• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * blk-mq scheduling framework
4  *
5  * Copyright (C) 2016 Jens Axboe
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 
11 #include <trace/events/block.h>
12 
13 #include "blk.h"
14 #include "blk-mq.h"
15 #include "blk-mq-debugfs.h"
16 #include "blk-mq-sched.h"
17 #include "blk-mq-tag.h"
18 #include "blk-wbt.h"
19 
blk_mq_sched_free_hctx_data(struct request_queue * q,void (* exit)(struct blk_mq_hw_ctx *))20 void blk_mq_sched_free_hctx_data(struct request_queue *q,
21 				 void (*exit)(struct blk_mq_hw_ctx *))
22 {
23 	struct blk_mq_hw_ctx *hctx;
24 	int i;
25 
26 	queue_for_each_hw_ctx(q, hctx, i) {
27 		if (exit && hctx->sched_data)
28 			exit(hctx);
29 		kfree(hctx->sched_data);
30 		hctx->sched_data = NULL;
31 	}
32 }
33 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
34 
blk_mq_sched_assign_ioc(struct request * rq)35 void blk_mq_sched_assign_ioc(struct request *rq)
36 {
37 	struct request_queue *q = rq->q;
38 	struct io_context *ioc;
39 	struct io_cq *icq;
40 
41 	/*
42 	 * May not have an IO context if it's a passthrough request
43 	 */
44 	ioc = current->io_context;
45 	if (!ioc)
46 		return;
47 
48 	spin_lock_irq(&q->queue_lock);
49 	icq = ioc_lookup_icq(ioc, q);
50 	spin_unlock_irq(&q->queue_lock);
51 
52 	if (!icq) {
53 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
54 		if (!icq)
55 			return;
56 	}
57 	get_io_context(icq->ioc);
58 	rq->elv.icq = icq;
59 }
60 
61 /*
62  * Mark a hardware queue as needing a restart.
63  */
blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx * hctx)64 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
65 {
66 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
67 		return;
68 
69 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
70 }
71 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
72 
blk_mq_sched_restart(struct blk_mq_hw_ctx * hctx)73 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
74 {
75 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
76 		return;
77 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
78 
79 	/*
80 	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
81 	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
82 	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
83 	 * meantime new request added to hctx->dispatch is missed to check in
84 	 * blk_mq_run_hw_queue().
85 	 */
86 	smp_mb();
87 
88 	blk_mq_run_hw_queue(hctx, true);
89 }
90 
91 /*
92  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
93  * its queue by itself in its completion handler, so we don't need to
94  * restart queue if .get_budget() fails to get the budget.
95  *
96  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
97  * be run again.  This is necessary to avoid starving flushes.
98  */
blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)99 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
100 {
101 	struct request_queue *q = hctx->queue;
102 	struct elevator_queue *e = q->elevator;
103 	LIST_HEAD(rq_list);
104 	int ret = 0;
105 
106 	do {
107 		struct request *rq;
108 
109 		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
110 			break;
111 
112 		if (!list_empty_careful(&hctx->dispatch)) {
113 			ret = -EAGAIN;
114 			break;
115 		}
116 
117 		if (!blk_mq_get_dispatch_budget(hctx))
118 			break;
119 
120 		rq = e->type->ops.dispatch_request(hctx);
121 		if (!rq) {
122 			blk_mq_put_dispatch_budget(hctx);
123 			break;
124 		}
125 
126 		/*
127 		 * Now this rq owns the budget which has to be released
128 		 * if this rq won't be queued to driver via .queue_rq()
129 		 * in blk_mq_dispatch_rq_list().
130 		 */
131 		list_add(&rq->queuelist, &rq_list);
132 	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
133 
134 	return ret;
135 }
136 
blk_mq_next_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)137 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
138 					  struct blk_mq_ctx *ctx)
139 {
140 	unsigned short idx = ctx->index_hw[hctx->type];
141 
142 	if (++idx == hctx->nr_ctx)
143 		idx = 0;
144 
145 	return hctx->ctxs[idx];
146 }
147 
148 /*
149  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
150  * its queue by itself in its completion handler, so we don't need to
151  * restart queue if .get_budget() fails to get the budget.
152  *
153  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
154  * to be run again.  This is necessary to avoid starving flushes.
155  */
blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx * hctx)156 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
157 {
158 	struct request_queue *q = hctx->queue;
159 	LIST_HEAD(rq_list);
160 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
161 	int ret = 0;
162 
163 	do {
164 		struct request *rq;
165 
166 		if (!list_empty_careful(&hctx->dispatch)) {
167 			ret = -EAGAIN;
168 			break;
169 		}
170 
171 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
172 			break;
173 
174 		if (!blk_mq_get_dispatch_budget(hctx))
175 			break;
176 
177 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
178 		if (!rq) {
179 			blk_mq_put_dispatch_budget(hctx);
180 			break;
181 		}
182 
183 		/*
184 		 * Now this rq owns the budget which has to be released
185 		 * if this rq won't be queued to driver via .queue_rq()
186 		 * in blk_mq_dispatch_rq_list().
187 		 */
188 		list_add(&rq->queuelist, &rq_list);
189 
190 		/* round robin for fair dispatch */
191 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
192 
193 	} while (blk_mq_dispatch_rq_list(q, &rq_list, true));
194 
195 	WRITE_ONCE(hctx->dispatch_from, ctx);
196 	return ret;
197 }
198 
__blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)199 int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
200 {
201 	struct request_queue *q = hctx->queue;
202 	struct elevator_queue *e = q->elevator;
203 	const bool has_sched_dispatch = e && e->type->ops.dispatch_request;
204 	int ret = 0;
205 	LIST_HEAD(rq_list);
206 
207 	/*
208 	 * If we have previous entries on our dispatch list, grab them first for
209 	 * more fair dispatch.
210 	 */
211 	if (!list_empty_careful(&hctx->dispatch)) {
212 		spin_lock(&hctx->lock);
213 		if (!list_empty(&hctx->dispatch))
214 			list_splice_init(&hctx->dispatch, &rq_list);
215 		spin_unlock(&hctx->lock);
216 	}
217 
218 	/*
219 	 * Only ask the scheduler for requests, if we didn't have residual
220 	 * requests from the dispatch list. This is to avoid the case where
221 	 * we only ever dispatch a fraction of the requests available because
222 	 * of low device queue depth. Once we pull requests out of the IO
223 	 * scheduler, we can no longer merge or sort them. So it's best to
224 	 * leave them there for as long as we can. Mark the hw queue as
225 	 * needing a restart in that case.
226 	 *
227 	 * We want to dispatch from the scheduler if there was nothing
228 	 * on the dispatch list or we were able to dispatch from the
229 	 * dispatch list.
230 	 */
231 	if (!list_empty(&rq_list)) {
232 		blk_mq_sched_mark_restart_hctx(hctx);
233 		if (blk_mq_dispatch_rq_list(q, &rq_list, false)) {
234 			if (has_sched_dispatch)
235 				ret = blk_mq_do_dispatch_sched(hctx);
236 			else
237 				ret = blk_mq_do_dispatch_ctx(hctx);
238 		}
239 	} else if (has_sched_dispatch) {
240 		ret = blk_mq_do_dispatch_sched(hctx);
241 	} else if (hctx->dispatch_busy) {
242 		/* dequeue request one by one from sw queue if queue is busy */
243 		ret = blk_mq_do_dispatch_ctx(hctx);
244 	} else {
245 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
246 		blk_mq_dispatch_rq_list(q, &rq_list, false);
247 	}
248 
249 	return ret;
250 }
251 
blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)252 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
253 {
254 	struct request_queue *q = hctx->queue;
255 
256 	/* RCU or SRCU read lock is needed before checking quiesced flag */
257 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
258 		return;
259 
260 	hctx->run++;
261 
262 	/*
263 	 * A return of -EAGAIN is an indication that hctx->dispatch is not
264 	 * empty and we must run again in order to avoid starving flushes.
265 	 */
266 	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
267 		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
268 			blk_mq_run_hw_queue(hctx, true);
269 	}
270 }
271 
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** merged_request)272 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
273 		unsigned int nr_segs, struct request **merged_request)
274 {
275 	struct request *rq;
276 
277 	switch (elv_merge(q, &rq, bio)) {
278 	case ELEVATOR_BACK_MERGE:
279 		if (!blk_mq_sched_allow_merge(q, rq, bio))
280 			return false;
281 		if (!bio_attempt_back_merge(rq, bio, nr_segs))
282 			return false;
283 		*merged_request = attempt_back_merge(q, rq);
284 		if (!*merged_request)
285 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
286 		return true;
287 	case ELEVATOR_FRONT_MERGE:
288 		if (!blk_mq_sched_allow_merge(q, rq, bio))
289 			return false;
290 		if (!bio_attempt_front_merge(rq, bio, nr_segs))
291 			return false;
292 		*merged_request = attempt_front_merge(q, rq);
293 		if (!*merged_request)
294 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
295 		return true;
296 	case ELEVATOR_DISCARD_MERGE:
297 		return bio_attempt_discard_merge(q, rq, bio);
298 	default:
299 		return false;
300 	}
301 }
302 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
303 
304 /*
305  * Iterate list of requests and see if we can merge this bio with any
306  * of them.
307  */
blk_mq_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio,unsigned int nr_segs)308 bool blk_mq_bio_list_merge(struct request_queue *q, struct list_head *list,
309 			   struct bio *bio, unsigned int nr_segs)
310 {
311 	struct request *rq;
312 	int checked = 8;
313 
314 	list_for_each_entry_reverse(rq, list, queuelist) {
315 		bool merged = false;
316 
317 		if (!checked--)
318 			break;
319 
320 		if (!blk_rq_merge_ok(rq, bio))
321 			continue;
322 
323 		switch (blk_try_merge(rq, bio)) {
324 		case ELEVATOR_BACK_MERGE:
325 			if (blk_mq_sched_allow_merge(q, rq, bio))
326 				merged = bio_attempt_back_merge(rq, bio,
327 						nr_segs);
328 			break;
329 		case ELEVATOR_FRONT_MERGE:
330 			if (blk_mq_sched_allow_merge(q, rq, bio))
331 				merged = bio_attempt_front_merge(rq, bio,
332 						nr_segs);
333 			break;
334 		case ELEVATOR_DISCARD_MERGE:
335 			merged = bio_attempt_discard_merge(q, rq, bio);
336 			break;
337 		default:
338 			continue;
339 		}
340 
341 		return merged;
342 	}
343 
344 	return false;
345 }
346 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge);
347 
348 /*
349  * Reverse check our software queue for entries that we could potentially
350  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
351  * too much time checking for merges.
352  */
blk_mq_attempt_merge(struct request_queue * q,struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct bio * bio,unsigned int nr_segs)353 static bool blk_mq_attempt_merge(struct request_queue *q,
354 				 struct blk_mq_hw_ctx *hctx,
355 				 struct blk_mq_ctx *ctx, struct bio *bio,
356 				 unsigned int nr_segs)
357 {
358 	enum hctx_type type = hctx->type;
359 
360 	lockdep_assert_held(&ctx->lock);
361 
362 	if (blk_mq_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
363 		ctx->rq_merged++;
364 		return true;
365 	}
366 
367 	return false;
368 }
369 
__blk_mq_sched_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)370 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
371 		unsigned int nr_segs)
372 {
373 	struct elevator_queue *e = q->elevator;
374 	struct blk_mq_ctx *ctx;
375 	struct blk_mq_hw_ctx *hctx;
376 	bool ret = false;
377 	enum hctx_type type;
378 
379 	if (e && e->type->ops.bio_merge)
380 		return e->type->ops.bio_merge(q, bio, nr_segs);
381 
382 	ctx = blk_mq_get_ctx(q);
383 	hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
384 	type = hctx->type;
385 	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
386 			!list_empty_careful(&ctx->rq_lists[type])) {
387 		/* default per sw-queue merge */
388 		spin_lock(&ctx->lock);
389 		ret = blk_mq_attempt_merge(q, hctx, ctx, bio, nr_segs);
390 		spin_unlock(&ctx->lock);
391 	}
392 
393 	return ret;
394 }
395 
blk_mq_sched_try_insert_merge(struct request_queue * q,struct request * rq)396 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
397 {
398 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
399 }
400 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
401 
blk_mq_sched_request_inserted(struct request * rq)402 void blk_mq_sched_request_inserted(struct request *rq)
403 {
404 	trace_block_rq_insert(rq->q, rq);
405 }
406 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
407 
blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx * hctx,bool has_sched,struct request * rq)408 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
409 				       bool has_sched,
410 				       struct request *rq)
411 {
412 	/*
413 	 * dispatch flush and passthrough rq directly
414 	 *
415 	 * passthrough request has to be added to hctx->dispatch directly.
416 	 * For some reason, device may be in one situation which can't
417 	 * handle FS request, so STS_RESOURCE is always returned and the
418 	 * FS request will be added to hctx->dispatch. However passthrough
419 	 * request may be required at that time for fixing the problem. If
420 	 * passthrough request is added to scheduler queue, there isn't any
421 	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
422 	 */
423 	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
424 		return true;
425 
426 	if (has_sched)
427 		rq->rq_flags |= RQF_SORTED;
428 
429 	return false;
430 }
431 
blk_mq_sched_insert_request(struct request * rq,bool at_head,bool run_queue,bool async)432 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
433 				 bool run_queue, bool async)
434 {
435 	struct request_queue *q = rq->q;
436 	struct elevator_queue *e = q->elevator;
437 	struct blk_mq_ctx *ctx = rq->mq_ctx;
438 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
439 
440 	/* flush rq in flush machinery need to be dispatched directly */
441 	if (!(rq->rq_flags & RQF_FLUSH_SEQ) && op_is_flush(rq->cmd_flags)) {
442 		blk_insert_flush(rq);
443 		goto run;
444 	}
445 
446 	WARN_ON(e && (rq->tag != -1));
447 
448 	if (blk_mq_sched_bypass_insert(hctx, !!e, rq)) {
449 		/*
450 		 * Firstly normal IO request is inserted to scheduler queue or
451 		 * sw queue, meantime we add flush request to dispatch queue(
452 		 * hctx->dispatch) directly and there is at most one in-flight
453 		 * flush request for each hw queue, so it doesn't matter to add
454 		 * flush request to tail or front of the dispatch queue.
455 		 *
456 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
457 		 * command, and queueing it will fail when there is any
458 		 * in-flight normal IO request(NCQ command). When adding flush
459 		 * rq to the front of hctx->dispatch, it is easier to introduce
460 		 * extra time to flush rq's latency because of S_SCHED_RESTART
461 		 * compared with adding to the tail of dispatch queue, then
462 		 * chance of flush merge is increased, and less flush requests
463 		 * will be issued to controller. It is observed that ~10% time
464 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
465 		 * drive when adding flush rq to the front of hctx->dispatch.
466 		 *
467 		 * Simply queue flush rq to the front of hctx->dispatch so that
468 		 * intensive flush workloads can benefit in case of NCQ HW.
469 		 */
470 		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
471 		blk_mq_request_bypass_insert(rq, at_head, false);
472 		goto run;
473 	}
474 
475 	if (e && e->type->ops.insert_requests) {
476 		LIST_HEAD(list);
477 
478 		list_add(&rq->queuelist, &list);
479 		e->type->ops.insert_requests(hctx, &list, at_head);
480 	} else {
481 		spin_lock(&ctx->lock);
482 		__blk_mq_insert_request(hctx, rq, at_head);
483 		spin_unlock(&ctx->lock);
484 	}
485 
486 run:
487 	if (run_queue)
488 		blk_mq_run_hw_queue(hctx, async);
489 }
490 
blk_mq_sched_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)491 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
492 				  struct blk_mq_ctx *ctx,
493 				  struct list_head *list, bool run_queue_async)
494 {
495 	struct elevator_queue *e;
496 	struct request_queue *q = hctx->queue;
497 
498 	/*
499 	 * blk_mq_sched_insert_requests() is called from flush plug
500 	 * context only, and hold one usage counter to prevent queue
501 	 * from being released.
502 	 */
503 	percpu_ref_get(&q->q_usage_counter);
504 
505 	e = hctx->queue->elevator;
506 	if (e && e->type->ops.insert_requests)
507 		e->type->ops.insert_requests(hctx, list, false);
508 	else {
509 		/*
510 		 * try to issue requests directly if the hw queue isn't
511 		 * busy in case of 'none' scheduler, and this way may save
512 		 * us one extra enqueue & dequeue to sw queue.
513 		 */
514 		if (!hctx->dispatch_busy && !e && !run_queue_async) {
515 			blk_mq_try_issue_list_directly(hctx, list);
516 			if (list_empty(list))
517 				goto out;
518 		}
519 		blk_mq_insert_requests(hctx, ctx, list);
520 	}
521 
522 	blk_mq_run_hw_queue(hctx, run_queue_async);
523  out:
524 	percpu_ref_put(&q->q_usage_counter);
525 }
526 
blk_mq_sched_free_tags(struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)527 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
528 				   struct blk_mq_hw_ctx *hctx,
529 				   unsigned int hctx_idx)
530 {
531 	if (hctx->sched_tags) {
532 		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
533 		blk_mq_free_rq_map(hctx->sched_tags);
534 		hctx->sched_tags = NULL;
535 	}
536 }
537 
blk_mq_sched_alloc_tags(struct request_queue * q,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)538 static int blk_mq_sched_alloc_tags(struct request_queue *q,
539 				   struct blk_mq_hw_ctx *hctx,
540 				   unsigned int hctx_idx)
541 {
542 	struct blk_mq_tag_set *set = q->tag_set;
543 	int ret;
544 
545 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
546 					       set->reserved_tags);
547 	if (!hctx->sched_tags)
548 		return -ENOMEM;
549 
550 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
551 	if (ret)
552 		blk_mq_sched_free_tags(set, hctx, hctx_idx);
553 
554 	return ret;
555 }
556 
557 /* called in queue's release handler, tagset has gone away */
blk_mq_sched_tags_teardown(struct request_queue * q)558 static void blk_mq_sched_tags_teardown(struct request_queue *q)
559 {
560 	struct blk_mq_hw_ctx *hctx;
561 	int i;
562 
563 	queue_for_each_hw_ctx(q, hctx, i) {
564 		if (hctx->sched_tags) {
565 			blk_mq_free_rq_map(hctx->sched_tags);
566 			hctx->sched_tags = NULL;
567 		}
568 	}
569 }
570 
blk_mq_init_sched(struct request_queue * q,struct elevator_type * e)571 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
572 {
573 	struct blk_mq_hw_ctx *hctx;
574 	struct elevator_queue *eq;
575 	unsigned int i;
576 	int ret;
577 
578 	if (!e) {
579 		q->elevator = NULL;
580 		q->nr_requests = q->tag_set->queue_depth;
581 		return 0;
582 	}
583 
584 	/*
585 	 * Default to double of smaller one between hw queue_depth and 128,
586 	 * since we don't split into sync/async like the old code did.
587 	 * Additionally, this is a per-hw queue depth.
588 	 */
589 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
590 				   BLKDEV_MAX_RQ);
591 
592 	queue_for_each_hw_ctx(q, hctx, i) {
593 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
594 		if (ret)
595 			goto err;
596 	}
597 
598 	ret = e->ops.init_sched(q, e);
599 	if (ret)
600 		goto err;
601 
602 	blk_mq_debugfs_register_sched(q);
603 
604 	queue_for_each_hw_ctx(q, hctx, i) {
605 		if (e->ops.init_hctx) {
606 			ret = e->ops.init_hctx(hctx, i);
607 			if (ret) {
608 				eq = q->elevator;
609 				blk_mq_sched_free_requests(q);
610 				blk_mq_exit_sched(q, eq);
611 				kobject_put(&eq->kobj);
612 				return ret;
613 			}
614 		}
615 		blk_mq_debugfs_register_sched_hctx(q, hctx);
616 	}
617 
618 	return 0;
619 
620 err:
621 	blk_mq_sched_free_requests(q);
622 	blk_mq_sched_tags_teardown(q);
623 	q->elevator = NULL;
624 	return ret;
625 }
626 
627 /*
628  * called in either blk_queue_cleanup or elevator_switch, tagset
629  * is required for freeing requests
630  */
blk_mq_sched_free_requests(struct request_queue * q)631 void blk_mq_sched_free_requests(struct request_queue *q)
632 {
633 	struct blk_mq_hw_ctx *hctx;
634 	int i;
635 
636 	queue_for_each_hw_ctx(q, hctx, i) {
637 		if (hctx->sched_tags)
638 			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
639 	}
640 }
641 
blk_mq_exit_sched(struct request_queue * q,struct elevator_queue * e)642 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
643 {
644 	struct blk_mq_hw_ctx *hctx;
645 	unsigned int i;
646 
647 	queue_for_each_hw_ctx(q, hctx, i) {
648 		blk_mq_debugfs_unregister_sched_hctx(hctx);
649 		if (e->type->ops.exit_hctx && hctx->sched_data) {
650 			e->type->ops.exit_hctx(hctx, i);
651 			hctx->sched_data = NULL;
652 		}
653 	}
654 	blk_mq_debugfs_unregister_sched(q);
655 	if (e->type->ops.exit_sched)
656 		e->type->ops.exit_sched(e);
657 	blk_mq_sched_tags_teardown(q);
658 	q->elevator = NULL;
659 }
660