1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ACPI support for Intel Lynxpoint LPSS.
4 *
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26
27 #include "internal.h"
28
29 ACPI_MODULE_NAME("acpi_lpss");
30
31 #ifdef CONFIG_X86_INTEL_LPSS
32
33 #include <asm/cpu_device_id.h>
34 #include <asm/intel-family.h>
35 #include <asm/iosf_mbi.h>
36
37 #define LPSS_ADDR(desc) ((unsigned long)&desc)
38
39 #define LPSS_CLK_SIZE 0x04
40 #define LPSS_LTR_SIZE 0x18
41
42 /* Offsets relative to LPSS_PRIVATE_OFFSET */
43 #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
44 #define LPSS_RESETS 0x04
45 #define LPSS_RESETS_RESET_FUNC BIT(0)
46 #define LPSS_RESETS_RESET_APB BIT(1)
47 #define LPSS_GENERAL 0x08
48 #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
49 #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
50 #define LPSS_SW_LTR 0x10
51 #define LPSS_AUTO_LTR 0x14
52 #define LPSS_LTR_SNOOP_REQ BIT(15)
53 #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
54 #define LPSS_LTR_SNOOP_LAT_1US 0x800
55 #define LPSS_LTR_SNOOP_LAT_32US 0xC00
56 #define LPSS_LTR_SNOOP_LAT_SHIFT 5
57 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
58 #define LPSS_LTR_MAX_VAL 0x3FF
59 #define LPSS_TX_INT 0x20
60 #define LPSS_TX_INT_MASK BIT(1)
61
62 #define LPSS_PRV_REG_COUNT 9
63
64 /* LPSS Flags */
65 #define LPSS_CLK BIT(0)
66 #define LPSS_CLK_GATE BIT(1)
67 #define LPSS_CLK_DIVIDER BIT(2)
68 #define LPSS_LTR BIT(3)
69 #define LPSS_SAVE_CTX BIT(4)
70 #define LPSS_NO_D3_DELAY BIT(5)
71
72 /* Crystal Cove PMIC shares same ACPI ID between different platforms */
73 #define BYT_CRC_HRV 2
74 #define CHT_CRC_HRV 3
75
76 struct lpss_private_data;
77
78 struct lpss_device_desc {
79 unsigned int flags;
80 const char *clk_con_id;
81 unsigned int prv_offset;
82 size_t prv_size_override;
83 struct property_entry *properties;
84 void (*setup)(struct lpss_private_data *pdata);
85 bool resume_from_noirq;
86 };
87
88 static const struct lpss_device_desc lpss_dma_desc = {
89 .flags = LPSS_CLK,
90 };
91
92 struct lpss_private_data {
93 struct acpi_device *adev;
94 void __iomem *mmio_base;
95 resource_size_t mmio_size;
96 unsigned int fixed_clk_rate;
97 struct clk *clk;
98 const struct lpss_device_desc *dev_desc;
99 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
100 };
101
102 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
103 static u32 pmc_atom_d3_mask = 0xfe000ffe;
104
105 /* LPSS run time quirks */
106 static unsigned int lpss_quirks;
107
108 /*
109 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
110 *
111 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
112 * it can be powered off automatically whenever the last LPSS device goes down.
113 * In case of no power any access to the DMA controller will hang the system.
114 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
115 * well as on ASuS T100TA transformer.
116 *
117 * This quirk overrides power state of entire LPSS island to keep DMA powered
118 * on whenever we have at least one other device in use.
119 */
120 #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
121
122 /* UART Component Parameter Register */
123 #define LPSS_UART_CPR 0xF4
124 #define LPSS_UART_CPR_AFCE BIT(4)
125
lpss_uart_setup(struct lpss_private_data * pdata)126 static void lpss_uart_setup(struct lpss_private_data *pdata)
127 {
128 unsigned int offset;
129 u32 val;
130
131 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
132 val = readl(pdata->mmio_base + offset);
133 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
134
135 val = readl(pdata->mmio_base + LPSS_UART_CPR);
136 if (!(val & LPSS_UART_CPR_AFCE)) {
137 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
138 val = readl(pdata->mmio_base + offset);
139 val |= LPSS_GENERAL_UART_RTS_OVRD;
140 writel(val, pdata->mmio_base + offset);
141 }
142 }
143
lpss_deassert_reset(struct lpss_private_data * pdata)144 static void lpss_deassert_reset(struct lpss_private_data *pdata)
145 {
146 unsigned int offset;
147 u32 val;
148
149 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
150 val = readl(pdata->mmio_base + offset);
151 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
152 writel(val, pdata->mmio_base + offset);
153 }
154
155 /*
156 * BYT PWM used for backlight control by the i915 driver on systems without
157 * the Crystal Cove PMIC.
158 */
159 static struct pwm_lookup byt_pwm_lookup[] = {
160 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
161 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
162 "pwm-lpss-platform"),
163 };
164
byt_pwm_setup(struct lpss_private_data * pdata)165 static void byt_pwm_setup(struct lpss_private_data *pdata)
166 {
167 struct acpi_device *adev = pdata->adev;
168
169 /* Only call pwm_add_table for the first PWM controller */
170 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
171 return;
172
173 if (!acpi_dev_present("INT33FD", NULL, BYT_CRC_HRV))
174 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
175 }
176
177 #define LPSS_I2C_ENABLE 0x6c
178
byt_i2c_setup(struct lpss_private_data * pdata)179 static void byt_i2c_setup(struct lpss_private_data *pdata)
180 {
181 const char *uid_str = acpi_device_uid(pdata->adev);
182 acpi_handle handle = pdata->adev->handle;
183 unsigned long long shared_host = 0;
184 acpi_status status;
185 long uid = 0;
186
187 /* Expected to always be true, but better safe then sorry */
188 if (uid_str)
189 uid = simple_strtol(uid_str, NULL, 10);
190
191 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
192 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
193 if (ACPI_SUCCESS(status) && shared_host && uid)
194 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
195
196 lpss_deassert_reset(pdata);
197
198 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
199 pdata->fixed_clk_rate = 133000000;
200
201 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
202 }
203
204 /* BSW PWM used for backlight control by the i915 driver */
205 static struct pwm_lookup bsw_pwm_lookup[] = {
206 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
207 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
208 "pwm-lpss-platform"),
209 };
210
bsw_pwm_setup(struct lpss_private_data * pdata)211 static void bsw_pwm_setup(struct lpss_private_data *pdata)
212 {
213 struct acpi_device *adev = pdata->adev;
214
215 /* Only call pwm_add_table for the first PWM controller */
216 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
217 return;
218
219 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
220 }
221
222 static const struct lpss_device_desc lpt_dev_desc = {
223 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
224 | LPSS_SAVE_CTX,
225 .prv_offset = 0x800,
226 };
227
228 static const struct lpss_device_desc lpt_i2c_dev_desc = {
229 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
230 .prv_offset = 0x800,
231 };
232
233 static struct property_entry uart_properties[] = {
234 PROPERTY_ENTRY_U32("reg-io-width", 4),
235 PROPERTY_ENTRY_U32("reg-shift", 2),
236 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
237 { },
238 };
239
240 static const struct lpss_device_desc lpt_uart_dev_desc = {
241 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
242 | LPSS_SAVE_CTX,
243 .clk_con_id = "baudclk",
244 .prv_offset = 0x800,
245 .setup = lpss_uart_setup,
246 .properties = uart_properties,
247 };
248
249 static const struct lpss_device_desc lpt_sdio_dev_desc = {
250 .flags = LPSS_LTR,
251 .prv_offset = 0x1000,
252 .prv_size_override = 0x1018,
253 };
254
255 static const struct lpss_device_desc byt_pwm_dev_desc = {
256 .flags = LPSS_SAVE_CTX,
257 .prv_offset = 0x800,
258 .setup = byt_pwm_setup,
259 };
260
261 static const struct lpss_device_desc bsw_pwm_dev_desc = {
262 .flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
263 .prv_offset = 0x800,
264 .setup = bsw_pwm_setup,
265 };
266
267 static const struct lpss_device_desc byt_uart_dev_desc = {
268 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
269 .clk_con_id = "baudclk",
270 .prv_offset = 0x800,
271 .setup = lpss_uart_setup,
272 .properties = uart_properties,
273 };
274
275 static const struct lpss_device_desc bsw_uart_dev_desc = {
276 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
277 | LPSS_NO_D3_DELAY,
278 .clk_con_id = "baudclk",
279 .prv_offset = 0x800,
280 .setup = lpss_uart_setup,
281 .properties = uart_properties,
282 };
283
284 static const struct lpss_device_desc byt_spi_dev_desc = {
285 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
286 .prv_offset = 0x400,
287 };
288
289 static const struct lpss_device_desc byt_sdio_dev_desc = {
290 .flags = LPSS_CLK,
291 };
292
293 static const struct lpss_device_desc byt_i2c_dev_desc = {
294 .flags = LPSS_CLK | LPSS_SAVE_CTX,
295 .prv_offset = 0x800,
296 .setup = byt_i2c_setup,
297 .resume_from_noirq = true,
298 };
299
300 static const struct lpss_device_desc bsw_i2c_dev_desc = {
301 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
302 .prv_offset = 0x800,
303 .setup = byt_i2c_setup,
304 .resume_from_noirq = true,
305 };
306
307 static const struct lpss_device_desc bsw_spi_dev_desc = {
308 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
309 | LPSS_NO_D3_DELAY,
310 .prv_offset = 0x400,
311 .setup = lpss_deassert_reset,
312 };
313
314 #define ICPU(model) { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }
315
316 static const struct x86_cpu_id lpss_cpu_ids[] = {
317 ICPU(INTEL_FAM6_ATOM_SILVERMONT), /* Valleyview, Bay Trail */
318 ICPU(INTEL_FAM6_ATOM_AIRMONT), /* Braswell, Cherry Trail */
319 {}
320 };
321
322 #else
323
324 #define LPSS_ADDR(desc) (0UL)
325
326 #endif /* CONFIG_X86_INTEL_LPSS */
327
328 static const struct acpi_device_id acpi_lpss_device_ids[] = {
329 /* Generic LPSS devices */
330 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
331
332 /* Lynxpoint LPSS devices */
333 { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
334 { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
335 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
336 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
337 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
338 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
339 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
340 { "INT33C7", },
341
342 /* BayTrail LPSS devices */
343 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
344 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
345 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
346 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
347 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
348 { "INT33B2", },
349 { "INT33FC", },
350
351 /* Braswell LPSS devices */
352 { "80862286", LPSS_ADDR(lpss_dma_desc) },
353 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
354 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
355 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
356 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
357 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
358
359 /* Broadwell LPSS devices */
360 { "INT3430", LPSS_ADDR(lpt_dev_desc) },
361 { "INT3431", LPSS_ADDR(lpt_dev_desc) },
362 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
363 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
364 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
365 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
366 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
367 { "INT3437", },
368
369 /* Wildcat Point LPSS devices */
370 { "INT3438", LPSS_ADDR(lpt_dev_desc) },
371
372 { }
373 };
374
375 #ifdef CONFIG_X86_INTEL_LPSS
376
is_memory(struct acpi_resource * res,void * not_used)377 static int is_memory(struct acpi_resource *res, void *not_used)
378 {
379 struct resource r;
380 return !acpi_dev_resource_memory(res, &r);
381 }
382
383 /* LPSS main clock device. */
384 static struct platform_device *lpss_clk_dev;
385
lpt_register_clock_device(void)386 static inline void lpt_register_clock_device(void)
387 {
388 lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
389 }
390
register_device_clock(struct acpi_device * adev,struct lpss_private_data * pdata)391 static int register_device_clock(struct acpi_device *adev,
392 struct lpss_private_data *pdata)
393 {
394 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
395 const char *devname = dev_name(&adev->dev);
396 struct clk *clk;
397 struct lpss_clk_data *clk_data;
398 const char *parent, *clk_name;
399 void __iomem *prv_base;
400
401 if (!lpss_clk_dev)
402 lpt_register_clock_device();
403
404 if (IS_ERR(lpss_clk_dev))
405 return PTR_ERR(lpss_clk_dev);
406
407 clk_data = platform_get_drvdata(lpss_clk_dev);
408 if (!clk_data)
409 return -ENODEV;
410 clk = clk_data->clk;
411
412 if (!pdata->mmio_base
413 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
414 return -ENODATA;
415
416 parent = clk_data->name;
417 prv_base = pdata->mmio_base + dev_desc->prv_offset;
418
419 if (pdata->fixed_clk_rate) {
420 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
421 pdata->fixed_clk_rate);
422 goto out;
423 }
424
425 if (dev_desc->flags & LPSS_CLK_GATE) {
426 clk = clk_register_gate(NULL, devname, parent, 0,
427 prv_base, 0, 0, NULL);
428 parent = devname;
429 }
430
431 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
432 /* Prevent division by zero */
433 if (!readl(prv_base))
434 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
435
436 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
437 if (!clk_name)
438 return -ENOMEM;
439 clk = clk_register_fractional_divider(NULL, clk_name, parent,
440 0, prv_base,
441 1, 15, 16, 15, 0, NULL);
442 parent = clk_name;
443
444 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
445 if (!clk_name) {
446 kfree(parent);
447 return -ENOMEM;
448 }
449 clk = clk_register_gate(NULL, clk_name, parent,
450 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
451 prv_base, 31, 0, NULL);
452 kfree(parent);
453 kfree(clk_name);
454 }
455 out:
456 if (IS_ERR(clk))
457 return PTR_ERR(clk);
458
459 pdata->clk = clk;
460 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
461 return 0;
462 }
463
464 struct lpss_device_links {
465 const char *supplier_hid;
466 const char *supplier_uid;
467 const char *consumer_hid;
468 const char *consumer_uid;
469 u32 flags;
470 const struct dmi_system_id *dep_missing_ids;
471 };
472
473 /* Please keep this list sorted alphabetically by vendor and model */
474 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
475 {
476 .matches = {
477 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
478 DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
479 },
480 },
481 {}
482 };
483
484 /*
485 * The _DEP method is used to identify dependencies but instead of creating
486 * device links for every handle in _DEP, only links in the following list are
487 * created. That is necessary because, in the general case, _DEP can refer to
488 * devices that might not have drivers, or that are on different buses, or where
489 * the supplier is not enumerated until after the consumer is probed.
490 */
491 static const struct lpss_device_links lpss_device_links[] = {
492 /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
493 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
494 /* CHT iGPU depends on PMIC I2C controller */
495 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
496 /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
497 {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
498 i2c1_dep_missing_dmi_ids},
499 /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
500 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
501 /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
502 {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
503 };
504
hid_uid_match(struct acpi_device * adev,const char * hid2,const char * uid2)505 static bool hid_uid_match(struct acpi_device *adev,
506 const char *hid2, const char *uid2)
507 {
508 const char *hid1 = acpi_device_hid(adev);
509 const char *uid1 = acpi_device_uid(adev);
510
511 if (strcmp(hid1, hid2))
512 return false;
513
514 if (!uid2)
515 return true;
516
517 return uid1 && !strcmp(uid1, uid2);
518 }
519
acpi_lpss_is_supplier(struct acpi_device * adev,const struct lpss_device_links * link)520 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
521 const struct lpss_device_links *link)
522 {
523 return hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
524 }
525
acpi_lpss_is_consumer(struct acpi_device * adev,const struct lpss_device_links * link)526 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
527 const struct lpss_device_links *link)
528 {
529 return hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
530 }
531
532 struct hid_uid {
533 const char *hid;
534 const char *uid;
535 };
536
match_hid_uid(struct device * dev,const void * data)537 static int match_hid_uid(struct device *dev, const void *data)
538 {
539 struct acpi_device *adev = ACPI_COMPANION(dev);
540 const struct hid_uid *id = data;
541
542 if (!adev)
543 return 0;
544
545 return hid_uid_match(adev, id->hid, id->uid);
546 }
547
acpi_lpss_find_device(const char * hid,const char * uid)548 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
549 {
550 struct device *dev;
551
552 struct hid_uid data = {
553 .hid = hid,
554 .uid = uid,
555 };
556
557 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
558 if (dev)
559 return dev;
560
561 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
562 }
563
acpi_lpss_dep(struct acpi_device * adev,acpi_handle handle)564 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
565 {
566 struct acpi_handle_list dep_devices;
567 acpi_status status;
568 int i;
569
570 if (!acpi_has_method(adev->handle, "_DEP"))
571 return false;
572
573 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
574 &dep_devices);
575 if (ACPI_FAILURE(status)) {
576 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
577 return false;
578 }
579
580 for (i = 0; i < dep_devices.count; i++) {
581 if (dep_devices.handles[i] == handle)
582 return true;
583 }
584
585 return false;
586 }
587
acpi_lpss_link_consumer(struct device * dev1,const struct lpss_device_links * link)588 static void acpi_lpss_link_consumer(struct device *dev1,
589 const struct lpss_device_links *link)
590 {
591 struct device *dev2;
592
593 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
594 if (!dev2)
595 return;
596
597 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
598 || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
599 device_link_add(dev2, dev1, link->flags);
600
601 put_device(dev2);
602 }
603
acpi_lpss_link_supplier(struct device * dev1,const struct lpss_device_links * link)604 static void acpi_lpss_link_supplier(struct device *dev1,
605 const struct lpss_device_links *link)
606 {
607 struct device *dev2;
608
609 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
610 if (!dev2)
611 return;
612
613 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
614 || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
615 device_link_add(dev1, dev2, link->flags);
616
617 put_device(dev2);
618 }
619
acpi_lpss_create_device_links(struct acpi_device * adev,struct platform_device * pdev)620 static void acpi_lpss_create_device_links(struct acpi_device *adev,
621 struct platform_device *pdev)
622 {
623 int i;
624
625 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
626 const struct lpss_device_links *link = &lpss_device_links[i];
627
628 if (acpi_lpss_is_supplier(adev, link))
629 acpi_lpss_link_consumer(&pdev->dev, link);
630
631 if (acpi_lpss_is_consumer(adev, link))
632 acpi_lpss_link_supplier(&pdev->dev, link);
633 }
634 }
635
acpi_lpss_create_device(struct acpi_device * adev,const struct acpi_device_id * id)636 static int acpi_lpss_create_device(struct acpi_device *adev,
637 const struct acpi_device_id *id)
638 {
639 const struct lpss_device_desc *dev_desc;
640 struct lpss_private_data *pdata;
641 struct resource_entry *rentry;
642 struct list_head resource_list;
643 struct platform_device *pdev;
644 int ret;
645
646 dev_desc = (const struct lpss_device_desc *)id->driver_data;
647 if (!dev_desc) {
648 pdev = acpi_create_platform_device(adev, NULL);
649 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
650 }
651 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
652 if (!pdata)
653 return -ENOMEM;
654
655 INIT_LIST_HEAD(&resource_list);
656 ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
657 if (ret < 0)
658 goto err_out;
659
660 list_for_each_entry(rentry, &resource_list, node)
661 if (resource_type(rentry->res) == IORESOURCE_MEM) {
662 if (dev_desc->prv_size_override)
663 pdata->mmio_size = dev_desc->prv_size_override;
664 else
665 pdata->mmio_size = resource_size(rentry->res);
666 pdata->mmio_base = ioremap(rentry->res->start,
667 pdata->mmio_size);
668 break;
669 }
670
671 acpi_dev_free_resource_list(&resource_list);
672
673 if (!pdata->mmio_base) {
674 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
675 adev->pnp.type.platform_id = 0;
676 /* Skip the device, but continue the namespace scan. */
677 ret = 0;
678 goto err_out;
679 }
680
681 pdata->adev = adev;
682 pdata->dev_desc = dev_desc;
683
684 if (dev_desc->setup)
685 dev_desc->setup(pdata);
686
687 if (dev_desc->flags & LPSS_CLK) {
688 ret = register_device_clock(adev, pdata);
689 if (ret) {
690 /* Skip the device, but continue the namespace scan. */
691 ret = 0;
692 goto err_out;
693 }
694 }
695
696 /*
697 * This works around a known issue in ACPI tables where LPSS devices
698 * have _PS0 and _PS3 without _PSC (and no power resources), so
699 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
700 */
701 acpi_device_fix_up_power(adev);
702
703 adev->driver_data = pdata;
704 pdev = acpi_create_platform_device(adev, dev_desc->properties);
705 if (!IS_ERR_OR_NULL(pdev)) {
706 acpi_lpss_create_device_links(adev, pdev);
707 return 1;
708 }
709
710 ret = PTR_ERR(pdev);
711 adev->driver_data = NULL;
712
713 err_out:
714 kfree(pdata);
715 return ret;
716 }
717
__lpss_reg_read(struct lpss_private_data * pdata,unsigned int reg)718 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
719 {
720 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
721 }
722
__lpss_reg_write(u32 val,struct lpss_private_data * pdata,unsigned int reg)723 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
724 unsigned int reg)
725 {
726 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
727 }
728
lpss_reg_read(struct device * dev,unsigned int reg,u32 * val)729 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
730 {
731 struct acpi_device *adev;
732 struct lpss_private_data *pdata;
733 unsigned long flags;
734 int ret;
735
736 ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
737 if (WARN_ON(ret))
738 return ret;
739
740 spin_lock_irqsave(&dev->power.lock, flags);
741 if (pm_runtime_suspended(dev)) {
742 ret = -EAGAIN;
743 goto out;
744 }
745 pdata = acpi_driver_data(adev);
746 if (WARN_ON(!pdata || !pdata->mmio_base)) {
747 ret = -ENODEV;
748 goto out;
749 }
750 *val = __lpss_reg_read(pdata, reg);
751
752 out:
753 spin_unlock_irqrestore(&dev->power.lock, flags);
754 return ret;
755 }
756
lpss_ltr_show(struct device * dev,struct device_attribute * attr,char * buf)757 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
758 char *buf)
759 {
760 u32 ltr_value = 0;
761 unsigned int reg;
762 int ret;
763
764 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
765 ret = lpss_reg_read(dev, reg, <r_value);
766 if (ret)
767 return ret;
768
769 return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
770 }
771
lpss_ltr_mode_show(struct device * dev,struct device_attribute * attr,char * buf)772 static ssize_t lpss_ltr_mode_show(struct device *dev,
773 struct device_attribute *attr, char *buf)
774 {
775 u32 ltr_mode = 0;
776 char *outstr;
777 int ret;
778
779 ret = lpss_reg_read(dev, LPSS_GENERAL, <r_mode);
780 if (ret)
781 return ret;
782
783 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
784 return sprintf(buf, "%s\n", outstr);
785 }
786
787 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
788 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
789 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
790
791 static struct attribute *lpss_attrs[] = {
792 &dev_attr_auto_ltr.attr,
793 &dev_attr_sw_ltr.attr,
794 &dev_attr_ltr_mode.attr,
795 NULL,
796 };
797
798 static const struct attribute_group lpss_attr_group = {
799 .attrs = lpss_attrs,
800 .name = "lpss_ltr",
801 };
802
acpi_lpss_set_ltr(struct device * dev,s32 val)803 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
804 {
805 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
806 u32 ltr_mode, ltr_val;
807
808 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
809 if (val < 0) {
810 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
811 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
812 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
813 }
814 return;
815 }
816 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
817 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
818 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
819 val = LPSS_LTR_MAX_VAL;
820 } else if (val > LPSS_LTR_MAX_VAL) {
821 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
822 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
823 } else {
824 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
825 }
826 ltr_val |= val;
827 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
828 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
829 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
830 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
831 }
832 }
833
834 #ifdef CONFIG_PM
835 /**
836 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
837 * @dev: LPSS device
838 * @pdata: pointer to the private data of the LPSS device
839 *
840 * Most LPSS devices have private registers which may loose their context when
841 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
842 * prv_reg_ctx array.
843 */
acpi_lpss_save_ctx(struct device * dev,struct lpss_private_data * pdata)844 static void acpi_lpss_save_ctx(struct device *dev,
845 struct lpss_private_data *pdata)
846 {
847 unsigned int i;
848
849 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
850 unsigned long offset = i * sizeof(u32);
851
852 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
853 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
854 pdata->prv_reg_ctx[i], offset);
855 }
856 }
857
858 /**
859 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
860 * @dev: LPSS device
861 * @pdata: pointer to the private data of the LPSS device
862 *
863 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
864 */
acpi_lpss_restore_ctx(struct device * dev,struct lpss_private_data * pdata)865 static void acpi_lpss_restore_ctx(struct device *dev,
866 struct lpss_private_data *pdata)
867 {
868 unsigned int i;
869
870 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
871 unsigned long offset = i * sizeof(u32);
872
873 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
874 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
875 pdata->prv_reg_ctx[i], offset);
876 }
877 }
878
acpi_lpss_d3_to_d0_delay(struct lpss_private_data * pdata)879 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
880 {
881 /*
882 * The following delay is needed or the subsequent write operations may
883 * fail. The LPSS devices are actually PCI devices and the PCI spec
884 * expects 10ms delay before the device can be accessed after D3 to D0
885 * transition. However some platforms like BSW does not need this delay.
886 */
887 unsigned int delay = 10; /* default 10ms delay */
888
889 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
890 delay = 0;
891
892 msleep(delay);
893 }
894
acpi_lpss_activate(struct device * dev)895 static int acpi_lpss_activate(struct device *dev)
896 {
897 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
898 int ret;
899
900 ret = acpi_dev_resume(dev);
901 if (ret)
902 return ret;
903
904 acpi_lpss_d3_to_d0_delay(pdata);
905
906 /*
907 * This is called only on ->probe() stage where a device is either in
908 * known state defined by BIOS or most likely powered off. Due to this
909 * we have to deassert reset line to be sure that ->probe() will
910 * recognize the device.
911 */
912 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
913 lpss_deassert_reset(pdata);
914
915 return 0;
916 }
917
acpi_lpss_dismiss(struct device * dev)918 static void acpi_lpss_dismiss(struct device *dev)
919 {
920 acpi_dev_suspend(dev, false);
921 }
922
923 /* IOSF SB for LPSS island */
924 #define LPSS_IOSF_UNIT_LPIOEP 0xA0
925 #define LPSS_IOSF_UNIT_LPIO1 0xAB
926 #define LPSS_IOSF_UNIT_LPIO2 0xAC
927
928 #define LPSS_IOSF_PMCSR 0x84
929 #define LPSS_PMCSR_D0 0
930 #define LPSS_PMCSR_D3hot 3
931 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
932
933 #define LPSS_IOSF_GPIODEF0 0x154
934 #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
935 #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
936 #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
937 #define LPSS_GPIODEF0_DMA_LLP BIT(13)
938
939 static DEFINE_MUTEX(lpss_iosf_mutex);
940 static bool lpss_iosf_d3_entered = true;
941
lpss_iosf_enter_d3_state(void)942 static void lpss_iosf_enter_d3_state(void)
943 {
944 u32 value1 = 0;
945 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
946 u32 value2 = LPSS_PMCSR_D3hot;
947 u32 mask2 = LPSS_PMCSR_Dx_MASK;
948 /*
949 * PMC provides an information about actual status of the LPSS devices.
950 * Here we read the values related to LPSS power island, i.e. LPSS
951 * devices, excluding both LPSS DMA controllers, along with SCC domain.
952 */
953 u32 func_dis, d3_sts_0, pmc_status;
954 int ret;
955
956 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
957 if (ret)
958 return;
959
960 mutex_lock(&lpss_iosf_mutex);
961
962 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
963 if (ret)
964 goto exit;
965
966 /*
967 * Get the status of entire LPSS power island per device basis.
968 * Shutdown both LPSS DMA controllers if and only if all other devices
969 * are already in D3hot.
970 */
971 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
972 if (pmc_status)
973 goto exit;
974
975 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
976 LPSS_IOSF_PMCSR, value2, mask2);
977
978 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
979 LPSS_IOSF_PMCSR, value2, mask2);
980
981 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
982 LPSS_IOSF_GPIODEF0, value1, mask1);
983
984 lpss_iosf_d3_entered = true;
985
986 exit:
987 mutex_unlock(&lpss_iosf_mutex);
988 }
989
lpss_iosf_exit_d3_state(void)990 static void lpss_iosf_exit_d3_state(void)
991 {
992 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
993 LPSS_GPIODEF0_DMA_LLP;
994 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
995 u32 value2 = LPSS_PMCSR_D0;
996 u32 mask2 = LPSS_PMCSR_Dx_MASK;
997
998 mutex_lock(&lpss_iosf_mutex);
999
1000 if (!lpss_iosf_d3_entered)
1001 goto exit;
1002
1003 lpss_iosf_d3_entered = false;
1004
1005 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
1006 LPSS_IOSF_GPIODEF0, value1, mask1);
1007
1008 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
1009 LPSS_IOSF_PMCSR, value2, mask2);
1010
1011 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1012 LPSS_IOSF_PMCSR, value2, mask2);
1013
1014 exit:
1015 mutex_unlock(&lpss_iosf_mutex);
1016 }
1017
acpi_lpss_suspend(struct device * dev,bool wakeup)1018 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1019 {
1020 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1021 int ret;
1022
1023 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1024 acpi_lpss_save_ctx(dev, pdata);
1025
1026 ret = acpi_dev_suspend(dev, wakeup);
1027
1028 /*
1029 * This call must be last in the sequence, otherwise PMC will return
1030 * wrong status for devices being about to be powered off. See
1031 * lpss_iosf_enter_d3_state() for further information.
1032 */
1033 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1034 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1035 lpss_iosf_enter_d3_state();
1036
1037 return ret;
1038 }
1039
acpi_lpss_resume(struct device * dev)1040 static int acpi_lpss_resume(struct device *dev)
1041 {
1042 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1043 int ret;
1044
1045 /*
1046 * This call is kept first to be in symmetry with
1047 * acpi_lpss_runtime_suspend() one.
1048 */
1049 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1050 lpss_iosf_exit_d3_state();
1051
1052 ret = acpi_dev_resume(dev);
1053 if (ret)
1054 return ret;
1055
1056 acpi_lpss_d3_to_d0_delay(pdata);
1057
1058 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1059 acpi_lpss_restore_ctx(dev, pdata);
1060
1061 return 0;
1062 }
1063
1064 #ifdef CONFIG_PM_SLEEP
acpi_lpss_do_suspend_late(struct device * dev)1065 static int acpi_lpss_do_suspend_late(struct device *dev)
1066 {
1067 int ret;
1068
1069 if (dev_pm_smart_suspend_and_suspended(dev))
1070 return 0;
1071
1072 ret = pm_generic_suspend_late(dev);
1073 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1074 }
1075
acpi_lpss_suspend_late(struct device * dev)1076 static int acpi_lpss_suspend_late(struct device *dev)
1077 {
1078 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1079
1080 if (pdata->dev_desc->resume_from_noirq)
1081 return 0;
1082
1083 return acpi_lpss_do_suspend_late(dev);
1084 }
1085
acpi_lpss_suspend_noirq(struct device * dev)1086 static int acpi_lpss_suspend_noirq(struct device *dev)
1087 {
1088 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1089 int ret;
1090
1091 if (pdata->dev_desc->resume_from_noirq) {
1092 /*
1093 * The driver's ->suspend_late callback will be invoked by
1094 * acpi_lpss_do_suspend_late(), with the assumption that the
1095 * driver really wanted to run that code in ->suspend_noirq, but
1096 * it could not run after acpi_dev_suspend() and the driver
1097 * expected the latter to be called in the "late" phase.
1098 */
1099 ret = acpi_lpss_do_suspend_late(dev);
1100 if (ret)
1101 return ret;
1102 }
1103
1104 return acpi_subsys_suspend_noirq(dev);
1105 }
1106
acpi_lpss_do_resume_early(struct device * dev)1107 static int acpi_lpss_do_resume_early(struct device *dev)
1108 {
1109 int ret = acpi_lpss_resume(dev);
1110
1111 return ret ? ret : pm_generic_resume_early(dev);
1112 }
1113
acpi_lpss_resume_early(struct device * dev)1114 static int acpi_lpss_resume_early(struct device *dev)
1115 {
1116 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1117
1118 if (pdata->dev_desc->resume_from_noirq)
1119 return 0;
1120
1121 return acpi_lpss_do_resume_early(dev);
1122 }
1123
acpi_lpss_resume_noirq(struct device * dev)1124 static int acpi_lpss_resume_noirq(struct device *dev)
1125 {
1126 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1127 int ret;
1128
1129 /* Follow acpi_subsys_resume_noirq(). */
1130 if (dev_pm_may_skip_resume(dev))
1131 return 0;
1132
1133 if (dev_pm_smart_suspend_and_suspended(dev))
1134 pm_runtime_set_active(dev);
1135
1136 ret = pm_generic_resume_noirq(dev);
1137 if (ret)
1138 return ret;
1139
1140 if (!pdata->dev_desc->resume_from_noirq)
1141 return 0;
1142
1143 /*
1144 * The driver's ->resume_early callback will be invoked by
1145 * acpi_lpss_do_resume_early(), with the assumption that the driver
1146 * really wanted to run that code in ->resume_noirq, but it could not
1147 * run before acpi_dev_resume() and the driver expected the latter to be
1148 * called in the "early" phase.
1149 */
1150 return acpi_lpss_do_resume_early(dev);
1151 }
1152
acpi_lpss_do_restore_early(struct device * dev)1153 static int acpi_lpss_do_restore_early(struct device *dev)
1154 {
1155 int ret = acpi_lpss_resume(dev);
1156
1157 return ret ? ret : pm_generic_restore_early(dev);
1158 }
1159
acpi_lpss_restore_early(struct device * dev)1160 static int acpi_lpss_restore_early(struct device *dev)
1161 {
1162 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1163
1164 if (pdata->dev_desc->resume_from_noirq)
1165 return 0;
1166
1167 return acpi_lpss_do_restore_early(dev);
1168 }
1169
acpi_lpss_restore_noirq(struct device * dev)1170 static int acpi_lpss_restore_noirq(struct device *dev)
1171 {
1172 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1173 int ret;
1174
1175 ret = pm_generic_restore_noirq(dev);
1176 if (ret)
1177 return ret;
1178
1179 if (!pdata->dev_desc->resume_from_noirq)
1180 return 0;
1181
1182 /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1183 return acpi_lpss_do_restore_early(dev);
1184 }
1185
acpi_lpss_do_poweroff_late(struct device * dev)1186 static int acpi_lpss_do_poweroff_late(struct device *dev)
1187 {
1188 int ret = pm_generic_poweroff_late(dev);
1189
1190 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1191 }
1192
acpi_lpss_poweroff_late(struct device * dev)1193 static int acpi_lpss_poweroff_late(struct device *dev)
1194 {
1195 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1196
1197 if (dev_pm_smart_suspend_and_suspended(dev))
1198 return 0;
1199
1200 if (pdata->dev_desc->resume_from_noirq)
1201 return 0;
1202
1203 return acpi_lpss_do_poweroff_late(dev);
1204 }
1205
acpi_lpss_poweroff_noirq(struct device * dev)1206 static int acpi_lpss_poweroff_noirq(struct device *dev)
1207 {
1208 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1209
1210 if (dev_pm_smart_suspend_and_suspended(dev))
1211 return 0;
1212
1213 if (pdata->dev_desc->resume_from_noirq) {
1214 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1215 int ret = acpi_lpss_do_poweroff_late(dev);
1216 if (ret)
1217 return ret;
1218 }
1219
1220 return pm_generic_poweroff_noirq(dev);
1221 }
1222 #endif /* CONFIG_PM_SLEEP */
1223
acpi_lpss_runtime_suspend(struct device * dev)1224 static int acpi_lpss_runtime_suspend(struct device *dev)
1225 {
1226 int ret = pm_generic_runtime_suspend(dev);
1227
1228 return ret ? ret : acpi_lpss_suspend(dev, true);
1229 }
1230
acpi_lpss_runtime_resume(struct device * dev)1231 static int acpi_lpss_runtime_resume(struct device *dev)
1232 {
1233 int ret = acpi_lpss_resume(dev);
1234
1235 return ret ? ret : pm_generic_runtime_resume(dev);
1236 }
1237 #endif /* CONFIG_PM */
1238
1239 static struct dev_pm_domain acpi_lpss_pm_domain = {
1240 #ifdef CONFIG_PM
1241 .activate = acpi_lpss_activate,
1242 .dismiss = acpi_lpss_dismiss,
1243 #endif
1244 .ops = {
1245 #ifdef CONFIG_PM
1246 #ifdef CONFIG_PM_SLEEP
1247 .prepare = acpi_subsys_prepare,
1248 .complete = acpi_subsys_complete,
1249 .suspend = acpi_subsys_suspend,
1250 .suspend_late = acpi_lpss_suspend_late,
1251 .suspend_noirq = acpi_lpss_suspend_noirq,
1252 .resume_noirq = acpi_lpss_resume_noirq,
1253 .resume_early = acpi_lpss_resume_early,
1254 .freeze = acpi_subsys_freeze,
1255 .poweroff = acpi_subsys_poweroff,
1256 .poweroff_late = acpi_lpss_poweroff_late,
1257 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1258 .restore_noirq = acpi_lpss_restore_noirq,
1259 .restore_early = acpi_lpss_restore_early,
1260 #endif
1261 .runtime_suspend = acpi_lpss_runtime_suspend,
1262 .runtime_resume = acpi_lpss_runtime_resume,
1263 #endif
1264 },
1265 };
1266
acpi_lpss_platform_notify(struct notifier_block * nb,unsigned long action,void * data)1267 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1268 unsigned long action, void *data)
1269 {
1270 struct platform_device *pdev = to_platform_device(data);
1271 struct lpss_private_data *pdata;
1272 struct acpi_device *adev;
1273 const struct acpi_device_id *id;
1274
1275 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1276 if (!id || !id->driver_data)
1277 return 0;
1278
1279 if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1280 return 0;
1281
1282 pdata = acpi_driver_data(adev);
1283 if (!pdata)
1284 return 0;
1285
1286 if (pdata->mmio_base &&
1287 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1288 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1289 return 0;
1290 }
1291
1292 switch (action) {
1293 case BUS_NOTIFY_BIND_DRIVER:
1294 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1295 break;
1296 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1297 case BUS_NOTIFY_UNBOUND_DRIVER:
1298 dev_pm_domain_set(&pdev->dev, NULL);
1299 break;
1300 case BUS_NOTIFY_ADD_DEVICE:
1301 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1302 if (pdata->dev_desc->flags & LPSS_LTR)
1303 return sysfs_create_group(&pdev->dev.kobj,
1304 &lpss_attr_group);
1305 break;
1306 case BUS_NOTIFY_DEL_DEVICE:
1307 if (pdata->dev_desc->flags & LPSS_LTR)
1308 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1309 dev_pm_domain_set(&pdev->dev, NULL);
1310 break;
1311 default:
1312 break;
1313 }
1314
1315 return 0;
1316 }
1317
1318 static struct notifier_block acpi_lpss_nb = {
1319 .notifier_call = acpi_lpss_platform_notify,
1320 };
1321
acpi_lpss_bind(struct device * dev)1322 static void acpi_lpss_bind(struct device *dev)
1323 {
1324 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1325
1326 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1327 return;
1328
1329 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1330 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1331 else
1332 dev_err(dev, "MMIO size insufficient to access LTR\n");
1333 }
1334
acpi_lpss_unbind(struct device * dev)1335 static void acpi_lpss_unbind(struct device *dev)
1336 {
1337 dev->power.set_latency_tolerance = NULL;
1338 }
1339
1340 static struct acpi_scan_handler lpss_handler = {
1341 .ids = acpi_lpss_device_ids,
1342 .attach = acpi_lpss_create_device,
1343 .bind = acpi_lpss_bind,
1344 .unbind = acpi_lpss_unbind,
1345 };
1346
acpi_lpss_init(void)1347 void __init acpi_lpss_init(void)
1348 {
1349 const struct x86_cpu_id *id;
1350 int ret;
1351
1352 ret = lpt_clk_init();
1353 if (ret)
1354 return;
1355
1356 id = x86_match_cpu(lpss_cpu_ids);
1357 if (id)
1358 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1359
1360 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1361 acpi_scan_add_handler(&lpss_handler);
1362 }
1363
1364 #else
1365
1366 static struct acpi_scan_handler lpss_handler = {
1367 .ids = acpi_lpss_device_ids,
1368 };
1369
acpi_lpss_init(void)1370 void __init acpi_lpss_init(void)
1371 {
1372 acpi_scan_add_handler(&lpss_handler);
1373 }
1374
1375 #endif /* CONFIG_X86_INTEL_LPSS */
1376