• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/blk-crypto.h>
21 
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 
26 /*
27  * Test patch to inline a certain number of bi_io_vec's inside the bio
28  * itself, to shrink a bio data allocation from two mempool calls to one
29  */
30 #define BIO_INLINE_VECS		4
31 
32 /*
33  * if you change this list, also change bvec_alloc or things will
34  * break badly! cannot be bigger than what you can fit into an
35  * unsigned short
36  */
37 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
38 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
39 	BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
40 };
41 #undef BV
42 
43 /*
44  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
45  * IO code that does not need private memory pools.
46  */
47 struct bio_set fs_bio_set;
48 EXPORT_SYMBOL(fs_bio_set);
49 
50 /*
51  * Our slab pool management
52  */
53 struct bio_slab {
54 	struct kmem_cache *slab;
55 	unsigned int slab_ref;
56 	unsigned int slab_size;
57 	char name[8];
58 };
59 static DEFINE_MUTEX(bio_slab_lock);
60 static struct bio_slab *bio_slabs;
61 static unsigned int bio_slab_nr, bio_slab_max;
62 
bio_find_or_create_slab(unsigned int extra_size)63 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
64 {
65 	unsigned int sz = sizeof(struct bio) + extra_size;
66 	struct kmem_cache *slab = NULL;
67 	struct bio_slab *bslab, *new_bio_slabs;
68 	unsigned int new_bio_slab_max;
69 	unsigned int i, entry = -1;
70 
71 	mutex_lock(&bio_slab_lock);
72 
73 	i = 0;
74 	while (i < bio_slab_nr) {
75 		bslab = &bio_slabs[i];
76 
77 		if (!bslab->slab && entry == -1)
78 			entry = i;
79 		else if (bslab->slab_size == sz) {
80 			slab = bslab->slab;
81 			bslab->slab_ref++;
82 			break;
83 		}
84 		i++;
85 	}
86 
87 	if (slab)
88 		goto out_unlock;
89 
90 	if (bio_slab_nr == bio_slab_max && entry == -1) {
91 		new_bio_slab_max = bio_slab_max << 1;
92 		new_bio_slabs = krealloc(bio_slabs,
93 					 new_bio_slab_max * sizeof(struct bio_slab),
94 					 GFP_KERNEL);
95 		if (!new_bio_slabs)
96 			goto out_unlock;
97 		bio_slab_max = new_bio_slab_max;
98 		bio_slabs = new_bio_slabs;
99 	}
100 	if (entry == -1)
101 		entry = bio_slab_nr++;
102 
103 	bslab = &bio_slabs[entry];
104 
105 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
106 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
107 				 SLAB_HWCACHE_ALIGN, NULL);
108 	if (!slab)
109 		goto out_unlock;
110 
111 	bslab->slab = slab;
112 	bslab->slab_ref = 1;
113 	bslab->slab_size = sz;
114 out_unlock:
115 	mutex_unlock(&bio_slab_lock);
116 	return slab;
117 }
118 
bio_put_slab(struct bio_set * bs)119 static void bio_put_slab(struct bio_set *bs)
120 {
121 	struct bio_slab *bslab = NULL;
122 	unsigned int i;
123 
124 	mutex_lock(&bio_slab_lock);
125 
126 	for (i = 0; i < bio_slab_nr; i++) {
127 		if (bs->bio_slab == bio_slabs[i].slab) {
128 			bslab = &bio_slabs[i];
129 			break;
130 		}
131 	}
132 
133 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 		goto out;
135 
136 	WARN_ON(!bslab->slab_ref);
137 
138 	if (--bslab->slab_ref)
139 		goto out;
140 
141 	kmem_cache_destroy(bslab->slab);
142 	bslab->slab = NULL;
143 
144 out:
145 	mutex_unlock(&bio_slab_lock);
146 }
147 
bvec_nr_vecs(unsigned short idx)148 unsigned int bvec_nr_vecs(unsigned short idx)
149 {
150 	return bvec_slabs[--idx].nr_vecs;
151 }
152 
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned int idx)153 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
154 {
155 	if (!idx)
156 		return;
157 	idx--;
158 
159 	BIO_BUG_ON(idx >= BVEC_POOL_NR);
160 
161 	if (idx == BVEC_POOL_MAX) {
162 		mempool_free(bv, pool);
163 	} else {
164 		struct biovec_slab *bvs = bvec_slabs + idx;
165 
166 		kmem_cache_free(bvs->slab, bv);
167 	}
168 }
169 
bvec_alloc(gfp_t gfp_mask,int nr,unsigned long * idx,mempool_t * pool)170 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
171 			   mempool_t *pool)
172 {
173 	struct bio_vec *bvl;
174 
175 	/*
176 	 * see comment near bvec_array define!
177 	 */
178 	switch (nr) {
179 	case 1:
180 		*idx = 0;
181 		break;
182 	case 2 ... 4:
183 		*idx = 1;
184 		break;
185 	case 5 ... 16:
186 		*idx = 2;
187 		break;
188 	case 17 ... 64:
189 		*idx = 3;
190 		break;
191 	case 65 ... 128:
192 		*idx = 4;
193 		break;
194 	case 129 ... BIO_MAX_PAGES:
195 		*idx = 5;
196 		break;
197 	default:
198 		return NULL;
199 	}
200 
201 	/*
202 	 * idx now points to the pool we want to allocate from. only the
203 	 * 1-vec entry pool is mempool backed.
204 	 */
205 	if (*idx == BVEC_POOL_MAX) {
206 fallback:
207 		bvl = mempool_alloc(pool, gfp_mask);
208 	} else {
209 		struct biovec_slab *bvs = bvec_slabs + *idx;
210 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
211 
212 		/*
213 		 * Make this allocation restricted and don't dump info on
214 		 * allocation failures, since we'll fallback to the mempool
215 		 * in case of failure.
216 		 */
217 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
218 
219 		/*
220 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
221 		 * is set, retry with the 1-entry mempool
222 		 */
223 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
225 			*idx = BVEC_POOL_MAX;
226 			goto fallback;
227 		}
228 	}
229 
230 	(*idx)++;
231 	return bvl;
232 }
233 
bio_uninit(struct bio * bio)234 void bio_uninit(struct bio *bio)
235 {
236 	bio_disassociate_blkg(bio);
237 
238 	bio_crypt_free_ctx(bio);
239 
240 	if (bio_integrity(bio))
241 		bio_integrity_free(bio);
242 }
243 EXPORT_SYMBOL(bio_uninit);
244 
bio_free(struct bio * bio)245 static void bio_free(struct bio *bio)
246 {
247 	struct bio_set *bs = bio->bi_pool;
248 	void *p;
249 
250 	bio_uninit(bio);
251 
252 	if (bs) {
253 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
254 
255 		/*
256 		 * If we have front padding, adjust the bio pointer before freeing
257 		 */
258 		p = bio;
259 		p -= bs->front_pad;
260 
261 		mempool_free(p, &bs->bio_pool);
262 	} else {
263 		/* Bio was allocated by bio_kmalloc() */
264 		kfree(bio);
265 	}
266 }
267 
268 /*
269  * Users of this function have their own bio allocation. Subsequently,
270  * they must remember to pair any call to bio_init() with bio_uninit()
271  * when IO has completed, or when the bio is released.
272  */
bio_init(struct bio * bio,struct bio_vec * table,unsigned short max_vecs)273 void bio_init(struct bio *bio, struct bio_vec *table,
274 	      unsigned short max_vecs)
275 {
276 	memset(bio, 0, sizeof(*bio));
277 	atomic_set(&bio->__bi_remaining, 1);
278 	atomic_set(&bio->__bi_cnt, 1);
279 
280 	bio->bi_io_vec = table;
281 	bio->bi_max_vecs = max_vecs;
282 }
283 EXPORT_SYMBOL(bio_init);
284 
285 /**
286  * bio_reset - reinitialize a bio
287  * @bio:	bio to reset
288  *
289  * Description:
290  *   After calling bio_reset(), @bio will be in the same state as a freshly
291  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
292  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
293  *   comment in struct bio.
294  */
bio_reset(struct bio * bio)295 void bio_reset(struct bio *bio)
296 {
297 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
298 
299 	bio_uninit(bio);
300 
301 	memset(bio, 0, BIO_RESET_BYTES);
302 	bio->bi_flags = flags;
303 	atomic_set(&bio->__bi_remaining, 1);
304 }
305 EXPORT_SYMBOL(bio_reset);
306 
__bio_chain_endio(struct bio * bio)307 static struct bio *__bio_chain_endio(struct bio *bio)
308 {
309 	struct bio *parent = bio->bi_private;
310 
311 	if (bio->bi_status && !parent->bi_status)
312 		parent->bi_status = bio->bi_status;
313 	bio_put(bio);
314 	return parent;
315 }
316 
bio_chain_endio(struct bio * bio)317 static void bio_chain_endio(struct bio *bio)
318 {
319 	bio_endio(__bio_chain_endio(bio));
320 }
321 
322 /**
323  * bio_chain - chain bio completions
324  * @bio: the target bio
325  * @parent: the @bio's parent bio
326  *
327  * The caller won't have a bi_end_io called when @bio completes - instead,
328  * @parent's bi_end_io won't be called until both @parent and @bio have
329  * completed; the chained bio will also be freed when it completes.
330  *
331  * The caller must not set bi_private or bi_end_io in @bio.
332  */
bio_chain(struct bio * bio,struct bio * parent)333 void bio_chain(struct bio *bio, struct bio *parent)
334 {
335 	BUG_ON(bio->bi_private || bio->bi_end_io);
336 
337 	bio->bi_private = parent;
338 	bio->bi_end_io	= bio_chain_endio;
339 	bio_inc_remaining(parent);
340 }
341 EXPORT_SYMBOL(bio_chain);
342 
bio_alloc_rescue(struct work_struct * work)343 static void bio_alloc_rescue(struct work_struct *work)
344 {
345 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
346 	struct bio *bio;
347 
348 	while (1) {
349 		spin_lock(&bs->rescue_lock);
350 		bio = bio_list_pop(&bs->rescue_list);
351 		spin_unlock(&bs->rescue_lock);
352 
353 		if (!bio)
354 			break;
355 
356 		generic_make_request(bio);
357 	}
358 }
359 
punt_bios_to_rescuer(struct bio_set * bs)360 static void punt_bios_to_rescuer(struct bio_set *bs)
361 {
362 	struct bio_list punt, nopunt;
363 	struct bio *bio;
364 
365 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
366 		return;
367 	/*
368 	 * In order to guarantee forward progress we must punt only bios that
369 	 * were allocated from this bio_set; otherwise, if there was a bio on
370 	 * there for a stacking driver higher up in the stack, processing it
371 	 * could require allocating bios from this bio_set, and doing that from
372 	 * our own rescuer would be bad.
373 	 *
374 	 * Since bio lists are singly linked, pop them all instead of trying to
375 	 * remove from the middle of the list:
376 	 */
377 
378 	bio_list_init(&punt);
379 	bio_list_init(&nopunt);
380 
381 	while ((bio = bio_list_pop(&current->bio_list[0])))
382 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
383 	current->bio_list[0] = nopunt;
384 
385 	bio_list_init(&nopunt);
386 	while ((bio = bio_list_pop(&current->bio_list[1])))
387 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
388 	current->bio_list[1] = nopunt;
389 
390 	spin_lock(&bs->rescue_lock);
391 	bio_list_merge(&bs->rescue_list, &punt);
392 	spin_unlock(&bs->rescue_lock);
393 
394 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
395 }
396 
397 /**
398  * bio_alloc_bioset - allocate a bio for I/O
399  * @gfp_mask:   the GFP_* mask given to the slab allocator
400  * @nr_iovecs:	number of iovecs to pre-allocate
401  * @bs:		the bio_set to allocate from.
402  *
403  * Description:
404  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
405  *   backed by the @bs's mempool.
406  *
407  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
408  *   always be able to allocate a bio. This is due to the mempool guarantees.
409  *   To make this work, callers must never allocate more than 1 bio at a time
410  *   from this pool. Callers that need to allocate more than 1 bio must always
411  *   submit the previously allocated bio for IO before attempting to allocate
412  *   a new one. Failure to do so can cause deadlocks under memory pressure.
413  *
414  *   Note that when running under generic_make_request() (i.e. any block
415  *   driver), bios are not submitted until after you return - see the code in
416  *   generic_make_request() that converts recursion into iteration, to prevent
417  *   stack overflows.
418  *
419  *   This would normally mean allocating multiple bios under
420  *   generic_make_request() would be susceptible to deadlocks, but we have
421  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
422  *   thread.
423  *
424  *   However, we do not guarantee forward progress for allocations from other
425  *   mempools. Doing multiple allocations from the same mempool under
426  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
427  *   for per bio allocations.
428  *
429  *   RETURNS:
430  *   Pointer to new bio on success, NULL on failure.
431  */
bio_alloc_bioset(gfp_t gfp_mask,unsigned int nr_iovecs,struct bio_set * bs)432 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
433 			     struct bio_set *bs)
434 {
435 	gfp_t saved_gfp = gfp_mask;
436 	unsigned front_pad;
437 	unsigned inline_vecs;
438 	struct bio_vec *bvl = NULL;
439 	struct bio *bio;
440 	void *p;
441 
442 	if (!bs) {
443 		if (nr_iovecs > UIO_MAXIOV)
444 			return NULL;
445 
446 		p = kmalloc(sizeof(struct bio) +
447 			    nr_iovecs * sizeof(struct bio_vec),
448 			    gfp_mask);
449 		front_pad = 0;
450 		inline_vecs = nr_iovecs;
451 	} else {
452 		/* should not use nobvec bioset for nr_iovecs > 0 */
453 		if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
454 				 nr_iovecs > 0))
455 			return NULL;
456 		/*
457 		 * generic_make_request() converts recursion to iteration; this
458 		 * means if we're running beneath it, any bios we allocate and
459 		 * submit will not be submitted (and thus freed) until after we
460 		 * return.
461 		 *
462 		 * This exposes us to a potential deadlock if we allocate
463 		 * multiple bios from the same bio_set() while running
464 		 * underneath generic_make_request(). If we were to allocate
465 		 * multiple bios (say a stacking block driver that was splitting
466 		 * bios), we would deadlock if we exhausted the mempool's
467 		 * reserve.
468 		 *
469 		 * We solve this, and guarantee forward progress, with a rescuer
470 		 * workqueue per bio_set. If we go to allocate and there are
471 		 * bios on current->bio_list, we first try the allocation
472 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
473 		 * bios we would be blocking to the rescuer workqueue before
474 		 * we retry with the original gfp_flags.
475 		 */
476 
477 		if (current->bio_list &&
478 		    (!bio_list_empty(&current->bio_list[0]) ||
479 		     !bio_list_empty(&current->bio_list[1])) &&
480 		    bs->rescue_workqueue)
481 			gfp_mask &= ~__GFP_DIRECT_RECLAIM;
482 
483 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
484 		if (!p && gfp_mask != saved_gfp) {
485 			punt_bios_to_rescuer(bs);
486 			gfp_mask = saved_gfp;
487 			p = mempool_alloc(&bs->bio_pool, gfp_mask);
488 		}
489 
490 		front_pad = bs->front_pad;
491 		inline_vecs = BIO_INLINE_VECS;
492 	}
493 
494 	if (unlikely(!p))
495 		return NULL;
496 
497 	bio = p + front_pad;
498 	bio_init(bio, NULL, 0);
499 
500 	if (nr_iovecs > inline_vecs) {
501 		unsigned long idx = 0;
502 
503 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
504 		if (!bvl && gfp_mask != saved_gfp) {
505 			punt_bios_to_rescuer(bs);
506 			gfp_mask = saved_gfp;
507 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
508 		}
509 
510 		if (unlikely(!bvl))
511 			goto err_free;
512 
513 		bio->bi_flags |= idx << BVEC_POOL_OFFSET;
514 	} else if (nr_iovecs) {
515 		bvl = bio->bi_inline_vecs;
516 	}
517 
518 	bio->bi_pool = bs;
519 	bio->bi_max_vecs = nr_iovecs;
520 	bio->bi_io_vec = bvl;
521 	return bio;
522 
523 err_free:
524 	mempool_free(p, &bs->bio_pool);
525 	return NULL;
526 }
527 EXPORT_SYMBOL(bio_alloc_bioset);
528 
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)529 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
530 {
531 	unsigned long flags;
532 	struct bio_vec bv;
533 	struct bvec_iter iter;
534 
535 	__bio_for_each_segment(bv, bio, iter, start) {
536 		char *data = bvec_kmap_irq(&bv, &flags);
537 		memset(data, 0, bv.bv_len);
538 		flush_dcache_page(bv.bv_page);
539 		bvec_kunmap_irq(data, &flags);
540 	}
541 }
542 EXPORT_SYMBOL(zero_fill_bio_iter);
543 
544 /**
545  * bio_truncate - truncate the bio to small size of @new_size
546  * @bio:	the bio to be truncated
547  * @new_size:	new size for truncating the bio
548  *
549  * Description:
550  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
551  *   REQ_OP_READ, zero the truncated part. This function should only
552  *   be used for handling corner cases, such as bio eod.
553  */
bio_truncate(struct bio * bio,unsigned new_size)554 void bio_truncate(struct bio *bio, unsigned new_size)
555 {
556 	struct bio_vec bv;
557 	struct bvec_iter iter;
558 	unsigned int done = 0;
559 	bool truncated = false;
560 
561 	if (new_size >= bio->bi_iter.bi_size)
562 		return;
563 
564 	if (bio_op(bio) != REQ_OP_READ)
565 		goto exit;
566 
567 	bio_for_each_segment(bv, bio, iter) {
568 		if (done + bv.bv_len > new_size) {
569 			unsigned offset;
570 
571 			if (!truncated)
572 				offset = new_size - done;
573 			else
574 				offset = 0;
575 			zero_user(bv.bv_page, bv.bv_offset + offset,
576 				  bv.bv_len - offset);
577 			truncated = true;
578 		}
579 		done += bv.bv_len;
580 	}
581 
582  exit:
583 	/*
584 	 * Don't touch bvec table here and make it really immutable, since
585 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
586 	 * in its .end_bio() callback.
587 	 *
588 	 * It is enough to truncate bio by updating .bi_size since we can make
589 	 * correct bvec with the updated .bi_size for drivers.
590 	 */
591 	bio->bi_iter.bi_size = new_size;
592 }
593 
594 /**
595  * bio_put - release a reference to a bio
596  * @bio:   bio to release reference to
597  *
598  * Description:
599  *   Put a reference to a &struct bio, either one you have gotten with
600  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
601  **/
bio_put(struct bio * bio)602 void bio_put(struct bio *bio)
603 {
604 	if (!bio_flagged(bio, BIO_REFFED))
605 		bio_free(bio);
606 	else {
607 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
608 
609 		/*
610 		 * last put frees it
611 		 */
612 		if (atomic_dec_and_test(&bio->__bi_cnt))
613 			bio_free(bio);
614 	}
615 }
616 EXPORT_SYMBOL(bio_put);
617 
618 /**
619  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
620  * 	@bio: destination bio
621  * 	@bio_src: bio to clone
622  *
623  *	Clone a &bio. Caller will own the returned bio, but not
624  *	the actual data it points to. Reference count of returned
625  * 	bio will be one.
626  *
627  * 	Caller must ensure that @bio_src is not freed before @bio.
628  */
__bio_clone_fast(struct bio * bio,struct bio * bio_src)629 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
630 {
631 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
632 
633 	/*
634 	 * most users will be overriding ->bi_disk with a new target,
635 	 * so we don't set nor calculate new physical/hw segment counts here
636 	 */
637 	bio->bi_disk = bio_src->bi_disk;
638 	bio->bi_partno = bio_src->bi_partno;
639 	bio_set_flag(bio, BIO_CLONED);
640 	if (bio_flagged(bio_src, BIO_THROTTLED))
641 		bio_set_flag(bio, BIO_THROTTLED);
642 	bio->bi_opf = bio_src->bi_opf;
643 	bio->bi_ioprio = bio_src->bi_ioprio;
644 	bio->bi_write_hint = bio_src->bi_write_hint;
645 	bio->bi_iter = bio_src->bi_iter;
646 	bio->bi_io_vec = bio_src->bi_io_vec;
647 
648 	bio_clone_blkg_association(bio, bio_src);
649 	blkcg_bio_issue_init(bio);
650 }
651 EXPORT_SYMBOL(__bio_clone_fast);
652 
653 /**
654  *	bio_clone_fast - clone a bio that shares the original bio's biovec
655  *	@bio: bio to clone
656  *	@gfp_mask: allocation priority
657  *	@bs: bio_set to allocate from
658  *
659  * 	Like __bio_clone_fast, only also allocates the returned bio
660  */
bio_clone_fast(struct bio * bio,gfp_t gfp_mask,struct bio_set * bs)661 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
662 {
663 	struct bio *b;
664 
665 	b = bio_alloc_bioset(gfp_mask, 0, bs);
666 	if (!b)
667 		return NULL;
668 
669 	__bio_clone_fast(b, bio);
670 
671 	bio_crypt_clone(b, bio, gfp_mask);
672 
673 	if (bio_integrity(bio) &&
674 	    bio_integrity_clone(b, bio, gfp_mask) < 0) {
675 		bio_put(b);
676 		return NULL;
677 	}
678 
679 	return b;
680 }
681 EXPORT_SYMBOL(bio_clone_fast);
682 
page_is_mergeable(const struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off,bool * same_page)683 static inline bool page_is_mergeable(const struct bio_vec *bv,
684 		struct page *page, unsigned int len, unsigned int off,
685 		bool *same_page)
686 {
687 	size_t bv_end = bv->bv_offset + bv->bv_len;
688 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
689 	phys_addr_t page_addr = page_to_phys(page);
690 
691 	if (vec_end_addr + 1 != page_addr + off)
692 		return false;
693 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
694 		return false;
695 
696 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
697 	if (*same_page)
698 		return true;
699 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
700 }
701 
bio_try_merge_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned len,unsigned offset,bool * same_page)702 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
703 		struct page *page, unsigned len, unsigned offset,
704 		bool *same_page)
705 {
706 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
707 	unsigned long mask = queue_segment_boundary(q);
708 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
709 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
710 
711 	if ((addr1 | mask) != (addr2 | mask))
712 		return false;
713 	if (len > queue_max_segment_size(q) - bv->bv_len)
714 		return false;
715 	return __bio_try_merge_page(bio, page, len, offset, same_page);
716 }
717 
718 /**
719  *	__bio_add_pc_page	- attempt to add page to passthrough bio
720  *	@q: the target queue
721  *	@bio: destination bio
722  *	@page: page to add
723  *	@len: vec entry length
724  *	@offset: vec entry offset
725  *	@same_page: return if the merge happen inside the same page
726  *
727  *	Attempt to add a page to the bio_vec maplist. This can fail for a
728  *	number of reasons, such as the bio being full or target block device
729  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
730  *	so it is always possible to add a single page to an empty bio.
731  *
732  *	This should only be used by passthrough bios.
733  */
__bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,bool * same_page)734 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
735 		struct page *page, unsigned int len, unsigned int offset,
736 		bool *same_page)
737 {
738 	struct bio_vec *bvec;
739 
740 	/*
741 	 * cloned bio must not modify vec list
742 	 */
743 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
744 		return 0;
745 
746 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
747 		return 0;
748 
749 	if (bio->bi_vcnt > 0) {
750 		if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
751 			return len;
752 
753 		/*
754 		 * If the queue doesn't support SG gaps and adding this segment
755 		 * would create a gap, disallow it.
756 		 */
757 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
758 		if (bvec_gap_to_prev(q, bvec, offset))
759 			return 0;
760 	}
761 
762 	if (bio_full(bio, len))
763 		return 0;
764 
765 	if (bio->bi_vcnt >= queue_max_segments(q))
766 		return 0;
767 
768 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
769 	bvec->bv_page = page;
770 	bvec->bv_len = len;
771 	bvec->bv_offset = offset;
772 	bio->bi_vcnt++;
773 	bio->bi_iter.bi_size += len;
774 	return len;
775 }
776 
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)777 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
778 		struct page *page, unsigned int len, unsigned int offset)
779 {
780 	bool same_page = false;
781 	return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
782 }
783 EXPORT_SYMBOL(bio_add_pc_page);
784 
785 /**
786  * __bio_try_merge_page - try appending data to an existing bvec.
787  * @bio: destination bio
788  * @page: start page to add
789  * @len: length of the data to add
790  * @off: offset of the data relative to @page
791  * @same_page: return if the segment has been merged inside the same page
792  *
793  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
794  * a useful optimisation for file systems with a block size smaller than the
795  * page size.
796  *
797  * Warn if (@len, @off) crosses pages in case that @same_page is true.
798  *
799  * Return %true on success or %false on failure.
800  */
__bio_try_merge_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off,bool * same_page)801 bool __bio_try_merge_page(struct bio *bio, struct page *page,
802 		unsigned int len, unsigned int off, bool *same_page)
803 {
804 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
805 		return false;
806 
807 	if (bio->bi_vcnt > 0) {
808 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
809 
810 		if (page_is_mergeable(bv, page, len, off, same_page)) {
811 			if (bio->bi_iter.bi_size > UINT_MAX - len) {
812 				*same_page = false;
813 				return false;
814 			}
815 			bv->bv_len += len;
816 			bio->bi_iter.bi_size += len;
817 			return true;
818 		}
819 	}
820 	return false;
821 }
822 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
823 
824 /**
825  * __bio_add_page - add page(s) to a bio in a new segment
826  * @bio: destination bio
827  * @page: start page to add
828  * @len: length of the data to add, may cross pages
829  * @off: offset of the data relative to @page, may cross pages
830  *
831  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
832  * that @bio has space for another bvec.
833  */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)834 void __bio_add_page(struct bio *bio, struct page *page,
835 		unsigned int len, unsigned int off)
836 {
837 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
838 
839 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
840 	WARN_ON_ONCE(bio_full(bio, len));
841 
842 	bv->bv_page = page;
843 	bv->bv_offset = off;
844 	bv->bv_len = len;
845 
846 	bio->bi_iter.bi_size += len;
847 	bio->bi_vcnt++;
848 
849 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
850 		bio_set_flag(bio, BIO_WORKINGSET);
851 }
852 EXPORT_SYMBOL_GPL(__bio_add_page);
853 
854 /**
855  *	bio_add_page	-	attempt to add page(s) to bio
856  *	@bio: destination bio
857  *	@page: start page to add
858  *	@len: vec entry length, may cross pages
859  *	@offset: vec entry offset relative to @page, may cross pages
860  *
861  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
862  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
863  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)864 int bio_add_page(struct bio *bio, struct page *page,
865 		 unsigned int len, unsigned int offset)
866 {
867 	bool same_page = false;
868 
869 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
870 		if (bio_full(bio, len))
871 			return 0;
872 		__bio_add_page(bio, page, len, offset);
873 	}
874 	return len;
875 }
876 EXPORT_SYMBOL(bio_add_page);
877 
bio_release_pages(struct bio * bio,bool mark_dirty)878 void bio_release_pages(struct bio *bio, bool mark_dirty)
879 {
880 	struct bvec_iter_all iter_all;
881 	struct bio_vec *bvec;
882 
883 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
884 		return;
885 
886 	bio_for_each_segment_all(bvec, bio, iter_all) {
887 		if (mark_dirty)
888 			set_page_dirty_lock(bvec->bv_page);
889 		put_page(bvec->bv_page);
890 	}
891 }
892 
__bio_iov_bvec_add_pages(struct bio * bio,struct iov_iter * iter)893 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
894 {
895 	const struct bio_vec *bv = iter->bvec;
896 	unsigned int len;
897 	size_t size;
898 
899 	if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
900 		return -EINVAL;
901 
902 	len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
903 	size = bio_add_page(bio, bv->bv_page, len,
904 				bv->bv_offset + iter->iov_offset);
905 	if (unlikely(size != len))
906 		return -EINVAL;
907 	iov_iter_advance(iter, size);
908 	return 0;
909 }
910 
911 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
912 
913 /**
914  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
915  * @bio: bio to add pages to
916  * @iter: iov iterator describing the region to be mapped
917  *
918  * Pins pages from *iter and appends them to @bio's bvec array. The
919  * pages will have to be released using put_page() when done.
920  * For multi-segment *iter, this function only adds pages from the
921  * the next non-empty segment of the iov iterator.
922  */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)923 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
924 {
925 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
926 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
927 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
928 	struct page **pages = (struct page **)bv;
929 	bool same_page = false;
930 	ssize_t size, left;
931 	unsigned len, i;
932 	size_t offset;
933 
934 	/*
935 	 * Move page array up in the allocated memory for the bio vecs as far as
936 	 * possible so that we can start filling biovecs from the beginning
937 	 * without overwriting the temporary page array.
938 	*/
939 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
940 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
941 
942 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
943 	if (unlikely(size <= 0))
944 		return size ? size : -EFAULT;
945 
946 	for (left = size, i = 0; left > 0; left -= len, i++) {
947 		struct page *page = pages[i];
948 
949 		len = min_t(size_t, PAGE_SIZE - offset, left);
950 
951 		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
952 			if (same_page)
953 				put_page(page);
954 		} else {
955 			if (WARN_ON_ONCE(bio_full(bio, len)))
956                                 return -EINVAL;
957 			__bio_add_page(bio, page, len, offset);
958 		}
959 		offset = 0;
960 	}
961 
962 	iov_iter_advance(iter, size);
963 	return 0;
964 }
965 
966 /**
967  * bio_iov_iter_get_pages - add user or kernel pages to a bio
968  * @bio: bio to add pages to
969  * @iter: iov iterator describing the region to be added
970  *
971  * This takes either an iterator pointing to user memory, or one pointing to
972  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
973  * map them into the kernel. On IO completion, the caller should put those
974  * pages. If we're adding kernel pages, and the caller told us it's safe to
975  * do so, we just have to add the pages to the bio directly. We don't grab an
976  * extra reference to those pages (the user should already have that), and we
977  * don't put the page on IO completion. The caller needs to check if the bio is
978  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
979  * released.
980  *
981  * The function tries, but does not guarantee, to pin as many pages as
982  * fit into the bio, or are requested in *iter, whatever is smaller. If
983  * MM encounters an error pinning the requested pages, it stops. Error
984  * is returned only if 0 pages could be pinned.
985  */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)986 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
987 {
988 	const bool is_bvec = iov_iter_is_bvec(iter);
989 	int ret;
990 
991 	if (WARN_ON_ONCE(bio->bi_vcnt))
992 		return -EINVAL;
993 
994 	do {
995 		if (is_bvec)
996 			ret = __bio_iov_bvec_add_pages(bio, iter);
997 		else
998 			ret = __bio_iov_iter_get_pages(bio, iter);
999 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1000 
1001 	if (is_bvec)
1002 		bio_set_flag(bio, BIO_NO_PAGE_REF);
1003 	return bio->bi_vcnt ? 0 : ret;
1004 }
1005 
submit_bio_wait_endio(struct bio * bio)1006 static void submit_bio_wait_endio(struct bio *bio)
1007 {
1008 	complete(bio->bi_private);
1009 }
1010 
1011 /**
1012  * submit_bio_wait - submit a bio, and wait until it completes
1013  * @bio: The &struct bio which describes the I/O
1014  *
1015  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1016  * bio_endio() on failure.
1017  *
1018  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1019  * result in bio reference to be consumed. The caller must drop the reference
1020  * on his own.
1021  */
submit_bio_wait(struct bio * bio)1022 int submit_bio_wait(struct bio *bio)
1023 {
1024 	DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1025 
1026 	bio->bi_private = &done;
1027 	bio->bi_end_io = submit_bio_wait_endio;
1028 	bio->bi_opf |= REQ_SYNC;
1029 	submit_bio(bio);
1030 	wait_for_completion_io(&done);
1031 
1032 	return blk_status_to_errno(bio->bi_status);
1033 }
1034 EXPORT_SYMBOL(submit_bio_wait);
1035 
1036 /**
1037  * bio_advance - increment/complete a bio by some number of bytes
1038  * @bio:	bio to advance
1039  * @bytes:	number of bytes to complete
1040  *
1041  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1042  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1043  * be updated on the last bvec as well.
1044  *
1045  * @bio will then represent the remaining, uncompleted portion of the io.
1046  */
bio_advance(struct bio * bio,unsigned bytes)1047 void bio_advance(struct bio *bio, unsigned bytes)
1048 {
1049 	if (bio_integrity(bio))
1050 		bio_integrity_advance(bio, bytes);
1051 
1052 	bio_crypt_advance(bio, bytes);
1053 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1054 }
1055 EXPORT_SYMBOL(bio_advance);
1056 
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1057 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1058 			struct bio *src, struct bvec_iter *src_iter)
1059 {
1060 	struct bio_vec src_bv, dst_bv;
1061 	void *src_p, *dst_p;
1062 	unsigned bytes;
1063 
1064 	while (src_iter->bi_size && dst_iter->bi_size) {
1065 		src_bv = bio_iter_iovec(src, *src_iter);
1066 		dst_bv = bio_iter_iovec(dst, *dst_iter);
1067 
1068 		bytes = min(src_bv.bv_len, dst_bv.bv_len);
1069 
1070 		src_p = kmap_atomic(src_bv.bv_page);
1071 		dst_p = kmap_atomic(dst_bv.bv_page);
1072 
1073 		memcpy(dst_p + dst_bv.bv_offset,
1074 		       src_p + src_bv.bv_offset,
1075 		       bytes);
1076 
1077 		kunmap_atomic(dst_p);
1078 		kunmap_atomic(src_p);
1079 
1080 		flush_dcache_page(dst_bv.bv_page);
1081 
1082 		bio_advance_iter(src, src_iter, bytes);
1083 		bio_advance_iter(dst, dst_iter, bytes);
1084 	}
1085 }
1086 EXPORT_SYMBOL(bio_copy_data_iter);
1087 
1088 /**
1089  * bio_copy_data - copy contents of data buffers from one bio to another
1090  * @src: source bio
1091  * @dst: destination bio
1092  *
1093  * Stops when it reaches the end of either @src or @dst - that is, copies
1094  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1095  */
bio_copy_data(struct bio * dst,struct bio * src)1096 void bio_copy_data(struct bio *dst, struct bio *src)
1097 {
1098 	struct bvec_iter src_iter = src->bi_iter;
1099 	struct bvec_iter dst_iter = dst->bi_iter;
1100 
1101 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1102 }
1103 EXPORT_SYMBOL(bio_copy_data);
1104 
1105 /**
1106  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1107  * another
1108  * @src: source bio list
1109  * @dst: destination bio list
1110  *
1111  * Stops when it reaches the end of either the @src list or @dst list - that is,
1112  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1113  * bios).
1114  */
bio_list_copy_data(struct bio * dst,struct bio * src)1115 void bio_list_copy_data(struct bio *dst, struct bio *src)
1116 {
1117 	struct bvec_iter src_iter = src->bi_iter;
1118 	struct bvec_iter dst_iter = dst->bi_iter;
1119 
1120 	while (1) {
1121 		if (!src_iter.bi_size) {
1122 			src = src->bi_next;
1123 			if (!src)
1124 				break;
1125 
1126 			src_iter = src->bi_iter;
1127 		}
1128 
1129 		if (!dst_iter.bi_size) {
1130 			dst = dst->bi_next;
1131 			if (!dst)
1132 				break;
1133 
1134 			dst_iter = dst->bi_iter;
1135 		}
1136 
1137 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1138 	}
1139 }
1140 EXPORT_SYMBOL(bio_list_copy_data);
1141 
1142 struct bio_map_data {
1143 	int is_our_pages;
1144 	struct iov_iter iter;
1145 	struct iovec iov[];
1146 };
1147 
bio_alloc_map_data(struct iov_iter * data,gfp_t gfp_mask)1148 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1149 					       gfp_t gfp_mask)
1150 {
1151 	struct bio_map_data *bmd;
1152 	if (data->nr_segs > UIO_MAXIOV)
1153 		return NULL;
1154 
1155 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1156 	if (!bmd)
1157 		return NULL;
1158 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1159 	bmd->iter = *data;
1160 	bmd->iter.iov = bmd->iov;
1161 	return bmd;
1162 }
1163 
1164 /**
1165  * bio_copy_from_iter - copy all pages from iov_iter to bio
1166  * @bio: The &struct bio which describes the I/O as destination
1167  * @iter: iov_iter as source
1168  *
1169  * Copy all pages from iov_iter to bio.
1170  * Returns 0 on success, or error on failure.
1171  */
bio_copy_from_iter(struct bio * bio,struct iov_iter * iter)1172 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1173 {
1174 	struct bio_vec *bvec;
1175 	struct bvec_iter_all iter_all;
1176 
1177 	bio_for_each_segment_all(bvec, bio, iter_all) {
1178 		ssize_t ret;
1179 
1180 		ret = copy_page_from_iter(bvec->bv_page,
1181 					  bvec->bv_offset,
1182 					  bvec->bv_len,
1183 					  iter);
1184 
1185 		if (!iov_iter_count(iter))
1186 			break;
1187 
1188 		if (ret < bvec->bv_len)
1189 			return -EFAULT;
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 /**
1196  * bio_copy_to_iter - copy all pages from bio to iov_iter
1197  * @bio: The &struct bio which describes the I/O as source
1198  * @iter: iov_iter as destination
1199  *
1200  * Copy all pages from bio to iov_iter.
1201  * Returns 0 on success, or error on failure.
1202  */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)1203 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1204 {
1205 	struct bio_vec *bvec;
1206 	struct bvec_iter_all iter_all;
1207 
1208 	bio_for_each_segment_all(bvec, bio, iter_all) {
1209 		ssize_t ret;
1210 
1211 		ret = copy_page_to_iter(bvec->bv_page,
1212 					bvec->bv_offset,
1213 					bvec->bv_len,
1214 					&iter);
1215 
1216 		if (!iov_iter_count(&iter))
1217 			break;
1218 
1219 		if (ret < bvec->bv_len)
1220 			return -EFAULT;
1221 	}
1222 
1223 	return 0;
1224 }
1225 
bio_free_pages(struct bio * bio)1226 void bio_free_pages(struct bio *bio)
1227 {
1228 	struct bio_vec *bvec;
1229 	struct bvec_iter_all iter_all;
1230 
1231 	bio_for_each_segment_all(bvec, bio, iter_all)
1232 		__free_page(bvec->bv_page);
1233 }
1234 EXPORT_SYMBOL(bio_free_pages);
1235 
1236 /**
1237  *	bio_uncopy_user	-	finish previously mapped bio
1238  *	@bio: bio being terminated
1239  *
1240  *	Free pages allocated from bio_copy_user_iov() and write back data
1241  *	to user space in case of a read.
1242  */
bio_uncopy_user(struct bio * bio)1243 int bio_uncopy_user(struct bio *bio)
1244 {
1245 	struct bio_map_data *bmd = bio->bi_private;
1246 	int ret = 0;
1247 
1248 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1249 		/*
1250 		 * if we're in a workqueue, the request is orphaned, so
1251 		 * don't copy into a random user address space, just free
1252 		 * and return -EINTR so user space doesn't expect any data.
1253 		 */
1254 		if (!current->mm)
1255 			ret = -EINTR;
1256 		else if (bio_data_dir(bio) == READ)
1257 			ret = bio_copy_to_iter(bio, bmd->iter);
1258 		if (bmd->is_our_pages)
1259 			bio_free_pages(bio);
1260 	}
1261 	kfree(bmd);
1262 	bio_put(bio);
1263 	return ret;
1264 }
1265 
1266 /**
1267  *	bio_copy_user_iov	-	copy user data to bio
1268  *	@q:		destination block queue
1269  *	@map_data:	pointer to the rq_map_data holding pages (if necessary)
1270  *	@iter:		iovec iterator
1271  *	@gfp_mask:	memory allocation flags
1272  *
1273  *	Prepares and returns a bio for indirect user io, bouncing data
1274  *	to/from kernel pages as necessary. Must be paired with
1275  *	call bio_uncopy_user() on io completion.
1276  */
bio_copy_user_iov(struct request_queue * q,struct rq_map_data * map_data,struct iov_iter * iter,gfp_t gfp_mask)1277 struct bio *bio_copy_user_iov(struct request_queue *q,
1278 			      struct rq_map_data *map_data,
1279 			      struct iov_iter *iter,
1280 			      gfp_t gfp_mask)
1281 {
1282 	struct bio_map_data *bmd;
1283 	struct page *page;
1284 	struct bio *bio;
1285 	int i = 0, ret;
1286 	int nr_pages;
1287 	unsigned int len = iter->count;
1288 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1289 
1290 	bmd = bio_alloc_map_data(iter, gfp_mask);
1291 	if (!bmd)
1292 		return ERR_PTR(-ENOMEM);
1293 
1294 	/*
1295 	 * We need to do a deep copy of the iov_iter including the iovecs.
1296 	 * The caller provided iov might point to an on-stack or otherwise
1297 	 * shortlived one.
1298 	 */
1299 	bmd->is_our_pages = map_data ? 0 : 1;
1300 
1301 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1302 	if (nr_pages > BIO_MAX_PAGES)
1303 		nr_pages = BIO_MAX_PAGES;
1304 
1305 	ret = -ENOMEM;
1306 	bio = bio_kmalloc(gfp_mask, nr_pages);
1307 	if (!bio)
1308 		goto out_bmd;
1309 
1310 	ret = 0;
1311 
1312 	if (map_data) {
1313 		nr_pages = 1 << map_data->page_order;
1314 		i = map_data->offset / PAGE_SIZE;
1315 	}
1316 	while (len) {
1317 		unsigned int bytes = PAGE_SIZE;
1318 
1319 		bytes -= offset;
1320 
1321 		if (bytes > len)
1322 			bytes = len;
1323 
1324 		if (map_data) {
1325 			if (i == map_data->nr_entries * nr_pages) {
1326 				ret = -ENOMEM;
1327 				break;
1328 			}
1329 
1330 			page = map_data->pages[i / nr_pages];
1331 			page += (i % nr_pages);
1332 
1333 			i++;
1334 		} else {
1335 			page = alloc_page(q->bounce_gfp | gfp_mask);
1336 			if (!page) {
1337 				ret = -ENOMEM;
1338 				break;
1339 			}
1340 		}
1341 
1342 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1343 			if (!map_data)
1344 				__free_page(page);
1345 			break;
1346 		}
1347 
1348 		len -= bytes;
1349 		offset = 0;
1350 	}
1351 
1352 	if (ret)
1353 		goto cleanup;
1354 
1355 	if (map_data)
1356 		map_data->offset += bio->bi_iter.bi_size;
1357 
1358 	/*
1359 	 * success
1360 	 */
1361 	if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1362 	    (map_data && map_data->from_user)) {
1363 		ret = bio_copy_from_iter(bio, iter);
1364 		if (ret)
1365 			goto cleanup;
1366 	} else {
1367 		if (bmd->is_our_pages)
1368 			zero_fill_bio(bio);
1369 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1370 	}
1371 
1372 	bio->bi_private = bmd;
1373 	if (map_data && map_data->null_mapped)
1374 		bio_set_flag(bio, BIO_NULL_MAPPED);
1375 	return bio;
1376 cleanup:
1377 	if (!map_data)
1378 		bio_free_pages(bio);
1379 	bio_put(bio);
1380 out_bmd:
1381 	kfree(bmd);
1382 	return ERR_PTR(ret);
1383 }
1384 
1385 /**
1386  *	bio_map_user_iov - map user iovec into bio
1387  *	@q:		the struct request_queue for the bio
1388  *	@iter:		iovec iterator
1389  *	@gfp_mask:	memory allocation flags
1390  *
1391  *	Map the user space address into a bio suitable for io to a block
1392  *	device. Returns an error pointer in case of error.
1393  */
bio_map_user_iov(struct request_queue * q,struct iov_iter * iter,gfp_t gfp_mask)1394 struct bio *bio_map_user_iov(struct request_queue *q,
1395 			     struct iov_iter *iter,
1396 			     gfp_t gfp_mask)
1397 {
1398 	int j;
1399 	struct bio *bio;
1400 	int ret;
1401 
1402 	if (!iov_iter_count(iter))
1403 		return ERR_PTR(-EINVAL);
1404 
1405 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1406 	if (!bio)
1407 		return ERR_PTR(-ENOMEM);
1408 
1409 	while (iov_iter_count(iter)) {
1410 		struct page **pages;
1411 		ssize_t bytes;
1412 		size_t offs, added = 0;
1413 		int npages;
1414 
1415 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1416 		if (unlikely(bytes <= 0)) {
1417 			ret = bytes ? bytes : -EFAULT;
1418 			goto out_unmap;
1419 		}
1420 
1421 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1422 
1423 		if (unlikely(offs & queue_dma_alignment(q))) {
1424 			ret = -EINVAL;
1425 			j = 0;
1426 		} else {
1427 			for (j = 0; j < npages; j++) {
1428 				struct page *page = pages[j];
1429 				unsigned int n = PAGE_SIZE - offs;
1430 				bool same_page = false;
1431 
1432 				if (n > bytes)
1433 					n = bytes;
1434 
1435 				if (!__bio_add_pc_page(q, bio, page, n, offs,
1436 						&same_page)) {
1437 					if (same_page)
1438 						put_page(page);
1439 					break;
1440 				}
1441 
1442 				added += n;
1443 				bytes -= n;
1444 				offs = 0;
1445 			}
1446 			iov_iter_advance(iter, added);
1447 		}
1448 		/*
1449 		 * release the pages we didn't map into the bio, if any
1450 		 */
1451 		while (j < npages)
1452 			put_page(pages[j++]);
1453 		kvfree(pages);
1454 		/* couldn't stuff something into bio? */
1455 		if (bytes)
1456 			break;
1457 	}
1458 
1459 	bio_set_flag(bio, BIO_USER_MAPPED);
1460 
1461 	/*
1462 	 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1463 	 * it would normally disappear when its bi_end_io is run.
1464 	 * however, we need it for the unmap, so grab an extra
1465 	 * reference to it
1466 	 */
1467 	bio_get(bio);
1468 	return bio;
1469 
1470  out_unmap:
1471 	bio_release_pages(bio, false);
1472 	bio_put(bio);
1473 	return ERR_PTR(ret);
1474 }
1475 
1476 /**
1477  *	bio_unmap_user	-	unmap a bio
1478  *	@bio:		the bio being unmapped
1479  *
1480  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1481  *	process context.
1482  *
1483  *	bio_unmap_user() may sleep.
1484  */
bio_unmap_user(struct bio * bio)1485 void bio_unmap_user(struct bio *bio)
1486 {
1487 	bio_release_pages(bio, bio_data_dir(bio) == READ);
1488 	bio_put(bio);
1489 	bio_put(bio);
1490 }
1491 
bio_invalidate_vmalloc_pages(struct bio * bio)1492 static void bio_invalidate_vmalloc_pages(struct bio *bio)
1493 {
1494 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1495 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
1496 		unsigned long i, len = 0;
1497 
1498 		for (i = 0; i < bio->bi_vcnt; i++)
1499 			len += bio->bi_io_vec[i].bv_len;
1500 		invalidate_kernel_vmap_range(bio->bi_private, len);
1501 	}
1502 #endif
1503 }
1504 
bio_map_kern_endio(struct bio * bio)1505 static void bio_map_kern_endio(struct bio *bio)
1506 {
1507 	bio_invalidate_vmalloc_pages(bio);
1508 	bio_put(bio);
1509 }
1510 
1511 /**
1512  *	bio_map_kern	-	map kernel address into bio
1513  *	@q: the struct request_queue for the bio
1514  *	@data: pointer to buffer to map
1515  *	@len: length in bytes
1516  *	@gfp_mask: allocation flags for bio allocation
1517  *
1518  *	Map the kernel address into a bio suitable for io to a block
1519  *	device. Returns an error pointer in case of error.
1520  */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1521 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1522 			 gfp_t gfp_mask)
1523 {
1524 	unsigned long kaddr = (unsigned long)data;
1525 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1526 	unsigned long start = kaddr >> PAGE_SHIFT;
1527 	const int nr_pages = end - start;
1528 	bool is_vmalloc = is_vmalloc_addr(data);
1529 	struct page *page;
1530 	int offset, i;
1531 	struct bio *bio;
1532 
1533 	bio = bio_kmalloc(gfp_mask, nr_pages);
1534 	if (!bio)
1535 		return ERR_PTR(-ENOMEM);
1536 
1537 	if (is_vmalloc) {
1538 		flush_kernel_vmap_range(data, len);
1539 		bio->bi_private = data;
1540 	}
1541 
1542 	offset = offset_in_page(kaddr);
1543 	for (i = 0; i < nr_pages; i++) {
1544 		unsigned int bytes = PAGE_SIZE - offset;
1545 
1546 		if (len <= 0)
1547 			break;
1548 
1549 		if (bytes > len)
1550 			bytes = len;
1551 
1552 		if (!is_vmalloc)
1553 			page = virt_to_page(data);
1554 		else
1555 			page = vmalloc_to_page(data);
1556 		if (bio_add_pc_page(q, bio, page, bytes,
1557 				    offset) < bytes) {
1558 			/* we don't support partial mappings */
1559 			bio_put(bio);
1560 			return ERR_PTR(-EINVAL);
1561 		}
1562 
1563 		data += bytes;
1564 		len -= bytes;
1565 		offset = 0;
1566 	}
1567 
1568 	bio->bi_end_io = bio_map_kern_endio;
1569 	return bio;
1570 }
1571 
bio_copy_kern_endio(struct bio * bio)1572 static void bio_copy_kern_endio(struct bio *bio)
1573 {
1574 	bio_free_pages(bio);
1575 	bio_put(bio);
1576 }
1577 
bio_copy_kern_endio_read(struct bio * bio)1578 static void bio_copy_kern_endio_read(struct bio *bio)
1579 {
1580 	char *p = bio->bi_private;
1581 	struct bio_vec *bvec;
1582 	struct bvec_iter_all iter_all;
1583 
1584 	bio_for_each_segment_all(bvec, bio, iter_all) {
1585 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1586 		p += bvec->bv_len;
1587 	}
1588 
1589 	bio_copy_kern_endio(bio);
1590 }
1591 
1592 /**
1593  *	bio_copy_kern	-	copy kernel address into bio
1594  *	@q: the struct request_queue for the bio
1595  *	@data: pointer to buffer to copy
1596  *	@len: length in bytes
1597  *	@gfp_mask: allocation flags for bio and page allocation
1598  *	@reading: data direction is READ
1599  *
1600  *	copy the kernel address into a bio suitable for io to a block
1601  *	device. Returns an error pointer in case of error.
1602  */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)1603 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1604 			  gfp_t gfp_mask, int reading)
1605 {
1606 	unsigned long kaddr = (unsigned long)data;
1607 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1608 	unsigned long start = kaddr >> PAGE_SHIFT;
1609 	struct bio *bio;
1610 	void *p = data;
1611 	int nr_pages = 0;
1612 
1613 	/*
1614 	 * Overflow, abort
1615 	 */
1616 	if (end < start)
1617 		return ERR_PTR(-EINVAL);
1618 
1619 	nr_pages = end - start;
1620 	bio = bio_kmalloc(gfp_mask, nr_pages);
1621 	if (!bio)
1622 		return ERR_PTR(-ENOMEM);
1623 
1624 	while (len) {
1625 		struct page *page;
1626 		unsigned int bytes = PAGE_SIZE;
1627 
1628 		if (bytes > len)
1629 			bytes = len;
1630 
1631 		page = alloc_page(q->bounce_gfp | __GFP_ZERO | gfp_mask);
1632 		if (!page)
1633 			goto cleanup;
1634 
1635 		if (!reading)
1636 			memcpy(page_address(page), p, bytes);
1637 
1638 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1639 			break;
1640 
1641 		len -= bytes;
1642 		p += bytes;
1643 	}
1644 
1645 	if (reading) {
1646 		bio->bi_end_io = bio_copy_kern_endio_read;
1647 		bio->bi_private = data;
1648 	} else {
1649 		bio->bi_end_io = bio_copy_kern_endio;
1650 	}
1651 
1652 	return bio;
1653 
1654 cleanup:
1655 	bio_free_pages(bio);
1656 	bio_put(bio);
1657 	return ERR_PTR(-ENOMEM);
1658 }
1659 
1660 /*
1661  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1662  * for performing direct-IO in BIOs.
1663  *
1664  * The problem is that we cannot run set_page_dirty() from interrupt context
1665  * because the required locks are not interrupt-safe.  So what we can do is to
1666  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1667  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1668  * in process context.
1669  *
1670  * We special-case compound pages here: normally this means reads into hugetlb
1671  * pages.  The logic in here doesn't really work right for compound pages
1672  * because the VM does not uniformly chase down the head page in all cases.
1673  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1674  * handle them at all.  So we skip compound pages here at an early stage.
1675  *
1676  * Note that this code is very hard to test under normal circumstances because
1677  * direct-io pins the pages with get_user_pages().  This makes
1678  * is_page_cache_freeable return false, and the VM will not clean the pages.
1679  * But other code (eg, flusher threads) could clean the pages if they are mapped
1680  * pagecache.
1681  *
1682  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1683  * deferred bio dirtying paths.
1684  */
1685 
1686 /*
1687  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1688  */
bio_set_pages_dirty(struct bio * bio)1689 void bio_set_pages_dirty(struct bio *bio)
1690 {
1691 	struct bio_vec *bvec;
1692 	struct bvec_iter_all iter_all;
1693 
1694 	bio_for_each_segment_all(bvec, bio, iter_all) {
1695 		set_page_dirty_lock(bvec->bv_page);
1696 	}
1697 }
1698 
1699 /*
1700  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1701  * If they are, then fine.  If, however, some pages are clean then they must
1702  * have been written out during the direct-IO read.  So we take another ref on
1703  * the BIO and re-dirty the pages in process context.
1704  *
1705  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1706  * here on.  It will run one put_page() against each page and will run one
1707  * bio_put() against the BIO.
1708  */
1709 
1710 static void bio_dirty_fn(struct work_struct *work);
1711 
1712 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1713 static DEFINE_SPINLOCK(bio_dirty_lock);
1714 static struct bio *bio_dirty_list;
1715 
1716 /*
1717  * This runs in process context
1718  */
bio_dirty_fn(struct work_struct * work)1719 static void bio_dirty_fn(struct work_struct *work)
1720 {
1721 	struct bio *bio, *next;
1722 
1723 	spin_lock_irq(&bio_dirty_lock);
1724 	next = bio_dirty_list;
1725 	bio_dirty_list = NULL;
1726 	spin_unlock_irq(&bio_dirty_lock);
1727 
1728 	while ((bio = next) != NULL) {
1729 		next = bio->bi_private;
1730 
1731 		bio_release_pages(bio, true);
1732 		bio_put(bio);
1733 	}
1734 }
1735 
bio_check_pages_dirty(struct bio * bio)1736 void bio_check_pages_dirty(struct bio *bio)
1737 {
1738 	struct bio_vec *bvec;
1739 	unsigned long flags;
1740 	struct bvec_iter_all iter_all;
1741 
1742 	bio_for_each_segment_all(bvec, bio, iter_all) {
1743 		if (!PageDirty(bvec->bv_page))
1744 			goto defer;
1745 	}
1746 
1747 	bio_release_pages(bio, false);
1748 	bio_put(bio);
1749 	return;
1750 defer:
1751 	spin_lock_irqsave(&bio_dirty_lock, flags);
1752 	bio->bi_private = bio_dirty_list;
1753 	bio_dirty_list = bio;
1754 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1755 	schedule_work(&bio_dirty_work);
1756 }
1757 
update_io_ticks(struct hd_struct * part,unsigned long now,bool end)1758 void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1759 {
1760 	unsigned long stamp;
1761 again:
1762 	stamp = READ_ONCE(part->stamp);
1763 	if (unlikely(stamp != now)) {
1764 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1765 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1766 		}
1767 	}
1768 	if (part->partno) {
1769 		part = &part_to_disk(part)->part0;
1770 		goto again;
1771 	}
1772 }
1773 
generic_start_io_acct(struct request_queue * q,int op,unsigned long sectors,struct hd_struct * part)1774 void generic_start_io_acct(struct request_queue *q, int op,
1775 			   unsigned long sectors, struct hd_struct *part)
1776 {
1777 	const int sgrp = op_stat_group(op);
1778 
1779 	part_stat_lock();
1780 
1781 	update_io_ticks(part, jiffies, false);
1782 	part_stat_inc(part, ios[sgrp]);
1783 	part_stat_add(part, sectors[sgrp], sectors);
1784 	part_inc_in_flight(q, part, op_is_write(op));
1785 
1786 	part_stat_unlock();
1787 }
1788 EXPORT_SYMBOL(generic_start_io_acct);
1789 
generic_end_io_acct(struct request_queue * q,int req_op,struct hd_struct * part,unsigned long start_time)1790 void generic_end_io_acct(struct request_queue *q, int req_op,
1791 			 struct hd_struct *part, unsigned long start_time)
1792 {
1793 	unsigned long now = jiffies;
1794 	unsigned long duration = now - start_time;
1795 	const int sgrp = op_stat_group(req_op);
1796 
1797 	part_stat_lock();
1798 
1799 	update_io_ticks(part, now, true);
1800 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1801 	part_stat_add(part, time_in_queue, duration);
1802 	part_dec_in_flight(q, part, op_is_write(req_op));
1803 
1804 	part_stat_unlock();
1805 }
1806 EXPORT_SYMBOL(generic_end_io_acct);
1807 
bio_remaining_done(struct bio * bio)1808 static inline bool bio_remaining_done(struct bio *bio)
1809 {
1810 	/*
1811 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1812 	 * we always end io on the first invocation.
1813 	 */
1814 	if (!bio_flagged(bio, BIO_CHAIN))
1815 		return true;
1816 
1817 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1818 
1819 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1820 		bio_clear_flag(bio, BIO_CHAIN);
1821 		return true;
1822 	}
1823 
1824 	return false;
1825 }
1826 
1827 /**
1828  * bio_endio - end I/O on a bio
1829  * @bio:	bio
1830  *
1831  * Description:
1832  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1833  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1834  *   bio unless they own it and thus know that it has an end_io function.
1835  *
1836  *   bio_endio() can be called several times on a bio that has been chained
1837  *   using bio_chain().  The ->bi_end_io() function will only be called the
1838  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1839  *   generated if BIO_TRACE_COMPLETION is set.
1840  **/
bio_endio(struct bio * bio)1841 void bio_endio(struct bio *bio)
1842 {
1843 again:
1844 	if (!bio_remaining_done(bio))
1845 		return;
1846 
1847 	if (!blk_crypto_endio(bio))
1848 		return;
1849 
1850 	if (!bio_integrity_endio(bio))
1851 		return;
1852 
1853 	if (bio->bi_disk)
1854 		rq_qos_done_bio(bio->bi_disk->queue, bio);
1855 
1856 	/*
1857 	 * Need to have a real endio function for chained bios, otherwise
1858 	 * various corner cases will break (like stacking block devices that
1859 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1860 	 * recursion and blowing the stack. Tail call optimization would
1861 	 * handle this, but compiling with frame pointers also disables
1862 	 * gcc's sibling call optimization.
1863 	 */
1864 	if (bio->bi_end_io == bio_chain_endio) {
1865 		bio = __bio_chain_endio(bio);
1866 		goto again;
1867 	}
1868 
1869 	if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1870 		trace_block_bio_complete(bio->bi_disk->queue, bio,
1871 					 blk_status_to_errno(bio->bi_status));
1872 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1873 	}
1874 
1875 	blk_throtl_bio_endio(bio);
1876 	/* release cgroup info */
1877 	bio_uninit(bio);
1878 	if (bio->bi_end_io)
1879 		bio->bi_end_io(bio);
1880 }
1881 EXPORT_SYMBOL(bio_endio);
1882 
1883 /**
1884  * bio_split - split a bio
1885  * @bio:	bio to split
1886  * @sectors:	number of sectors to split from the front of @bio
1887  * @gfp:	gfp mask
1888  * @bs:		bio set to allocate from
1889  *
1890  * Allocates and returns a new bio which represents @sectors from the start of
1891  * @bio, and updates @bio to represent the remaining sectors.
1892  *
1893  * Unless this is a discard request the newly allocated bio will point
1894  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1895  * neither @bio nor @bs are freed before the split bio.
1896  */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1897 struct bio *bio_split(struct bio *bio, int sectors,
1898 		      gfp_t gfp, struct bio_set *bs)
1899 {
1900 	struct bio *split;
1901 
1902 	BUG_ON(sectors <= 0);
1903 	BUG_ON(sectors >= bio_sectors(bio));
1904 
1905 	split = bio_clone_fast(bio, gfp, bs);
1906 	if (!split)
1907 		return NULL;
1908 
1909 	split->bi_iter.bi_size = sectors << 9;
1910 
1911 	if (bio_integrity(split))
1912 		bio_integrity_trim(split);
1913 
1914 	bio_advance(bio, split->bi_iter.bi_size);
1915 
1916 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1917 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1918 
1919 	return split;
1920 }
1921 EXPORT_SYMBOL(bio_split);
1922 
1923 /**
1924  * bio_trim - trim a bio
1925  * @bio:	bio to trim
1926  * @offset:	number of sectors to trim from the front of @bio
1927  * @size:	size we want to trim @bio to, in sectors
1928  */
bio_trim(struct bio * bio,int offset,int size)1929 void bio_trim(struct bio *bio, int offset, int size)
1930 {
1931 	/* 'bio' is a cloned bio which we need to trim to match
1932 	 * the given offset and size.
1933 	 */
1934 
1935 	size <<= 9;
1936 	if (offset == 0 && size == bio->bi_iter.bi_size)
1937 		return;
1938 
1939 	bio_advance(bio, offset << 9);
1940 	bio->bi_iter.bi_size = size;
1941 
1942 	if (bio_integrity(bio))
1943 		bio_integrity_trim(bio);
1944 
1945 }
1946 EXPORT_SYMBOL_GPL(bio_trim);
1947 
1948 /*
1949  * create memory pools for biovec's in a bio_set.
1950  * use the global biovec slabs created for general use.
1951  */
biovec_init_pool(mempool_t * pool,int pool_entries)1952 int biovec_init_pool(mempool_t *pool, int pool_entries)
1953 {
1954 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1955 
1956 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1957 }
1958 
1959 /*
1960  * bioset_exit - exit a bioset initialized with bioset_init()
1961  *
1962  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1963  * kzalloc()).
1964  */
bioset_exit(struct bio_set * bs)1965 void bioset_exit(struct bio_set *bs)
1966 {
1967 	if (bs->rescue_workqueue)
1968 		destroy_workqueue(bs->rescue_workqueue);
1969 	bs->rescue_workqueue = NULL;
1970 
1971 	mempool_exit(&bs->bio_pool);
1972 	mempool_exit(&bs->bvec_pool);
1973 
1974 	bioset_integrity_free(bs);
1975 	if (bs->bio_slab)
1976 		bio_put_slab(bs);
1977 	bs->bio_slab = NULL;
1978 }
1979 EXPORT_SYMBOL(bioset_exit);
1980 
1981 /**
1982  * bioset_init - Initialize a bio_set
1983  * @bs:		pool to initialize
1984  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1985  * @front_pad:	Number of bytes to allocate in front of the returned bio
1986  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1987  *              and %BIOSET_NEED_RESCUER
1988  *
1989  * Description:
1990  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1991  *    to ask for a number of bytes to be allocated in front of the bio.
1992  *    Front pad allocation is useful for embedding the bio inside
1993  *    another structure, to avoid allocating extra data to go with the bio.
1994  *    Note that the bio must be embedded at the END of that structure always,
1995  *    or things will break badly.
1996  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1997  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1998  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1999  *    dispatch queued requests when the mempool runs out of space.
2000  *
2001  */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)2002 int bioset_init(struct bio_set *bs,
2003 		unsigned int pool_size,
2004 		unsigned int front_pad,
2005 		int flags)
2006 {
2007 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
2008 
2009 	bs->front_pad = front_pad;
2010 
2011 	spin_lock_init(&bs->rescue_lock);
2012 	bio_list_init(&bs->rescue_list);
2013 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2014 
2015 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2016 	if (!bs->bio_slab)
2017 		return -ENOMEM;
2018 
2019 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2020 		goto bad;
2021 
2022 	if ((flags & BIOSET_NEED_BVECS) &&
2023 	    biovec_init_pool(&bs->bvec_pool, pool_size))
2024 		goto bad;
2025 
2026 	if (!(flags & BIOSET_NEED_RESCUER))
2027 		return 0;
2028 
2029 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2030 	if (!bs->rescue_workqueue)
2031 		goto bad;
2032 
2033 	return 0;
2034 bad:
2035 	bioset_exit(bs);
2036 	return -ENOMEM;
2037 }
2038 EXPORT_SYMBOL(bioset_init);
2039 
2040 /*
2041  * Initialize and setup a new bio_set, based on the settings from
2042  * another bio_set.
2043  */
bioset_init_from_src(struct bio_set * bs,struct bio_set * src)2044 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2045 {
2046 	int flags;
2047 
2048 	flags = 0;
2049 	if (src->bvec_pool.min_nr)
2050 		flags |= BIOSET_NEED_BVECS;
2051 	if (src->rescue_workqueue)
2052 		flags |= BIOSET_NEED_RESCUER;
2053 
2054 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2055 }
2056 EXPORT_SYMBOL(bioset_init_from_src);
2057 
2058 #ifdef CONFIG_BLK_CGROUP
2059 
2060 /**
2061  * bio_disassociate_blkg - puts back the blkg reference if associated
2062  * @bio: target bio
2063  *
2064  * Helper to disassociate the blkg from @bio if a blkg is associated.
2065  */
bio_disassociate_blkg(struct bio * bio)2066 void bio_disassociate_blkg(struct bio *bio)
2067 {
2068 	if (bio->bi_blkg) {
2069 		blkg_put(bio->bi_blkg);
2070 		bio->bi_blkg = NULL;
2071 	}
2072 }
2073 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2074 
2075 /**
2076  * __bio_associate_blkg - associate a bio with the a blkg
2077  * @bio: target bio
2078  * @blkg: the blkg to associate
2079  *
2080  * This tries to associate @bio with the specified @blkg.  Association failure
2081  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2082  * be anything between @blkg and the root_blkg.  This situation only happens
2083  * when a cgroup is dying and then the remaining bios will spill to the closest
2084  * alive blkg.
2085  *
2086  * A reference will be taken on the @blkg and will be released when @bio is
2087  * freed.
2088  */
__bio_associate_blkg(struct bio * bio,struct blkcg_gq * blkg)2089 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2090 {
2091 	bio_disassociate_blkg(bio);
2092 
2093 	bio->bi_blkg = blkg_tryget_closest(blkg);
2094 }
2095 
2096 /**
2097  * bio_associate_blkg_from_css - associate a bio with a specified css
2098  * @bio: target bio
2099  * @css: target css
2100  *
2101  * Associate @bio with the blkg found by combining the css's blkg and the
2102  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2103  * the association fails with the css.
2104  */
bio_associate_blkg_from_css(struct bio * bio,struct cgroup_subsys_state * css)2105 void bio_associate_blkg_from_css(struct bio *bio,
2106 				 struct cgroup_subsys_state *css)
2107 {
2108 	struct request_queue *q = bio->bi_disk->queue;
2109 	struct blkcg_gq *blkg;
2110 
2111 	rcu_read_lock();
2112 
2113 	if (!css || !css->parent)
2114 		blkg = q->root_blkg;
2115 	else
2116 		blkg = blkg_lookup_create(css_to_blkcg(css), q);
2117 
2118 	__bio_associate_blkg(bio, blkg);
2119 
2120 	rcu_read_unlock();
2121 }
2122 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2123 
2124 #ifdef CONFIG_MEMCG
2125 /**
2126  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2127  * @bio: target bio
2128  * @page: the page to lookup the blkcg from
2129  *
2130  * Associate @bio with the blkg from @page's owning memcg and the respective
2131  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2132  * root_blkg.
2133  */
bio_associate_blkg_from_page(struct bio * bio,struct page * page)2134 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2135 {
2136 	struct cgroup_subsys_state *css;
2137 
2138 	if (!page->mem_cgroup)
2139 		return;
2140 
2141 	rcu_read_lock();
2142 
2143 	css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2144 	bio_associate_blkg_from_css(bio, css);
2145 
2146 	rcu_read_unlock();
2147 }
2148 #endif /* CONFIG_MEMCG */
2149 
2150 /**
2151  * bio_associate_blkg - associate a bio with a blkg
2152  * @bio: target bio
2153  *
2154  * Associate @bio with the blkg found from the bio's css and request_queue.
2155  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2156  * already associated, the css is reused and association redone as the
2157  * request_queue may have changed.
2158  */
bio_associate_blkg(struct bio * bio)2159 void bio_associate_blkg(struct bio *bio)
2160 {
2161 	struct cgroup_subsys_state *css;
2162 
2163 	rcu_read_lock();
2164 
2165 	if (bio->bi_blkg)
2166 		css = &bio_blkcg(bio)->css;
2167 	else
2168 		css = blkcg_css();
2169 
2170 	bio_associate_blkg_from_css(bio, css);
2171 
2172 	rcu_read_unlock();
2173 }
2174 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2175 
2176 /**
2177  * bio_clone_blkg_association - clone blkg association from src to dst bio
2178  * @dst: destination bio
2179  * @src: source bio
2180  */
bio_clone_blkg_association(struct bio * dst,struct bio * src)2181 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2182 {
2183 	rcu_read_lock();
2184 
2185 	if (src->bi_blkg)
2186 		bio_associate_blkg_from_css(dst, &bio_blkcg(src)->css);
2187 
2188 	rcu_read_unlock();
2189 }
2190 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2191 #endif /* CONFIG_BLK_CGROUP */
2192 
biovec_init_slabs(void)2193 static void __init biovec_init_slabs(void)
2194 {
2195 	int i;
2196 
2197 	for (i = 0; i < BVEC_POOL_NR; i++) {
2198 		int size;
2199 		struct biovec_slab *bvs = bvec_slabs + i;
2200 
2201 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2202 			bvs->slab = NULL;
2203 			continue;
2204 		}
2205 
2206 		size = bvs->nr_vecs * sizeof(struct bio_vec);
2207 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
2208                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2209 	}
2210 }
2211 
init_bio(void)2212 static int __init init_bio(void)
2213 {
2214 	bio_slab_max = 2;
2215 	bio_slab_nr = 0;
2216 	bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2217 			    GFP_KERNEL);
2218 
2219 	BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2220 
2221 	if (!bio_slabs)
2222 		panic("bio: can't allocate bios\n");
2223 
2224 	bio_integrity_init();
2225 	biovec_init_slabs();
2226 
2227 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2228 		panic("bio: can't allocate bios\n");
2229 
2230 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2231 		panic("bio: can't create integrity pool\n");
2232 
2233 	return 0;
2234 }
2235 subsys_initcall(init_bio);
2236