1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/blk-crypto.h>
21
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25
26 /*
27 * Test patch to inline a certain number of bi_io_vec's inside the bio
28 * itself, to shrink a bio data allocation from two mempool calls to one
29 */
30 #define BIO_INLINE_VECS 4
31
32 /*
33 * if you change this list, also change bvec_alloc or things will
34 * break badly! cannot be bigger than what you can fit into an
35 * unsigned short
36 */
37 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
38 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
39 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
40 };
41 #undef BV
42
43 /*
44 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
45 * IO code that does not need private memory pools.
46 */
47 struct bio_set fs_bio_set;
48 EXPORT_SYMBOL(fs_bio_set);
49
50 /*
51 * Our slab pool management
52 */
53 struct bio_slab {
54 struct kmem_cache *slab;
55 unsigned int slab_ref;
56 unsigned int slab_size;
57 char name[8];
58 };
59 static DEFINE_MUTEX(bio_slab_lock);
60 static struct bio_slab *bio_slabs;
61 static unsigned int bio_slab_nr, bio_slab_max;
62
bio_find_or_create_slab(unsigned int extra_size)63 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
64 {
65 unsigned int sz = sizeof(struct bio) + extra_size;
66 struct kmem_cache *slab = NULL;
67 struct bio_slab *bslab, *new_bio_slabs;
68 unsigned int new_bio_slab_max;
69 unsigned int i, entry = -1;
70
71 mutex_lock(&bio_slab_lock);
72
73 i = 0;
74 while (i < bio_slab_nr) {
75 bslab = &bio_slabs[i];
76
77 if (!bslab->slab && entry == -1)
78 entry = i;
79 else if (bslab->slab_size == sz) {
80 slab = bslab->slab;
81 bslab->slab_ref++;
82 break;
83 }
84 i++;
85 }
86
87 if (slab)
88 goto out_unlock;
89
90 if (bio_slab_nr == bio_slab_max && entry == -1) {
91 new_bio_slab_max = bio_slab_max << 1;
92 new_bio_slabs = krealloc(bio_slabs,
93 new_bio_slab_max * sizeof(struct bio_slab),
94 GFP_KERNEL);
95 if (!new_bio_slabs)
96 goto out_unlock;
97 bio_slab_max = new_bio_slab_max;
98 bio_slabs = new_bio_slabs;
99 }
100 if (entry == -1)
101 entry = bio_slab_nr++;
102
103 bslab = &bio_slabs[entry];
104
105 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
106 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
107 SLAB_HWCACHE_ALIGN, NULL);
108 if (!slab)
109 goto out_unlock;
110
111 bslab->slab = slab;
112 bslab->slab_ref = 1;
113 bslab->slab_size = sz;
114 out_unlock:
115 mutex_unlock(&bio_slab_lock);
116 return slab;
117 }
118
bio_put_slab(struct bio_set * bs)119 static void bio_put_slab(struct bio_set *bs)
120 {
121 struct bio_slab *bslab = NULL;
122 unsigned int i;
123
124 mutex_lock(&bio_slab_lock);
125
126 for (i = 0; i < bio_slab_nr; i++) {
127 if (bs->bio_slab == bio_slabs[i].slab) {
128 bslab = &bio_slabs[i];
129 break;
130 }
131 }
132
133 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 goto out;
135
136 WARN_ON(!bslab->slab_ref);
137
138 if (--bslab->slab_ref)
139 goto out;
140
141 kmem_cache_destroy(bslab->slab);
142 bslab->slab = NULL;
143
144 out:
145 mutex_unlock(&bio_slab_lock);
146 }
147
bvec_nr_vecs(unsigned short idx)148 unsigned int bvec_nr_vecs(unsigned short idx)
149 {
150 return bvec_slabs[--idx].nr_vecs;
151 }
152
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned int idx)153 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
154 {
155 if (!idx)
156 return;
157 idx--;
158
159 BIO_BUG_ON(idx >= BVEC_POOL_NR);
160
161 if (idx == BVEC_POOL_MAX) {
162 mempool_free(bv, pool);
163 } else {
164 struct biovec_slab *bvs = bvec_slabs + idx;
165
166 kmem_cache_free(bvs->slab, bv);
167 }
168 }
169
bvec_alloc(gfp_t gfp_mask,int nr,unsigned long * idx,mempool_t * pool)170 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
171 mempool_t *pool)
172 {
173 struct bio_vec *bvl;
174
175 /*
176 * see comment near bvec_array define!
177 */
178 switch (nr) {
179 case 1:
180 *idx = 0;
181 break;
182 case 2 ... 4:
183 *idx = 1;
184 break;
185 case 5 ... 16:
186 *idx = 2;
187 break;
188 case 17 ... 64:
189 *idx = 3;
190 break;
191 case 65 ... 128:
192 *idx = 4;
193 break;
194 case 129 ... BIO_MAX_PAGES:
195 *idx = 5;
196 break;
197 default:
198 return NULL;
199 }
200
201 /*
202 * idx now points to the pool we want to allocate from. only the
203 * 1-vec entry pool is mempool backed.
204 */
205 if (*idx == BVEC_POOL_MAX) {
206 fallback:
207 bvl = mempool_alloc(pool, gfp_mask);
208 } else {
209 struct biovec_slab *bvs = bvec_slabs + *idx;
210 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
211
212 /*
213 * Make this allocation restricted and don't dump info on
214 * allocation failures, since we'll fallback to the mempool
215 * in case of failure.
216 */
217 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
218
219 /*
220 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
221 * is set, retry with the 1-entry mempool
222 */
223 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
225 *idx = BVEC_POOL_MAX;
226 goto fallback;
227 }
228 }
229
230 (*idx)++;
231 return bvl;
232 }
233
bio_uninit(struct bio * bio)234 void bio_uninit(struct bio *bio)
235 {
236 bio_disassociate_blkg(bio);
237
238 bio_crypt_free_ctx(bio);
239
240 if (bio_integrity(bio))
241 bio_integrity_free(bio);
242 }
243 EXPORT_SYMBOL(bio_uninit);
244
bio_free(struct bio * bio)245 static void bio_free(struct bio *bio)
246 {
247 struct bio_set *bs = bio->bi_pool;
248 void *p;
249
250 bio_uninit(bio);
251
252 if (bs) {
253 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
254
255 /*
256 * If we have front padding, adjust the bio pointer before freeing
257 */
258 p = bio;
259 p -= bs->front_pad;
260
261 mempool_free(p, &bs->bio_pool);
262 } else {
263 /* Bio was allocated by bio_kmalloc() */
264 kfree(bio);
265 }
266 }
267
268 /*
269 * Users of this function have their own bio allocation. Subsequently,
270 * they must remember to pair any call to bio_init() with bio_uninit()
271 * when IO has completed, or when the bio is released.
272 */
bio_init(struct bio * bio,struct bio_vec * table,unsigned short max_vecs)273 void bio_init(struct bio *bio, struct bio_vec *table,
274 unsigned short max_vecs)
275 {
276 memset(bio, 0, sizeof(*bio));
277 atomic_set(&bio->__bi_remaining, 1);
278 atomic_set(&bio->__bi_cnt, 1);
279
280 bio->bi_io_vec = table;
281 bio->bi_max_vecs = max_vecs;
282 }
283 EXPORT_SYMBOL(bio_init);
284
285 /**
286 * bio_reset - reinitialize a bio
287 * @bio: bio to reset
288 *
289 * Description:
290 * After calling bio_reset(), @bio will be in the same state as a freshly
291 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
292 * preserved are the ones that are initialized by bio_alloc_bioset(). See
293 * comment in struct bio.
294 */
bio_reset(struct bio * bio)295 void bio_reset(struct bio *bio)
296 {
297 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
298
299 bio_uninit(bio);
300
301 memset(bio, 0, BIO_RESET_BYTES);
302 bio->bi_flags = flags;
303 atomic_set(&bio->__bi_remaining, 1);
304 }
305 EXPORT_SYMBOL(bio_reset);
306
__bio_chain_endio(struct bio * bio)307 static struct bio *__bio_chain_endio(struct bio *bio)
308 {
309 struct bio *parent = bio->bi_private;
310
311 if (bio->bi_status && !parent->bi_status)
312 parent->bi_status = bio->bi_status;
313 bio_put(bio);
314 return parent;
315 }
316
bio_chain_endio(struct bio * bio)317 static void bio_chain_endio(struct bio *bio)
318 {
319 bio_endio(__bio_chain_endio(bio));
320 }
321
322 /**
323 * bio_chain - chain bio completions
324 * @bio: the target bio
325 * @parent: the @bio's parent bio
326 *
327 * The caller won't have a bi_end_io called when @bio completes - instead,
328 * @parent's bi_end_io won't be called until both @parent and @bio have
329 * completed; the chained bio will also be freed when it completes.
330 *
331 * The caller must not set bi_private or bi_end_io in @bio.
332 */
bio_chain(struct bio * bio,struct bio * parent)333 void bio_chain(struct bio *bio, struct bio *parent)
334 {
335 BUG_ON(bio->bi_private || bio->bi_end_io);
336
337 bio->bi_private = parent;
338 bio->bi_end_io = bio_chain_endio;
339 bio_inc_remaining(parent);
340 }
341 EXPORT_SYMBOL(bio_chain);
342
bio_alloc_rescue(struct work_struct * work)343 static void bio_alloc_rescue(struct work_struct *work)
344 {
345 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
346 struct bio *bio;
347
348 while (1) {
349 spin_lock(&bs->rescue_lock);
350 bio = bio_list_pop(&bs->rescue_list);
351 spin_unlock(&bs->rescue_lock);
352
353 if (!bio)
354 break;
355
356 generic_make_request(bio);
357 }
358 }
359
punt_bios_to_rescuer(struct bio_set * bs)360 static void punt_bios_to_rescuer(struct bio_set *bs)
361 {
362 struct bio_list punt, nopunt;
363 struct bio *bio;
364
365 if (WARN_ON_ONCE(!bs->rescue_workqueue))
366 return;
367 /*
368 * In order to guarantee forward progress we must punt only bios that
369 * were allocated from this bio_set; otherwise, if there was a bio on
370 * there for a stacking driver higher up in the stack, processing it
371 * could require allocating bios from this bio_set, and doing that from
372 * our own rescuer would be bad.
373 *
374 * Since bio lists are singly linked, pop them all instead of trying to
375 * remove from the middle of the list:
376 */
377
378 bio_list_init(&punt);
379 bio_list_init(&nopunt);
380
381 while ((bio = bio_list_pop(¤t->bio_list[0])))
382 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
383 current->bio_list[0] = nopunt;
384
385 bio_list_init(&nopunt);
386 while ((bio = bio_list_pop(¤t->bio_list[1])))
387 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
388 current->bio_list[1] = nopunt;
389
390 spin_lock(&bs->rescue_lock);
391 bio_list_merge(&bs->rescue_list, &punt);
392 spin_unlock(&bs->rescue_lock);
393
394 queue_work(bs->rescue_workqueue, &bs->rescue_work);
395 }
396
397 /**
398 * bio_alloc_bioset - allocate a bio for I/O
399 * @gfp_mask: the GFP_* mask given to the slab allocator
400 * @nr_iovecs: number of iovecs to pre-allocate
401 * @bs: the bio_set to allocate from.
402 *
403 * Description:
404 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
405 * backed by the @bs's mempool.
406 *
407 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
408 * always be able to allocate a bio. This is due to the mempool guarantees.
409 * To make this work, callers must never allocate more than 1 bio at a time
410 * from this pool. Callers that need to allocate more than 1 bio must always
411 * submit the previously allocated bio for IO before attempting to allocate
412 * a new one. Failure to do so can cause deadlocks under memory pressure.
413 *
414 * Note that when running under generic_make_request() (i.e. any block
415 * driver), bios are not submitted until after you return - see the code in
416 * generic_make_request() that converts recursion into iteration, to prevent
417 * stack overflows.
418 *
419 * This would normally mean allocating multiple bios under
420 * generic_make_request() would be susceptible to deadlocks, but we have
421 * deadlock avoidance code that resubmits any blocked bios from a rescuer
422 * thread.
423 *
424 * However, we do not guarantee forward progress for allocations from other
425 * mempools. Doing multiple allocations from the same mempool under
426 * generic_make_request() should be avoided - instead, use bio_set's front_pad
427 * for per bio allocations.
428 *
429 * RETURNS:
430 * Pointer to new bio on success, NULL on failure.
431 */
bio_alloc_bioset(gfp_t gfp_mask,unsigned int nr_iovecs,struct bio_set * bs)432 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
433 struct bio_set *bs)
434 {
435 gfp_t saved_gfp = gfp_mask;
436 unsigned front_pad;
437 unsigned inline_vecs;
438 struct bio_vec *bvl = NULL;
439 struct bio *bio;
440 void *p;
441
442 if (!bs) {
443 if (nr_iovecs > UIO_MAXIOV)
444 return NULL;
445
446 p = kmalloc(sizeof(struct bio) +
447 nr_iovecs * sizeof(struct bio_vec),
448 gfp_mask);
449 front_pad = 0;
450 inline_vecs = nr_iovecs;
451 } else {
452 /* should not use nobvec bioset for nr_iovecs > 0 */
453 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
454 nr_iovecs > 0))
455 return NULL;
456 /*
457 * generic_make_request() converts recursion to iteration; this
458 * means if we're running beneath it, any bios we allocate and
459 * submit will not be submitted (and thus freed) until after we
460 * return.
461 *
462 * This exposes us to a potential deadlock if we allocate
463 * multiple bios from the same bio_set() while running
464 * underneath generic_make_request(). If we were to allocate
465 * multiple bios (say a stacking block driver that was splitting
466 * bios), we would deadlock if we exhausted the mempool's
467 * reserve.
468 *
469 * We solve this, and guarantee forward progress, with a rescuer
470 * workqueue per bio_set. If we go to allocate and there are
471 * bios on current->bio_list, we first try the allocation
472 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
473 * bios we would be blocking to the rescuer workqueue before
474 * we retry with the original gfp_flags.
475 */
476
477 if (current->bio_list &&
478 (!bio_list_empty(¤t->bio_list[0]) ||
479 !bio_list_empty(¤t->bio_list[1])) &&
480 bs->rescue_workqueue)
481 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
482
483 p = mempool_alloc(&bs->bio_pool, gfp_mask);
484 if (!p && gfp_mask != saved_gfp) {
485 punt_bios_to_rescuer(bs);
486 gfp_mask = saved_gfp;
487 p = mempool_alloc(&bs->bio_pool, gfp_mask);
488 }
489
490 front_pad = bs->front_pad;
491 inline_vecs = BIO_INLINE_VECS;
492 }
493
494 if (unlikely(!p))
495 return NULL;
496
497 bio = p + front_pad;
498 bio_init(bio, NULL, 0);
499
500 if (nr_iovecs > inline_vecs) {
501 unsigned long idx = 0;
502
503 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
504 if (!bvl && gfp_mask != saved_gfp) {
505 punt_bios_to_rescuer(bs);
506 gfp_mask = saved_gfp;
507 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
508 }
509
510 if (unlikely(!bvl))
511 goto err_free;
512
513 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
514 } else if (nr_iovecs) {
515 bvl = bio->bi_inline_vecs;
516 }
517
518 bio->bi_pool = bs;
519 bio->bi_max_vecs = nr_iovecs;
520 bio->bi_io_vec = bvl;
521 return bio;
522
523 err_free:
524 mempool_free(p, &bs->bio_pool);
525 return NULL;
526 }
527 EXPORT_SYMBOL(bio_alloc_bioset);
528
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)529 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
530 {
531 unsigned long flags;
532 struct bio_vec bv;
533 struct bvec_iter iter;
534
535 __bio_for_each_segment(bv, bio, iter, start) {
536 char *data = bvec_kmap_irq(&bv, &flags);
537 memset(data, 0, bv.bv_len);
538 flush_dcache_page(bv.bv_page);
539 bvec_kunmap_irq(data, &flags);
540 }
541 }
542 EXPORT_SYMBOL(zero_fill_bio_iter);
543
544 /**
545 * bio_truncate - truncate the bio to small size of @new_size
546 * @bio: the bio to be truncated
547 * @new_size: new size for truncating the bio
548 *
549 * Description:
550 * Truncate the bio to new size of @new_size. If bio_op(bio) is
551 * REQ_OP_READ, zero the truncated part. This function should only
552 * be used for handling corner cases, such as bio eod.
553 */
bio_truncate(struct bio * bio,unsigned new_size)554 void bio_truncate(struct bio *bio, unsigned new_size)
555 {
556 struct bio_vec bv;
557 struct bvec_iter iter;
558 unsigned int done = 0;
559 bool truncated = false;
560
561 if (new_size >= bio->bi_iter.bi_size)
562 return;
563
564 if (bio_op(bio) != REQ_OP_READ)
565 goto exit;
566
567 bio_for_each_segment(bv, bio, iter) {
568 if (done + bv.bv_len > new_size) {
569 unsigned offset;
570
571 if (!truncated)
572 offset = new_size - done;
573 else
574 offset = 0;
575 zero_user(bv.bv_page, bv.bv_offset + offset,
576 bv.bv_len - offset);
577 truncated = true;
578 }
579 done += bv.bv_len;
580 }
581
582 exit:
583 /*
584 * Don't touch bvec table here and make it really immutable, since
585 * fs bio user has to retrieve all pages via bio_for_each_segment_all
586 * in its .end_bio() callback.
587 *
588 * It is enough to truncate bio by updating .bi_size since we can make
589 * correct bvec with the updated .bi_size for drivers.
590 */
591 bio->bi_iter.bi_size = new_size;
592 }
593
594 /**
595 * bio_put - release a reference to a bio
596 * @bio: bio to release reference to
597 *
598 * Description:
599 * Put a reference to a &struct bio, either one you have gotten with
600 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
601 **/
bio_put(struct bio * bio)602 void bio_put(struct bio *bio)
603 {
604 if (!bio_flagged(bio, BIO_REFFED))
605 bio_free(bio);
606 else {
607 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
608
609 /*
610 * last put frees it
611 */
612 if (atomic_dec_and_test(&bio->__bi_cnt))
613 bio_free(bio);
614 }
615 }
616 EXPORT_SYMBOL(bio_put);
617
618 /**
619 * __bio_clone_fast - clone a bio that shares the original bio's biovec
620 * @bio: destination bio
621 * @bio_src: bio to clone
622 *
623 * Clone a &bio. Caller will own the returned bio, but not
624 * the actual data it points to. Reference count of returned
625 * bio will be one.
626 *
627 * Caller must ensure that @bio_src is not freed before @bio.
628 */
__bio_clone_fast(struct bio * bio,struct bio * bio_src)629 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
630 {
631 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
632
633 /*
634 * most users will be overriding ->bi_disk with a new target,
635 * so we don't set nor calculate new physical/hw segment counts here
636 */
637 bio->bi_disk = bio_src->bi_disk;
638 bio->bi_partno = bio_src->bi_partno;
639 bio_set_flag(bio, BIO_CLONED);
640 if (bio_flagged(bio_src, BIO_THROTTLED))
641 bio_set_flag(bio, BIO_THROTTLED);
642 bio->bi_opf = bio_src->bi_opf;
643 bio->bi_ioprio = bio_src->bi_ioprio;
644 bio->bi_write_hint = bio_src->bi_write_hint;
645 bio->bi_iter = bio_src->bi_iter;
646 bio->bi_io_vec = bio_src->bi_io_vec;
647
648 bio_clone_blkg_association(bio, bio_src);
649 blkcg_bio_issue_init(bio);
650 }
651 EXPORT_SYMBOL(__bio_clone_fast);
652
653 /**
654 * bio_clone_fast - clone a bio that shares the original bio's biovec
655 * @bio: bio to clone
656 * @gfp_mask: allocation priority
657 * @bs: bio_set to allocate from
658 *
659 * Like __bio_clone_fast, only also allocates the returned bio
660 */
bio_clone_fast(struct bio * bio,gfp_t gfp_mask,struct bio_set * bs)661 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
662 {
663 struct bio *b;
664
665 b = bio_alloc_bioset(gfp_mask, 0, bs);
666 if (!b)
667 return NULL;
668
669 __bio_clone_fast(b, bio);
670
671 bio_crypt_clone(b, bio, gfp_mask);
672
673 if (bio_integrity(bio) &&
674 bio_integrity_clone(b, bio, gfp_mask) < 0) {
675 bio_put(b);
676 return NULL;
677 }
678
679 return b;
680 }
681 EXPORT_SYMBOL(bio_clone_fast);
682
page_is_mergeable(const struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off,bool * same_page)683 static inline bool page_is_mergeable(const struct bio_vec *bv,
684 struct page *page, unsigned int len, unsigned int off,
685 bool *same_page)
686 {
687 size_t bv_end = bv->bv_offset + bv->bv_len;
688 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
689 phys_addr_t page_addr = page_to_phys(page);
690
691 if (vec_end_addr + 1 != page_addr + off)
692 return false;
693 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
694 return false;
695
696 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
697 if (*same_page)
698 return true;
699 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
700 }
701
bio_try_merge_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned len,unsigned offset,bool * same_page)702 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
703 struct page *page, unsigned len, unsigned offset,
704 bool *same_page)
705 {
706 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
707 unsigned long mask = queue_segment_boundary(q);
708 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
709 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
710
711 if ((addr1 | mask) != (addr2 | mask))
712 return false;
713 if (len > queue_max_segment_size(q) - bv->bv_len)
714 return false;
715 return __bio_try_merge_page(bio, page, len, offset, same_page);
716 }
717
718 /**
719 * __bio_add_pc_page - attempt to add page to passthrough bio
720 * @q: the target queue
721 * @bio: destination bio
722 * @page: page to add
723 * @len: vec entry length
724 * @offset: vec entry offset
725 * @same_page: return if the merge happen inside the same page
726 *
727 * Attempt to add a page to the bio_vec maplist. This can fail for a
728 * number of reasons, such as the bio being full or target block device
729 * limitations. The target block device must allow bio's up to PAGE_SIZE,
730 * so it is always possible to add a single page to an empty bio.
731 *
732 * This should only be used by passthrough bios.
733 */
__bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,bool * same_page)734 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
735 struct page *page, unsigned int len, unsigned int offset,
736 bool *same_page)
737 {
738 struct bio_vec *bvec;
739
740 /*
741 * cloned bio must not modify vec list
742 */
743 if (unlikely(bio_flagged(bio, BIO_CLONED)))
744 return 0;
745
746 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
747 return 0;
748
749 if (bio->bi_vcnt > 0) {
750 if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
751 return len;
752
753 /*
754 * If the queue doesn't support SG gaps and adding this segment
755 * would create a gap, disallow it.
756 */
757 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
758 if (bvec_gap_to_prev(q, bvec, offset))
759 return 0;
760 }
761
762 if (bio_full(bio, len))
763 return 0;
764
765 if (bio->bi_vcnt >= queue_max_segments(q))
766 return 0;
767
768 bvec = &bio->bi_io_vec[bio->bi_vcnt];
769 bvec->bv_page = page;
770 bvec->bv_len = len;
771 bvec->bv_offset = offset;
772 bio->bi_vcnt++;
773 bio->bi_iter.bi_size += len;
774 return len;
775 }
776
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)777 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
778 struct page *page, unsigned int len, unsigned int offset)
779 {
780 bool same_page = false;
781 return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
782 }
783 EXPORT_SYMBOL(bio_add_pc_page);
784
785 /**
786 * __bio_try_merge_page - try appending data to an existing bvec.
787 * @bio: destination bio
788 * @page: start page to add
789 * @len: length of the data to add
790 * @off: offset of the data relative to @page
791 * @same_page: return if the segment has been merged inside the same page
792 *
793 * Try to add the data at @page + @off to the last bvec of @bio. This is a
794 * a useful optimisation for file systems with a block size smaller than the
795 * page size.
796 *
797 * Warn if (@len, @off) crosses pages in case that @same_page is true.
798 *
799 * Return %true on success or %false on failure.
800 */
__bio_try_merge_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off,bool * same_page)801 bool __bio_try_merge_page(struct bio *bio, struct page *page,
802 unsigned int len, unsigned int off, bool *same_page)
803 {
804 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
805 return false;
806
807 if (bio->bi_vcnt > 0) {
808 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
809
810 if (page_is_mergeable(bv, page, len, off, same_page)) {
811 if (bio->bi_iter.bi_size > UINT_MAX - len) {
812 *same_page = false;
813 return false;
814 }
815 bv->bv_len += len;
816 bio->bi_iter.bi_size += len;
817 return true;
818 }
819 }
820 return false;
821 }
822 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
823
824 /**
825 * __bio_add_page - add page(s) to a bio in a new segment
826 * @bio: destination bio
827 * @page: start page to add
828 * @len: length of the data to add, may cross pages
829 * @off: offset of the data relative to @page, may cross pages
830 *
831 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
832 * that @bio has space for another bvec.
833 */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)834 void __bio_add_page(struct bio *bio, struct page *page,
835 unsigned int len, unsigned int off)
836 {
837 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
838
839 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
840 WARN_ON_ONCE(bio_full(bio, len));
841
842 bv->bv_page = page;
843 bv->bv_offset = off;
844 bv->bv_len = len;
845
846 bio->bi_iter.bi_size += len;
847 bio->bi_vcnt++;
848
849 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
850 bio_set_flag(bio, BIO_WORKINGSET);
851 }
852 EXPORT_SYMBOL_GPL(__bio_add_page);
853
854 /**
855 * bio_add_page - attempt to add page(s) to bio
856 * @bio: destination bio
857 * @page: start page to add
858 * @len: vec entry length, may cross pages
859 * @offset: vec entry offset relative to @page, may cross pages
860 *
861 * Attempt to add page(s) to the bio_vec maplist. This will only fail
862 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
863 */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)864 int bio_add_page(struct bio *bio, struct page *page,
865 unsigned int len, unsigned int offset)
866 {
867 bool same_page = false;
868
869 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
870 if (bio_full(bio, len))
871 return 0;
872 __bio_add_page(bio, page, len, offset);
873 }
874 return len;
875 }
876 EXPORT_SYMBOL(bio_add_page);
877
bio_release_pages(struct bio * bio,bool mark_dirty)878 void bio_release_pages(struct bio *bio, bool mark_dirty)
879 {
880 struct bvec_iter_all iter_all;
881 struct bio_vec *bvec;
882
883 if (bio_flagged(bio, BIO_NO_PAGE_REF))
884 return;
885
886 bio_for_each_segment_all(bvec, bio, iter_all) {
887 if (mark_dirty)
888 set_page_dirty_lock(bvec->bv_page);
889 put_page(bvec->bv_page);
890 }
891 }
892
__bio_iov_bvec_add_pages(struct bio * bio,struct iov_iter * iter)893 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
894 {
895 const struct bio_vec *bv = iter->bvec;
896 unsigned int len;
897 size_t size;
898
899 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
900 return -EINVAL;
901
902 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
903 size = bio_add_page(bio, bv->bv_page, len,
904 bv->bv_offset + iter->iov_offset);
905 if (unlikely(size != len))
906 return -EINVAL;
907 iov_iter_advance(iter, size);
908 return 0;
909 }
910
911 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
912
913 /**
914 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
915 * @bio: bio to add pages to
916 * @iter: iov iterator describing the region to be mapped
917 *
918 * Pins pages from *iter and appends them to @bio's bvec array. The
919 * pages will have to be released using put_page() when done.
920 * For multi-segment *iter, this function only adds pages from the
921 * the next non-empty segment of the iov iterator.
922 */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)923 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
924 {
925 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
926 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
927 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
928 struct page **pages = (struct page **)bv;
929 bool same_page = false;
930 ssize_t size, left;
931 unsigned len, i;
932 size_t offset;
933
934 /*
935 * Move page array up in the allocated memory for the bio vecs as far as
936 * possible so that we can start filling biovecs from the beginning
937 * without overwriting the temporary page array.
938 */
939 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
940 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
941
942 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
943 if (unlikely(size <= 0))
944 return size ? size : -EFAULT;
945
946 for (left = size, i = 0; left > 0; left -= len, i++) {
947 struct page *page = pages[i];
948
949 len = min_t(size_t, PAGE_SIZE - offset, left);
950
951 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
952 if (same_page)
953 put_page(page);
954 } else {
955 if (WARN_ON_ONCE(bio_full(bio, len)))
956 return -EINVAL;
957 __bio_add_page(bio, page, len, offset);
958 }
959 offset = 0;
960 }
961
962 iov_iter_advance(iter, size);
963 return 0;
964 }
965
966 /**
967 * bio_iov_iter_get_pages - add user or kernel pages to a bio
968 * @bio: bio to add pages to
969 * @iter: iov iterator describing the region to be added
970 *
971 * This takes either an iterator pointing to user memory, or one pointing to
972 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
973 * map them into the kernel. On IO completion, the caller should put those
974 * pages. If we're adding kernel pages, and the caller told us it's safe to
975 * do so, we just have to add the pages to the bio directly. We don't grab an
976 * extra reference to those pages (the user should already have that), and we
977 * don't put the page on IO completion. The caller needs to check if the bio is
978 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
979 * released.
980 *
981 * The function tries, but does not guarantee, to pin as many pages as
982 * fit into the bio, or are requested in *iter, whatever is smaller. If
983 * MM encounters an error pinning the requested pages, it stops. Error
984 * is returned only if 0 pages could be pinned.
985 */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)986 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
987 {
988 const bool is_bvec = iov_iter_is_bvec(iter);
989 int ret;
990
991 if (WARN_ON_ONCE(bio->bi_vcnt))
992 return -EINVAL;
993
994 do {
995 if (is_bvec)
996 ret = __bio_iov_bvec_add_pages(bio, iter);
997 else
998 ret = __bio_iov_iter_get_pages(bio, iter);
999 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1000
1001 if (is_bvec)
1002 bio_set_flag(bio, BIO_NO_PAGE_REF);
1003 return bio->bi_vcnt ? 0 : ret;
1004 }
1005
submit_bio_wait_endio(struct bio * bio)1006 static void submit_bio_wait_endio(struct bio *bio)
1007 {
1008 complete(bio->bi_private);
1009 }
1010
1011 /**
1012 * submit_bio_wait - submit a bio, and wait until it completes
1013 * @bio: The &struct bio which describes the I/O
1014 *
1015 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1016 * bio_endio() on failure.
1017 *
1018 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1019 * result in bio reference to be consumed. The caller must drop the reference
1020 * on his own.
1021 */
submit_bio_wait(struct bio * bio)1022 int submit_bio_wait(struct bio *bio)
1023 {
1024 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1025
1026 bio->bi_private = &done;
1027 bio->bi_end_io = submit_bio_wait_endio;
1028 bio->bi_opf |= REQ_SYNC;
1029 submit_bio(bio);
1030 wait_for_completion_io(&done);
1031
1032 return blk_status_to_errno(bio->bi_status);
1033 }
1034 EXPORT_SYMBOL(submit_bio_wait);
1035
1036 /**
1037 * bio_advance - increment/complete a bio by some number of bytes
1038 * @bio: bio to advance
1039 * @bytes: number of bytes to complete
1040 *
1041 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1042 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1043 * be updated on the last bvec as well.
1044 *
1045 * @bio will then represent the remaining, uncompleted portion of the io.
1046 */
bio_advance(struct bio * bio,unsigned bytes)1047 void bio_advance(struct bio *bio, unsigned bytes)
1048 {
1049 if (bio_integrity(bio))
1050 bio_integrity_advance(bio, bytes);
1051
1052 bio_crypt_advance(bio, bytes);
1053 bio_advance_iter(bio, &bio->bi_iter, bytes);
1054 }
1055 EXPORT_SYMBOL(bio_advance);
1056
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1057 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1058 struct bio *src, struct bvec_iter *src_iter)
1059 {
1060 struct bio_vec src_bv, dst_bv;
1061 void *src_p, *dst_p;
1062 unsigned bytes;
1063
1064 while (src_iter->bi_size && dst_iter->bi_size) {
1065 src_bv = bio_iter_iovec(src, *src_iter);
1066 dst_bv = bio_iter_iovec(dst, *dst_iter);
1067
1068 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1069
1070 src_p = kmap_atomic(src_bv.bv_page);
1071 dst_p = kmap_atomic(dst_bv.bv_page);
1072
1073 memcpy(dst_p + dst_bv.bv_offset,
1074 src_p + src_bv.bv_offset,
1075 bytes);
1076
1077 kunmap_atomic(dst_p);
1078 kunmap_atomic(src_p);
1079
1080 flush_dcache_page(dst_bv.bv_page);
1081
1082 bio_advance_iter(src, src_iter, bytes);
1083 bio_advance_iter(dst, dst_iter, bytes);
1084 }
1085 }
1086 EXPORT_SYMBOL(bio_copy_data_iter);
1087
1088 /**
1089 * bio_copy_data - copy contents of data buffers from one bio to another
1090 * @src: source bio
1091 * @dst: destination bio
1092 *
1093 * Stops when it reaches the end of either @src or @dst - that is, copies
1094 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1095 */
bio_copy_data(struct bio * dst,struct bio * src)1096 void bio_copy_data(struct bio *dst, struct bio *src)
1097 {
1098 struct bvec_iter src_iter = src->bi_iter;
1099 struct bvec_iter dst_iter = dst->bi_iter;
1100
1101 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1102 }
1103 EXPORT_SYMBOL(bio_copy_data);
1104
1105 /**
1106 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1107 * another
1108 * @src: source bio list
1109 * @dst: destination bio list
1110 *
1111 * Stops when it reaches the end of either the @src list or @dst list - that is,
1112 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1113 * bios).
1114 */
bio_list_copy_data(struct bio * dst,struct bio * src)1115 void bio_list_copy_data(struct bio *dst, struct bio *src)
1116 {
1117 struct bvec_iter src_iter = src->bi_iter;
1118 struct bvec_iter dst_iter = dst->bi_iter;
1119
1120 while (1) {
1121 if (!src_iter.bi_size) {
1122 src = src->bi_next;
1123 if (!src)
1124 break;
1125
1126 src_iter = src->bi_iter;
1127 }
1128
1129 if (!dst_iter.bi_size) {
1130 dst = dst->bi_next;
1131 if (!dst)
1132 break;
1133
1134 dst_iter = dst->bi_iter;
1135 }
1136
1137 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1138 }
1139 }
1140 EXPORT_SYMBOL(bio_list_copy_data);
1141
1142 struct bio_map_data {
1143 int is_our_pages;
1144 struct iov_iter iter;
1145 struct iovec iov[];
1146 };
1147
bio_alloc_map_data(struct iov_iter * data,gfp_t gfp_mask)1148 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1149 gfp_t gfp_mask)
1150 {
1151 struct bio_map_data *bmd;
1152 if (data->nr_segs > UIO_MAXIOV)
1153 return NULL;
1154
1155 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1156 if (!bmd)
1157 return NULL;
1158 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1159 bmd->iter = *data;
1160 bmd->iter.iov = bmd->iov;
1161 return bmd;
1162 }
1163
1164 /**
1165 * bio_copy_from_iter - copy all pages from iov_iter to bio
1166 * @bio: The &struct bio which describes the I/O as destination
1167 * @iter: iov_iter as source
1168 *
1169 * Copy all pages from iov_iter to bio.
1170 * Returns 0 on success, or error on failure.
1171 */
bio_copy_from_iter(struct bio * bio,struct iov_iter * iter)1172 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1173 {
1174 struct bio_vec *bvec;
1175 struct bvec_iter_all iter_all;
1176
1177 bio_for_each_segment_all(bvec, bio, iter_all) {
1178 ssize_t ret;
1179
1180 ret = copy_page_from_iter(bvec->bv_page,
1181 bvec->bv_offset,
1182 bvec->bv_len,
1183 iter);
1184
1185 if (!iov_iter_count(iter))
1186 break;
1187
1188 if (ret < bvec->bv_len)
1189 return -EFAULT;
1190 }
1191
1192 return 0;
1193 }
1194
1195 /**
1196 * bio_copy_to_iter - copy all pages from bio to iov_iter
1197 * @bio: The &struct bio which describes the I/O as source
1198 * @iter: iov_iter as destination
1199 *
1200 * Copy all pages from bio to iov_iter.
1201 * Returns 0 on success, or error on failure.
1202 */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)1203 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1204 {
1205 struct bio_vec *bvec;
1206 struct bvec_iter_all iter_all;
1207
1208 bio_for_each_segment_all(bvec, bio, iter_all) {
1209 ssize_t ret;
1210
1211 ret = copy_page_to_iter(bvec->bv_page,
1212 bvec->bv_offset,
1213 bvec->bv_len,
1214 &iter);
1215
1216 if (!iov_iter_count(&iter))
1217 break;
1218
1219 if (ret < bvec->bv_len)
1220 return -EFAULT;
1221 }
1222
1223 return 0;
1224 }
1225
bio_free_pages(struct bio * bio)1226 void bio_free_pages(struct bio *bio)
1227 {
1228 struct bio_vec *bvec;
1229 struct bvec_iter_all iter_all;
1230
1231 bio_for_each_segment_all(bvec, bio, iter_all)
1232 __free_page(bvec->bv_page);
1233 }
1234 EXPORT_SYMBOL(bio_free_pages);
1235
1236 /**
1237 * bio_uncopy_user - finish previously mapped bio
1238 * @bio: bio being terminated
1239 *
1240 * Free pages allocated from bio_copy_user_iov() and write back data
1241 * to user space in case of a read.
1242 */
bio_uncopy_user(struct bio * bio)1243 int bio_uncopy_user(struct bio *bio)
1244 {
1245 struct bio_map_data *bmd = bio->bi_private;
1246 int ret = 0;
1247
1248 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1249 /*
1250 * if we're in a workqueue, the request is orphaned, so
1251 * don't copy into a random user address space, just free
1252 * and return -EINTR so user space doesn't expect any data.
1253 */
1254 if (!current->mm)
1255 ret = -EINTR;
1256 else if (bio_data_dir(bio) == READ)
1257 ret = bio_copy_to_iter(bio, bmd->iter);
1258 if (bmd->is_our_pages)
1259 bio_free_pages(bio);
1260 }
1261 kfree(bmd);
1262 bio_put(bio);
1263 return ret;
1264 }
1265
1266 /**
1267 * bio_copy_user_iov - copy user data to bio
1268 * @q: destination block queue
1269 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1270 * @iter: iovec iterator
1271 * @gfp_mask: memory allocation flags
1272 *
1273 * Prepares and returns a bio for indirect user io, bouncing data
1274 * to/from kernel pages as necessary. Must be paired with
1275 * call bio_uncopy_user() on io completion.
1276 */
bio_copy_user_iov(struct request_queue * q,struct rq_map_data * map_data,struct iov_iter * iter,gfp_t gfp_mask)1277 struct bio *bio_copy_user_iov(struct request_queue *q,
1278 struct rq_map_data *map_data,
1279 struct iov_iter *iter,
1280 gfp_t gfp_mask)
1281 {
1282 struct bio_map_data *bmd;
1283 struct page *page;
1284 struct bio *bio;
1285 int i = 0, ret;
1286 int nr_pages;
1287 unsigned int len = iter->count;
1288 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1289
1290 bmd = bio_alloc_map_data(iter, gfp_mask);
1291 if (!bmd)
1292 return ERR_PTR(-ENOMEM);
1293
1294 /*
1295 * We need to do a deep copy of the iov_iter including the iovecs.
1296 * The caller provided iov might point to an on-stack or otherwise
1297 * shortlived one.
1298 */
1299 bmd->is_our_pages = map_data ? 0 : 1;
1300
1301 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1302 if (nr_pages > BIO_MAX_PAGES)
1303 nr_pages = BIO_MAX_PAGES;
1304
1305 ret = -ENOMEM;
1306 bio = bio_kmalloc(gfp_mask, nr_pages);
1307 if (!bio)
1308 goto out_bmd;
1309
1310 ret = 0;
1311
1312 if (map_data) {
1313 nr_pages = 1 << map_data->page_order;
1314 i = map_data->offset / PAGE_SIZE;
1315 }
1316 while (len) {
1317 unsigned int bytes = PAGE_SIZE;
1318
1319 bytes -= offset;
1320
1321 if (bytes > len)
1322 bytes = len;
1323
1324 if (map_data) {
1325 if (i == map_data->nr_entries * nr_pages) {
1326 ret = -ENOMEM;
1327 break;
1328 }
1329
1330 page = map_data->pages[i / nr_pages];
1331 page += (i % nr_pages);
1332
1333 i++;
1334 } else {
1335 page = alloc_page(q->bounce_gfp | gfp_mask);
1336 if (!page) {
1337 ret = -ENOMEM;
1338 break;
1339 }
1340 }
1341
1342 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1343 if (!map_data)
1344 __free_page(page);
1345 break;
1346 }
1347
1348 len -= bytes;
1349 offset = 0;
1350 }
1351
1352 if (ret)
1353 goto cleanup;
1354
1355 if (map_data)
1356 map_data->offset += bio->bi_iter.bi_size;
1357
1358 /*
1359 * success
1360 */
1361 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1362 (map_data && map_data->from_user)) {
1363 ret = bio_copy_from_iter(bio, iter);
1364 if (ret)
1365 goto cleanup;
1366 } else {
1367 if (bmd->is_our_pages)
1368 zero_fill_bio(bio);
1369 iov_iter_advance(iter, bio->bi_iter.bi_size);
1370 }
1371
1372 bio->bi_private = bmd;
1373 if (map_data && map_data->null_mapped)
1374 bio_set_flag(bio, BIO_NULL_MAPPED);
1375 return bio;
1376 cleanup:
1377 if (!map_data)
1378 bio_free_pages(bio);
1379 bio_put(bio);
1380 out_bmd:
1381 kfree(bmd);
1382 return ERR_PTR(ret);
1383 }
1384
1385 /**
1386 * bio_map_user_iov - map user iovec into bio
1387 * @q: the struct request_queue for the bio
1388 * @iter: iovec iterator
1389 * @gfp_mask: memory allocation flags
1390 *
1391 * Map the user space address into a bio suitable for io to a block
1392 * device. Returns an error pointer in case of error.
1393 */
bio_map_user_iov(struct request_queue * q,struct iov_iter * iter,gfp_t gfp_mask)1394 struct bio *bio_map_user_iov(struct request_queue *q,
1395 struct iov_iter *iter,
1396 gfp_t gfp_mask)
1397 {
1398 int j;
1399 struct bio *bio;
1400 int ret;
1401
1402 if (!iov_iter_count(iter))
1403 return ERR_PTR(-EINVAL);
1404
1405 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1406 if (!bio)
1407 return ERR_PTR(-ENOMEM);
1408
1409 while (iov_iter_count(iter)) {
1410 struct page **pages;
1411 ssize_t bytes;
1412 size_t offs, added = 0;
1413 int npages;
1414
1415 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1416 if (unlikely(bytes <= 0)) {
1417 ret = bytes ? bytes : -EFAULT;
1418 goto out_unmap;
1419 }
1420
1421 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1422
1423 if (unlikely(offs & queue_dma_alignment(q))) {
1424 ret = -EINVAL;
1425 j = 0;
1426 } else {
1427 for (j = 0; j < npages; j++) {
1428 struct page *page = pages[j];
1429 unsigned int n = PAGE_SIZE - offs;
1430 bool same_page = false;
1431
1432 if (n > bytes)
1433 n = bytes;
1434
1435 if (!__bio_add_pc_page(q, bio, page, n, offs,
1436 &same_page)) {
1437 if (same_page)
1438 put_page(page);
1439 break;
1440 }
1441
1442 added += n;
1443 bytes -= n;
1444 offs = 0;
1445 }
1446 iov_iter_advance(iter, added);
1447 }
1448 /*
1449 * release the pages we didn't map into the bio, if any
1450 */
1451 while (j < npages)
1452 put_page(pages[j++]);
1453 kvfree(pages);
1454 /* couldn't stuff something into bio? */
1455 if (bytes)
1456 break;
1457 }
1458
1459 bio_set_flag(bio, BIO_USER_MAPPED);
1460
1461 /*
1462 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1463 * it would normally disappear when its bi_end_io is run.
1464 * however, we need it for the unmap, so grab an extra
1465 * reference to it
1466 */
1467 bio_get(bio);
1468 return bio;
1469
1470 out_unmap:
1471 bio_release_pages(bio, false);
1472 bio_put(bio);
1473 return ERR_PTR(ret);
1474 }
1475
1476 /**
1477 * bio_unmap_user - unmap a bio
1478 * @bio: the bio being unmapped
1479 *
1480 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1481 * process context.
1482 *
1483 * bio_unmap_user() may sleep.
1484 */
bio_unmap_user(struct bio * bio)1485 void bio_unmap_user(struct bio *bio)
1486 {
1487 bio_release_pages(bio, bio_data_dir(bio) == READ);
1488 bio_put(bio);
1489 bio_put(bio);
1490 }
1491
bio_invalidate_vmalloc_pages(struct bio * bio)1492 static void bio_invalidate_vmalloc_pages(struct bio *bio)
1493 {
1494 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1495 if (bio->bi_private && !op_is_write(bio_op(bio))) {
1496 unsigned long i, len = 0;
1497
1498 for (i = 0; i < bio->bi_vcnt; i++)
1499 len += bio->bi_io_vec[i].bv_len;
1500 invalidate_kernel_vmap_range(bio->bi_private, len);
1501 }
1502 #endif
1503 }
1504
bio_map_kern_endio(struct bio * bio)1505 static void bio_map_kern_endio(struct bio *bio)
1506 {
1507 bio_invalidate_vmalloc_pages(bio);
1508 bio_put(bio);
1509 }
1510
1511 /**
1512 * bio_map_kern - map kernel address into bio
1513 * @q: the struct request_queue for the bio
1514 * @data: pointer to buffer to map
1515 * @len: length in bytes
1516 * @gfp_mask: allocation flags for bio allocation
1517 *
1518 * Map the kernel address into a bio suitable for io to a block
1519 * device. Returns an error pointer in case of error.
1520 */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1521 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1522 gfp_t gfp_mask)
1523 {
1524 unsigned long kaddr = (unsigned long)data;
1525 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1526 unsigned long start = kaddr >> PAGE_SHIFT;
1527 const int nr_pages = end - start;
1528 bool is_vmalloc = is_vmalloc_addr(data);
1529 struct page *page;
1530 int offset, i;
1531 struct bio *bio;
1532
1533 bio = bio_kmalloc(gfp_mask, nr_pages);
1534 if (!bio)
1535 return ERR_PTR(-ENOMEM);
1536
1537 if (is_vmalloc) {
1538 flush_kernel_vmap_range(data, len);
1539 bio->bi_private = data;
1540 }
1541
1542 offset = offset_in_page(kaddr);
1543 for (i = 0; i < nr_pages; i++) {
1544 unsigned int bytes = PAGE_SIZE - offset;
1545
1546 if (len <= 0)
1547 break;
1548
1549 if (bytes > len)
1550 bytes = len;
1551
1552 if (!is_vmalloc)
1553 page = virt_to_page(data);
1554 else
1555 page = vmalloc_to_page(data);
1556 if (bio_add_pc_page(q, bio, page, bytes,
1557 offset) < bytes) {
1558 /* we don't support partial mappings */
1559 bio_put(bio);
1560 return ERR_PTR(-EINVAL);
1561 }
1562
1563 data += bytes;
1564 len -= bytes;
1565 offset = 0;
1566 }
1567
1568 bio->bi_end_io = bio_map_kern_endio;
1569 return bio;
1570 }
1571
bio_copy_kern_endio(struct bio * bio)1572 static void bio_copy_kern_endio(struct bio *bio)
1573 {
1574 bio_free_pages(bio);
1575 bio_put(bio);
1576 }
1577
bio_copy_kern_endio_read(struct bio * bio)1578 static void bio_copy_kern_endio_read(struct bio *bio)
1579 {
1580 char *p = bio->bi_private;
1581 struct bio_vec *bvec;
1582 struct bvec_iter_all iter_all;
1583
1584 bio_for_each_segment_all(bvec, bio, iter_all) {
1585 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1586 p += bvec->bv_len;
1587 }
1588
1589 bio_copy_kern_endio(bio);
1590 }
1591
1592 /**
1593 * bio_copy_kern - copy kernel address into bio
1594 * @q: the struct request_queue for the bio
1595 * @data: pointer to buffer to copy
1596 * @len: length in bytes
1597 * @gfp_mask: allocation flags for bio and page allocation
1598 * @reading: data direction is READ
1599 *
1600 * copy the kernel address into a bio suitable for io to a block
1601 * device. Returns an error pointer in case of error.
1602 */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)1603 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1604 gfp_t gfp_mask, int reading)
1605 {
1606 unsigned long kaddr = (unsigned long)data;
1607 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1608 unsigned long start = kaddr >> PAGE_SHIFT;
1609 struct bio *bio;
1610 void *p = data;
1611 int nr_pages = 0;
1612
1613 /*
1614 * Overflow, abort
1615 */
1616 if (end < start)
1617 return ERR_PTR(-EINVAL);
1618
1619 nr_pages = end - start;
1620 bio = bio_kmalloc(gfp_mask, nr_pages);
1621 if (!bio)
1622 return ERR_PTR(-ENOMEM);
1623
1624 while (len) {
1625 struct page *page;
1626 unsigned int bytes = PAGE_SIZE;
1627
1628 if (bytes > len)
1629 bytes = len;
1630
1631 page = alloc_page(q->bounce_gfp | __GFP_ZERO | gfp_mask);
1632 if (!page)
1633 goto cleanup;
1634
1635 if (!reading)
1636 memcpy(page_address(page), p, bytes);
1637
1638 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1639 break;
1640
1641 len -= bytes;
1642 p += bytes;
1643 }
1644
1645 if (reading) {
1646 bio->bi_end_io = bio_copy_kern_endio_read;
1647 bio->bi_private = data;
1648 } else {
1649 bio->bi_end_io = bio_copy_kern_endio;
1650 }
1651
1652 return bio;
1653
1654 cleanup:
1655 bio_free_pages(bio);
1656 bio_put(bio);
1657 return ERR_PTR(-ENOMEM);
1658 }
1659
1660 /*
1661 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1662 * for performing direct-IO in BIOs.
1663 *
1664 * The problem is that we cannot run set_page_dirty() from interrupt context
1665 * because the required locks are not interrupt-safe. So what we can do is to
1666 * mark the pages dirty _before_ performing IO. And in interrupt context,
1667 * check that the pages are still dirty. If so, fine. If not, redirty them
1668 * in process context.
1669 *
1670 * We special-case compound pages here: normally this means reads into hugetlb
1671 * pages. The logic in here doesn't really work right for compound pages
1672 * because the VM does not uniformly chase down the head page in all cases.
1673 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1674 * handle them at all. So we skip compound pages here at an early stage.
1675 *
1676 * Note that this code is very hard to test under normal circumstances because
1677 * direct-io pins the pages with get_user_pages(). This makes
1678 * is_page_cache_freeable return false, and the VM will not clean the pages.
1679 * But other code (eg, flusher threads) could clean the pages if they are mapped
1680 * pagecache.
1681 *
1682 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1683 * deferred bio dirtying paths.
1684 */
1685
1686 /*
1687 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1688 */
bio_set_pages_dirty(struct bio * bio)1689 void bio_set_pages_dirty(struct bio *bio)
1690 {
1691 struct bio_vec *bvec;
1692 struct bvec_iter_all iter_all;
1693
1694 bio_for_each_segment_all(bvec, bio, iter_all) {
1695 set_page_dirty_lock(bvec->bv_page);
1696 }
1697 }
1698
1699 /*
1700 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1701 * If they are, then fine. If, however, some pages are clean then they must
1702 * have been written out during the direct-IO read. So we take another ref on
1703 * the BIO and re-dirty the pages in process context.
1704 *
1705 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1706 * here on. It will run one put_page() against each page and will run one
1707 * bio_put() against the BIO.
1708 */
1709
1710 static void bio_dirty_fn(struct work_struct *work);
1711
1712 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1713 static DEFINE_SPINLOCK(bio_dirty_lock);
1714 static struct bio *bio_dirty_list;
1715
1716 /*
1717 * This runs in process context
1718 */
bio_dirty_fn(struct work_struct * work)1719 static void bio_dirty_fn(struct work_struct *work)
1720 {
1721 struct bio *bio, *next;
1722
1723 spin_lock_irq(&bio_dirty_lock);
1724 next = bio_dirty_list;
1725 bio_dirty_list = NULL;
1726 spin_unlock_irq(&bio_dirty_lock);
1727
1728 while ((bio = next) != NULL) {
1729 next = bio->bi_private;
1730
1731 bio_release_pages(bio, true);
1732 bio_put(bio);
1733 }
1734 }
1735
bio_check_pages_dirty(struct bio * bio)1736 void bio_check_pages_dirty(struct bio *bio)
1737 {
1738 struct bio_vec *bvec;
1739 unsigned long flags;
1740 struct bvec_iter_all iter_all;
1741
1742 bio_for_each_segment_all(bvec, bio, iter_all) {
1743 if (!PageDirty(bvec->bv_page))
1744 goto defer;
1745 }
1746
1747 bio_release_pages(bio, false);
1748 bio_put(bio);
1749 return;
1750 defer:
1751 spin_lock_irqsave(&bio_dirty_lock, flags);
1752 bio->bi_private = bio_dirty_list;
1753 bio_dirty_list = bio;
1754 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1755 schedule_work(&bio_dirty_work);
1756 }
1757
update_io_ticks(struct hd_struct * part,unsigned long now,bool end)1758 void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1759 {
1760 unsigned long stamp;
1761 again:
1762 stamp = READ_ONCE(part->stamp);
1763 if (unlikely(stamp != now)) {
1764 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1765 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1766 }
1767 }
1768 if (part->partno) {
1769 part = &part_to_disk(part)->part0;
1770 goto again;
1771 }
1772 }
1773
generic_start_io_acct(struct request_queue * q,int op,unsigned long sectors,struct hd_struct * part)1774 void generic_start_io_acct(struct request_queue *q, int op,
1775 unsigned long sectors, struct hd_struct *part)
1776 {
1777 const int sgrp = op_stat_group(op);
1778
1779 part_stat_lock();
1780
1781 update_io_ticks(part, jiffies, false);
1782 part_stat_inc(part, ios[sgrp]);
1783 part_stat_add(part, sectors[sgrp], sectors);
1784 part_inc_in_flight(q, part, op_is_write(op));
1785
1786 part_stat_unlock();
1787 }
1788 EXPORT_SYMBOL(generic_start_io_acct);
1789
generic_end_io_acct(struct request_queue * q,int req_op,struct hd_struct * part,unsigned long start_time)1790 void generic_end_io_acct(struct request_queue *q, int req_op,
1791 struct hd_struct *part, unsigned long start_time)
1792 {
1793 unsigned long now = jiffies;
1794 unsigned long duration = now - start_time;
1795 const int sgrp = op_stat_group(req_op);
1796
1797 part_stat_lock();
1798
1799 update_io_ticks(part, now, true);
1800 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1801 part_stat_add(part, time_in_queue, duration);
1802 part_dec_in_flight(q, part, op_is_write(req_op));
1803
1804 part_stat_unlock();
1805 }
1806 EXPORT_SYMBOL(generic_end_io_acct);
1807
bio_remaining_done(struct bio * bio)1808 static inline bool bio_remaining_done(struct bio *bio)
1809 {
1810 /*
1811 * If we're not chaining, then ->__bi_remaining is always 1 and
1812 * we always end io on the first invocation.
1813 */
1814 if (!bio_flagged(bio, BIO_CHAIN))
1815 return true;
1816
1817 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1818
1819 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1820 bio_clear_flag(bio, BIO_CHAIN);
1821 return true;
1822 }
1823
1824 return false;
1825 }
1826
1827 /**
1828 * bio_endio - end I/O on a bio
1829 * @bio: bio
1830 *
1831 * Description:
1832 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1833 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1834 * bio unless they own it and thus know that it has an end_io function.
1835 *
1836 * bio_endio() can be called several times on a bio that has been chained
1837 * using bio_chain(). The ->bi_end_io() function will only be called the
1838 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1839 * generated if BIO_TRACE_COMPLETION is set.
1840 **/
bio_endio(struct bio * bio)1841 void bio_endio(struct bio *bio)
1842 {
1843 again:
1844 if (!bio_remaining_done(bio))
1845 return;
1846
1847 if (!blk_crypto_endio(bio))
1848 return;
1849
1850 if (!bio_integrity_endio(bio))
1851 return;
1852
1853 if (bio->bi_disk)
1854 rq_qos_done_bio(bio->bi_disk->queue, bio);
1855
1856 /*
1857 * Need to have a real endio function for chained bios, otherwise
1858 * various corner cases will break (like stacking block devices that
1859 * save/restore bi_end_io) - however, we want to avoid unbounded
1860 * recursion and blowing the stack. Tail call optimization would
1861 * handle this, but compiling with frame pointers also disables
1862 * gcc's sibling call optimization.
1863 */
1864 if (bio->bi_end_io == bio_chain_endio) {
1865 bio = __bio_chain_endio(bio);
1866 goto again;
1867 }
1868
1869 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1870 trace_block_bio_complete(bio->bi_disk->queue, bio,
1871 blk_status_to_errno(bio->bi_status));
1872 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1873 }
1874
1875 blk_throtl_bio_endio(bio);
1876 /* release cgroup info */
1877 bio_uninit(bio);
1878 if (bio->bi_end_io)
1879 bio->bi_end_io(bio);
1880 }
1881 EXPORT_SYMBOL(bio_endio);
1882
1883 /**
1884 * bio_split - split a bio
1885 * @bio: bio to split
1886 * @sectors: number of sectors to split from the front of @bio
1887 * @gfp: gfp mask
1888 * @bs: bio set to allocate from
1889 *
1890 * Allocates and returns a new bio which represents @sectors from the start of
1891 * @bio, and updates @bio to represent the remaining sectors.
1892 *
1893 * Unless this is a discard request the newly allocated bio will point
1894 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1895 * neither @bio nor @bs are freed before the split bio.
1896 */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1897 struct bio *bio_split(struct bio *bio, int sectors,
1898 gfp_t gfp, struct bio_set *bs)
1899 {
1900 struct bio *split;
1901
1902 BUG_ON(sectors <= 0);
1903 BUG_ON(sectors >= bio_sectors(bio));
1904
1905 split = bio_clone_fast(bio, gfp, bs);
1906 if (!split)
1907 return NULL;
1908
1909 split->bi_iter.bi_size = sectors << 9;
1910
1911 if (bio_integrity(split))
1912 bio_integrity_trim(split);
1913
1914 bio_advance(bio, split->bi_iter.bi_size);
1915
1916 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1917 bio_set_flag(split, BIO_TRACE_COMPLETION);
1918
1919 return split;
1920 }
1921 EXPORT_SYMBOL(bio_split);
1922
1923 /**
1924 * bio_trim - trim a bio
1925 * @bio: bio to trim
1926 * @offset: number of sectors to trim from the front of @bio
1927 * @size: size we want to trim @bio to, in sectors
1928 */
bio_trim(struct bio * bio,int offset,int size)1929 void bio_trim(struct bio *bio, int offset, int size)
1930 {
1931 /* 'bio' is a cloned bio which we need to trim to match
1932 * the given offset and size.
1933 */
1934
1935 size <<= 9;
1936 if (offset == 0 && size == bio->bi_iter.bi_size)
1937 return;
1938
1939 bio_advance(bio, offset << 9);
1940 bio->bi_iter.bi_size = size;
1941
1942 if (bio_integrity(bio))
1943 bio_integrity_trim(bio);
1944
1945 }
1946 EXPORT_SYMBOL_GPL(bio_trim);
1947
1948 /*
1949 * create memory pools for biovec's in a bio_set.
1950 * use the global biovec slabs created for general use.
1951 */
biovec_init_pool(mempool_t * pool,int pool_entries)1952 int biovec_init_pool(mempool_t *pool, int pool_entries)
1953 {
1954 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1955
1956 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1957 }
1958
1959 /*
1960 * bioset_exit - exit a bioset initialized with bioset_init()
1961 *
1962 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1963 * kzalloc()).
1964 */
bioset_exit(struct bio_set * bs)1965 void bioset_exit(struct bio_set *bs)
1966 {
1967 if (bs->rescue_workqueue)
1968 destroy_workqueue(bs->rescue_workqueue);
1969 bs->rescue_workqueue = NULL;
1970
1971 mempool_exit(&bs->bio_pool);
1972 mempool_exit(&bs->bvec_pool);
1973
1974 bioset_integrity_free(bs);
1975 if (bs->bio_slab)
1976 bio_put_slab(bs);
1977 bs->bio_slab = NULL;
1978 }
1979 EXPORT_SYMBOL(bioset_exit);
1980
1981 /**
1982 * bioset_init - Initialize a bio_set
1983 * @bs: pool to initialize
1984 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1985 * @front_pad: Number of bytes to allocate in front of the returned bio
1986 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1987 * and %BIOSET_NEED_RESCUER
1988 *
1989 * Description:
1990 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1991 * to ask for a number of bytes to be allocated in front of the bio.
1992 * Front pad allocation is useful for embedding the bio inside
1993 * another structure, to avoid allocating extra data to go with the bio.
1994 * Note that the bio must be embedded at the END of that structure always,
1995 * or things will break badly.
1996 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1997 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1998 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1999 * dispatch queued requests when the mempool runs out of space.
2000 *
2001 */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)2002 int bioset_init(struct bio_set *bs,
2003 unsigned int pool_size,
2004 unsigned int front_pad,
2005 int flags)
2006 {
2007 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
2008
2009 bs->front_pad = front_pad;
2010
2011 spin_lock_init(&bs->rescue_lock);
2012 bio_list_init(&bs->rescue_list);
2013 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2014
2015 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2016 if (!bs->bio_slab)
2017 return -ENOMEM;
2018
2019 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2020 goto bad;
2021
2022 if ((flags & BIOSET_NEED_BVECS) &&
2023 biovec_init_pool(&bs->bvec_pool, pool_size))
2024 goto bad;
2025
2026 if (!(flags & BIOSET_NEED_RESCUER))
2027 return 0;
2028
2029 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2030 if (!bs->rescue_workqueue)
2031 goto bad;
2032
2033 return 0;
2034 bad:
2035 bioset_exit(bs);
2036 return -ENOMEM;
2037 }
2038 EXPORT_SYMBOL(bioset_init);
2039
2040 /*
2041 * Initialize and setup a new bio_set, based on the settings from
2042 * another bio_set.
2043 */
bioset_init_from_src(struct bio_set * bs,struct bio_set * src)2044 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2045 {
2046 int flags;
2047
2048 flags = 0;
2049 if (src->bvec_pool.min_nr)
2050 flags |= BIOSET_NEED_BVECS;
2051 if (src->rescue_workqueue)
2052 flags |= BIOSET_NEED_RESCUER;
2053
2054 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2055 }
2056 EXPORT_SYMBOL(bioset_init_from_src);
2057
2058 #ifdef CONFIG_BLK_CGROUP
2059
2060 /**
2061 * bio_disassociate_blkg - puts back the blkg reference if associated
2062 * @bio: target bio
2063 *
2064 * Helper to disassociate the blkg from @bio if a blkg is associated.
2065 */
bio_disassociate_blkg(struct bio * bio)2066 void bio_disassociate_blkg(struct bio *bio)
2067 {
2068 if (bio->bi_blkg) {
2069 blkg_put(bio->bi_blkg);
2070 bio->bi_blkg = NULL;
2071 }
2072 }
2073 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2074
2075 /**
2076 * __bio_associate_blkg - associate a bio with the a blkg
2077 * @bio: target bio
2078 * @blkg: the blkg to associate
2079 *
2080 * This tries to associate @bio with the specified @blkg. Association failure
2081 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2082 * be anything between @blkg and the root_blkg. This situation only happens
2083 * when a cgroup is dying and then the remaining bios will spill to the closest
2084 * alive blkg.
2085 *
2086 * A reference will be taken on the @blkg and will be released when @bio is
2087 * freed.
2088 */
__bio_associate_blkg(struct bio * bio,struct blkcg_gq * blkg)2089 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2090 {
2091 bio_disassociate_blkg(bio);
2092
2093 bio->bi_blkg = blkg_tryget_closest(blkg);
2094 }
2095
2096 /**
2097 * bio_associate_blkg_from_css - associate a bio with a specified css
2098 * @bio: target bio
2099 * @css: target css
2100 *
2101 * Associate @bio with the blkg found by combining the css's blkg and the
2102 * request_queue of the @bio. This falls back to the queue's root_blkg if
2103 * the association fails with the css.
2104 */
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)2105 void bio_associate_blkg_from_css(struct bio *bio,
2106 struct cgroup_subsys_state *css)
2107 {
2108 struct request_queue *q = bio->bi_disk->queue;
2109 struct blkcg_gq *blkg;
2110
2111 rcu_read_lock();
2112
2113 if (!css || !css->parent)
2114 blkg = q->root_blkg;
2115 else
2116 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2117
2118 __bio_associate_blkg(bio, blkg);
2119
2120 rcu_read_unlock();
2121 }
2122 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2123
2124 #ifdef CONFIG_MEMCG
2125 /**
2126 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2127 * @bio: target bio
2128 * @page: the page to lookup the blkcg from
2129 *
2130 * Associate @bio with the blkg from @page's owning memcg and the respective
2131 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2132 * root_blkg.
2133 */
bio_associate_blkg_from_page(struct bio * bio,struct page * page)2134 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2135 {
2136 struct cgroup_subsys_state *css;
2137
2138 if (!page->mem_cgroup)
2139 return;
2140
2141 rcu_read_lock();
2142
2143 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2144 bio_associate_blkg_from_css(bio, css);
2145
2146 rcu_read_unlock();
2147 }
2148 #endif /* CONFIG_MEMCG */
2149
2150 /**
2151 * bio_associate_blkg - associate a bio with a blkg
2152 * @bio: target bio
2153 *
2154 * Associate @bio with the blkg found from the bio's css and request_queue.
2155 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2156 * already associated, the css is reused and association redone as the
2157 * request_queue may have changed.
2158 */
bio_associate_blkg(struct bio * bio)2159 void bio_associate_blkg(struct bio *bio)
2160 {
2161 struct cgroup_subsys_state *css;
2162
2163 rcu_read_lock();
2164
2165 if (bio->bi_blkg)
2166 css = &bio_blkcg(bio)->css;
2167 else
2168 css = blkcg_css();
2169
2170 bio_associate_blkg_from_css(bio, css);
2171
2172 rcu_read_unlock();
2173 }
2174 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2175
2176 /**
2177 * bio_clone_blkg_association - clone blkg association from src to dst bio
2178 * @dst: destination bio
2179 * @src: source bio
2180 */
bio_clone_blkg_association(struct bio * dst,struct bio * src)2181 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2182 {
2183 rcu_read_lock();
2184
2185 if (src->bi_blkg)
2186 bio_associate_blkg_from_css(dst, &bio_blkcg(src)->css);
2187
2188 rcu_read_unlock();
2189 }
2190 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2191 #endif /* CONFIG_BLK_CGROUP */
2192
biovec_init_slabs(void)2193 static void __init biovec_init_slabs(void)
2194 {
2195 int i;
2196
2197 for (i = 0; i < BVEC_POOL_NR; i++) {
2198 int size;
2199 struct biovec_slab *bvs = bvec_slabs + i;
2200
2201 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2202 bvs->slab = NULL;
2203 continue;
2204 }
2205
2206 size = bvs->nr_vecs * sizeof(struct bio_vec);
2207 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2208 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2209 }
2210 }
2211
init_bio(void)2212 static int __init init_bio(void)
2213 {
2214 bio_slab_max = 2;
2215 bio_slab_nr = 0;
2216 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2217 GFP_KERNEL);
2218
2219 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2220
2221 if (!bio_slabs)
2222 panic("bio: can't allocate bios\n");
2223
2224 bio_integrity_init();
2225 biovec_init_slabs();
2226
2227 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2228 panic("bio: can't allocate bios\n");
2229
2230 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2231 panic("bio: can't create integrity pool\n");
2232
2233 return 0;
2234 }
2235 subsys_initcall(init_bio);
2236