1# SPDX-License-Identifier: GPL-2.0 2# 3# Generic algorithms support 4# 5config XOR_BLOCKS 6 tristate 7 8# 9# async_tx api: hardware offloaded memory transfer/transform support 10# 11source "crypto/async_tx/Kconfig" 12 13# 14# Cryptographic API Configuration 15# 16menuconfig CRYPTO 17 tristate "Cryptographic API" 18 help 19 This option provides the core Cryptographic API. 20 21if CRYPTO 22 23comment "Crypto core or helper" 24 25config CRYPTO_FIPS 26 bool "FIPS 200 compliance" 27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS 28 depends on (MODULE_SIG || !MODULES) 29 help 30 This option enables the fips boot option which is 31 required if you want the system to operate in a FIPS 200 32 certification. You should say no unless you know what 33 this is. 34 35config CRYPTO_ALGAPI 36 tristate 37 select CRYPTO_ALGAPI2 38 help 39 This option provides the API for cryptographic algorithms. 40 41config CRYPTO_ALGAPI2 42 tristate 43 44config CRYPTO_AEAD 45 tristate 46 select CRYPTO_AEAD2 47 select CRYPTO_ALGAPI 48 49config CRYPTO_AEAD2 50 tristate 51 select CRYPTO_ALGAPI2 52 select CRYPTO_NULL2 53 select CRYPTO_RNG2 54 55config CRYPTO_BLKCIPHER 56 tristate 57 select CRYPTO_BLKCIPHER2 58 select CRYPTO_ALGAPI 59 60config CRYPTO_BLKCIPHER2 61 tristate 62 select CRYPTO_ALGAPI2 63 select CRYPTO_RNG2 64 65config CRYPTO_HASH 66 tristate 67 select CRYPTO_HASH2 68 select CRYPTO_ALGAPI 69 70config CRYPTO_HASH2 71 tristate 72 select CRYPTO_ALGAPI2 73 74config CRYPTO_RNG 75 tristate 76 select CRYPTO_RNG2 77 select CRYPTO_ALGAPI 78 79config CRYPTO_RNG2 80 tristate 81 select CRYPTO_ALGAPI2 82 83config CRYPTO_RNG_DEFAULT 84 tristate 85 select CRYPTO_DRBG_MENU 86 87config CRYPTO_AKCIPHER2 88 tristate 89 select CRYPTO_ALGAPI2 90 91config CRYPTO_AKCIPHER 92 tristate 93 select CRYPTO_AKCIPHER2 94 select CRYPTO_ALGAPI 95 96config CRYPTO_KPP2 97 tristate 98 select CRYPTO_ALGAPI2 99 100config CRYPTO_KPP 101 tristate 102 select CRYPTO_ALGAPI 103 select CRYPTO_KPP2 104 105config CRYPTO_ACOMP2 106 tristate 107 select CRYPTO_ALGAPI2 108 select SGL_ALLOC 109 110config CRYPTO_ACOMP 111 tristate 112 select CRYPTO_ALGAPI 113 select CRYPTO_ACOMP2 114 115config CRYPTO_MANAGER 116 tristate "Cryptographic algorithm manager" 117 select CRYPTO_MANAGER2 118 help 119 Create default cryptographic template instantiations such as 120 cbc(aes). 121 122config CRYPTO_MANAGER2 123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y) 124 select CRYPTO_AEAD2 125 select CRYPTO_HASH2 126 select CRYPTO_BLKCIPHER2 127 select CRYPTO_AKCIPHER2 128 select CRYPTO_KPP2 129 select CRYPTO_ACOMP2 130 131config CRYPTO_USER 132 tristate "Userspace cryptographic algorithm configuration" 133 depends on NET 134 select CRYPTO_MANAGER 135 help 136 Userspace configuration for cryptographic instantiations such as 137 cbc(aes). 138 139if CRYPTO_MANAGER2 140 141config CRYPTO_MANAGER_DISABLE_TESTS 142 bool "Disable run-time self tests" 143 default y 144 help 145 Disable run-time self tests that normally take place at 146 algorithm registration. 147 148config CRYPTO_MANAGER_EXTRA_TESTS 149 bool "Enable extra run-time crypto self tests" 150 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS 151 help 152 Enable extra run-time self tests of registered crypto algorithms, 153 including randomized fuzz tests. 154 155 This is intended for developer use only, as these tests take much 156 longer to run than the normal self tests. 157 158endif # if CRYPTO_MANAGER2 159 160config CRYPTO_GF128MUL 161 tristate 162 163config CRYPTO_NULL 164 tristate "Null algorithms" 165 select CRYPTO_NULL2 166 help 167 These are 'Null' algorithms, used by IPsec, which do nothing. 168 169config CRYPTO_NULL2 170 tristate 171 select CRYPTO_ALGAPI2 172 select CRYPTO_BLKCIPHER2 173 select CRYPTO_HASH2 174 175config CRYPTO_PCRYPT 176 tristate "Parallel crypto engine" 177 depends on SMP 178 select PADATA 179 select CRYPTO_MANAGER 180 select CRYPTO_AEAD 181 help 182 This converts an arbitrary crypto algorithm into a parallel 183 algorithm that executes in kernel threads. 184 185config CRYPTO_CRYPTD 186 tristate "Software async crypto daemon" 187 select CRYPTO_BLKCIPHER 188 select CRYPTO_HASH 189 select CRYPTO_MANAGER 190 help 191 This is a generic software asynchronous crypto daemon that 192 converts an arbitrary synchronous software crypto algorithm 193 into an asynchronous algorithm that executes in a kernel thread. 194 195config CRYPTO_AUTHENC 196 tristate "Authenc support" 197 select CRYPTO_AEAD 198 select CRYPTO_BLKCIPHER 199 select CRYPTO_MANAGER 200 select CRYPTO_HASH 201 select CRYPTO_NULL 202 help 203 Authenc: Combined mode wrapper for IPsec. 204 This is required for IPSec. 205 206config CRYPTO_TEST 207 tristate "Testing module" 208 depends on m 209 select CRYPTO_MANAGER 210 help 211 Quick & dirty crypto test module. 212 213config CRYPTO_SIMD 214 tristate 215 select CRYPTO_CRYPTD 216 217config CRYPTO_GLUE_HELPER_X86 218 tristate 219 depends on X86 220 select CRYPTO_BLKCIPHER 221 222config CRYPTO_ENGINE 223 tristate 224 225comment "Public-key cryptography" 226 227config CRYPTO_RSA 228 tristate "RSA algorithm" 229 select CRYPTO_AKCIPHER 230 select CRYPTO_MANAGER 231 select MPILIB 232 select ASN1 233 help 234 Generic implementation of the RSA public key algorithm. 235 236config CRYPTO_DH 237 tristate "Diffie-Hellman algorithm" 238 select CRYPTO_KPP 239 select MPILIB 240 help 241 Generic implementation of the Diffie-Hellman algorithm. 242 243config CRYPTO_ECC 244 tristate 245 select CRYPTO_RNG_DEFAULT 246 247config CRYPTO_ECDH 248 tristate "ECDH algorithm" 249 select CRYPTO_ECC 250 select CRYPTO_KPP 251 help 252 Generic implementation of the ECDH algorithm 253 254config CRYPTO_ECRDSA 255 tristate "EC-RDSA (GOST 34.10) algorithm" 256 select CRYPTO_ECC 257 select CRYPTO_AKCIPHER 258 select CRYPTO_STREEBOG 259 select OID_REGISTRY 260 select ASN1 261 help 262 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, 263 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic 264 standard algorithms (called GOST algorithms). Only signature verification 265 is implemented. 266 267comment "Authenticated Encryption with Associated Data" 268 269config CRYPTO_CCM 270 tristate "CCM support" 271 select CRYPTO_CTR 272 select CRYPTO_HASH 273 select CRYPTO_AEAD 274 select CRYPTO_MANAGER 275 help 276 Support for Counter with CBC MAC. Required for IPsec. 277 278config CRYPTO_GCM 279 tristate "GCM/GMAC support" 280 select CRYPTO_CTR 281 select CRYPTO_AEAD 282 select CRYPTO_GHASH 283 select CRYPTO_NULL 284 select CRYPTO_MANAGER 285 help 286 Support for Galois/Counter Mode (GCM) and Galois Message 287 Authentication Code (GMAC). Required for IPSec. 288 289config CRYPTO_CHACHA20POLY1305 290 tristate "ChaCha20-Poly1305 AEAD support" 291 select CRYPTO_CHACHA20 292 select CRYPTO_POLY1305 293 select CRYPTO_AEAD 294 select CRYPTO_MANAGER 295 help 296 ChaCha20-Poly1305 AEAD support, RFC7539. 297 298 Support for the AEAD wrapper using the ChaCha20 stream cipher combined 299 with the Poly1305 authenticator. It is defined in RFC7539 for use in 300 IETF protocols. 301 302config CRYPTO_AEGIS128 303 tristate "AEGIS-128 AEAD algorithm" 304 select CRYPTO_AEAD 305 select CRYPTO_AES # for AES S-box tables 306 help 307 Support for the AEGIS-128 dedicated AEAD algorithm. 308 309config CRYPTO_AEGIS128_SIMD 310 bool "Support SIMD acceleration for AEGIS-128" 311 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON) 312 depends on !ARM || CC_IS_CLANG || GCC_VERSION >= 40800 313 default y 314 315config CRYPTO_AEGIS128_AESNI_SSE2 316 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)" 317 depends on X86 && 64BIT 318 select CRYPTO_AEAD 319 select CRYPTO_SIMD 320 help 321 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm. 322 323config CRYPTO_SEQIV 324 tristate "Sequence Number IV Generator" 325 select CRYPTO_AEAD 326 select CRYPTO_BLKCIPHER 327 select CRYPTO_NULL 328 select CRYPTO_RNG_DEFAULT 329 select CRYPTO_MANAGER 330 help 331 This IV generator generates an IV based on a sequence number by 332 xoring it with a salt. This algorithm is mainly useful for CTR 333 334config CRYPTO_ECHAINIV 335 tristate "Encrypted Chain IV Generator" 336 select CRYPTO_AEAD 337 select CRYPTO_NULL 338 select CRYPTO_RNG_DEFAULT 339 select CRYPTO_MANAGER 340 help 341 This IV generator generates an IV based on the encryption of 342 a sequence number xored with a salt. This is the default 343 algorithm for CBC. 344 345comment "Block modes" 346 347config CRYPTO_CBC 348 tristate "CBC support" 349 select CRYPTO_BLKCIPHER 350 select CRYPTO_MANAGER 351 help 352 CBC: Cipher Block Chaining mode 353 This block cipher algorithm is required for IPSec. 354 355config CRYPTO_CFB 356 tristate "CFB support" 357 select CRYPTO_BLKCIPHER 358 select CRYPTO_MANAGER 359 help 360 CFB: Cipher FeedBack mode 361 This block cipher algorithm is required for TPM2 Cryptography. 362 363config CRYPTO_CTR 364 tristate "CTR support" 365 select CRYPTO_BLKCIPHER 366 select CRYPTO_SEQIV 367 select CRYPTO_MANAGER 368 help 369 CTR: Counter mode 370 This block cipher algorithm is required for IPSec. 371 372config CRYPTO_CTS 373 tristate "CTS support" 374 select CRYPTO_BLKCIPHER 375 select CRYPTO_MANAGER 376 help 377 CTS: Cipher Text Stealing 378 This is the Cipher Text Stealing mode as described by 379 Section 8 of rfc2040 and referenced by rfc3962 380 (rfc3962 includes errata information in its Appendix A) or 381 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010. 382 This mode is required for Kerberos gss mechanism support 383 for AES encryption. 384 385 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final 386 387config CRYPTO_ECB 388 tristate "ECB support" 389 select CRYPTO_BLKCIPHER 390 select CRYPTO_MANAGER 391 help 392 ECB: Electronic CodeBook mode 393 This is the simplest block cipher algorithm. It simply encrypts 394 the input block by block. 395 396config CRYPTO_LRW 397 tristate "LRW support" 398 select CRYPTO_BLKCIPHER 399 select CRYPTO_MANAGER 400 select CRYPTO_GF128MUL 401 help 402 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable 403 narrow block cipher mode for dm-crypt. Use it with cipher 404 specification string aes-lrw-benbi, the key must be 256, 320 or 384. 405 The first 128, 192 or 256 bits in the key are used for AES and the 406 rest is used to tie each cipher block to its logical position. 407 408config CRYPTO_OFB 409 tristate "OFB support" 410 select CRYPTO_BLKCIPHER 411 select CRYPTO_MANAGER 412 help 413 OFB: the Output Feedback mode makes a block cipher into a synchronous 414 stream cipher. It generates keystream blocks, which are then XORed 415 with the plaintext blocks to get the ciphertext. Flipping a bit in the 416 ciphertext produces a flipped bit in the plaintext at the same 417 location. This property allows many error correcting codes to function 418 normally even when applied before encryption. 419 420config CRYPTO_PCBC 421 tristate "PCBC support" 422 select CRYPTO_BLKCIPHER 423 select CRYPTO_MANAGER 424 help 425 PCBC: Propagating Cipher Block Chaining mode 426 This block cipher algorithm is required for RxRPC. 427 428config CRYPTO_XTS 429 tristate "XTS support" 430 select CRYPTO_BLKCIPHER 431 select CRYPTO_MANAGER 432 select CRYPTO_ECB 433 help 434 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain, 435 key size 256, 384 or 512 bits. This implementation currently 436 can't handle a sectorsize which is not a multiple of 16 bytes. 437 438config CRYPTO_KEYWRAP 439 tristate "Key wrapping support" 440 select CRYPTO_BLKCIPHER 441 select CRYPTO_MANAGER 442 help 443 Support for key wrapping (NIST SP800-38F / RFC3394) without 444 padding. 445 446config CRYPTO_NHPOLY1305 447 tristate 448 select CRYPTO_HASH 449 select CRYPTO_POLY1305 450 451config CRYPTO_NHPOLY1305_SSE2 452 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)" 453 depends on X86 && 64BIT 454 select CRYPTO_NHPOLY1305 455 help 456 SSE2 optimized implementation of the hash function used by the 457 Adiantum encryption mode. 458 459config CRYPTO_NHPOLY1305_AVX2 460 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)" 461 depends on X86 && 64BIT 462 select CRYPTO_NHPOLY1305 463 help 464 AVX2 optimized implementation of the hash function used by the 465 Adiantum encryption mode. 466 467config CRYPTO_ADIANTUM 468 tristate "Adiantum support" 469 select CRYPTO_CHACHA20 470 select CRYPTO_POLY1305 471 select CRYPTO_NHPOLY1305 472 select CRYPTO_MANAGER 473 help 474 Adiantum is a tweakable, length-preserving encryption mode 475 designed for fast and secure disk encryption, especially on 476 CPUs without dedicated crypto instructions. It encrypts 477 each sector using the XChaCha12 stream cipher, two passes of 478 an ε-almost-∆-universal hash function, and an invocation of 479 the AES-256 block cipher on a single 16-byte block. On CPUs 480 without AES instructions, Adiantum is much faster than 481 AES-XTS. 482 483 Adiantum's security is provably reducible to that of its 484 underlying stream and block ciphers, subject to a security 485 bound. Unlike XTS, Adiantum is a true wide-block encryption 486 mode, so it actually provides an even stronger notion of 487 security than XTS, subject to the security bound. 488 489 If unsure, say N. 490 491config CRYPTO_ESSIV 492 tristate "ESSIV support for block encryption" 493 select CRYPTO_AUTHENC 494 help 495 Encrypted salt-sector initialization vector (ESSIV) is an IV 496 generation method that is used in some cases by fscrypt and/or 497 dm-crypt. It uses the hash of the block encryption key as the 498 symmetric key for a block encryption pass applied to the input 499 IV, making low entropy IV sources more suitable for block 500 encryption. 501 502 This driver implements a crypto API template that can be 503 instantiated either as an skcipher or as an AEAD (depending on the 504 type of the first template argument), and which defers encryption 505 and decryption requests to the encapsulated cipher after applying 506 ESSIV to the input IV. Note that in the AEAD case, it is assumed 507 that the keys are presented in the same format used by the authenc 508 template, and that the IV appears at the end of the authenticated 509 associated data (AAD) region (which is how dm-crypt uses it.) 510 511 Note that the use of ESSIV is not recommended for new deployments, 512 and so this only needs to be enabled when interoperability with 513 existing encrypted volumes of filesystems is required, or when 514 building for a particular system that requires it (e.g., when 515 the SoC in question has accelerated CBC but not XTS, making CBC 516 combined with ESSIV the only feasible mode for h/w accelerated 517 block encryption) 518 519comment "Hash modes" 520 521config CRYPTO_CMAC 522 tristate "CMAC support" 523 select CRYPTO_HASH 524 select CRYPTO_MANAGER 525 help 526 Cipher-based Message Authentication Code (CMAC) specified by 527 The National Institute of Standards and Technology (NIST). 528 529 https://tools.ietf.org/html/rfc4493 530 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf 531 532config CRYPTO_HMAC 533 tristate "HMAC support" 534 select CRYPTO_HASH 535 select CRYPTO_MANAGER 536 help 537 HMAC: Keyed-Hashing for Message Authentication (RFC2104). 538 This is required for IPSec. 539 540config CRYPTO_XCBC 541 tristate "XCBC support" 542 select CRYPTO_HASH 543 select CRYPTO_MANAGER 544 help 545 XCBC: Keyed-Hashing with encryption algorithm 546 http://www.ietf.org/rfc/rfc3566.txt 547 http://csrc.nist.gov/encryption/modes/proposedmodes/ 548 xcbc-mac/xcbc-mac-spec.pdf 549 550config CRYPTO_VMAC 551 tristate "VMAC support" 552 select CRYPTO_HASH 553 select CRYPTO_MANAGER 554 help 555 VMAC is a message authentication algorithm designed for 556 very high speed on 64-bit architectures. 557 558 See also: 559 <http://fastcrypto.org/vmac> 560 561comment "Digest" 562 563config CRYPTO_CRC32C 564 tristate "CRC32c CRC algorithm" 565 select CRYPTO_HASH 566 select CRC32 567 help 568 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used 569 by iSCSI for header and data digests and by others. 570 See Castagnoli93. Module will be crc32c. 571 572config CRYPTO_CRC32C_INTEL 573 tristate "CRC32c INTEL hardware acceleration" 574 depends on X86 575 select CRYPTO_HASH 576 help 577 In Intel processor with SSE4.2 supported, the processor will 578 support CRC32C implementation using hardware accelerated CRC32 579 instruction. This option will create 'crc32c-intel' module, 580 which will enable any routine to use the CRC32 instruction to 581 gain performance compared with software implementation. 582 Module will be crc32c-intel. 583 584config CRYPTO_CRC32C_VPMSUM 585 tristate "CRC32c CRC algorithm (powerpc64)" 586 depends on PPC64 && ALTIVEC 587 select CRYPTO_HASH 588 select CRC32 589 help 590 CRC32c algorithm implemented using vector polynomial multiply-sum 591 (vpmsum) instructions, introduced in POWER8. Enable on POWER8 592 and newer processors for improved performance. 593 594 595config CRYPTO_CRC32C_SPARC64 596 tristate "CRC32c CRC algorithm (SPARC64)" 597 depends on SPARC64 598 select CRYPTO_HASH 599 select CRC32 600 help 601 CRC32c CRC algorithm implemented using sparc64 crypto instructions, 602 when available. 603 604config CRYPTO_CRC32 605 tristate "CRC32 CRC algorithm" 606 select CRYPTO_HASH 607 select CRC32 608 help 609 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm. 610 Shash crypto api wrappers to crc32_le function. 611 612config CRYPTO_CRC32_PCLMUL 613 tristate "CRC32 PCLMULQDQ hardware acceleration" 614 depends on X86 615 select CRYPTO_HASH 616 select CRC32 617 help 618 From Intel Westmere and AMD Bulldozer processor with SSE4.2 619 and PCLMULQDQ supported, the processor will support 620 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ 621 instruction. This option will create 'crc32-pclmul' module, 622 which will enable any routine to use the CRC-32-IEEE 802.3 checksum 623 and gain better performance as compared with the table implementation. 624 625config CRYPTO_CRC32_MIPS 626 tristate "CRC32c and CRC32 CRC algorithm (MIPS)" 627 depends on MIPS_CRC_SUPPORT 628 select CRYPTO_HASH 629 help 630 CRC32c and CRC32 CRC algorithms implemented using mips crypto 631 instructions, when available. 632 633 634config CRYPTO_XXHASH 635 tristate "xxHash hash algorithm" 636 select CRYPTO_HASH 637 select XXHASH 638 help 639 xxHash non-cryptographic hash algorithm. Extremely fast, working at 640 speeds close to RAM limits. 641 642config CRYPTO_BLAKE2S 643 tristate "BLAKE2s digest algorithm" 644 select CRYPTO_LIB_BLAKE2S_GENERIC 645 select CRYPTO_HASH 646 help 647 Implementation of cryptographic hash function BLAKE2s 648 optimized for 8-32bit platforms and can produce digests of any size 649 between 1 to 32. The keyed hash is also implemented. 650 651 This module provides the following algorithms: 652 653 - blake2s-128 654 - blake2s-160 655 - blake2s-224 656 - blake2s-256 657 658 See https://blake2.net for further information. 659 660config CRYPTO_BLAKE2S_X86 661 tristate "BLAKE2s digest algorithm (x86 accelerated version)" 662 depends on X86 && 64BIT 663 select CRYPTO_LIB_BLAKE2S_GENERIC 664 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S 665 666config CRYPTO_BLAKE2B 667 tristate "BLAKE2b digest algorithm" 668 select CRYPTO_HASH 669 help 670 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2), 671 optimized for 64bit platforms and can produce digests of any size 672 between 1 to 64. The keyed hash is also implemented. 673 674 This module provides the following algorithms: 675 676 - blake2b-160 677 - blake2b-256 678 - blake2b-384 679 - blake2b-512 680 681 See https://blake2.net for further information. 682 683config CRYPTO_CRCT10DIF 684 tristate "CRCT10DIF algorithm" 685 select CRYPTO_HASH 686 help 687 CRC T10 Data Integrity Field computation is being cast as 688 a crypto transform. This allows for faster crc t10 diff 689 transforms to be used if they are available. 690 691config CRYPTO_CRCT10DIF_PCLMUL 692 tristate "CRCT10DIF PCLMULQDQ hardware acceleration" 693 depends on X86 && 64BIT && CRC_T10DIF 694 select CRYPTO_HASH 695 help 696 For x86_64 processors with SSE4.2 and PCLMULQDQ supported, 697 CRC T10 DIF PCLMULQDQ computation can be hardware 698 accelerated PCLMULQDQ instruction. This option will create 699 'crct10dif-pclmul' module, which is faster when computing the 700 crct10dif checksum as compared with the generic table implementation. 701 702config CRYPTO_CRCT10DIF_VPMSUM 703 tristate "CRC32T10DIF powerpc64 hardware acceleration" 704 depends on PPC64 && ALTIVEC && CRC_T10DIF 705 select CRYPTO_HASH 706 help 707 CRC10T10DIF algorithm implemented using vector polynomial 708 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on 709 POWER8 and newer processors for improved performance. 710 711config CRYPTO_VPMSUM_TESTER 712 tristate "Powerpc64 vpmsum hardware acceleration tester" 713 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM 714 help 715 Stress test for CRC32c and CRC-T10DIF algorithms implemented with 716 POWER8 vpmsum instructions. 717 Unless you are testing these algorithms, you don't need this. 718 719config CRYPTO_GHASH 720 tristate "GHASH hash function" 721 select CRYPTO_GF128MUL 722 select CRYPTO_HASH 723 help 724 GHASH is the hash function used in GCM (Galois/Counter Mode). 725 It is not a general-purpose cryptographic hash function. 726 727config CRYPTO_POLY1305 728 tristate "Poly1305 authenticator algorithm" 729 select CRYPTO_HASH 730 help 731 Poly1305 authenticator algorithm, RFC7539. 732 733 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 734 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 735 in IETF protocols. This is the portable C implementation of Poly1305. 736 737config CRYPTO_POLY1305_X86_64 738 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)" 739 depends on X86 && 64BIT 740 select CRYPTO_POLY1305 741 help 742 Poly1305 authenticator algorithm, RFC7539. 743 744 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein. 745 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use 746 in IETF protocols. This is the x86_64 assembler implementation using SIMD 747 instructions. 748 749config CRYPTO_MD4 750 tristate "MD4 digest algorithm" 751 select CRYPTO_HASH 752 help 753 MD4 message digest algorithm (RFC1320). 754 755config CRYPTO_MD5 756 tristate "MD5 digest algorithm" 757 select CRYPTO_HASH 758 help 759 MD5 message digest algorithm (RFC1321). 760 761config CRYPTO_MD5_OCTEON 762 tristate "MD5 digest algorithm (OCTEON)" 763 depends on CPU_CAVIUM_OCTEON 764 select CRYPTO_MD5 765 select CRYPTO_HASH 766 help 767 MD5 message digest algorithm (RFC1321) implemented 768 using OCTEON crypto instructions, when available. 769 770config CRYPTO_MD5_PPC 771 tristate "MD5 digest algorithm (PPC)" 772 depends on PPC 773 select CRYPTO_HASH 774 help 775 MD5 message digest algorithm (RFC1321) implemented 776 in PPC assembler. 777 778config CRYPTO_MD5_SPARC64 779 tristate "MD5 digest algorithm (SPARC64)" 780 depends on SPARC64 781 select CRYPTO_MD5 782 select CRYPTO_HASH 783 help 784 MD5 message digest algorithm (RFC1321) implemented 785 using sparc64 crypto instructions, when available. 786 787config CRYPTO_MICHAEL_MIC 788 tristate "Michael MIC keyed digest algorithm" 789 select CRYPTO_HASH 790 help 791 Michael MIC is used for message integrity protection in TKIP 792 (IEEE 802.11i). This algorithm is required for TKIP, but it 793 should not be used for other purposes because of the weakness 794 of the algorithm. 795 796config CRYPTO_RMD128 797 tristate "RIPEMD-128 digest algorithm" 798 select CRYPTO_HASH 799 help 800 RIPEMD-128 (ISO/IEC 10118-3:2004). 801 802 RIPEMD-128 is a 128-bit cryptographic hash function. It should only 803 be used as a secure replacement for RIPEMD. For other use cases, 804 RIPEMD-160 should be used. 805 806 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 807 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 808 809config CRYPTO_RMD160 810 tristate "RIPEMD-160 digest algorithm" 811 select CRYPTO_HASH 812 help 813 RIPEMD-160 (ISO/IEC 10118-3:2004). 814 815 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended 816 to be used as a secure replacement for the 128-bit hash functions 817 MD4, MD5 and it's predecessor RIPEMD 818 (not to be confused with RIPEMD-128). 819 820 It's speed is comparable to SHA1 and there are no known attacks 821 against RIPEMD-160. 822 823 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 824 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 825 826config CRYPTO_RMD256 827 tristate "RIPEMD-256 digest algorithm" 828 select CRYPTO_HASH 829 help 830 RIPEMD-256 is an optional extension of RIPEMD-128 with a 831 256 bit hash. It is intended for applications that require 832 longer hash-results, without needing a larger security level 833 (than RIPEMD-128). 834 835 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 836 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 837 838config CRYPTO_RMD320 839 tristate "RIPEMD-320 digest algorithm" 840 select CRYPTO_HASH 841 help 842 RIPEMD-320 is an optional extension of RIPEMD-160 with a 843 320 bit hash. It is intended for applications that require 844 longer hash-results, without needing a larger security level 845 (than RIPEMD-160). 846 847 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel. 848 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html> 849 850config CRYPTO_SHA1 851 tristate "SHA1 digest algorithm" 852 select CRYPTO_HASH 853 help 854 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 855 856config CRYPTO_SHA1_SSSE3 857 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 858 depends on X86 && 64BIT 859 select CRYPTO_SHA1 860 select CRYPTO_HASH 861 help 862 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 863 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector 864 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions), 865 when available. 866 867config CRYPTO_SHA256_SSSE3 868 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)" 869 depends on X86 && 64BIT 870 select CRYPTO_SHA256 871 select CRYPTO_HASH 872 help 873 SHA-256 secure hash standard (DFIPS 180-2) implemented 874 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 875 Extensions version 1 (AVX1), or Advanced Vector Extensions 876 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New 877 Instructions) when available. 878 879config CRYPTO_SHA512_SSSE3 880 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)" 881 depends on X86 && 64BIT 882 select CRYPTO_SHA512 883 select CRYPTO_HASH 884 help 885 SHA-512 secure hash standard (DFIPS 180-2) implemented 886 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector 887 Extensions version 1 (AVX1), or Advanced Vector Extensions 888 version 2 (AVX2) instructions, when available. 889 890config CRYPTO_SHA1_OCTEON 891 tristate "SHA1 digest algorithm (OCTEON)" 892 depends on CPU_CAVIUM_OCTEON 893 select CRYPTO_SHA1 894 select CRYPTO_HASH 895 help 896 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 897 using OCTEON crypto instructions, when available. 898 899config CRYPTO_SHA1_SPARC64 900 tristate "SHA1 digest algorithm (SPARC64)" 901 depends on SPARC64 902 select CRYPTO_SHA1 903 select CRYPTO_HASH 904 help 905 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented 906 using sparc64 crypto instructions, when available. 907 908config CRYPTO_SHA1_PPC 909 tristate "SHA1 digest algorithm (powerpc)" 910 depends on PPC 911 help 912 This is the powerpc hardware accelerated implementation of the 913 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). 914 915config CRYPTO_SHA1_PPC_SPE 916 tristate "SHA1 digest algorithm (PPC SPE)" 917 depends on PPC && SPE 918 help 919 SHA-1 secure hash standard (DFIPS 180-4) implemented 920 using powerpc SPE SIMD instruction set. 921 922config CRYPTO_SHA256 923 tristate "SHA224 and SHA256 digest algorithm" 924 select CRYPTO_HASH 925 select CRYPTO_LIB_SHA256 926 help 927 SHA256 secure hash standard (DFIPS 180-2). 928 929 This version of SHA implements a 256 bit hash with 128 bits of 930 security against collision attacks. 931 932 This code also includes SHA-224, a 224 bit hash with 112 bits 933 of security against collision attacks. 934 935config CRYPTO_SHA256_PPC_SPE 936 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)" 937 depends on PPC && SPE 938 select CRYPTO_SHA256 939 select CRYPTO_HASH 940 help 941 SHA224 and SHA256 secure hash standard (DFIPS 180-2) 942 implemented using powerpc SPE SIMD instruction set. 943 944config CRYPTO_SHA256_OCTEON 945 tristate "SHA224 and SHA256 digest algorithm (OCTEON)" 946 depends on CPU_CAVIUM_OCTEON 947 select CRYPTO_SHA256 948 select CRYPTO_HASH 949 help 950 SHA-256 secure hash standard (DFIPS 180-2) implemented 951 using OCTEON crypto instructions, when available. 952 953config CRYPTO_SHA256_SPARC64 954 tristate "SHA224 and SHA256 digest algorithm (SPARC64)" 955 depends on SPARC64 956 select CRYPTO_SHA256 957 select CRYPTO_HASH 958 help 959 SHA-256 secure hash standard (DFIPS 180-2) implemented 960 using sparc64 crypto instructions, when available. 961 962config CRYPTO_SHA512 963 tristate "SHA384 and SHA512 digest algorithms" 964 select CRYPTO_HASH 965 help 966 SHA512 secure hash standard (DFIPS 180-2). 967 968 This version of SHA implements a 512 bit hash with 256 bits of 969 security against collision attacks. 970 971 This code also includes SHA-384, a 384 bit hash with 192 bits 972 of security against collision attacks. 973 974config CRYPTO_SHA512_OCTEON 975 tristate "SHA384 and SHA512 digest algorithms (OCTEON)" 976 depends on CPU_CAVIUM_OCTEON 977 select CRYPTO_SHA512 978 select CRYPTO_HASH 979 help 980 SHA-512 secure hash standard (DFIPS 180-2) implemented 981 using OCTEON crypto instructions, when available. 982 983config CRYPTO_SHA512_SPARC64 984 tristate "SHA384 and SHA512 digest algorithm (SPARC64)" 985 depends on SPARC64 986 select CRYPTO_SHA512 987 select CRYPTO_HASH 988 help 989 SHA-512 secure hash standard (DFIPS 180-2) implemented 990 using sparc64 crypto instructions, when available. 991 992config CRYPTO_SHA3 993 tristate "SHA3 digest algorithm" 994 select CRYPTO_HASH 995 help 996 SHA-3 secure hash standard (DFIPS 202). It's based on 997 cryptographic sponge function family called Keccak. 998 999 References: 1000 http://keccak.noekeon.org/ 1001 1002config CRYPTO_SM3 1003 tristate "SM3 digest algorithm" 1004 select CRYPTO_HASH 1005 help 1006 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3). 1007 It is part of the Chinese Commercial Cryptography suite. 1008 1009 References: 1010 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf 1011 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash 1012 1013config CRYPTO_STREEBOG 1014 tristate "Streebog Hash Function" 1015 select CRYPTO_HASH 1016 help 1017 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian 1018 cryptographic standard algorithms (called GOST algorithms). 1019 This setting enables two hash algorithms with 256 and 512 bits output. 1020 1021 References: 1022 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf 1023 https://tools.ietf.org/html/rfc6986 1024 1025config CRYPTO_TGR192 1026 tristate "Tiger digest algorithms" 1027 select CRYPTO_HASH 1028 help 1029 Tiger hash algorithm 192, 160 and 128-bit hashes 1030 1031 Tiger is a hash function optimized for 64-bit processors while 1032 still having decent performance on 32-bit processors. 1033 Tiger was developed by Ross Anderson and Eli Biham. 1034 1035 See also: 1036 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>. 1037 1038config CRYPTO_WP512 1039 tristate "Whirlpool digest algorithms" 1040 select CRYPTO_HASH 1041 help 1042 Whirlpool hash algorithm 512, 384 and 256-bit hashes 1043 1044 Whirlpool-512 is part of the NESSIE cryptographic primitives. 1045 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard 1046 1047 See also: 1048 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html> 1049 1050config CRYPTO_GHASH_CLMUL_NI_INTEL 1051 tristate "GHASH hash function (CLMUL-NI accelerated)" 1052 depends on X86 && 64BIT 1053 select CRYPTO_CRYPTD 1054 help 1055 This is the x86_64 CLMUL-NI accelerated implementation of 1056 GHASH, the hash function used in GCM (Galois/Counter mode). 1057 1058comment "Ciphers" 1059 1060config CRYPTO_AES 1061 tristate "AES cipher algorithms" 1062 select CRYPTO_ALGAPI 1063 select CRYPTO_LIB_AES 1064 help 1065 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1066 algorithm. 1067 1068 Rijndael appears to be consistently a very good performer in 1069 both hardware and software across a wide range of computing 1070 environments regardless of its use in feedback or non-feedback 1071 modes. Its key setup time is excellent, and its key agility is 1072 good. Rijndael's very low memory requirements make it very well 1073 suited for restricted-space environments, in which it also 1074 demonstrates excellent performance. Rijndael's operations are 1075 among the easiest to defend against power and timing attacks. 1076 1077 The AES specifies three key sizes: 128, 192 and 256 bits 1078 1079 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information. 1080 1081config CRYPTO_AES_TI 1082 tristate "Fixed time AES cipher" 1083 select CRYPTO_ALGAPI 1084 select CRYPTO_LIB_AES 1085 help 1086 This is a generic implementation of AES that attempts to eliminate 1087 data dependent latencies as much as possible without affecting 1088 performance too much. It is intended for use by the generic CCM 1089 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely 1090 solely on encryption (although decryption is supported as well, but 1091 with a more dramatic performance hit) 1092 1093 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and 1094 8 for decryption), this implementation only uses just two S-boxes of 1095 256 bytes each, and attempts to eliminate data dependent latencies by 1096 prefetching the entire table into the cache at the start of each 1097 block. Interrupts are also disabled to avoid races where cachelines 1098 are evicted when the CPU is interrupted to do something else. 1099 1100config CRYPTO_AES_NI_INTEL 1101 tristate "AES cipher algorithms (AES-NI)" 1102 depends on X86 1103 select CRYPTO_AEAD 1104 select CRYPTO_LIB_AES 1105 select CRYPTO_ALGAPI 1106 select CRYPTO_BLKCIPHER 1107 select CRYPTO_GLUE_HELPER_X86 if 64BIT 1108 select CRYPTO_SIMD 1109 help 1110 Use Intel AES-NI instructions for AES algorithm. 1111 1112 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1113 algorithm. 1114 1115 Rijndael appears to be consistently a very good performer in 1116 both hardware and software across a wide range of computing 1117 environments regardless of its use in feedback or non-feedback 1118 modes. Its key setup time is excellent, and its key agility is 1119 good. Rijndael's very low memory requirements make it very well 1120 suited for restricted-space environments, in which it also 1121 demonstrates excellent performance. Rijndael's operations are 1122 among the easiest to defend against power and timing attacks. 1123 1124 The AES specifies three key sizes: 128, 192 and 256 bits 1125 1126 See <http://csrc.nist.gov/encryption/aes/> for more information. 1127 1128 In addition to AES cipher algorithm support, the acceleration 1129 for some popular block cipher mode is supported too, including 1130 ECB, CBC, LRW, XTS. The 64 bit version has additional 1131 acceleration for CTR. 1132 1133config CRYPTO_AES_SPARC64 1134 tristate "AES cipher algorithms (SPARC64)" 1135 depends on SPARC64 1136 select CRYPTO_CRYPTD 1137 select CRYPTO_ALGAPI 1138 help 1139 Use SPARC64 crypto opcodes for AES algorithm. 1140 1141 AES cipher algorithms (FIPS-197). AES uses the Rijndael 1142 algorithm. 1143 1144 Rijndael appears to be consistently a very good performer in 1145 both hardware and software across a wide range of computing 1146 environments regardless of its use in feedback or non-feedback 1147 modes. Its key setup time is excellent, and its key agility is 1148 good. Rijndael's very low memory requirements make it very well 1149 suited for restricted-space environments, in which it also 1150 demonstrates excellent performance. Rijndael's operations are 1151 among the easiest to defend against power and timing attacks. 1152 1153 The AES specifies three key sizes: 128, 192 and 256 bits 1154 1155 See <http://csrc.nist.gov/encryption/aes/> for more information. 1156 1157 In addition to AES cipher algorithm support, the acceleration 1158 for some popular block cipher mode is supported too, including 1159 ECB and CBC. 1160 1161config CRYPTO_AES_PPC_SPE 1162 tristate "AES cipher algorithms (PPC SPE)" 1163 depends on PPC && SPE 1164 help 1165 AES cipher algorithms (FIPS-197). Additionally the acceleration 1166 for popular block cipher modes ECB, CBC, CTR and XTS is supported. 1167 This module should only be used for low power (router) devices 1168 without hardware AES acceleration (e.g. caam crypto). It reduces the 1169 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates 1170 timining attacks. Nevertheless it might be not as secure as other 1171 architecture specific assembler implementations that work on 1KB 1172 tables or 256 bytes S-boxes. 1173 1174config CRYPTO_ANUBIS 1175 tristate "Anubis cipher algorithm" 1176 select CRYPTO_ALGAPI 1177 help 1178 Anubis cipher algorithm. 1179 1180 Anubis is a variable key length cipher which can use keys from 1181 128 bits to 320 bits in length. It was evaluated as a entrant 1182 in the NESSIE competition. 1183 1184 See also: 1185 <https://www.cosic.esat.kuleuven.be/nessie/reports/> 1186 <http://www.larc.usp.br/~pbarreto/AnubisPage.html> 1187 1188config CRYPTO_ARC4 1189 tristate "ARC4 cipher algorithm" 1190 select CRYPTO_BLKCIPHER 1191 select CRYPTO_LIB_ARC4 1192 help 1193 ARC4 cipher algorithm. 1194 1195 ARC4 is a stream cipher using keys ranging from 8 bits to 2048 1196 bits in length. This algorithm is required for driver-based 1197 WEP, but it should not be for other purposes because of the 1198 weakness of the algorithm. 1199 1200config CRYPTO_BLOWFISH 1201 tristate "Blowfish cipher algorithm" 1202 select CRYPTO_ALGAPI 1203 select CRYPTO_BLOWFISH_COMMON 1204 help 1205 Blowfish cipher algorithm, by Bruce Schneier. 1206 1207 This is a variable key length cipher which can use keys from 32 1208 bits to 448 bits in length. It's fast, simple and specifically 1209 designed for use on "large microprocessors". 1210 1211 See also: 1212 <http://www.schneier.com/blowfish.html> 1213 1214config CRYPTO_BLOWFISH_COMMON 1215 tristate 1216 help 1217 Common parts of the Blowfish cipher algorithm shared by the 1218 generic c and the assembler implementations. 1219 1220 See also: 1221 <http://www.schneier.com/blowfish.html> 1222 1223config CRYPTO_BLOWFISH_X86_64 1224 tristate "Blowfish cipher algorithm (x86_64)" 1225 depends on X86 && 64BIT 1226 select CRYPTO_BLKCIPHER 1227 select CRYPTO_BLOWFISH_COMMON 1228 help 1229 Blowfish cipher algorithm (x86_64), by Bruce Schneier. 1230 1231 This is a variable key length cipher which can use keys from 32 1232 bits to 448 bits in length. It's fast, simple and specifically 1233 designed for use on "large microprocessors". 1234 1235 See also: 1236 <http://www.schneier.com/blowfish.html> 1237 1238config CRYPTO_CAMELLIA 1239 tristate "Camellia cipher algorithms" 1240 depends on CRYPTO 1241 select CRYPTO_ALGAPI 1242 help 1243 Camellia cipher algorithms module. 1244 1245 Camellia is a symmetric key block cipher developed jointly 1246 at NTT and Mitsubishi Electric Corporation. 1247 1248 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1249 1250 See also: 1251 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1252 1253config CRYPTO_CAMELLIA_X86_64 1254 tristate "Camellia cipher algorithm (x86_64)" 1255 depends on X86 && 64BIT 1256 depends on CRYPTO 1257 select CRYPTO_BLKCIPHER 1258 select CRYPTO_GLUE_HELPER_X86 1259 help 1260 Camellia cipher algorithm module (x86_64). 1261 1262 Camellia is a symmetric key block cipher developed jointly 1263 at NTT and Mitsubishi Electric Corporation. 1264 1265 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1266 1267 See also: 1268 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1269 1270config CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1271 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)" 1272 depends on X86 && 64BIT 1273 depends on CRYPTO 1274 select CRYPTO_BLKCIPHER 1275 select CRYPTO_CAMELLIA_X86_64 1276 select CRYPTO_GLUE_HELPER_X86 1277 select CRYPTO_SIMD 1278 select CRYPTO_XTS 1279 help 1280 Camellia cipher algorithm module (x86_64/AES-NI/AVX). 1281 1282 Camellia is a symmetric key block cipher developed jointly 1283 at NTT and Mitsubishi Electric Corporation. 1284 1285 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1286 1287 See also: 1288 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1289 1290config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64 1291 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)" 1292 depends on X86 && 64BIT 1293 depends on CRYPTO 1294 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64 1295 help 1296 Camellia cipher algorithm module (x86_64/AES-NI/AVX2). 1297 1298 Camellia is a symmetric key block cipher developed jointly 1299 at NTT and Mitsubishi Electric Corporation. 1300 1301 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1302 1303 See also: 1304 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1305 1306config CRYPTO_CAMELLIA_SPARC64 1307 tristate "Camellia cipher algorithm (SPARC64)" 1308 depends on SPARC64 1309 depends on CRYPTO 1310 select CRYPTO_ALGAPI 1311 help 1312 Camellia cipher algorithm module (SPARC64). 1313 1314 Camellia is a symmetric key block cipher developed jointly 1315 at NTT and Mitsubishi Electric Corporation. 1316 1317 The Camellia specifies three key sizes: 128, 192 and 256 bits. 1318 1319 See also: 1320 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html> 1321 1322config CRYPTO_CAST_COMMON 1323 tristate 1324 help 1325 Common parts of the CAST cipher algorithms shared by the 1326 generic c and the assembler implementations. 1327 1328config CRYPTO_CAST5 1329 tristate "CAST5 (CAST-128) cipher algorithm" 1330 select CRYPTO_ALGAPI 1331 select CRYPTO_CAST_COMMON 1332 help 1333 The CAST5 encryption algorithm (synonymous with CAST-128) is 1334 described in RFC2144. 1335 1336config CRYPTO_CAST5_AVX_X86_64 1337 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)" 1338 depends on X86 && 64BIT 1339 select CRYPTO_BLKCIPHER 1340 select CRYPTO_CAST5 1341 select CRYPTO_CAST_COMMON 1342 select CRYPTO_SIMD 1343 help 1344 The CAST5 encryption algorithm (synonymous with CAST-128) is 1345 described in RFC2144. 1346 1347 This module provides the Cast5 cipher algorithm that processes 1348 sixteen blocks parallel using the AVX instruction set. 1349 1350config CRYPTO_CAST6 1351 tristate "CAST6 (CAST-256) cipher algorithm" 1352 select CRYPTO_ALGAPI 1353 select CRYPTO_CAST_COMMON 1354 help 1355 The CAST6 encryption algorithm (synonymous with CAST-256) is 1356 described in RFC2612. 1357 1358config CRYPTO_CAST6_AVX_X86_64 1359 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)" 1360 depends on X86 && 64BIT 1361 select CRYPTO_BLKCIPHER 1362 select CRYPTO_CAST6 1363 select CRYPTO_CAST_COMMON 1364 select CRYPTO_GLUE_HELPER_X86 1365 select CRYPTO_SIMD 1366 select CRYPTO_XTS 1367 help 1368 The CAST6 encryption algorithm (synonymous with CAST-256) is 1369 described in RFC2612. 1370 1371 This module provides the Cast6 cipher algorithm that processes 1372 eight blocks parallel using the AVX instruction set. 1373 1374config CRYPTO_DES 1375 tristate "DES and Triple DES EDE cipher algorithms" 1376 select CRYPTO_ALGAPI 1377 select CRYPTO_LIB_DES 1378 help 1379 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). 1380 1381config CRYPTO_DES_SPARC64 1382 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)" 1383 depends on SPARC64 1384 select CRYPTO_ALGAPI 1385 select CRYPTO_LIB_DES 1386 help 1387 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3), 1388 optimized using SPARC64 crypto opcodes. 1389 1390config CRYPTO_DES3_EDE_X86_64 1391 tristate "Triple DES EDE cipher algorithm (x86-64)" 1392 depends on X86 && 64BIT 1393 select CRYPTO_BLKCIPHER 1394 select CRYPTO_LIB_DES 1395 help 1396 Triple DES EDE (FIPS 46-3) algorithm. 1397 1398 This module provides implementation of the Triple DES EDE cipher 1399 algorithm that is optimized for x86-64 processors. Two versions of 1400 algorithm are provided; regular processing one input block and 1401 one that processes three blocks parallel. 1402 1403config CRYPTO_FCRYPT 1404 tristate "FCrypt cipher algorithm" 1405 select CRYPTO_ALGAPI 1406 select CRYPTO_BLKCIPHER 1407 help 1408 FCrypt algorithm used by RxRPC. 1409 1410config CRYPTO_KHAZAD 1411 tristate "Khazad cipher algorithm" 1412 select CRYPTO_ALGAPI 1413 help 1414 Khazad cipher algorithm. 1415 1416 Khazad was a finalist in the initial NESSIE competition. It is 1417 an algorithm optimized for 64-bit processors with good performance 1418 on 32-bit processors. Khazad uses an 128 bit key size. 1419 1420 See also: 1421 <http://www.larc.usp.br/~pbarreto/KhazadPage.html> 1422 1423config CRYPTO_SALSA20 1424 tristate "Salsa20 stream cipher algorithm" 1425 select CRYPTO_BLKCIPHER 1426 help 1427 Salsa20 stream cipher algorithm. 1428 1429 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT 1430 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/> 1431 1432 The Salsa20 stream cipher algorithm is designed by Daniel J. 1433 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html> 1434 1435config CRYPTO_CHACHA20 1436 tristate "ChaCha stream cipher algorithms" 1437 select CRYPTO_BLKCIPHER 1438 help 1439 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms. 1440 1441 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J. 1442 Bernstein and further specified in RFC7539 for use in IETF protocols. 1443 This is the portable C implementation of ChaCha20. See also: 1444 <http://cr.yp.to/chacha/chacha-20080128.pdf> 1445 1446 XChaCha20 is the application of the XSalsa20 construction to ChaCha20 1447 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length 1448 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits, 1449 while provably retaining ChaCha20's security. See also: 1450 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf> 1451 1452 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly 1453 reduced security margin but increased performance. It can be needed 1454 in some performance-sensitive scenarios. 1455 1456config CRYPTO_CHACHA20_X86_64 1457 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)" 1458 depends on X86 && 64BIT 1459 select CRYPTO_BLKCIPHER 1460 select CRYPTO_CHACHA20 1461 help 1462 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20, 1463 XChaCha20, and XChaCha12 stream ciphers. 1464 1465config CRYPTO_SEED 1466 tristate "SEED cipher algorithm" 1467 select CRYPTO_ALGAPI 1468 help 1469 SEED cipher algorithm (RFC4269). 1470 1471 SEED is a 128-bit symmetric key block cipher that has been 1472 developed by KISA (Korea Information Security Agency) as a 1473 national standard encryption algorithm of the Republic of Korea. 1474 It is a 16 round block cipher with the key size of 128 bit. 1475 1476 See also: 1477 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp> 1478 1479config CRYPTO_SERPENT 1480 tristate "Serpent cipher algorithm" 1481 select CRYPTO_ALGAPI 1482 help 1483 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1484 1485 Keys are allowed to be from 0 to 256 bits in length, in steps 1486 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed 1487 variant of Serpent for compatibility with old kerneli.org code. 1488 1489 See also: 1490 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1491 1492config CRYPTO_SERPENT_SSE2_X86_64 1493 tristate "Serpent cipher algorithm (x86_64/SSE2)" 1494 depends on X86 && 64BIT 1495 select CRYPTO_BLKCIPHER 1496 select CRYPTO_GLUE_HELPER_X86 1497 select CRYPTO_SERPENT 1498 select CRYPTO_SIMD 1499 help 1500 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1501 1502 Keys are allowed to be from 0 to 256 bits in length, in steps 1503 of 8 bits. 1504 1505 This module provides Serpent cipher algorithm that processes eight 1506 blocks parallel using SSE2 instruction set. 1507 1508 See also: 1509 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1510 1511config CRYPTO_SERPENT_SSE2_586 1512 tristate "Serpent cipher algorithm (i586/SSE2)" 1513 depends on X86 && !64BIT 1514 select CRYPTO_BLKCIPHER 1515 select CRYPTO_GLUE_HELPER_X86 1516 select CRYPTO_SERPENT 1517 select CRYPTO_SIMD 1518 help 1519 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1520 1521 Keys are allowed to be from 0 to 256 bits in length, in steps 1522 of 8 bits. 1523 1524 This module provides Serpent cipher algorithm that processes four 1525 blocks parallel using SSE2 instruction set. 1526 1527 See also: 1528 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1529 1530config CRYPTO_SERPENT_AVX_X86_64 1531 tristate "Serpent cipher algorithm (x86_64/AVX)" 1532 depends on X86 && 64BIT 1533 select CRYPTO_BLKCIPHER 1534 select CRYPTO_GLUE_HELPER_X86 1535 select CRYPTO_SERPENT 1536 select CRYPTO_SIMD 1537 select CRYPTO_XTS 1538 help 1539 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1540 1541 Keys are allowed to be from 0 to 256 bits in length, in steps 1542 of 8 bits. 1543 1544 This module provides the Serpent cipher algorithm that processes 1545 eight blocks parallel using the AVX instruction set. 1546 1547 See also: 1548 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1549 1550config CRYPTO_SERPENT_AVX2_X86_64 1551 tristate "Serpent cipher algorithm (x86_64/AVX2)" 1552 depends on X86 && 64BIT 1553 select CRYPTO_SERPENT_AVX_X86_64 1554 help 1555 Serpent cipher algorithm, by Anderson, Biham & Knudsen. 1556 1557 Keys are allowed to be from 0 to 256 bits in length, in steps 1558 of 8 bits. 1559 1560 This module provides Serpent cipher algorithm that processes 16 1561 blocks parallel using AVX2 instruction set. 1562 1563 See also: 1564 <http://www.cl.cam.ac.uk/~rja14/serpent.html> 1565 1566config CRYPTO_SM4 1567 tristate "SM4 cipher algorithm" 1568 select CRYPTO_ALGAPI 1569 help 1570 SM4 cipher algorithms (OSCCA GB/T 32907-2016). 1571 1572 SM4 (GBT.32907-2016) is a cryptographic standard issued by the 1573 Organization of State Commercial Administration of China (OSCCA) 1574 as an authorized cryptographic algorithms for the use within China. 1575 1576 SMS4 was originally created for use in protecting wireless 1577 networks, and is mandated in the Chinese National Standard for 1578 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) 1579 (GB.15629.11-2003). 1580 1581 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and 1582 standardized through TC 260 of the Standardization Administration 1583 of the People's Republic of China (SAC). 1584 1585 The input, output, and key of SMS4 are each 128 bits. 1586 1587 See also: <https://eprint.iacr.org/2008/329.pdf> 1588 1589 If unsure, say N. 1590 1591config CRYPTO_TEA 1592 tristate "TEA, XTEA and XETA cipher algorithms" 1593 select CRYPTO_ALGAPI 1594 help 1595 TEA cipher algorithm. 1596 1597 Tiny Encryption Algorithm is a simple cipher that uses 1598 many rounds for security. It is very fast and uses 1599 little memory. 1600 1601 Xtendend Tiny Encryption Algorithm is a modification to 1602 the TEA algorithm to address a potential key weakness 1603 in the TEA algorithm. 1604 1605 Xtendend Encryption Tiny Algorithm is a mis-implementation 1606 of the XTEA algorithm for compatibility purposes. 1607 1608config CRYPTO_TWOFISH 1609 tristate "Twofish cipher algorithm" 1610 select CRYPTO_ALGAPI 1611 select CRYPTO_TWOFISH_COMMON 1612 help 1613 Twofish cipher algorithm. 1614 1615 Twofish was submitted as an AES (Advanced Encryption Standard) 1616 candidate cipher by researchers at CounterPane Systems. It is a 1617 16 round block cipher supporting key sizes of 128, 192, and 256 1618 bits. 1619 1620 See also: 1621 <http://www.schneier.com/twofish.html> 1622 1623config CRYPTO_TWOFISH_COMMON 1624 tristate 1625 help 1626 Common parts of the Twofish cipher algorithm shared by the 1627 generic c and the assembler implementations. 1628 1629config CRYPTO_TWOFISH_586 1630 tristate "Twofish cipher algorithms (i586)" 1631 depends on (X86 || UML_X86) && !64BIT 1632 select CRYPTO_ALGAPI 1633 select CRYPTO_TWOFISH_COMMON 1634 help 1635 Twofish cipher algorithm. 1636 1637 Twofish was submitted as an AES (Advanced Encryption Standard) 1638 candidate cipher by researchers at CounterPane Systems. It is a 1639 16 round block cipher supporting key sizes of 128, 192, and 256 1640 bits. 1641 1642 See also: 1643 <http://www.schneier.com/twofish.html> 1644 1645config CRYPTO_TWOFISH_X86_64 1646 tristate "Twofish cipher algorithm (x86_64)" 1647 depends on (X86 || UML_X86) && 64BIT 1648 select CRYPTO_ALGAPI 1649 select CRYPTO_TWOFISH_COMMON 1650 help 1651 Twofish cipher algorithm (x86_64). 1652 1653 Twofish was submitted as an AES (Advanced Encryption Standard) 1654 candidate cipher by researchers at CounterPane Systems. It is a 1655 16 round block cipher supporting key sizes of 128, 192, and 256 1656 bits. 1657 1658 See also: 1659 <http://www.schneier.com/twofish.html> 1660 1661config CRYPTO_TWOFISH_X86_64_3WAY 1662 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)" 1663 depends on X86 && 64BIT 1664 select CRYPTO_BLKCIPHER 1665 select CRYPTO_TWOFISH_COMMON 1666 select CRYPTO_TWOFISH_X86_64 1667 select CRYPTO_GLUE_HELPER_X86 1668 help 1669 Twofish cipher algorithm (x86_64, 3-way parallel). 1670 1671 Twofish was submitted as an AES (Advanced Encryption Standard) 1672 candidate cipher by researchers at CounterPane Systems. It is a 1673 16 round block cipher supporting key sizes of 128, 192, and 256 1674 bits. 1675 1676 This module provides Twofish cipher algorithm that processes three 1677 blocks parallel, utilizing resources of out-of-order CPUs better. 1678 1679 See also: 1680 <http://www.schneier.com/twofish.html> 1681 1682config CRYPTO_TWOFISH_AVX_X86_64 1683 tristate "Twofish cipher algorithm (x86_64/AVX)" 1684 depends on X86 && 64BIT 1685 select CRYPTO_BLKCIPHER 1686 select CRYPTO_GLUE_HELPER_X86 1687 select CRYPTO_SIMD 1688 select CRYPTO_TWOFISH_COMMON 1689 select CRYPTO_TWOFISH_X86_64 1690 select CRYPTO_TWOFISH_X86_64_3WAY 1691 help 1692 Twofish cipher algorithm (x86_64/AVX). 1693 1694 Twofish was submitted as an AES (Advanced Encryption Standard) 1695 candidate cipher by researchers at CounterPane Systems. It is a 1696 16 round block cipher supporting key sizes of 128, 192, and 256 1697 bits. 1698 1699 This module provides the Twofish cipher algorithm that processes 1700 eight blocks parallel using the AVX Instruction Set. 1701 1702 See also: 1703 <http://www.schneier.com/twofish.html> 1704 1705comment "Compression" 1706 1707config CRYPTO_DEFLATE 1708 tristate "Deflate compression algorithm" 1709 select CRYPTO_ALGAPI 1710 select CRYPTO_ACOMP2 1711 select ZLIB_INFLATE 1712 select ZLIB_DEFLATE 1713 help 1714 This is the Deflate algorithm (RFC1951), specified for use in 1715 IPSec with the IPCOMP protocol (RFC3173, RFC2394). 1716 1717 You will most probably want this if using IPSec. 1718 1719config CRYPTO_LZO 1720 tristate "LZO compression algorithm" 1721 select CRYPTO_ALGAPI 1722 select CRYPTO_ACOMP2 1723 select LZO_COMPRESS 1724 select LZO_DECOMPRESS 1725 help 1726 This is the LZO algorithm. 1727 1728config CRYPTO_842 1729 tristate "842 compression algorithm" 1730 select CRYPTO_ALGAPI 1731 select CRYPTO_ACOMP2 1732 select 842_COMPRESS 1733 select 842_DECOMPRESS 1734 help 1735 This is the 842 algorithm. 1736 1737config CRYPTO_LZ4 1738 tristate "LZ4 compression algorithm" 1739 select CRYPTO_ALGAPI 1740 select CRYPTO_ACOMP2 1741 select LZ4_COMPRESS 1742 select LZ4_DECOMPRESS 1743 help 1744 This is the LZ4 algorithm. 1745 1746config CRYPTO_LZ4HC 1747 tristate "LZ4HC compression algorithm" 1748 select CRYPTO_ALGAPI 1749 select CRYPTO_ACOMP2 1750 select LZ4HC_COMPRESS 1751 select LZ4_DECOMPRESS 1752 help 1753 This is the LZ4 high compression mode algorithm. 1754 1755config CRYPTO_ZSTD 1756 tristate "Zstd compression algorithm" 1757 select CRYPTO_ALGAPI 1758 select CRYPTO_ACOMP2 1759 select ZSTD_COMPRESS 1760 select ZSTD_DECOMPRESS 1761 help 1762 This is the zstd algorithm. 1763 1764comment "Random Number Generation" 1765 1766config CRYPTO_ANSI_CPRNG 1767 tristate "Pseudo Random Number Generation for Cryptographic modules" 1768 select CRYPTO_AES 1769 select CRYPTO_RNG 1770 help 1771 This option enables the generic pseudo random number generator 1772 for cryptographic modules. Uses the Algorithm specified in 1773 ANSI X9.31 A.2.4. Note that this option must be enabled if 1774 CRYPTO_FIPS is selected 1775 1776menuconfig CRYPTO_DRBG_MENU 1777 tristate "NIST SP800-90A DRBG" 1778 help 1779 NIST SP800-90A compliant DRBG. In the following submenu, one or 1780 more of the DRBG types must be selected. 1781 1782if CRYPTO_DRBG_MENU 1783 1784config CRYPTO_DRBG_HMAC 1785 bool 1786 default y 1787 select CRYPTO_HMAC 1788 select CRYPTO_SHA256 1789 1790config CRYPTO_DRBG_HASH 1791 bool "Enable Hash DRBG" 1792 select CRYPTO_SHA256 1793 help 1794 Enable the Hash DRBG variant as defined in NIST SP800-90A. 1795 1796config CRYPTO_DRBG_CTR 1797 bool "Enable CTR DRBG" 1798 select CRYPTO_AES 1799 depends on CRYPTO_CTR 1800 help 1801 Enable the CTR DRBG variant as defined in NIST SP800-90A. 1802 1803config CRYPTO_DRBG 1804 tristate 1805 default CRYPTO_DRBG_MENU 1806 select CRYPTO_RNG 1807 select CRYPTO_JITTERENTROPY 1808 1809endif # if CRYPTO_DRBG_MENU 1810 1811config CRYPTO_JITTERENTROPY 1812 tristate "Jitterentropy Non-Deterministic Random Number Generator" 1813 select CRYPTO_RNG 1814 help 1815 The Jitterentropy RNG is a noise that is intended 1816 to provide seed to another RNG. The RNG does not 1817 perform any cryptographic whitening of the generated 1818 random numbers. This Jitterentropy RNG registers with 1819 the kernel crypto API and can be used by any caller. 1820 1821config CRYPTO_USER_API 1822 tristate 1823 1824config CRYPTO_USER_API_HASH 1825 tristate "User-space interface for hash algorithms" 1826 depends on NET 1827 select CRYPTO_HASH 1828 select CRYPTO_USER_API 1829 help 1830 This option enables the user-spaces interface for hash 1831 algorithms. 1832 1833config CRYPTO_USER_API_SKCIPHER 1834 tristate "User-space interface for symmetric key cipher algorithms" 1835 depends on NET 1836 select CRYPTO_BLKCIPHER 1837 select CRYPTO_USER_API 1838 help 1839 This option enables the user-spaces interface for symmetric 1840 key cipher algorithms. 1841 1842config CRYPTO_USER_API_RNG 1843 tristate "User-space interface for random number generator algorithms" 1844 depends on NET 1845 select CRYPTO_RNG 1846 select CRYPTO_USER_API 1847 help 1848 This option enables the user-spaces interface for random 1849 number generator algorithms. 1850 1851config CRYPTO_USER_API_AEAD 1852 tristate "User-space interface for AEAD cipher algorithms" 1853 depends on NET 1854 select CRYPTO_AEAD 1855 select CRYPTO_BLKCIPHER 1856 select CRYPTO_NULL 1857 select CRYPTO_USER_API 1858 help 1859 This option enables the user-spaces interface for AEAD 1860 cipher algorithms. 1861 1862config CRYPTO_STATS 1863 bool "Crypto usage statistics for User-space" 1864 depends on CRYPTO_USER 1865 help 1866 This option enables the gathering of crypto stats. 1867 This will collect: 1868 - encrypt/decrypt size and numbers of symmeric operations 1869 - compress/decompress size and numbers of compress operations 1870 - size and numbers of hash operations 1871 - encrypt/decrypt/sign/verify numbers for asymmetric operations 1872 - generate/seed numbers for rng operations 1873 1874config CRYPTO_HASH_INFO 1875 bool 1876 1877source "drivers/crypto/Kconfig" 1878source "crypto/asymmetric_keys/Kconfig" 1879source "certs/Kconfig" 1880 1881endif # if CRYPTO 1882