1 // SPDX-License-Identifier: GPL-2.0-only
2 /* binder_alloc.c
3 *
4 * Android IPC Subsystem
5 *
6 * Copyright (C) 2007-2017 Google, Inc.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/list.h>
12 #include <linux/sched/mm.h>
13 #include <linux/module.h>
14 #include <linux/rtmutex.h>
15 #include <linux/rbtree.h>
16 #include <linux/seq_file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/list_lru.h>
21 #include <linux/ratelimit.h>
22 #include <asm/cacheflush.h>
23 #include <linux/uaccess.h>
24 #include <linux/highmem.h>
25 #include <linux/sizes.h>
26 #include "binder_alloc.h"
27 #include "binder_trace.h"
28
29 struct list_lru binder_alloc_lru;
30
31 static DEFINE_MUTEX(binder_alloc_mmap_lock);
32
33 enum {
34 BINDER_DEBUG_USER_ERROR = 1U << 0,
35 BINDER_DEBUG_OPEN_CLOSE = 1U << 1,
36 BINDER_DEBUG_BUFFER_ALLOC = 1U << 2,
37 BINDER_DEBUG_BUFFER_ALLOC_ASYNC = 1U << 3,
38 };
39 static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
40
41 module_param_named(debug_mask, binder_alloc_debug_mask,
42 uint, 0644);
43
44 #define binder_alloc_debug(mask, x...) \
45 do { \
46 if (binder_alloc_debug_mask & mask) \
47 pr_info_ratelimited(x); \
48 } while (0)
49
binder_buffer_next(struct binder_buffer * buffer)50 static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
51 {
52 return list_entry(buffer->entry.next, struct binder_buffer, entry);
53 }
54
binder_buffer_prev(struct binder_buffer * buffer)55 static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
56 {
57 return list_entry(buffer->entry.prev, struct binder_buffer, entry);
58 }
59
binder_alloc_buffer_size(struct binder_alloc * alloc,struct binder_buffer * buffer)60 static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
61 struct binder_buffer *buffer)
62 {
63 if (list_is_last(&buffer->entry, &alloc->buffers))
64 return alloc->buffer + alloc->buffer_size - buffer->user_data;
65 return binder_buffer_next(buffer)->user_data - buffer->user_data;
66 }
67
binder_insert_free_buffer(struct binder_alloc * alloc,struct binder_buffer * new_buffer)68 static void binder_insert_free_buffer(struct binder_alloc *alloc,
69 struct binder_buffer *new_buffer)
70 {
71 struct rb_node **p = &alloc->free_buffers.rb_node;
72 struct rb_node *parent = NULL;
73 struct binder_buffer *buffer;
74 size_t buffer_size;
75 size_t new_buffer_size;
76
77 BUG_ON(!new_buffer->free);
78
79 new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
80
81 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
82 "%d: add free buffer, size %zd, at %pK\n",
83 alloc->pid, new_buffer_size, new_buffer);
84
85 while (*p) {
86 parent = *p;
87 buffer = rb_entry(parent, struct binder_buffer, rb_node);
88 BUG_ON(!buffer->free);
89
90 buffer_size = binder_alloc_buffer_size(alloc, buffer);
91
92 if (new_buffer_size < buffer_size)
93 p = &parent->rb_left;
94 else
95 p = &parent->rb_right;
96 }
97 rb_link_node(&new_buffer->rb_node, parent, p);
98 rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
99 }
100
binder_insert_allocated_buffer_locked(struct binder_alloc * alloc,struct binder_buffer * new_buffer)101 static void binder_insert_allocated_buffer_locked(
102 struct binder_alloc *alloc, struct binder_buffer *new_buffer)
103 {
104 struct rb_node **p = &alloc->allocated_buffers.rb_node;
105 struct rb_node *parent = NULL;
106 struct binder_buffer *buffer;
107
108 BUG_ON(new_buffer->free);
109
110 while (*p) {
111 parent = *p;
112 buffer = rb_entry(parent, struct binder_buffer, rb_node);
113 BUG_ON(buffer->free);
114
115 if (new_buffer->user_data < buffer->user_data)
116 p = &parent->rb_left;
117 else if (new_buffer->user_data > buffer->user_data)
118 p = &parent->rb_right;
119 else
120 BUG();
121 }
122 rb_link_node(&new_buffer->rb_node, parent, p);
123 rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
124 }
125
binder_alloc_prepare_to_free_locked(struct binder_alloc * alloc,uintptr_t user_ptr)126 static struct binder_buffer *binder_alloc_prepare_to_free_locked(
127 struct binder_alloc *alloc,
128 uintptr_t user_ptr)
129 {
130 struct rb_node *n = alloc->allocated_buffers.rb_node;
131 struct binder_buffer *buffer;
132 void __user *uptr;
133
134 uptr = (void __user *)user_ptr;
135
136 while (n) {
137 buffer = rb_entry(n, struct binder_buffer, rb_node);
138 BUG_ON(buffer->free);
139
140 if (uptr < buffer->user_data)
141 n = n->rb_left;
142 else if (uptr > buffer->user_data)
143 n = n->rb_right;
144 else {
145 /*
146 * Guard against user threads attempting to
147 * free the buffer when in use by kernel or
148 * after it's already been freed.
149 */
150 if (!buffer->allow_user_free)
151 return ERR_PTR(-EPERM);
152 buffer->allow_user_free = 0;
153 return buffer;
154 }
155 }
156 return NULL;
157 }
158
159 /**
160 * binder_alloc_prepare_to_free() - get buffer given user ptr
161 * @alloc: binder_alloc for this proc
162 * @user_ptr: User pointer to buffer data
163 *
164 * Validate userspace pointer to buffer data and return buffer corresponding to
165 * that user pointer. Search the rb tree for buffer that matches user data
166 * pointer.
167 *
168 * Return: Pointer to buffer or NULL
169 */
binder_alloc_prepare_to_free(struct binder_alloc * alloc,uintptr_t user_ptr)170 struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
171 uintptr_t user_ptr)
172 {
173 struct binder_buffer *buffer;
174
175 mutex_lock(&alloc->mutex);
176 buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
177 mutex_unlock(&alloc->mutex);
178 return buffer;
179 }
180
binder_update_page_range(struct binder_alloc * alloc,int allocate,void __user * start,void __user * end)181 static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
182 void __user *start, void __user *end)
183 {
184 void __user *page_addr;
185 unsigned long user_page_addr;
186 struct binder_lru_page *page;
187 struct vm_area_struct *vma = NULL;
188 struct mm_struct *mm = NULL;
189 bool need_mm = false;
190
191 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
192 "%d: %s pages %pK-%pK\n", alloc->pid,
193 allocate ? "allocate" : "free", start, end);
194
195 if (end <= start)
196 return 0;
197
198 trace_binder_update_page_range(alloc, allocate, start, end);
199
200 if (allocate == 0)
201 goto free_range;
202
203 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
204 page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
205 if (!page->page_ptr) {
206 need_mm = true;
207 break;
208 }
209 }
210
211 if (need_mm && mmget_not_zero(alloc->vma_vm_mm))
212 mm = alloc->vma_vm_mm;
213
214 if (mm) {
215 down_write(&mm->mmap_sem);
216 vma = alloc->vma;
217 }
218
219 if (!vma && need_mm) {
220 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
221 "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
222 alloc->pid);
223 goto err_no_vma;
224 }
225
226 for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
227 int ret;
228 bool on_lru;
229 size_t index;
230
231 index = (page_addr - alloc->buffer) / PAGE_SIZE;
232 page = &alloc->pages[index];
233
234 if (page->page_ptr) {
235 trace_binder_alloc_lru_start(alloc, index);
236
237 on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
238 WARN_ON(!on_lru);
239
240 trace_binder_alloc_lru_end(alloc, index);
241 continue;
242 }
243
244 if (WARN_ON(!vma))
245 goto err_page_ptr_cleared;
246
247 trace_binder_alloc_page_start(alloc, index);
248 page->page_ptr = alloc_page(GFP_KERNEL |
249 __GFP_HIGHMEM |
250 __GFP_ZERO);
251 if (!page->page_ptr) {
252 pr_err("%d: binder_alloc_buf failed for page at %pK\n",
253 alloc->pid, page_addr);
254 goto err_alloc_page_failed;
255 }
256 page->alloc = alloc;
257 INIT_LIST_HEAD(&page->lru);
258
259 user_page_addr = (uintptr_t)page_addr;
260 ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
261 if (ret) {
262 pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
263 alloc->pid, user_page_addr);
264 goto err_vm_insert_page_failed;
265 }
266
267 if (index + 1 > alloc->pages_high)
268 alloc->pages_high = index + 1;
269
270 trace_binder_alloc_page_end(alloc, index);
271 /* vm_insert_page does not seem to increment the refcount */
272 }
273 if (mm) {
274 up_write(&mm->mmap_sem);
275 mmput_async(mm);
276 }
277 return 0;
278
279 free_range:
280 for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
281 bool ret;
282 size_t index;
283
284 index = (page_addr - alloc->buffer) / PAGE_SIZE;
285 page = &alloc->pages[index];
286
287 trace_binder_free_lru_start(alloc, index);
288
289 ret = list_lru_add(&binder_alloc_lru, &page->lru);
290 WARN_ON(!ret);
291
292 trace_binder_free_lru_end(alloc, index);
293 if (page_addr == start)
294 break;
295 continue;
296
297 err_vm_insert_page_failed:
298 __free_page(page->page_ptr);
299 page->page_ptr = NULL;
300 err_alloc_page_failed:
301 err_page_ptr_cleared:
302 if (page_addr == start)
303 break;
304 }
305 err_no_vma:
306 if (mm) {
307 up_write(&mm->mmap_sem);
308 mmput_async(mm);
309 }
310 return vma ? -ENOMEM : -ESRCH;
311 }
312
313
binder_alloc_set_vma(struct binder_alloc * alloc,struct vm_area_struct * vma)314 static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
315 struct vm_area_struct *vma)
316 {
317 if (vma)
318 alloc->vma_vm_mm = vma->vm_mm;
319 /*
320 * If we see alloc->vma is not NULL, buffer data structures set up
321 * completely. Look at smp_rmb side binder_alloc_get_vma.
322 * We also want to guarantee new alloc->vma_vm_mm is always visible
323 * if alloc->vma is set.
324 */
325 smp_wmb();
326 alloc->vma = vma;
327 }
328
binder_alloc_get_vma(struct binder_alloc * alloc)329 static inline struct vm_area_struct *binder_alloc_get_vma(
330 struct binder_alloc *alloc)
331 {
332 struct vm_area_struct *vma = NULL;
333
334 if (alloc->vma) {
335 /* Look at description in binder_alloc_set_vma */
336 smp_rmb();
337 vma = alloc->vma;
338 }
339 return vma;
340 }
341
debug_low_async_space_locked(struct binder_alloc * alloc,int pid)342 static void debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
343 {
344 /*
345 * Find the amount and size of buffers allocated by the current caller;
346 * The idea is that once we cross the threshold, whoever is responsible
347 * for the low async space is likely to try to send another async txn,
348 * and at some point we'll catch them in the act. This is more efficient
349 * than keeping a map per pid.
350 */
351 struct rb_node *n = alloc->free_buffers.rb_node;
352 struct binder_buffer *buffer;
353 size_t total_alloc_size = 0;
354 size_t num_buffers = 0;
355
356 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
357 n = rb_next(n)) {
358 buffer = rb_entry(n, struct binder_buffer, rb_node);
359 if (buffer->pid != pid)
360 continue;
361 if (!buffer->async_transaction)
362 continue;
363 total_alloc_size += binder_alloc_buffer_size(alloc, buffer)
364 + sizeof(struct binder_buffer);
365 num_buffers++;
366 }
367
368 /*
369 * Warn if this pid has more than 50 transactions, or more than 50% of
370 * async space (which is 25% of total buffer size).
371 */
372 if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
373 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
374 "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
375 alloc->pid, pid, num_buffers, total_alloc_size);
376 }
377 }
378
binder_alloc_new_buf_locked(struct binder_alloc * alloc,size_t data_size,size_t offsets_size,size_t extra_buffers_size,int is_async,int pid)379 static struct binder_buffer *binder_alloc_new_buf_locked(
380 struct binder_alloc *alloc,
381 size_t data_size,
382 size_t offsets_size,
383 size_t extra_buffers_size,
384 int is_async,
385 int pid)
386 {
387 struct rb_node *n = alloc->free_buffers.rb_node;
388 struct binder_buffer *buffer;
389 size_t buffer_size;
390 struct rb_node *best_fit = NULL;
391 void __user *has_page_addr;
392 void __user *end_page_addr;
393 size_t size, data_offsets_size;
394 int ret;
395
396 if (!binder_alloc_get_vma(alloc)) {
397 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
398 "%d: binder_alloc_buf, no vma\n",
399 alloc->pid);
400 return ERR_PTR(-ESRCH);
401 }
402
403 data_offsets_size = ALIGN(data_size, sizeof(void *)) +
404 ALIGN(offsets_size, sizeof(void *));
405
406 if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
407 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
408 "%d: got transaction with invalid size %zd-%zd\n",
409 alloc->pid, data_size, offsets_size);
410 return ERR_PTR(-EINVAL);
411 }
412 size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
413 if (size < data_offsets_size || size < extra_buffers_size) {
414 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
415 "%d: got transaction with invalid extra_buffers_size %zd\n",
416 alloc->pid, extra_buffers_size);
417 return ERR_PTR(-EINVAL);
418 }
419
420 /* Pad 0-size buffers so they get assigned unique addresses */
421 size = max(size, sizeof(void *));
422
423 if (is_async && alloc->free_async_space < size) {
424 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
425 "%d: binder_alloc_buf size %zd failed, no async space left\n",
426 alloc->pid, size);
427 return ERR_PTR(-ENOSPC);
428 }
429
430 while (n) {
431 buffer = rb_entry(n, struct binder_buffer, rb_node);
432 BUG_ON(!buffer->free);
433 buffer_size = binder_alloc_buffer_size(alloc, buffer);
434
435 if (size < buffer_size) {
436 best_fit = n;
437 n = n->rb_left;
438 } else if (size > buffer_size)
439 n = n->rb_right;
440 else {
441 best_fit = n;
442 break;
443 }
444 }
445 if (best_fit == NULL) {
446 size_t allocated_buffers = 0;
447 size_t largest_alloc_size = 0;
448 size_t total_alloc_size = 0;
449 size_t free_buffers = 0;
450 size_t largest_free_size = 0;
451 size_t total_free_size = 0;
452
453 for (n = rb_first(&alloc->allocated_buffers); n != NULL;
454 n = rb_next(n)) {
455 buffer = rb_entry(n, struct binder_buffer, rb_node);
456 buffer_size = binder_alloc_buffer_size(alloc, buffer);
457 allocated_buffers++;
458 total_alloc_size += buffer_size;
459 if (buffer_size > largest_alloc_size)
460 largest_alloc_size = buffer_size;
461 }
462 for (n = rb_first(&alloc->free_buffers); n != NULL;
463 n = rb_next(n)) {
464 buffer = rb_entry(n, struct binder_buffer, rb_node);
465 buffer_size = binder_alloc_buffer_size(alloc, buffer);
466 free_buffers++;
467 total_free_size += buffer_size;
468 if (buffer_size > largest_free_size)
469 largest_free_size = buffer_size;
470 }
471 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
472 "%d: binder_alloc_buf size %zd failed, no address space\n",
473 alloc->pid, size);
474 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
475 "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
476 total_alloc_size, allocated_buffers,
477 largest_alloc_size, total_free_size,
478 free_buffers, largest_free_size);
479 return ERR_PTR(-ENOSPC);
480 }
481 if (n == NULL) {
482 buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
483 buffer_size = binder_alloc_buffer_size(alloc, buffer);
484 }
485
486 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
487 "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
488 alloc->pid, size, buffer, buffer_size);
489
490 has_page_addr = (void __user *)
491 (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
492 WARN_ON(n && buffer_size != size);
493 end_page_addr =
494 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
495 if (end_page_addr > has_page_addr)
496 end_page_addr = has_page_addr;
497 ret = binder_update_page_range(alloc, 1, (void __user *)
498 PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
499 if (ret)
500 return ERR_PTR(ret);
501
502 if (buffer_size != size) {
503 struct binder_buffer *new_buffer;
504
505 new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
506 if (!new_buffer) {
507 pr_err("%s: %d failed to alloc new buffer struct\n",
508 __func__, alloc->pid);
509 goto err_alloc_buf_struct_failed;
510 }
511 new_buffer->user_data = (u8 __user *)buffer->user_data + size;
512 list_add(&new_buffer->entry, &buffer->entry);
513 new_buffer->free = 1;
514 binder_insert_free_buffer(alloc, new_buffer);
515 }
516
517 rb_erase(best_fit, &alloc->free_buffers);
518 buffer->free = 0;
519 buffer->allow_user_free = 0;
520 binder_insert_allocated_buffer_locked(alloc, buffer);
521 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
522 "%d: binder_alloc_buf size %zd got %pK\n",
523 alloc->pid, size, buffer);
524 buffer->data_size = data_size;
525 buffer->offsets_size = offsets_size;
526 buffer->async_transaction = is_async;
527 buffer->extra_buffers_size = extra_buffers_size;
528 buffer->pid = pid;
529 if (is_async) {
530 alloc->free_async_space -= size;
531 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
532 "%d: binder_alloc_buf size %zd async free %zd\n",
533 alloc->pid, size, alloc->free_async_space);
534 if (alloc->free_async_space < alloc->buffer_size / 10) {
535 /*
536 * Start detecting spammers once we have less than 20%
537 * of async space left (which is less than 10% of total
538 * buffer size).
539 */
540 debug_low_async_space_locked(alloc, pid);
541 }
542 }
543 return buffer;
544
545 err_alloc_buf_struct_failed:
546 binder_update_page_range(alloc, 0, (void __user *)
547 PAGE_ALIGN((uintptr_t)buffer->user_data),
548 end_page_addr);
549 return ERR_PTR(-ENOMEM);
550 }
551
552 /**
553 * binder_alloc_new_buf() - Allocate a new binder buffer
554 * @alloc: binder_alloc for this proc
555 * @data_size: size of user data buffer
556 * @offsets_size: user specified buffer offset
557 * @extra_buffers_size: size of extra space for meta-data (eg, security context)
558 * @is_async: buffer for async transaction
559 * @pid: pid to attribute allocation to (used for debugging)
560 *
561 * Allocate a new buffer given the requested sizes. Returns
562 * the kernel version of the buffer pointer. The size allocated
563 * is the sum of the three given sizes (each rounded up to
564 * pointer-sized boundary)
565 *
566 * Return: The allocated buffer or %ERR_PTR(-errno) if error
567 */
binder_alloc_new_buf(struct binder_alloc * alloc,size_t data_size,size_t offsets_size,size_t extra_buffers_size,int is_async,int pid)568 struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
569 size_t data_size,
570 size_t offsets_size,
571 size_t extra_buffers_size,
572 int is_async,
573 int pid)
574 {
575 struct binder_buffer *buffer;
576
577 mutex_lock(&alloc->mutex);
578 buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
579 extra_buffers_size, is_async, pid);
580 mutex_unlock(&alloc->mutex);
581 return buffer;
582 }
583
buffer_start_page(struct binder_buffer * buffer)584 static void __user *buffer_start_page(struct binder_buffer *buffer)
585 {
586 return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
587 }
588
prev_buffer_end_page(struct binder_buffer * buffer)589 static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
590 {
591 return (void __user *)
592 (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
593 }
594
binder_delete_free_buffer(struct binder_alloc * alloc,struct binder_buffer * buffer)595 static void binder_delete_free_buffer(struct binder_alloc *alloc,
596 struct binder_buffer *buffer)
597 {
598 struct binder_buffer *prev, *next = NULL;
599 bool to_free = true;
600 BUG_ON(alloc->buffers.next == &buffer->entry);
601 prev = binder_buffer_prev(buffer);
602 BUG_ON(!prev->free);
603 if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
604 to_free = false;
605 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
606 "%d: merge free, buffer %pK share page with %pK\n",
607 alloc->pid, buffer->user_data,
608 prev->user_data);
609 }
610
611 if (!list_is_last(&buffer->entry, &alloc->buffers)) {
612 next = binder_buffer_next(buffer);
613 if (buffer_start_page(next) == buffer_start_page(buffer)) {
614 to_free = false;
615 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
616 "%d: merge free, buffer %pK share page with %pK\n",
617 alloc->pid,
618 buffer->user_data,
619 next->user_data);
620 }
621 }
622
623 if (PAGE_ALIGNED(buffer->user_data)) {
624 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
625 "%d: merge free, buffer start %pK is page aligned\n",
626 alloc->pid, buffer->user_data);
627 to_free = false;
628 }
629
630 if (to_free) {
631 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
632 "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
633 alloc->pid, buffer->user_data,
634 prev->user_data,
635 next ? next->user_data : NULL);
636 binder_update_page_range(alloc, 0, buffer_start_page(buffer),
637 buffer_start_page(buffer) + PAGE_SIZE);
638 }
639 list_del(&buffer->entry);
640 kfree(buffer);
641 }
642
binder_free_buf_locked(struct binder_alloc * alloc,struct binder_buffer * buffer)643 static void binder_free_buf_locked(struct binder_alloc *alloc,
644 struct binder_buffer *buffer)
645 {
646 size_t size, buffer_size;
647
648 buffer_size = binder_alloc_buffer_size(alloc, buffer);
649
650 size = ALIGN(buffer->data_size, sizeof(void *)) +
651 ALIGN(buffer->offsets_size, sizeof(void *)) +
652 ALIGN(buffer->extra_buffers_size, sizeof(void *));
653
654 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
655 "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
656 alloc->pid, buffer, size, buffer_size);
657
658 BUG_ON(buffer->free);
659 BUG_ON(size > buffer_size);
660 BUG_ON(buffer->transaction != NULL);
661 BUG_ON(buffer->user_data < alloc->buffer);
662 BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
663
664 if (buffer->async_transaction) {
665 alloc->free_async_space += buffer_size;
666 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
667 "%d: binder_free_buf size %zd async free %zd\n",
668 alloc->pid, size, alloc->free_async_space);
669 }
670
671 binder_update_page_range(alloc, 0,
672 (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
673 (void __user *)(((uintptr_t)
674 buffer->user_data + buffer_size) & PAGE_MASK));
675
676 rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
677 buffer->free = 1;
678 if (!list_is_last(&buffer->entry, &alloc->buffers)) {
679 struct binder_buffer *next = binder_buffer_next(buffer);
680
681 if (next->free) {
682 rb_erase(&next->rb_node, &alloc->free_buffers);
683 binder_delete_free_buffer(alloc, next);
684 }
685 }
686 if (alloc->buffers.next != &buffer->entry) {
687 struct binder_buffer *prev = binder_buffer_prev(buffer);
688
689 if (prev->free) {
690 binder_delete_free_buffer(alloc, buffer);
691 rb_erase(&prev->rb_node, &alloc->free_buffers);
692 buffer = prev;
693 }
694 }
695 binder_insert_free_buffer(alloc, buffer);
696 }
697
698 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
699 struct binder_buffer *buffer);
700 /**
701 * binder_alloc_free_buf() - free a binder buffer
702 * @alloc: binder_alloc for this proc
703 * @buffer: kernel pointer to buffer
704 *
705 * Free the buffer allocated via binder_alloc_new_buffer()
706 */
binder_alloc_free_buf(struct binder_alloc * alloc,struct binder_buffer * buffer)707 void binder_alloc_free_buf(struct binder_alloc *alloc,
708 struct binder_buffer *buffer)
709 {
710 /*
711 * We could eliminate the call to binder_alloc_clear_buf()
712 * from binder_alloc_deferred_release() by moving this to
713 * binder_free_buf_locked(). However, that could
714 * increase contention for the alloc mutex if clear_on_free
715 * is used frequently for large buffers. The mutex is not
716 * needed for correctness here.
717 */
718 if (buffer->clear_on_free) {
719 binder_alloc_clear_buf(alloc, buffer);
720 buffer->clear_on_free = false;
721 }
722 mutex_lock(&alloc->mutex);
723 binder_free_buf_locked(alloc, buffer);
724 mutex_unlock(&alloc->mutex);
725 }
726
727 /**
728 * binder_alloc_mmap_handler() - map virtual address space for proc
729 * @alloc: alloc structure for this proc
730 * @vma: vma passed to mmap()
731 *
732 * Called by binder_mmap() to initialize the space specified in
733 * vma for allocating binder buffers
734 *
735 * Return:
736 * 0 = success
737 * -EBUSY = address space already mapped
738 * -ENOMEM = failed to map memory to given address space
739 */
binder_alloc_mmap_handler(struct binder_alloc * alloc,struct vm_area_struct * vma)740 int binder_alloc_mmap_handler(struct binder_alloc *alloc,
741 struct vm_area_struct *vma)
742 {
743 int ret;
744 const char *failure_string;
745 struct binder_buffer *buffer;
746
747 mutex_lock(&binder_alloc_mmap_lock);
748 if (alloc->buffer_size) {
749 ret = -EBUSY;
750 failure_string = "already mapped";
751 goto err_already_mapped;
752 }
753 alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
754 SZ_4M);
755 mutex_unlock(&binder_alloc_mmap_lock);
756
757 alloc->buffer = (void __user *)vma->vm_start;
758
759 alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
760 sizeof(alloc->pages[0]),
761 GFP_KERNEL);
762 if (alloc->pages == NULL) {
763 ret = -ENOMEM;
764 failure_string = "alloc page array";
765 goto err_alloc_pages_failed;
766 }
767
768 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
769 if (!buffer) {
770 ret = -ENOMEM;
771 failure_string = "alloc buffer struct";
772 goto err_alloc_buf_struct_failed;
773 }
774
775 buffer->user_data = alloc->buffer;
776 list_add(&buffer->entry, &alloc->buffers);
777 buffer->free = 1;
778 binder_insert_free_buffer(alloc, buffer);
779 alloc->free_async_space = alloc->buffer_size / 2;
780 binder_alloc_set_vma(alloc, vma);
781 mmgrab(alloc->vma_vm_mm);
782
783 return 0;
784
785 err_alloc_buf_struct_failed:
786 kfree(alloc->pages);
787 alloc->pages = NULL;
788 err_alloc_pages_failed:
789 alloc->buffer = NULL;
790 mutex_lock(&binder_alloc_mmap_lock);
791 alloc->buffer_size = 0;
792 err_already_mapped:
793 mutex_unlock(&binder_alloc_mmap_lock);
794 binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
795 "%s: %d %lx-%lx %s failed %d\n", __func__,
796 alloc->pid, vma->vm_start, vma->vm_end,
797 failure_string, ret);
798 return ret;
799 }
800
801
binder_alloc_deferred_release(struct binder_alloc * alloc)802 void binder_alloc_deferred_release(struct binder_alloc *alloc)
803 {
804 struct rb_node *n;
805 int buffers, page_count;
806 struct binder_buffer *buffer;
807
808 buffers = 0;
809 mutex_lock(&alloc->mutex);
810 BUG_ON(alloc->vma);
811
812 while ((n = rb_first(&alloc->allocated_buffers))) {
813 buffer = rb_entry(n, struct binder_buffer, rb_node);
814
815 /* Transaction should already have been freed */
816 BUG_ON(buffer->transaction);
817
818 if (buffer->clear_on_free) {
819 binder_alloc_clear_buf(alloc, buffer);
820 buffer->clear_on_free = false;
821 }
822 binder_free_buf_locked(alloc, buffer);
823 buffers++;
824 }
825
826 while (!list_empty(&alloc->buffers)) {
827 buffer = list_first_entry(&alloc->buffers,
828 struct binder_buffer, entry);
829 WARN_ON(!buffer->free);
830
831 list_del(&buffer->entry);
832 WARN_ON_ONCE(!list_empty(&alloc->buffers));
833 kfree(buffer);
834 }
835
836 page_count = 0;
837 if (alloc->pages) {
838 int i;
839
840 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
841 void __user *page_addr;
842 bool on_lru;
843
844 if (!alloc->pages[i].page_ptr)
845 continue;
846
847 on_lru = list_lru_del(&binder_alloc_lru,
848 &alloc->pages[i].lru);
849 page_addr = alloc->buffer + i * PAGE_SIZE;
850 binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
851 "%s: %d: page %d at %pK %s\n",
852 __func__, alloc->pid, i, page_addr,
853 on_lru ? "on lru" : "active");
854 __free_page(alloc->pages[i].page_ptr);
855 page_count++;
856 }
857 kfree(alloc->pages);
858 }
859 mutex_unlock(&alloc->mutex);
860 if (alloc->vma_vm_mm)
861 mmdrop(alloc->vma_vm_mm);
862
863 binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
864 "%s: %d buffers %d, pages %d\n",
865 __func__, alloc->pid, buffers, page_count);
866 }
867
print_binder_buffer(struct seq_file * m,const char * prefix,struct binder_buffer * buffer)868 static void print_binder_buffer(struct seq_file *m, const char *prefix,
869 struct binder_buffer *buffer)
870 {
871 seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
872 prefix, buffer->debug_id, buffer->user_data,
873 buffer->data_size, buffer->offsets_size,
874 buffer->extra_buffers_size,
875 buffer->transaction ? "active" : "delivered");
876 }
877
878 /**
879 * binder_alloc_print_allocated() - print buffer info
880 * @m: seq_file for output via seq_printf()
881 * @alloc: binder_alloc for this proc
882 *
883 * Prints information about every buffer associated with
884 * the binder_alloc state to the given seq_file
885 */
binder_alloc_print_allocated(struct seq_file * m,struct binder_alloc * alloc)886 void binder_alloc_print_allocated(struct seq_file *m,
887 struct binder_alloc *alloc)
888 {
889 struct rb_node *n;
890
891 mutex_lock(&alloc->mutex);
892 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
893 print_binder_buffer(m, " buffer",
894 rb_entry(n, struct binder_buffer, rb_node));
895 mutex_unlock(&alloc->mutex);
896 }
897
898 /**
899 * binder_alloc_print_pages() - print page usage
900 * @m: seq_file for output via seq_printf()
901 * @alloc: binder_alloc for this proc
902 */
binder_alloc_print_pages(struct seq_file * m,struct binder_alloc * alloc)903 void binder_alloc_print_pages(struct seq_file *m,
904 struct binder_alloc *alloc)
905 {
906 struct binder_lru_page *page;
907 int i;
908 int active = 0;
909 int lru = 0;
910 int free = 0;
911
912 mutex_lock(&alloc->mutex);
913 /*
914 * Make sure the binder_alloc is fully initialized, otherwise we might
915 * read inconsistent state.
916 */
917 if (binder_alloc_get_vma(alloc) != NULL) {
918 for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
919 page = &alloc->pages[i];
920 if (!page->page_ptr)
921 free++;
922 else if (list_empty(&page->lru))
923 active++;
924 else
925 lru++;
926 }
927 }
928 mutex_unlock(&alloc->mutex);
929 seq_printf(m, " pages: %d:%d:%d\n", active, lru, free);
930 seq_printf(m, " pages high watermark: %zu\n", alloc->pages_high);
931 }
932
933 /**
934 * binder_alloc_get_allocated_count() - return count of buffers
935 * @alloc: binder_alloc for this proc
936 *
937 * Return: count of allocated buffers
938 */
binder_alloc_get_allocated_count(struct binder_alloc * alloc)939 int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
940 {
941 struct rb_node *n;
942 int count = 0;
943
944 mutex_lock(&alloc->mutex);
945 for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
946 count++;
947 mutex_unlock(&alloc->mutex);
948 return count;
949 }
950
951
952 /**
953 * binder_alloc_vma_close() - invalidate address space
954 * @alloc: binder_alloc for this proc
955 *
956 * Called from binder_vma_close() when releasing address space.
957 * Clears alloc->vma to prevent new incoming transactions from
958 * allocating more buffers.
959 */
binder_alloc_vma_close(struct binder_alloc * alloc)960 void binder_alloc_vma_close(struct binder_alloc *alloc)
961 {
962 binder_alloc_set_vma(alloc, NULL);
963 }
964
965 /**
966 * binder_alloc_free_page() - shrinker callback to free pages
967 * @item: item to free
968 * @lock: lock protecting the item
969 * @cb_arg: callback argument
970 *
971 * Called from list_lru_walk() in binder_shrink_scan() to free
972 * up pages when the system is under memory pressure.
973 */
binder_alloc_free_page(struct list_head * item,struct list_lru_one * lru,spinlock_t * lock,void * cb_arg)974 enum lru_status binder_alloc_free_page(struct list_head *item,
975 struct list_lru_one *lru,
976 spinlock_t *lock,
977 void *cb_arg)
978 __must_hold(lock)
979 {
980 struct mm_struct *mm = NULL;
981 struct binder_lru_page *page = container_of(item,
982 struct binder_lru_page,
983 lru);
984 struct binder_alloc *alloc;
985 uintptr_t page_addr;
986 size_t index;
987 struct vm_area_struct *vma;
988
989 alloc = page->alloc;
990 if (!mutex_trylock(&alloc->mutex))
991 goto err_get_alloc_mutex_failed;
992
993 if (!page->page_ptr)
994 goto err_page_already_freed;
995
996 index = page - alloc->pages;
997 page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
998
999 mm = alloc->vma_vm_mm;
1000 if (!mmget_not_zero(mm))
1001 goto err_mmget;
1002 if (!down_read_trylock(&mm->mmap_sem))
1003 goto err_down_read_mmap_sem_failed;
1004 vma = find_vma(mm, page_addr);
1005 if (vma && vma != binder_alloc_get_vma(alloc))
1006 goto err_invalid_vma;
1007
1008 list_lru_isolate(lru, item);
1009 spin_unlock(lock);
1010
1011 if (vma) {
1012 trace_binder_unmap_user_start(alloc, index);
1013
1014 zap_page_range(vma, page_addr, PAGE_SIZE);
1015
1016 trace_binder_unmap_user_end(alloc, index);
1017 }
1018 up_read(&mm->mmap_sem);
1019 mmput_async(mm);
1020
1021 trace_binder_unmap_kernel_start(alloc, index);
1022
1023 __free_page(page->page_ptr);
1024 page->page_ptr = NULL;
1025
1026 trace_binder_unmap_kernel_end(alloc, index);
1027
1028 spin_lock(lock);
1029 mutex_unlock(&alloc->mutex);
1030 return LRU_REMOVED_RETRY;
1031
1032 err_invalid_vma:
1033 up_read(&mm->mmap_sem);
1034 err_down_read_mmap_sem_failed:
1035 mmput_async(mm);
1036 err_mmget:
1037 err_page_already_freed:
1038 mutex_unlock(&alloc->mutex);
1039 err_get_alloc_mutex_failed:
1040 return LRU_SKIP;
1041 }
1042
1043 static unsigned long
binder_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1044 binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1045 {
1046 unsigned long ret = list_lru_count(&binder_alloc_lru);
1047 return ret;
1048 }
1049
1050 static unsigned long
binder_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1051 binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1052 {
1053 unsigned long ret;
1054
1055 ret = list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
1056 NULL, sc->nr_to_scan);
1057 return ret;
1058 }
1059
1060 static struct shrinker binder_shrinker = {
1061 .count_objects = binder_shrink_count,
1062 .scan_objects = binder_shrink_scan,
1063 .seeks = DEFAULT_SEEKS,
1064 };
1065
1066 /**
1067 * binder_alloc_init() - called by binder_open() for per-proc initialization
1068 * @alloc: binder_alloc for this proc
1069 *
1070 * Called from binder_open() to initialize binder_alloc fields for
1071 * new binder proc
1072 */
binder_alloc_init(struct binder_alloc * alloc)1073 void binder_alloc_init(struct binder_alloc *alloc)
1074 {
1075 alloc->pid = current->group_leader->pid;
1076 mutex_init(&alloc->mutex);
1077 INIT_LIST_HEAD(&alloc->buffers);
1078 }
1079
binder_alloc_shrinker_init(void)1080 int binder_alloc_shrinker_init(void)
1081 {
1082 int ret = list_lru_init(&binder_alloc_lru);
1083
1084 if (ret == 0) {
1085 ret = register_shrinker(&binder_shrinker);
1086 if (ret)
1087 list_lru_destroy(&binder_alloc_lru);
1088 }
1089 return ret;
1090 }
1091
binder_alloc_shrinker_exit(void)1092 void binder_alloc_shrinker_exit(void)
1093 {
1094 unregister_shrinker(&binder_shrinker);
1095 list_lru_destroy(&binder_alloc_lru);
1096 }
1097
1098 /**
1099 * check_buffer() - verify that buffer/offset is safe to access
1100 * @alloc: binder_alloc for this proc
1101 * @buffer: binder buffer to be accessed
1102 * @offset: offset into @buffer data
1103 * @bytes: bytes to access from offset
1104 *
1105 * Check that the @offset/@bytes are within the size of the given
1106 * @buffer and that the buffer is currently active and not freeable.
1107 * Offsets must also be multiples of sizeof(u32). The kernel is
1108 * allowed to touch the buffer in two cases:
1109 *
1110 * 1) when the buffer is being created:
1111 * (buffer->free == 0 && buffer->allow_user_free == 0)
1112 * 2) when the buffer is being torn down:
1113 * (buffer->free == 0 && buffer->transaction == NULL).
1114 *
1115 * Return: true if the buffer is safe to access
1116 */
check_buffer(struct binder_alloc * alloc,struct binder_buffer * buffer,binder_size_t offset,size_t bytes)1117 static inline bool check_buffer(struct binder_alloc *alloc,
1118 struct binder_buffer *buffer,
1119 binder_size_t offset, size_t bytes)
1120 {
1121 size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1122
1123 return buffer_size >= bytes &&
1124 offset <= buffer_size - bytes &&
1125 IS_ALIGNED(offset, sizeof(u32)) &&
1126 !buffer->free &&
1127 (!buffer->allow_user_free || !buffer->transaction);
1128 }
1129
1130 /**
1131 * binder_alloc_get_page() - get kernel pointer for given buffer offset
1132 * @alloc: binder_alloc for this proc
1133 * @buffer: binder buffer to be accessed
1134 * @buffer_offset: offset into @buffer data
1135 * @pgoffp: address to copy final page offset to
1136 *
1137 * Lookup the struct page corresponding to the address
1138 * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1139 * NULL, the byte-offset into the page is written there.
1140 *
1141 * The caller is responsible to ensure that the offset points
1142 * to a valid address within the @buffer and that @buffer is
1143 * not freeable by the user. Since it can't be freed, we are
1144 * guaranteed that the corresponding elements of @alloc->pages[]
1145 * cannot change.
1146 *
1147 * Return: struct page
1148 */
binder_alloc_get_page(struct binder_alloc * alloc,struct binder_buffer * buffer,binder_size_t buffer_offset,pgoff_t * pgoffp)1149 static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1150 struct binder_buffer *buffer,
1151 binder_size_t buffer_offset,
1152 pgoff_t *pgoffp)
1153 {
1154 binder_size_t buffer_space_offset = buffer_offset +
1155 (buffer->user_data - alloc->buffer);
1156 pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1157 size_t index = buffer_space_offset >> PAGE_SHIFT;
1158 struct binder_lru_page *lru_page;
1159
1160 lru_page = &alloc->pages[index];
1161 *pgoffp = pgoff;
1162 return lru_page->page_ptr;
1163 }
1164
1165 /**
1166 * binder_alloc_clear_buf() - zero out buffer
1167 * @alloc: binder_alloc for this proc
1168 * @buffer: binder buffer to be cleared
1169 *
1170 * memset the given buffer to 0
1171 */
binder_alloc_clear_buf(struct binder_alloc * alloc,struct binder_buffer * buffer)1172 static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1173 struct binder_buffer *buffer)
1174 {
1175 size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1176 binder_size_t buffer_offset = 0;
1177
1178 while (bytes) {
1179 unsigned long size;
1180 struct page *page;
1181 pgoff_t pgoff;
1182 void *kptr;
1183
1184 page = binder_alloc_get_page(alloc, buffer,
1185 buffer_offset, &pgoff);
1186 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1187 kptr = kmap(page) + pgoff;
1188 memset(kptr, 0, size);
1189 kunmap(page);
1190 bytes -= size;
1191 buffer_offset += size;
1192 }
1193 }
1194
1195 /**
1196 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1197 * @alloc: binder_alloc for this proc
1198 * @buffer: binder buffer to be accessed
1199 * @buffer_offset: offset into @buffer data
1200 * @from: userspace pointer to source buffer
1201 * @bytes: bytes to copy
1202 *
1203 * Copy bytes from source userspace to target buffer.
1204 *
1205 * Return: bytes remaining to be copied
1206 */
1207 unsigned long
binder_alloc_copy_user_to_buffer(struct binder_alloc * alloc,struct binder_buffer * buffer,binder_size_t buffer_offset,const void __user * from,size_t bytes)1208 binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1209 struct binder_buffer *buffer,
1210 binder_size_t buffer_offset,
1211 const void __user *from,
1212 size_t bytes)
1213 {
1214 if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1215 return bytes;
1216
1217 while (bytes) {
1218 unsigned long size;
1219 unsigned long ret;
1220 struct page *page;
1221 pgoff_t pgoff;
1222 void *kptr;
1223
1224 page = binder_alloc_get_page(alloc, buffer,
1225 buffer_offset, &pgoff);
1226 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1227 kptr = kmap(page) + pgoff;
1228 ret = copy_from_user(kptr, from, size);
1229 kunmap(page);
1230 if (ret)
1231 return bytes - size + ret;
1232 bytes -= size;
1233 from += size;
1234 buffer_offset += size;
1235 }
1236 return 0;
1237 }
1238
binder_alloc_do_buffer_copy(struct binder_alloc * alloc,bool to_buffer,struct binder_buffer * buffer,binder_size_t buffer_offset,void * ptr,size_t bytes)1239 static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1240 bool to_buffer,
1241 struct binder_buffer *buffer,
1242 binder_size_t buffer_offset,
1243 void *ptr,
1244 size_t bytes)
1245 {
1246 /* All copies must be 32-bit aligned and 32-bit size */
1247 if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1248 return -EINVAL;
1249
1250 while (bytes) {
1251 unsigned long size;
1252 struct page *page;
1253 pgoff_t pgoff;
1254 void *tmpptr;
1255 void *base_ptr;
1256
1257 page = binder_alloc_get_page(alloc, buffer,
1258 buffer_offset, &pgoff);
1259 size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1260 base_ptr = kmap_atomic(page);
1261 tmpptr = base_ptr + pgoff;
1262 if (to_buffer)
1263 memcpy(tmpptr, ptr, size);
1264 else
1265 memcpy(ptr, tmpptr, size);
1266 /*
1267 * kunmap_atomic() takes care of flushing the cache
1268 * if this device has VIVT cache arch
1269 */
1270 kunmap_atomic(base_ptr);
1271 bytes -= size;
1272 pgoff = 0;
1273 ptr = ptr + size;
1274 buffer_offset += size;
1275 }
1276 return 0;
1277 }
1278
binder_alloc_copy_to_buffer(struct binder_alloc * alloc,struct binder_buffer * buffer,binder_size_t buffer_offset,void * src,size_t bytes)1279 int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1280 struct binder_buffer *buffer,
1281 binder_size_t buffer_offset,
1282 void *src,
1283 size_t bytes)
1284 {
1285 return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1286 src, bytes);
1287 }
1288
binder_alloc_copy_from_buffer(struct binder_alloc * alloc,void * dest,struct binder_buffer * buffer,binder_size_t buffer_offset,size_t bytes)1289 int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1290 void *dest,
1291 struct binder_buffer *buffer,
1292 binder_size_t buffer_offset,
1293 size_t bytes)
1294 {
1295 return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1296 dest, bytes);
1297 }
1298
1299