			default:
1882 				break;
1883 			}
1884 			break;
1885 		/* call */
1886 		case BPF_JMP | BPF_CALL:
1887 		{
1888 			const u8 *r1 = bpf2ia32[BPF_REG_1];
1889 			const u8 *r2 = bpf2ia32[BPF_REG_2];
1890 			const u8 *r3 = bpf2ia32[BPF_REG_3];
1891 			const u8 *r4 = bpf2ia32[BPF_REG_4];
1892 			const u8 *r5 = bpf2ia32[BPF_REG_5];
1893 
1894 			if (insn->src_reg == BPF_PSEUDO_CALL)
1895 				goto notyet;
1896 
1897 			func = (u8 *) __bpf_call_base + imm32;
1898 			jmp_offset = func - (image + addrs[i]);
1899 
1900 			if (!imm32 || !is_simm32(jmp_offset)) {
1901 				pr_err("unsupported BPF func %d addr %p image %p\n",
1902 				       imm32, func, image);
1903 				return -EINVAL;
1904 			}
1905 
1906 			/* mov eax,dword ptr [ebp+off] */
1907 			EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1908 			      STACK_VAR(r1[0]));
1909 			/* mov edx,dword ptr [ebp+off] */
1910 			EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EDX),
1911 			      STACK_VAR(r1[1]));
1912 
1913 			emit_push_r64(r5, &prog);
1914 			emit_push_r64(r4, &prog);
1915 			emit_push_r64(r3, &prog);
1916 			emit_push_r64(r2, &prog);
1917 
1918 			EMIT1_off32(0xE8, jmp_offset + 9);
1919 
1920 			/* mov dword ptr [ebp+off],eax */
1921 			EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EAX),
1922 			      STACK_VAR(r0[0]));
1923 			/* mov dword ptr [ebp+off],edx */
1924 			EMIT3(0x89, add_2reg(0x40, IA32_EBP, IA32_EDX),
1925 			      STACK_VAR(r0[1]));
1926 
1927 			/* add esp,32 */
1928 			EMIT3(0x83, add_1reg(0xC0, IA32_ESP), 32);
1929 			break;
1930 		}
1931 		case BPF_JMP | BPF_TAIL_CALL:
1932 			emit_bpf_tail_call(&prog);
1933 			break;
1934 
1935 		/* cond jump */
1936 		case BPF_JMP | BPF_JEQ | BPF_X:
1937 		case BPF_JMP | BPF_JNE | BPF_X:
1938 		case BPF_JMP | BPF_JGT | BPF_X:
1939 		case BPF_JMP | BPF_JLT | BPF_X:
1940 		case BPF_JMP | BPF_JGE | BPF_X:
1941 		case BPF_JMP | BPF_JLE | BPF_X:
1942 		case BPF_JMP32 | BPF_JEQ | BPF_X:
1943 		case BPF_JMP32 | BPF_JNE | BPF_X:
1944 		case BPF_JMP32 | BPF_JGT | BPF_X:
1945 		case BPF_JMP32 | BPF_JLT | BPF_X:
1946 		case BPF_JMP32 | BPF_JGE | BPF_X:
1947 		case BPF_JMP32 | BPF_JLE | BPF_X:
1948 		case BPF_JMP32 | BPF_JSGT | BPF_X:
1949 		case BPF_JMP32 | BPF_JSLE | BPF_X:
1950 		case BPF_JMP32 | BPF_JSLT | BPF_X:
1951 		case BPF_JMP32 | BPF_JSGE | BPF_X: {
1952 			bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
1953 			u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
1954 			u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
1955 			u8 sreg_lo = sstk ? IA32_ECX : src_lo;
1956 			u8 sreg_hi = sstk ? IA32_EBX : src_hi;
1957 
1958 			if (dstk) {
1959 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1960 				      STACK_VAR(dst_lo));
1961 				if (is_jmp64)
1962 					EMIT3(0x8B,
1963 					      add_2reg(0x40, IA32_EBP,
1964 						       IA32_EDX),
1965 					      STACK_VAR(dst_hi));
1966 			}
1967 
1968 			if (sstk) {
1969 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
1970 				      STACK_VAR(src_lo));
1971 				if (is_jmp64)
1972 					EMIT3(0x8B,
1973 					      add_2reg(0x40, IA32_EBP,
1974 						       IA32_EBX),
1975 					      STACK_VAR(src_hi));
1976 			}
1977 
1978 			if (is_jmp64) {
1979 				/* cmp dreg_hi,sreg_hi */
1980 				EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
1981 				EMIT2(IA32_JNE, 2);
1982 			}
1983 			/* cmp dreg_lo,sreg_lo */
1984 			EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
1985 			goto emit_cond_jmp;
1986 		}
1987 		case BPF_JMP | BPF_JSGT | BPF_X:
1988 		case BPF_JMP | BPF_JSLE | BPF_X:
1989 		case BPF_JMP | BPF_JSLT | BPF_X:
1990 		case BPF_JMP | BPF_JSGE | BPF_X: {
1991 			u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
1992 			u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
1993 			u8 sreg_lo = sstk ? IA32_ECX : src_lo;
1994 			u8 sreg_hi = sstk ? IA32_EBX : src_hi;
1995 
1996 			if (dstk) {
1997 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
1998 				      STACK_VAR(dst_lo));
1999 				EMIT3(0x8B,
2000 				      add_2reg(0x40, IA32_EBP,
2001 					       IA32_EDX),
2002 				      STACK_VAR(dst_hi));
2003 			}
2004 
2005 			if (sstk) {
2006 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
2007 				      STACK_VAR(src_lo));
2008 				EMIT3(0x8B,
2009 				      add_2reg(0x40, IA32_EBP,
2010 					       IA32_EBX),
2011 				      STACK_VAR(src_hi));
2012 			}
2013 
2014 			/* cmp dreg_hi,sreg_hi */
2015 			EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2016 			EMIT2(IA32_JNE, 10);
2017 			/* cmp dreg_lo,sreg_lo */
2018 			EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2019 			goto emit_cond_jmp_signed;
2020 		}
2021 		case BPF_JMP | BPF_JSET | BPF_X:
2022 		case BPF_JMP32 | BPF_JSET | BPF_X: {
2023 			bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2024 			u8 dreg_lo = IA32_EAX;
2025 			u8 dreg_hi = IA32_EDX;
2026 			u8 sreg_lo = sstk ? IA32_ECX : src_lo;
2027 			u8 sreg_hi = sstk ? IA32_EBX : src_hi;
2028 
2029 			if (dstk) {
2030 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2031 				      STACK_VAR(dst_lo));
2032 				if (is_jmp64)
2033 					EMIT3(0x8B,
2034 					      add_2reg(0x40, IA32_EBP,
2035 						       IA32_EDX),
2036 					      STACK_VAR(dst_hi));
2037 			} else {
2038 				/* mov dreg_lo,dst_lo */
2039 				EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo));
2040 				if (is_jmp64)
2041 					/* mov dreg_hi,dst_hi */
2042 					EMIT2(0x89,
2043 					      add_2reg(0xC0, dreg_hi, dst_hi));
2044 			}
2045 
2046 			if (sstk) {
2047 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_ECX),
2048 				      STACK_VAR(src_lo));
2049 				if (is_jmp64)
2050 					EMIT3(0x8B,
2051 					      add_2reg(0x40, IA32_EBP,
2052 						       IA32_EBX),
2053 					      STACK_VAR(src_hi));
2054 			}
2055 			/* and dreg_lo,sreg_lo */
2056 			EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
2057 			if (is_jmp64) {
2058 				/* and dreg_hi,sreg_hi */
2059 				EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
2060 				/* or dreg_lo,dreg_hi */
2061 				EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
2062 			}
2063 			goto emit_cond_jmp;
2064 		}
2065 		case BPF_JMP | BPF_JSET | BPF_K:
2066 		case BPF_JMP32 | BPF_JSET | BPF_K: {
2067 			bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2068 			u8 dreg_lo = IA32_EAX;
2069 			u8 dreg_hi = IA32_EDX;
2070 			u8 sreg_lo = IA32_ECX;
2071 			u8 sreg_hi = IA32_EBX;
2072 			u32 hi;
2073 
2074 			if (dstk) {
2075 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2076 				      STACK_VAR(dst_lo));
2077 				if (is_jmp64)
2078 					EMIT3(0x8B,
2079 					      add_2reg(0x40, IA32_EBP,
2080 						       IA32_EDX),
2081 					      STACK_VAR(dst_hi));
2082 			} else {
2083 				/* mov dreg_lo,dst_lo */
2084 				EMIT2(0x89, add_2reg(0xC0, dreg_lo, dst_lo));
2085 				if (is_jmp64)
2086 					/* mov dreg_hi,dst_hi */
2087 					EMIT2(0x89,
2088 					      add_2reg(0xC0, dreg_hi, dst_hi));
2089 			}
2090 
2091 			/* mov ecx,imm32 */
2092 			EMIT2_off32(0xC7, add_1reg(0xC0, sreg_lo), imm32);
2093 
2094 			/* and dreg_lo,sreg_lo */
2095 			EMIT2(0x23, add_2reg(0xC0, sreg_lo, dreg_lo));
2096 			if (is_jmp64) {
2097 				hi = imm32 & (1 << 31) ? (u32)~0 : 0;
2098 				/* mov ebx,imm32 */
2099 				EMIT2_off32(0xC7, add_1reg(0xC0, sreg_hi), hi);
2100 				/* and dreg_hi,sreg_hi */
2101 				EMIT2(0x23, add_2reg(0xC0, sreg_hi, dreg_hi));
2102 				/* or dreg_lo,dreg_hi */
2103 				EMIT2(0x09, add_2reg(0xC0, dreg_lo, dreg_hi));
2104 			}
2105 			goto emit_cond_jmp;
2106 		}
2107 		case BPF_JMP | BPF_JEQ | BPF_K:
2108 		case BPF_JMP | BPF_JNE | BPF_K:
2109 		case BPF_JMP | BPF_JGT | BPF_K:
2110 		case BPF_JMP | BPF_JLT | BPF_K:
2111 		case BPF_JMP | BPF_JGE | BPF_K:
2112 		case BPF_JMP | BPF_JLE | BPF_K:
2113 		case BPF_JMP32 | BPF_JEQ | BPF_K:
2114 		case BPF_JMP32 | BPF_JNE | BPF_K:
2115 		case BPF_JMP32 | BPF_JGT | BPF_K:
2116 		case BPF_JMP32 | BPF_JLT | BPF_K:
2117 		case BPF_JMP32 | BPF_JGE | BPF_K:
2118 		case BPF_JMP32 | BPF_JLE | BPF_K:
2119 		case BPF_JMP32 | BPF_JSGT | BPF_K:
2120 		case BPF_JMP32 | BPF_JSLE | BPF_K:
2121 		case BPF_JMP32 | BPF_JSLT | BPF_K:
2122 		case BPF_JMP32 | BPF_JSGE | BPF_K: {
2123 			bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;
2124 			u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2125 			u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2126 			u8 sreg_lo = IA32_ECX;
2127 			u8 sreg_hi = IA32_EBX;
2128 			u32 hi;
2129 
2130 			if (dstk) {
2131 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2132 				      STACK_VAR(dst_lo));
2133 				if (is_jmp64)
2134 					EMIT3(0x8B,
2135 					      add_2reg(0x40, IA32_EBP,
2136 						       IA32_EDX),
2137 					      STACK_VAR(dst_hi));
2138 			}
2139 
2140 			/* mov ecx,imm32 */
2141 			EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
2142 			if (is_jmp64) {
2143 				hi = imm32 & (1 << 31) ? (u32)~0 : 0;
2144 				/* mov ebx,imm32 */
2145 				EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
2146 				/* cmp dreg_hi,sreg_hi */
2147 				EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2148 				EMIT2(IA32_JNE, 2);
2149 			}
2150 			/* cmp dreg_lo,sreg_lo */
2151 			EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2152 
2153 emit_cond_jmp:		jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
2154 			if (jmp_cond == COND_JMP_OPCODE_INVALID)
2155 				return -EFAULT;
2156 			jmp_offset = addrs[i + insn->off] - addrs[i];
2157 			if (is_imm8(jmp_offset)) {
2158 				EMIT2(jmp_cond, jmp_offset);
2159 			} else if (is_simm32(jmp_offset)) {
2160 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2161 			} else {
2162 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2163 				return -EFAULT;
2164 			}
2165 			break;
2166 		}
2167 		case BPF_JMP | BPF_JSGT | BPF_K:
2168 		case BPF_JMP | BPF_JSLE | BPF_K:
2169 		case BPF_JMP | BPF_JSLT | BPF_K:
2170 		case BPF_JMP | BPF_JSGE | BPF_K: {
2171 			u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
2172 			u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
2173 			u8 sreg_lo = IA32_ECX;
2174 			u8 sreg_hi = IA32_EBX;
2175 			u32 hi;
2176 
2177 			if (dstk) {
2178 				EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
2179 				      STACK_VAR(dst_lo));
2180 				EMIT3(0x8B,
2181 				      add_2reg(0x40, IA32_EBP,
2182 					       IA32_EDX),
2183 				      STACK_VAR(dst_hi));
2184 			}
2185 
2186 			/* mov ecx,imm32 */
2187 			EMIT2_off32(0xC7, add_1reg(0xC0, IA32_ECX), imm32);
2188 			hi = imm32 & (1 << 31) ? (u32)~0 : 0;
2189 			/* mov ebx,imm32 */
2190 			EMIT2_off32(0xC7, add_1reg(0xC0, IA32_EBX), hi);
2191 			/* cmp dreg_hi,sreg_hi */
2192 			EMIT2(0x39, add_2reg(0xC0, dreg_hi, sreg_hi));
2193 			EMIT2(IA32_JNE, 10);
2194 			/* cmp dreg_lo,sreg_lo */
2195 			EMIT2(0x39, add_2reg(0xC0, dreg_lo, sreg_lo));
2196 
2197 			/*
2198 			 * For simplicity of branch offset computation,
2199 			 * let's use fixed jump coding here.
2200 			 */
2201 emit_cond_jmp_signed:	/* Check the condition for low 32-bit comparison */
2202 			jmp_cond = get_cond_jmp_opcode(BPF_OP(code), true);
2203 			if (jmp_cond == COND_JMP_OPCODE_INVALID)
2204 				return -EFAULT;
2205 			jmp_offset = addrs[i + insn->off] - addrs[i] + 8;
2206 			if (is_simm32(jmp_offset)) {
2207 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2208 			} else {
2209 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2210 				return -EFAULT;
2211 			}
2212 			EMIT2(0xEB, 6);
2213 
2214 			/* Check the condition for high 32-bit comparison */
2215 			jmp_cond = get_cond_jmp_opcode(BPF_OP(code), false);
2216 			if (jmp_cond == COND_JMP_OPCODE_INVALID)
2217 				return -EFAULT;
2218 			jmp_offset = addrs[i + insn->off] - addrs[i];
2219 			if (is_simm32(jmp_offset)) {
2220 				EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2221 			} else {
2222 				pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2223 				return -EFAULT;
2224 			}
2225 			break;
2226 		}
2227 		case BPF_JMP | BPF_JA:
2228 			if (insn->off == -1)
2229 				/* -1 jmp instructions will always jump
2230 				 * backwards two bytes. Explicitly handling
2231 				 * this case avoids wasting too many passes
2232 				 * when there are long sequences of replaced
2233 				 * dead code.
2234 				 */
2235 				jmp_offset = -2;
2236 			else
2237 				jmp_offset = addrs[i + insn->off] - addrs[i];
2238 
2239 			if (!jmp_offset)
2240 				/* Optimize out nop jumps */
2241 				break;
2242 emit_jmp:
2243 			if (is_imm8(jmp_offset)) {
2244 				EMIT2(0xEB, jmp_offset);
2245 			} else if (is_simm32(jmp_offset)) {
2246 				EMIT1_off32(0xE9, jmp_offset);
2247 			} else {
2248 				pr_err("jmp gen bug %llx\n", jmp_offset);
2249 				return -EFAULT;
2250 			}
2251 			break;
2252 		/* STX XADD: lock *(u32 *)(dst + off) += src */
2253 		case BPF_STX | BPF_XADD | BPF_W:
2254 		/* STX XADD: lock *(u64 *)(dst + off) += src */
2255 		case BPF_STX | BPF_XADD | BPF_DW:
2256 			goto notyet;
2257 		case BPF_JMP | BPF_EXIT:
2258 			if (seen_exit) {
2259 				jmp_offset = ctx->cleanup_addr - addrs[i];
2260 				goto emit_jmp;
2261 			}
2262 			seen_exit = true;
2263 			/* Update cleanup_addr */
2264 			ctx->cleanup_addr = proglen;
2265 			emit_epilogue(&prog, bpf_prog->aux->stack_depth);
2266 			break;
2267 notyet:
2268 			pr_info_once("*** NOT YET: opcode %02x ***\n", code);
2269 			return -EFAULT;
2270 		default:
2271 			/*
2272 			 * This error will be seen if new instruction was added
2273 			 * to interpreter, but not to JIT or if there is junk in
2274 			 * bpf_prog
2275 			 */
2276 			pr_err("bpf_jit: unknown opcode %02x\n", code);
2277 			return -EINVAL;
2278 		}
2279 
2280 		ilen = prog - temp;
2281 		if (ilen > BPF_MAX_INSN_SIZE) {
2282 			pr_err("bpf_jit: fatal insn size error\n");
2283 			return -EFAULT;
2284 		}
2285 
2286 		if (image) {
2287 			/*
2288 			 * When populating the image, assert that:
2289 			 *
2290 			 *  i) We do not write beyond the allocated space, and
2291 			 * ii) addrs[i] did not change from the prior run, in order
2292 			 *     to validate assumptions made for computing branch
2293 			 *     displacements.
2294 			 */
2295 			if (unlikely(proglen + ilen > oldproglen ||
2296 				     proglen + ilen != addrs[i])) {
2297 				pr_err("bpf_jit: fatal error\n");
2298 				return -EFAULT;
2299 			}
2300 			memcpy(image + proglen, temp, ilen);
2301 		}
2302 		proglen += ilen;
2303 		addrs[i] = proglen;
2304 		prog = temp;
2305 	}
2306 	return proglen;
2307 }
2308 
bpf_jit_needs_zext(void)2309 bool bpf_jit_needs_zext(void)
2310 {
2311 	return true;
2312 }
2313 
bpf_int_jit_compile(struct bpf_prog * prog)2314 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2315 {
2316 	struct bpf_binary_header *header = NULL;
2317 	struct bpf_prog *tmp, *orig_prog = prog;
2318 	int proglen, oldproglen = 0;
2319 	struct jit_context ctx = {};
2320 	bool tmp_blinded = false;
2321 	u8 *image = NULL;
2322 	int *addrs;
2323 	int pass;
2324 	int i;
2325 
2326 	if (!prog->jit_requested)
2327 		return orig_prog;
2328 
2329 	tmp = bpf_jit_blind_constants(prog);
2330 	/*
2331 	 * If blinding was requested and we failed during blinding,
2332 	 * we must fall back to the interpreter.
2333 	 */
2334 	if (IS_ERR(tmp))
2335 		return orig_prog;
2336 	if (tmp != prog) {
2337 		tmp_blinded = true;
2338 		prog = tmp;
2339 	}
2340 
2341 	addrs = kmalloc_array(prog->len, sizeof(*addrs), GFP_KERNEL);
2342 	if (!addrs) {
2343 		prog = orig_prog;
2344 		goto out;
2345 	}
2346 
2347 	/*
2348 	 * Before first pass, make a rough estimation of addrs[]
2349 	 * each BPF instruction is translated to less than 64 bytes
2350 	 */
2351 	for (proglen = 0, i = 0; i < prog->len; i++) {
2352 		proglen += 64;
2353 		addrs[i] = proglen;
2354 	}
2355 	ctx.cleanup_addr = proglen;
2356 
2357 	/*
2358 	 * JITed image shrinks with every pass and the loop iterates
2359 	 * until the image stops shrinking. Very large BPF programs
2360 	 * may converge on the last pass. In such case do one more
2361 	 * pass to emit the final image.
2362 	 */
2363 	for (pass = 0; pass < 20 || image; pass++) {
2364 		proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
2365 		if (proglen <= 0) {
2366 out_image:
2367 			image = NULL;
2368 			if (header)
2369 				bpf_jit_binary_free(header);
2370 			prog = orig_prog;
2371 			goto out_addrs;
2372 		}
2373 		if (image) {
2374 			if (proglen != oldproglen) {
2375 				pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
2376 				       proglen, oldproglen);
2377 				goto out_image;
2378 			}
2379 			break;
2380 		}
2381 		if (proglen == oldproglen) {
2382 			header = bpf_jit_binary_alloc(proglen, &image,
2383 						      1, jit_fill_hole);
2384 			if (!header) {
2385 				prog = orig_prog;
2386 				goto out_addrs;
2387 			}
2388 		}
2389 		oldproglen = proglen;
2390 		cond_resched();
2391 	}
2392 
2393 	if (bpf_jit_enable > 1)
2394 		bpf_jit_dump(prog->len, proglen, pass + 1, image);
2395 
2396 	if (image) {
2397 		bpf_jit_binary_lock_ro(header);
2398 		prog->bpf_func = (void *)image;
2399 		prog->jited = 1;
2400 		prog->jited_len = proglen;
2401 	} else {
2402 		prog = orig_prog;
2403 	}
2404 
2405 out_addrs:
2406 	kfree(addrs);
2407 out:
2408 	if (tmp_blinded)
2409 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2410 					   tmp : orig_prog);
2411 	return prog;
2412 }
2413