1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef INT_BLK_MQ_H
3 #define INT_BLK_MQ_H
4
5 #include "blk-stat.h"
6 #include "blk-mq-tag.h"
7
8 struct blk_mq_tag_set;
9
10 struct blk_mq_ctxs {
11 struct kobject kobj;
12 struct blk_mq_ctx __percpu *queue_ctx;
13 };
14
15 /**
16 * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
17 */
18 struct blk_mq_ctx {
19 struct {
20 spinlock_t lock;
21 struct list_head rq_lists[HCTX_MAX_TYPES];
22 } ____cacheline_aligned_in_smp;
23
24 unsigned int cpu;
25 unsigned short index_hw[HCTX_MAX_TYPES];
26 struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES];
27
28 /* incremented at dispatch time */
29 unsigned long rq_dispatched[2];
30 unsigned long rq_merged;
31
32 /* incremented at completion time */
33 unsigned long ____cacheline_aligned_in_smp rq_completed[2];
34
35 struct request_queue *queue;
36 struct blk_mq_ctxs *ctxs;
37 struct kobject kobj;
38 } ____cacheline_aligned_in_smp;
39
40 void blk_mq_exit_queue(struct request_queue *q);
41 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
42 void blk_mq_wake_waiters(struct request_queue *q);
43 bool blk_mq_dispatch_rq_list(struct request_queue *, struct list_head *, bool);
44 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
45 bool kick_requeue_list);
46 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
47 bool blk_mq_get_driver_tag(struct request *rq);
48 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
49 struct blk_mq_ctx *start);
50 void blk_mq_put_rq_ref(struct request *rq);
51
52 /*
53 * Internal helpers for allocating/freeing the request map
54 */
55 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
56 unsigned int hctx_idx);
57 void blk_mq_free_rq_map(struct blk_mq_tags *tags);
58 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
59 unsigned int hctx_idx,
60 unsigned int nr_tags,
61 unsigned int reserved_tags);
62 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
63 unsigned int hctx_idx, unsigned int depth);
64
65 /*
66 * Internal helpers for request insertion into sw queues
67 */
68 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
69 bool at_head);
70 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
71 bool run_queue);
72 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
73 struct list_head *list);
74
75 /* Used by blk_insert_cloned_request() to issue request directly */
76 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last);
77 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
78 struct list_head *list);
79
80 /*
81 * CPU -> queue mappings
82 */
83 extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
84
85 /*
86 * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
87 * @q: request queue
88 * @type: the hctx type index
89 * @cpu: CPU
90 */
blk_mq_map_queue_type(struct request_queue * q,enum hctx_type type,unsigned int cpu)91 static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
92 enum hctx_type type,
93 unsigned int cpu)
94 {
95 return q->queue_hw_ctx[q->tag_set->map[type].mq_map[cpu]];
96 }
97
98 /*
99 * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
100 * @q: request queue
101 * @flags: request command flags
102 * @cpu: cpu ctx
103 */
blk_mq_map_queue(struct request_queue * q,unsigned int flags,struct blk_mq_ctx * ctx)104 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
105 unsigned int flags,
106 struct blk_mq_ctx *ctx)
107 {
108 enum hctx_type type = HCTX_TYPE_DEFAULT;
109
110 /*
111 * The caller ensure that if REQ_HIPRI, poll must be enabled.
112 */
113 if (flags & REQ_HIPRI)
114 type = HCTX_TYPE_POLL;
115 else if ((flags & REQ_OP_MASK) == REQ_OP_READ)
116 type = HCTX_TYPE_READ;
117
118 return ctx->hctxs[type];
119 }
120
121 /*
122 * sysfs helpers
123 */
124 extern void blk_mq_sysfs_init(struct request_queue *q);
125 extern void blk_mq_sysfs_deinit(struct request_queue *q);
126 extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q);
127 extern int blk_mq_sysfs_register(struct request_queue *q);
128 extern void blk_mq_sysfs_unregister(struct request_queue *q);
129 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
130
131 void blk_mq_release(struct request_queue *q);
132
133 /**
134 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
135 * @rq: target request.
136 */
blk_mq_rq_state(struct request * rq)137 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
138 {
139 return READ_ONCE(rq->state);
140 }
141
__blk_mq_get_ctx(struct request_queue * q,unsigned int cpu)142 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
143 unsigned int cpu)
144 {
145 return per_cpu_ptr(q->queue_ctx, cpu);
146 }
147
148 /*
149 * This assumes per-cpu software queueing queues. They could be per-node
150 * as well, for instance. For now this is hardcoded as-is. Note that we don't
151 * care about preemption, since we know the ctx's are persistent. This does
152 * mean that we can't rely on ctx always matching the currently running CPU.
153 */
blk_mq_get_ctx(struct request_queue * q)154 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
155 {
156 return __blk_mq_get_ctx(q, raw_smp_processor_id());
157 }
158
159 struct blk_mq_alloc_data {
160 /* input parameter */
161 struct request_queue *q;
162 blk_mq_req_flags_t flags;
163 unsigned int shallow_depth;
164 unsigned int cmd_flags;
165
166 /* input & output parameter */
167 struct blk_mq_ctx *ctx;
168 struct blk_mq_hw_ctx *hctx;
169 };
170
blk_mq_tags_from_data(struct blk_mq_alloc_data * data)171 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
172 {
173 if (data->flags & BLK_MQ_REQ_INTERNAL)
174 return data->hctx->sched_tags;
175
176 return data->hctx->tags;
177 }
178
blk_mq_hctx_stopped(struct blk_mq_hw_ctx * hctx)179 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
180 {
181 return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
182 }
183
blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx * hctx)184 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
185 {
186 return hctx->nr_ctx && hctx->tags;
187 }
188
189 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part);
190 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
191 unsigned int inflight[2]);
192
blk_mq_put_dispatch_budget(struct blk_mq_hw_ctx * hctx)193 static inline void blk_mq_put_dispatch_budget(struct blk_mq_hw_ctx *hctx)
194 {
195 struct request_queue *q = hctx->queue;
196
197 if (q->mq_ops->put_budget)
198 q->mq_ops->put_budget(hctx);
199 }
200
blk_mq_get_dispatch_budget(struct blk_mq_hw_ctx * hctx)201 static inline bool blk_mq_get_dispatch_budget(struct blk_mq_hw_ctx *hctx)
202 {
203 struct request_queue *q = hctx->queue;
204
205 if (q->mq_ops->get_budget)
206 return q->mq_ops->get_budget(hctx);
207 return true;
208 }
209
__blk_mq_put_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)210 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
211 struct request *rq)
212 {
213 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
214 rq->tag = -1;
215
216 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
217 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
218 atomic_dec(&hctx->nr_active);
219 }
220 }
221
blk_mq_put_driver_tag(struct request * rq)222 static inline void blk_mq_put_driver_tag(struct request *rq)
223 {
224 if (rq->tag == -1 || rq->internal_tag == -1)
225 return;
226
227 __blk_mq_put_driver_tag(rq->mq_hctx, rq);
228 }
229
blk_mq_clear_mq_map(struct blk_mq_queue_map * qmap)230 static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
231 {
232 int cpu;
233
234 for_each_possible_cpu(cpu)
235 qmap->mq_map[cpu] = 0;
236 }
237
238 /*
239 * blk_mq_plug() - Get caller context plug
240 * @q: request queue
241 * @bio : the bio being submitted by the caller context
242 *
243 * Plugging, by design, may delay the insertion of BIOs into the elevator in
244 * order to increase BIO merging opportunities. This however can cause BIO
245 * insertion order to change from the order in which submit_bio() is being
246 * executed in the case of multiple contexts concurrently issuing BIOs to a
247 * device, even if these context are synchronized to tightly control BIO issuing
248 * order. While this is not a problem with regular block devices, this ordering
249 * change can cause write BIO failures with zoned block devices as these
250 * require sequential write patterns to zones. Prevent this from happening by
251 * ignoring the plug state of a BIO issuing context if the target request queue
252 * is for a zoned block device and the BIO to plug is a write operation.
253 *
254 * Return current->plug if the bio can be plugged and NULL otherwise
255 */
blk_mq_plug(struct request_queue * q,struct bio * bio)256 static inline struct blk_plug *blk_mq_plug(struct request_queue *q,
257 struct bio *bio)
258 {
259 /*
260 * For regular block devices or read operations, use the context plug
261 * which may be NULL if blk_start_plug() was not executed.
262 */
263 if (!blk_queue_is_zoned(q) || !op_is_write(bio_op(bio)))
264 return current->plug;
265
266 /* Zoned block device write operation case: do not plug the BIO */
267 return NULL;
268 }
269
270 #endif
271