• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12 
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36 
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43 
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46 
47 /* SDMA registers */
48 #define SDMA_H_C0PTR		0x000
49 #define SDMA_H_INTR		0x004
50 #define SDMA_H_STATSTOP		0x008
51 #define SDMA_H_START		0x00c
52 #define SDMA_H_EVTOVR		0x010
53 #define SDMA_H_DSPOVR		0x014
54 #define SDMA_H_HOSTOVR		0x018
55 #define SDMA_H_EVTPEND		0x01c
56 #define SDMA_H_DSPENBL		0x020
57 #define SDMA_H_RESET		0x024
58 #define SDMA_H_EVTERR		0x028
59 #define SDMA_H_INTRMSK		0x02c
60 #define SDMA_H_PSW		0x030
61 #define SDMA_H_EVTERRDBG	0x034
62 #define SDMA_H_CONFIG		0x038
63 #define SDMA_ONCE_ENB		0x040
64 #define SDMA_ONCE_DATA		0x044
65 #define SDMA_ONCE_INSTR		0x048
66 #define SDMA_ONCE_STAT		0x04c
67 #define SDMA_ONCE_CMD		0x050
68 #define SDMA_EVT_MIRROR		0x054
69 #define SDMA_ILLINSTADDR	0x058
70 #define SDMA_CHN0ADDR		0x05c
71 #define SDMA_ONCE_RTB		0x060
72 #define SDMA_XTRIG_CONF1	0x070
73 #define SDMA_XTRIG_CONF2	0x074
74 #define SDMA_CHNENBL0_IMX35	0x200
75 #define SDMA_CHNENBL0_IMX31	0x080
76 #define SDMA_CHNPRI_0		0x100
77 
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88 
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96 
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101 
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108 
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125 
126 /*
127  *  p_2_p watermark_level description
128  *	Bits		Name			Description
129  *	0-7		Lower WML		Lower watermark level
130  *	8		PS			1: Pad Swallowing
131  *						0: No Pad Swallowing
132  *	9		PA			1: Pad Adding
133  *						0: No Pad Adding
134  *	10		SPDIF			If this bit is set both source
135  *						and destination are on SPBA
136  *	11		Source Bit(SP)		1: Source on SPBA
137  *						0: Source on AIPS
138  *	12		Destination Bit(DP)	1: Destination on SPBA
139  *						0: Destination on AIPS
140  *	13-15		---------		MUST BE 0
141  *	16-23		Higher WML		HWML
142  *	24-27		N			Total number of samples after
143  *						which Pad adding/Swallowing
144  *						must be done. It must be odd.
145  *	28		Lower WML Event(LWE)	SDMA events reg to check for
146  *						LWML event mask
147  *						0: LWE in EVENTS register
148  *						1: LWE in EVENTS2 register
149  *	29		Higher WML Event(HWE)	SDMA events reg to check for
150  *						HWML event mask
151  *						0: HWE in EVENTS register
152  *						1: HWE in EVENTS2 register
153  *	30		---------		MUST BE 0
154  *	31		CONT			1: Amount of samples to be
155  *						transferred is unknown and
156  *						script will keep on
157  *						transferring samples as long as
158  *						both events are detected and
159  *						script must be manually stopped
160  *						by the application
161  *						0: The amount of samples to be
162  *						transferred is equal to the
163  *						count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML	0xFF
166 #define SDMA_WATERMARK_LEVEL_PS		BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA		BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP		BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP		BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
175 
176 #define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179 
180 #define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
181 				 BIT(DMA_MEM_TO_DEV) | \
182 				 BIT(DMA_DEV_TO_DEV))
183 
184 /*
185  * Mode/Count of data node descriptors - IPCv2
186  */
187 struct sdma_mode_count {
188 #define SDMA_BD_MAX_CNT	0xffff
189 	u32 count   : 16; /* size of the buffer pointed by this BD */
190 	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
191 	u32 command :  8; /* command mostly used for channel 0 */
192 };
193 
194 /*
195  * Buffer descriptor
196  */
197 struct sdma_buffer_descriptor {
198 	struct sdma_mode_count  mode;
199 	u32 buffer_addr;	/* address of the buffer described */
200 	u32 ext_buffer_addr;	/* extended buffer address */
201 } __attribute__ ((packed));
202 
203 /**
204  * struct sdma_channel_control - Channel control Block
205  *
206  * @current_bd_ptr:	current buffer descriptor processed
207  * @base_bd_ptr:	first element of buffer descriptor array
208  * @unused:		padding. The SDMA engine expects an array of 128 byte
209  *			control blocks
210  */
211 struct sdma_channel_control {
212 	u32 current_bd_ptr;
213 	u32 base_bd_ptr;
214 	u32 unused[2];
215 } __attribute__ ((packed));
216 
217 /**
218  * struct sdma_state_registers - SDMA context for a channel
219  *
220  * @pc:		program counter
221  * @unused1:	unused
222  * @t:		test bit: status of arithmetic & test instruction
223  * @rpc:	return program counter
224  * @unused0:	unused
225  * @sf:		source fault while loading data
226  * @spc:	loop start program counter
227  * @unused2:	unused
228  * @df:		destination fault while storing data
229  * @epc:	loop end program counter
230  * @lm:		loop mode
231  */
232 struct sdma_state_registers {
233 	u32 pc     :14;
234 	u32 unused1: 1;
235 	u32 t      : 1;
236 	u32 rpc    :14;
237 	u32 unused0: 1;
238 	u32 sf     : 1;
239 	u32 spc    :14;
240 	u32 unused2: 1;
241 	u32 df     : 1;
242 	u32 epc    :14;
243 	u32 lm     : 2;
244 } __attribute__ ((packed));
245 
246 /**
247  * struct sdma_context_data - sdma context specific to a channel
248  *
249  * @channel_state:	channel state bits
250  * @gReg:		general registers
251  * @mda:		burst dma destination address register
252  * @msa:		burst dma source address register
253  * @ms:			burst dma status register
254  * @md:			burst dma data register
255  * @pda:		peripheral dma destination address register
256  * @psa:		peripheral dma source address register
257  * @ps:			peripheral dma status register
258  * @pd:			peripheral dma data register
259  * @ca:			CRC polynomial register
260  * @cs:			CRC accumulator register
261  * @dda:		dedicated core destination address register
262  * @dsa:		dedicated core source address register
263  * @ds:			dedicated core status register
264  * @dd:			dedicated core data register
265  * @scratch0:		1st word of dedicated ram for context switch
266  * @scratch1:		2nd word of dedicated ram for context switch
267  * @scratch2:		3rd word of dedicated ram for context switch
268  * @scratch3:		4th word of dedicated ram for context switch
269  * @scratch4:		5th word of dedicated ram for context switch
270  * @scratch5:		6th word of dedicated ram for context switch
271  * @scratch6:		7th word of dedicated ram for context switch
272  * @scratch7:		8th word of dedicated ram for context switch
273  */
274 struct sdma_context_data {
275 	struct sdma_state_registers  channel_state;
276 	u32  gReg[8];
277 	u32  mda;
278 	u32  msa;
279 	u32  ms;
280 	u32  md;
281 	u32  pda;
282 	u32  psa;
283 	u32  ps;
284 	u32  pd;
285 	u32  ca;
286 	u32  cs;
287 	u32  dda;
288 	u32  dsa;
289 	u32  ds;
290 	u32  dd;
291 	u32  scratch0;
292 	u32  scratch1;
293 	u32  scratch2;
294 	u32  scratch3;
295 	u32  scratch4;
296 	u32  scratch5;
297 	u32  scratch6;
298 	u32  scratch7;
299 } __attribute__ ((packed));
300 
301 
302 struct sdma_engine;
303 
304 /**
305  * struct sdma_desc - descriptor structor for one transfer
306  * @vd:			descriptor for virt dma
307  * @num_bd:		number of descriptors currently handling
308  * @bd_phys:		physical address of bd
309  * @buf_tail:		ID of the buffer that was processed
310  * @buf_ptail:		ID of the previous buffer that was processed
311  * @period_len:		period length, used in cyclic.
312  * @chn_real_count:	the real count updated from bd->mode.count
313  * @chn_count:		the transfer count set
314  * @sdmac:		sdma_channel pointer
315  * @bd:			pointer of allocate bd
316  */
317 struct sdma_desc {
318 	struct virt_dma_desc	vd;
319 	unsigned int		num_bd;
320 	dma_addr_t		bd_phys;
321 	unsigned int		buf_tail;
322 	unsigned int		buf_ptail;
323 	unsigned int		period_len;
324 	unsigned int		chn_real_count;
325 	unsigned int		chn_count;
326 	struct sdma_channel	*sdmac;
327 	struct sdma_buffer_descriptor *bd;
328 };
329 
330 /**
331  * struct sdma_channel - housekeeping for a SDMA channel
332  *
333  * @vc:			virt_dma base structure
334  * @desc:		sdma description including vd and other special member
335  * @sdma:		pointer to the SDMA engine for this channel
336  * @channel:		the channel number, matches dmaengine chan_id + 1
337  * @direction:		transfer type. Needed for setting SDMA script
338  * @slave_config	Slave configuration
339  * @peripheral_type:	Peripheral type. Needed for setting SDMA script
340  * @event_id0:		aka dma request line
341  * @event_id1:		for channels that use 2 events
342  * @word_size:		peripheral access size
343  * @pc_from_device:	script address for those device_2_memory
344  * @pc_to_device:	script address for those memory_2_device
345  * @device_to_device:	script address for those device_2_device
346  * @pc_to_pc:		script address for those memory_2_memory
347  * @flags:		loop mode or not
348  * @per_address:	peripheral source or destination address in common case
349  *                      destination address in p_2_p case
350  * @per_address2:	peripheral source address in p_2_p case
351  * @event_mask:		event mask used in p_2_p script
352  * @watermark_level:	value for gReg[7], some script will extend it from
353  *			basic watermark such as p_2_p
354  * @shp_addr:		value for gReg[6]
355  * @per_addr:		value for gReg[2]
356  * @status:		status of dma channel
357  * @data:		specific sdma interface structure
358  * @bd_pool:		dma_pool for bd
359  */
360 struct sdma_channel {
361 	struct virt_dma_chan		vc;
362 	struct sdma_desc		*desc;
363 	struct sdma_engine		*sdma;
364 	unsigned int			channel;
365 	enum dma_transfer_direction		direction;
366 	struct dma_slave_config		slave_config;
367 	enum sdma_peripheral_type	peripheral_type;
368 	unsigned int			event_id0;
369 	unsigned int			event_id1;
370 	enum dma_slave_buswidth		word_size;
371 	unsigned int			pc_from_device, pc_to_device;
372 	unsigned int			device_to_device;
373 	unsigned int                    pc_to_pc;
374 	unsigned long			flags;
375 	dma_addr_t			per_address, per_address2;
376 	unsigned long			event_mask[2];
377 	unsigned long			watermark_level;
378 	u32				shp_addr, per_addr;
379 	enum dma_status			status;
380 	struct imx_dma_data		data;
381 	struct work_struct		terminate_worker;
382 };
383 
384 #define IMX_DMA_SG_LOOP		BIT(0)
385 
386 #define MAX_DMA_CHANNELS 32
387 #define MXC_SDMA_DEFAULT_PRIORITY 1
388 #define MXC_SDMA_MIN_PRIORITY 1
389 #define MXC_SDMA_MAX_PRIORITY 7
390 
391 #define SDMA_FIRMWARE_MAGIC 0x414d4453
392 
393 /**
394  * struct sdma_firmware_header - Layout of the firmware image
395  *
396  * @magic:		"SDMA"
397  * @version_major:	increased whenever layout of struct
398  *			sdma_script_start_addrs changes.
399  * @version_minor:	firmware minor version (for binary compatible changes)
400  * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
401  * @num_script_addrs:	Number of script addresses in this image
402  * @ram_code_start:	offset of SDMA ram image in this firmware image
403  * @ram_code_size:	size of SDMA ram image
404  * @script_addrs:	Stores the start address of the SDMA scripts
405  *			(in SDMA memory space)
406  */
407 struct sdma_firmware_header {
408 	u32	magic;
409 	u32	version_major;
410 	u32	version_minor;
411 	u32	script_addrs_start;
412 	u32	num_script_addrs;
413 	u32	ram_code_start;
414 	u32	ram_code_size;
415 };
416 
417 struct sdma_driver_data {
418 	int chnenbl0;
419 	int num_events;
420 	struct sdma_script_start_addrs	*script_addrs;
421 	bool check_ratio;
422 };
423 
424 struct sdma_engine {
425 	struct device			*dev;
426 	struct device_dma_parameters	dma_parms;
427 	struct sdma_channel		channel[MAX_DMA_CHANNELS];
428 	struct sdma_channel_control	*channel_control;
429 	void __iomem			*regs;
430 	struct sdma_context_data	*context;
431 	dma_addr_t			context_phys;
432 	struct dma_device		dma_device;
433 	struct clk			*clk_ipg;
434 	struct clk			*clk_ahb;
435 	spinlock_t			channel_0_lock;
436 	u32				script_number;
437 	struct sdma_script_start_addrs	*script_addrs;
438 	const struct sdma_driver_data	*drvdata;
439 	u32				spba_start_addr;
440 	u32				spba_end_addr;
441 	unsigned int			irq;
442 	dma_addr_t			bd0_phys;
443 	struct sdma_buffer_descriptor	*bd0;
444 	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
445 	bool				clk_ratio;
446 };
447 
448 static int sdma_config_write(struct dma_chan *chan,
449 		       struct dma_slave_config *dmaengine_cfg,
450 		       enum dma_transfer_direction direction);
451 
452 static struct sdma_driver_data sdma_imx31 = {
453 	.chnenbl0 = SDMA_CHNENBL0_IMX31,
454 	.num_events = 32,
455 };
456 
457 static struct sdma_script_start_addrs sdma_script_imx25 = {
458 	.ap_2_ap_addr = 729,
459 	.uart_2_mcu_addr = 904,
460 	.per_2_app_addr = 1255,
461 	.mcu_2_app_addr = 834,
462 	.uartsh_2_mcu_addr = 1120,
463 	.per_2_shp_addr = 1329,
464 	.mcu_2_shp_addr = 1048,
465 	.ata_2_mcu_addr = 1560,
466 	.mcu_2_ata_addr = 1479,
467 	.app_2_per_addr = 1189,
468 	.app_2_mcu_addr = 770,
469 	.shp_2_per_addr = 1407,
470 	.shp_2_mcu_addr = 979,
471 };
472 
473 static struct sdma_driver_data sdma_imx25 = {
474 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
475 	.num_events = 48,
476 	.script_addrs = &sdma_script_imx25,
477 };
478 
479 static struct sdma_driver_data sdma_imx35 = {
480 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
481 	.num_events = 48,
482 };
483 
484 static struct sdma_script_start_addrs sdma_script_imx51 = {
485 	.ap_2_ap_addr = 642,
486 	.uart_2_mcu_addr = 817,
487 	.mcu_2_app_addr = 747,
488 	.mcu_2_shp_addr = 961,
489 	.ata_2_mcu_addr = 1473,
490 	.mcu_2_ata_addr = 1392,
491 	.app_2_per_addr = 1033,
492 	.app_2_mcu_addr = 683,
493 	.shp_2_per_addr = 1251,
494 	.shp_2_mcu_addr = 892,
495 };
496 
497 static struct sdma_driver_data sdma_imx51 = {
498 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
499 	.num_events = 48,
500 	.script_addrs = &sdma_script_imx51,
501 };
502 
503 static struct sdma_script_start_addrs sdma_script_imx53 = {
504 	.ap_2_ap_addr = 642,
505 	.app_2_mcu_addr = 683,
506 	.mcu_2_app_addr = 747,
507 	.uart_2_mcu_addr = 817,
508 	.shp_2_mcu_addr = 891,
509 	.mcu_2_shp_addr = 960,
510 	.uartsh_2_mcu_addr = 1032,
511 	.spdif_2_mcu_addr = 1100,
512 	.mcu_2_spdif_addr = 1134,
513 	.firi_2_mcu_addr = 1193,
514 	.mcu_2_firi_addr = 1290,
515 };
516 
517 static struct sdma_driver_data sdma_imx53 = {
518 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
519 	.num_events = 48,
520 	.script_addrs = &sdma_script_imx53,
521 };
522 
523 static struct sdma_script_start_addrs sdma_script_imx6q = {
524 	.ap_2_ap_addr = 642,
525 	.uart_2_mcu_addr = 817,
526 	.mcu_2_app_addr = 747,
527 	.per_2_per_addr = 6331,
528 	.uartsh_2_mcu_addr = 1032,
529 	.mcu_2_shp_addr = 960,
530 	.app_2_mcu_addr = 683,
531 	.shp_2_mcu_addr = 891,
532 	.spdif_2_mcu_addr = 1100,
533 	.mcu_2_spdif_addr = 1134,
534 };
535 
536 static struct sdma_driver_data sdma_imx6q = {
537 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
538 	.num_events = 48,
539 	.script_addrs = &sdma_script_imx6q,
540 };
541 
542 static struct sdma_script_start_addrs sdma_script_imx7d = {
543 	.ap_2_ap_addr = 644,
544 	.uart_2_mcu_addr = 819,
545 	.mcu_2_app_addr = 749,
546 	.uartsh_2_mcu_addr = 1034,
547 	.mcu_2_shp_addr = 962,
548 	.app_2_mcu_addr = 685,
549 	.shp_2_mcu_addr = 893,
550 	.spdif_2_mcu_addr = 1102,
551 	.mcu_2_spdif_addr = 1136,
552 };
553 
554 static struct sdma_driver_data sdma_imx7d = {
555 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
556 	.num_events = 48,
557 	.script_addrs = &sdma_script_imx7d,
558 };
559 
560 static struct sdma_driver_data sdma_imx8mq = {
561 	.chnenbl0 = SDMA_CHNENBL0_IMX35,
562 	.num_events = 48,
563 	.script_addrs = &sdma_script_imx7d,
564 	.check_ratio = 1,
565 };
566 
567 static const struct platform_device_id sdma_devtypes[] = {
568 	{
569 		.name = "imx25-sdma",
570 		.driver_data = (unsigned long)&sdma_imx25,
571 	}, {
572 		.name = "imx31-sdma",
573 		.driver_data = (unsigned long)&sdma_imx31,
574 	}, {
575 		.name = "imx35-sdma",
576 		.driver_data = (unsigned long)&sdma_imx35,
577 	}, {
578 		.name = "imx51-sdma",
579 		.driver_data = (unsigned long)&sdma_imx51,
580 	}, {
581 		.name = "imx53-sdma",
582 		.driver_data = (unsigned long)&sdma_imx53,
583 	}, {
584 		.name = "imx6q-sdma",
585 		.driver_data = (unsigned long)&sdma_imx6q,
586 	}, {
587 		.name = "imx7d-sdma",
588 		.driver_data = (unsigned long)&sdma_imx7d,
589 	}, {
590 		.name = "imx8mq-sdma",
591 		.driver_data = (unsigned long)&sdma_imx8mq,
592 	}, {
593 		/* sentinel */
594 	}
595 };
596 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
597 
598 static const struct of_device_id sdma_dt_ids[] = {
599 	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
600 	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
601 	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
602 	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
603 	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
604 	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
605 	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
606 	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
607 	{ /* sentinel */ }
608 };
609 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
610 
611 #define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
612 #define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
613 #define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
614 #define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
615 
chnenbl_ofs(struct sdma_engine * sdma,unsigned int event)616 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
617 {
618 	u32 chnenbl0 = sdma->drvdata->chnenbl0;
619 	return chnenbl0 + event * 4;
620 }
621 
sdma_config_ownership(struct sdma_channel * sdmac,bool event_override,bool mcu_override,bool dsp_override)622 static int sdma_config_ownership(struct sdma_channel *sdmac,
623 		bool event_override, bool mcu_override, bool dsp_override)
624 {
625 	struct sdma_engine *sdma = sdmac->sdma;
626 	int channel = sdmac->channel;
627 	unsigned long evt, mcu, dsp;
628 
629 	if (event_override && mcu_override && dsp_override)
630 		return -EINVAL;
631 
632 	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
633 	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
634 	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
635 
636 	if (dsp_override)
637 		__clear_bit(channel, &dsp);
638 	else
639 		__set_bit(channel, &dsp);
640 
641 	if (event_override)
642 		__clear_bit(channel, &evt);
643 	else
644 		__set_bit(channel, &evt);
645 
646 	if (mcu_override)
647 		__clear_bit(channel, &mcu);
648 	else
649 		__set_bit(channel, &mcu);
650 
651 	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
652 	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
653 	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
654 
655 	return 0;
656 }
657 
sdma_enable_channel(struct sdma_engine * sdma,int channel)658 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
659 {
660 	writel(BIT(channel), sdma->regs + SDMA_H_START);
661 }
662 
663 /*
664  * sdma_run_channel0 - run a channel and wait till it's done
665  */
sdma_run_channel0(struct sdma_engine * sdma)666 static int sdma_run_channel0(struct sdma_engine *sdma)
667 {
668 	int ret;
669 	u32 reg;
670 
671 	sdma_enable_channel(sdma, 0);
672 
673 	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
674 						reg, !(reg & 1), 1, 500);
675 	if (ret)
676 		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
677 
678 	/* Set bits of CONFIG register with dynamic context switching */
679 	reg = readl(sdma->regs + SDMA_H_CONFIG);
680 	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
681 		reg |= SDMA_H_CONFIG_CSM;
682 		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
683 	}
684 
685 	return ret;
686 }
687 
sdma_load_script(struct sdma_engine * sdma,void * buf,int size,u32 address)688 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
689 		u32 address)
690 {
691 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
692 	void *buf_virt;
693 	dma_addr_t buf_phys;
694 	int ret;
695 	unsigned long flags;
696 
697 	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
698 	if (!buf_virt) {
699 		return -ENOMEM;
700 	}
701 
702 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
703 
704 	bd0->mode.command = C0_SETPM;
705 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
706 	bd0->mode.count = size / 2;
707 	bd0->buffer_addr = buf_phys;
708 	bd0->ext_buffer_addr = address;
709 
710 	memcpy(buf_virt, buf, size);
711 
712 	ret = sdma_run_channel0(sdma);
713 
714 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
715 
716 	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
717 
718 	return ret;
719 }
720 
sdma_event_enable(struct sdma_channel * sdmac,unsigned int event)721 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
722 {
723 	struct sdma_engine *sdma = sdmac->sdma;
724 	int channel = sdmac->channel;
725 	unsigned long val;
726 	u32 chnenbl = chnenbl_ofs(sdma, event);
727 
728 	val = readl_relaxed(sdma->regs + chnenbl);
729 	__set_bit(channel, &val);
730 	writel_relaxed(val, sdma->regs + chnenbl);
731 }
732 
sdma_event_disable(struct sdma_channel * sdmac,unsigned int event)733 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
734 {
735 	struct sdma_engine *sdma = sdmac->sdma;
736 	int channel = sdmac->channel;
737 	u32 chnenbl = chnenbl_ofs(sdma, event);
738 	unsigned long val;
739 
740 	val = readl_relaxed(sdma->regs + chnenbl);
741 	__clear_bit(channel, &val);
742 	writel_relaxed(val, sdma->regs + chnenbl);
743 }
744 
to_sdma_desc(struct dma_async_tx_descriptor * t)745 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
746 {
747 	return container_of(t, struct sdma_desc, vd.tx);
748 }
749 
sdma_start_desc(struct sdma_channel * sdmac)750 static void sdma_start_desc(struct sdma_channel *sdmac)
751 {
752 	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
753 	struct sdma_desc *desc;
754 	struct sdma_engine *sdma = sdmac->sdma;
755 	int channel = sdmac->channel;
756 
757 	if (!vd) {
758 		sdmac->desc = NULL;
759 		return;
760 	}
761 	sdmac->desc = desc = to_sdma_desc(&vd->tx);
762 	/*
763 	 * Do not delete the node in desc_issued list in cyclic mode, otherwise
764 	 * the desc allocated will never be freed in vchan_dma_desc_free_list
765 	 */
766 	if (!(sdmac->flags & IMX_DMA_SG_LOOP))
767 		list_del(&vd->node);
768 
769 	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
770 	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
771 	sdma_enable_channel(sdma, sdmac->channel);
772 }
773 
sdma_update_channel_loop(struct sdma_channel * sdmac)774 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
775 {
776 	struct sdma_buffer_descriptor *bd;
777 	int error = 0;
778 	enum dma_status	old_status = sdmac->status;
779 
780 	/*
781 	 * loop mode. Iterate over descriptors, re-setup them and
782 	 * call callback function.
783 	 */
784 	while (sdmac->desc) {
785 		struct sdma_desc *desc = sdmac->desc;
786 
787 		bd = &desc->bd[desc->buf_tail];
788 
789 		if (bd->mode.status & BD_DONE)
790 			break;
791 
792 		if (bd->mode.status & BD_RROR) {
793 			bd->mode.status &= ~BD_RROR;
794 			sdmac->status = DMA_ERROR;
795 			error = -EIO;
796 		}
797 
798 	       /*
799 		* We use bd->mode.count to calculate the residue, since contains
800 		* the number of bytes present in the current buffer descriptor.
801 		*/
802 
803 		desc->chn_real_count = bd->mode.count;
804 		bd->mode.status |= BD_DONE;
805 		bd->mode.count = desc->period_len;
806 		desc->buf_ptail = desc->buf_tail;
807 		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
808 
809 		/*
810 		 * The callback is called from the interrupt context in order
811 		 * to reduce latency and to avoid the risk of altering the
812 		 * SDMA transaction status by the time the client tasklet is
813 		 * executed.
814 		 */
815 		spin_unlock(&sdmac->vc.lock);
816 		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
817 		spin_lock(&sdmac->vc.lock);
818 
819 		if (error)
820 			sdmac->status = old_status;
821 	}
822 }
823 
mxc_sdma_handle_channel_normal(struct sdma_channel * data)824 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
825 {
826 	struct sdma_channel *sdmac = (struct sdma_channel *) data;
827 	struct sdma_buffer_descriptor *bd;
828 	int i, error = 0;
829 
830 	sdmac->desc->chn_real_count = 0;
831 	/*
832 	 * non loop mode. Iterate over all descriptors, collect
833 	 * errors and call callback function
834 	 */
835 	for (i = 0; i < sdmac->desc->num_bd; i++) {
836 		bd = &sdmac->desc->bd[i];
837 
838 		 if (bd->mode.status & (BD_DONE | BD_RROR))
839 			error = -EIO;
840 		 sdmac->desc->chn_real_count += bd->mode.count;
841 	}
842 
843 	if (error)
844 		sdmac->status = DMA_ERROR;
845 	else
846 		sdmac->status = DMA_COMPLETE;
847 }
848 
sdma_int_handler(int irq,void * dev_id)849 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
850 {
851 	struct sdma_engine *sdma = dev_id;
852 	unsigned long stat;
853 
854 	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
855 	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
856 	/* channel 0 is special and not handled here, see run_channel0() */
857 	stat &= ~1;
858 
859 	while (stat) {
860 		int channel = fls(stat) - 1;
861 		struct sdma_channel *sdmac = &sdma->channel[channel];
862 		struct sdma_desc *desc;
863 
864 		spin_lock(&sdmac->vc.lock);
865 		desc = sdmac->desc;
866 		if (desc) {
867 			if (sdmac->flags & IMX_DMA_SG_LOOP) {
868 				sdma_update_channel_loop(sdmac);
869 			} else {
870 				mxc_sdma_handle_channel_normal(sdmac);
871 				vchan_cookie_complete(&desc->vd);
872 				sdma_start_desc(sdmac);
873 			}
874 		}
875 
876 		spin_unlock(&sdmac->vc.lock);
877 		__clear_bit(channel, &stat);
878 	}
879 
880 	return IRQ_HANDLED;
881 }
882 
883 /*
884  * sets the pc of SDMA script according to the peripheral type
885  */
sdma_get_pc(struct sdma_channel * sdmac,enum sdma_peripheral_type peripheral_type)886 static void sdma_get_pc(struct sdma_channel *sdmac,
887 		enum sdma_peripheral_type peripheral_type)
888 {
889 	struct sdma_engine *sdma = sdmac->sdma;
890 	int per_2_emi = 0, emi_2_per = 0;
891 	/*
892 	 * These are needed once we start to support transfers between
893 	 * two peripherals or memory-to-memory transfers
894 	 */
895 	int per_2_per = 0, emi_2_emi = 0;
896 
897 	sdmac->pc_from_device = 0;
898 	sdmac->pc_to_device = 0;
899 	sdmac->device_to_device = 0;
900 	sdmac->pc_to_pc = 0;
901 
902 	switch (peripheral_type) {
903 	case IMX_DMATYPE_MEMORY:
904 		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
905 		break;
906 	case IMX_DMATYPE_DSP:
907 		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
908 		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
909 		break;
910 	case IMX_DMATYPE_FIRI:
911 		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
912 		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
913 		break;
914 	case IMX_DMATYPE_UART:
915 		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
916 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
917 		break;
918 	case IMX_DMATYPE_UART_SP:
919 		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
920 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
921 		break;
922 	case IMX_DMATYPE_ATA:
923 		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
924 		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
925 		break;
926 	case IMX_DMATYPE_CSPI:
927 	case IMX_DMATYPE_EXT:
928 	case IMX_DMATYPE_SSI:
929 	case IMX_DMATYPE_SAI:
930 		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
931 		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
932 		break;
933 	case IMX_DMATYPE_SSI_DUAL:
934 		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
935 		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
936 		break;
937 	case IMX_DMATYPE_SSI_SP:
938 	case IMX_DMATYPE_MMC:
939 	case IMX_DMATYPE_SDHC:
940 	case IMX_DMATYPE_CSPI_SP:
941 	case IMX_DMATYPE_ESAI:
942 	case IMX_DMATYPE_MSHC_SP:
943 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
944 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
945 		break;
946 	case IMX_DMATYPE_ASRC:
947 		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
948 		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
949 		per_2_per = sdma->script_addrs->per_2_per_addr;
950 		break;
951 	case IMX_DMATYPE_ASRC_SP:
952 		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
953 		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
954 		per_2_per = sdma->script_addrs->per_2_per_addr;
955 		break;
956 	case IMX_DMATYPE_MSHC:
957 		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
958 		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
959 		break;
960 	case IMX_DMATYPE_CCM:
961 		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
962 		break;
963 	case IMX_DMATYPE_SPDIF:
964 		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
965 		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
966 		break;
967 	case IMX_DMATYPE_IPU_MEMORY:
968 		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
969 		break;
970 	default:
971 		break;
972 	}
973 
974 	sdmac->pc_from_device = per_2_emi;
975 	sdmac->pc_to_device = emi_2_per;
976 	sdmac->device_to_device = per_2_per;
977 	sdmac->pc_to_pc = emi_2_emi;
978 }
979 
sdma_load_context(struct sdma_channel * sdmac)980 static int sdma_load_context(struct sdma_channel *sdmac)
981 {
982 	struct sdma_engine *sdma = sdmac->sdma;
983 	int channel = sdmac->channel;
984 	int load_address;
985 	struct sdma_context_data *context = sdma->context;
986 	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
987 	int ret;
988 	unsigned long flags;
989 
990 	if (sdmac->direction == DMA_DEV_TO_MEM)
991 		load_address = sdmac->pc_from_device;
992 	else if (sdmac->direction == DMA_DEV_TO_DEV)
993 		load_address = sdmac->device_to_device;
994 	else if (sdmac->direction == DMA_MEM_TO_MEM)
995 		load_address = sdmac->pc_to_pc;
996 	else
997 		load_address = sdmac->pc_to_device;
998 
999 	if (load_address < 0)
1000 		return load_address;
1001 
1002 	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1003 	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1004 	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1005 	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1006 	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1007 	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1008 
1009 	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1010 
1011 	memset(context, 0, sizeof(*context));
1012 	context->channel_state.pc = load_address;
1013 
1014 	/* Send by context the event mask,base address for peripheral
1015 	 * and watermark level
1016 	 */
1017 	context->gReg[0] = sdmac->event_mask[1];
1018 	context->gReg[1] = sdmac->event_mask[0];
1019 	context->gReg[2] = sdmac->per_addr;
1020 	context->gReg[6] = sdmac->shp_addr;
1021 	context->gReg[7] = sdmac->watermark_level;
1022 
1023 	bd0->mode.command = C0_SETDM;
1024 	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1025 	bd0->mode.count = sizeof(*context) / 4;
1026 	bd0->buffer_addr = sdma->context_phys;
1027 	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1028 	ret = sdma_run_channel0(sdma);
1029 
1030 	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1031 
1032 	return ret;
1033 }
1034 
to_sdma_chan(struct dma_chan * chan)1035 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1036 {
1037 	return container_of(chan, struct sdma_channel, vc.chan);
1038 }
1039 
sdma_disable_channel(struct dma_chan * chan)1040 static int sdma_disable_channel(struct dma_chan *chan)
1041 {
1042 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1043 	struct sdma_engine *sdma = sdmac->sdma;
1044 	int channel = sdmac->channel;
1045 
1046 	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1047 	sdmac->status = DMA_ERROR;
1048 
1049 	return 0;
1050 }
sdma_channel_terminate_work(struct work_struct * work)1051 static void sdma_channel_terminate_work(struct work_struct *work)
1052 {
1053 	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1054 						  terminate_worker);
1055 	unsigned long flags;
1056 	LIST_HEAD(head);
1057 
1058 	/*
1059 	 * According to NXP R&D team a delay of one BD SDMA cost time
1060 	 * (maximum is 1ms) should be added after disable of the channel
1061 	 * bit, to ensure SDMA core has really been stopped after SDMA
1062 	 * clients call .device_terminate_all.
1063 	 */
1064 	usleep_range(1000, 2000);
1065 
1066 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1067 	vchan_get_all_descriptors(&sdmac->vc, &head);
1068 	sdmac->desc = NULL;
1069 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1070 	vchan_dma_desc_free_list(&sdmac->vc, &head);
1071 }
1072 
sdma_disable_channel_async(struct dma_chan * chan)1073 static int sdma_disable_channel_async(struct dma_chan *chan)
1074 {
1075 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1076 
1077 	sdma_disable_channel(chan);
1078 
1079 	if (sdmac->desc)
1080 		schedule_work(&sdmac->terminate_worker);
1081 
1082 	return 0;
1083 }
1084 
sdma_channel_synchronize(struct dma_chan * chan)1085 static void sdma_channel_synchronize(struct dma_chan *chan)
1086 {
1087 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1088 
1089 	vchan_synchronize(&sdmac->vc);
1090 
1091 	flush_work(&sdmac->terminate_worker);
1092 }
1093 
sdma_set_watermarklevel_for_p2p(struct sdma_channel * sdmac)1094 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1095 {
1096 	struct sdma_engine *sdma = sdmac->sdma;
1097 
1098 	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1099 	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1100 
1101 	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1102 	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1103 
1104 	if (sdmac->event_id0 > 31)
1105 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1106 
1107 	if (sdmac->event_id1 > 31)
1108 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1109 
1110 	/*
1111 	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1112 	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1113 	 * r0(event_mask[1]) and r1(event_mask[0]).
1114 	 */
1115 	if (lwml > hwml) {
1116 		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1117 						SDMA_WATERMARK_LEVEL_HWML);
1118 		sdmac->watermark_level |= hwml;
1119 		sdmac->watermark_level |= lwml << 16;
1120 		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1121 	}
1122 
1123 	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1124 			sdmac->per_address2 <= sdma->spba_end_addr)
1125 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1126 
1127 	if (sdmac->per_address >= sdma->spba_start_addr &&
1128 			sdmac->per_address <= sdma->spba_end_addr)
1129 		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1130 
1131 	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1132 }
1133 
sdma_config_channel(struct dma_chan * chan)1134 static int sdma_config_channel(struct dma_chan *chan)
1135 {
1136 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1137 
1138 	sdma_disable_channel(chan);
1139 
1140 	sdmac->event_mask[0] = 0;
1141 	sdmac->event_mask[1] = 0;
1142 	sdmac->shp_addr = 0;
1143 	sdmac->per_addr = 0;
1144 
1145 	switch (sdmac->peripheral_type) {
1146 	case IMX_DMATYPE_DSP:
1147 		sdma_config_ownership(sdmac, false, true, true);
1148 		break;
1149 	case IMX_DMATYPE_MEMORY:
1150 		sdma_config_ownership(sdmac, false, true, false);
1151 		break;
1152 	default:
1153 		sdma_config_ownership(sdmac, true, true, false);
1154 		break;
1155 	}
1156 
1157 	sdma_get_pc(sdmac, sdmac->peripheral_type);
1158 
1159 	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1160 			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1161 		/* Handle multiple event channels differently */
1162 		if (sdmac->event_id1) {
1163 			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1164 			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1165 				sdma_set_watermarklevel_for_p2p(sdmac);
1166 		} else
1167 			__set_bit(sdmac->event_id0, sdmac->event_mask);
1168 
1169 		/* Address */
1170 		sdmac->shp_addr = sdmac->per_address;
1171 		sdmac->per_addr = sdmac->per_address2;
1172 	} else {
1173 		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1174 	}
1175 
1176 	return 0;
1177 }
1178 
sdma_set_channel_priority(struct sdma_channel * sdmac,unsigned int priority)1179 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1180 		unsigned int priority)
1181 {
1182 	struct sdma_engine *sdma = sdmac->sdma;
1183 	int channel = sdmac->channel;
1184 
1185 	if (priority < MXC_SDMA_MIN_PRIORITY
1186 	    || priority > MXC_SDMA_MAX_PRIORITY) {
1187 		return -EINVAL;
1188 	}
1189 
1190 	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1191 
1192 	return 0;
1193 }
1194 
sdma_request_channel0(struct sdma_engine * sdma)1195 static int sdma_request_channel0(struct sdma_engine *sdma)
1196 {
1197 	int ret = -EBUSY;
1198 
1199 	sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1200 					GFP_NOWAIT);
1201 	if (!sdma->bd0) {
1202 		ret = -ENOMEM;
1203 		goto out;
1204 	}
1205 
1206 	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1207 	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1208 
1209 	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1210 	return 0;
1211 out:
1212 
1213 	return ret;
1214 }
1215 
1216 
sdma_alloc_bd(struct sdma_desc * desc)1217 static int sdma_alloc_bd(struct sdma_desc *desc)
1218 {
1219 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1220 	int ret = 0;
1221 
1222 	desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1223 				       &desc->bd_phys, GFP_NOWAIT);
1224 	if (!desc->bd) {
1225 		ret = -ENOMEM;
1226 		goto out;
1227 	}
1228 out:
1229 	return ret;
1230 }
1231 
sdma_free_bd(struct sdma_desc * desc)1232 static void sdma_free_bd(struct sdma_desc *desc)
1233 {
1234 	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1235 
1236 	dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1237 			  desc->bd_phys);
1238 }
1239 
sdma_desc_free(struct virt_dma_desc * vd)1240 static void sdma_desc_free(struct virt_dma_desc *vd)
1241 {
1242 	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1243 
1244 	sdma_free_bd(desc);
1245 	kfree(desc);
1246 }
1247 
sdma_alloc_chan_resources(struct dma_chan * chan)1248 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1249 {
1250 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1251 	struct imx_dma_data *data = chan->private;
1252 	struct imx_dma_data mem_data;
1253 	int prio, ret;
1254 
1255 	/*
1256 	 * MEMCPY may never setup chan->private by filter function such as
1257 	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1258 	 * Please note in any other slave case, you have to setup chan->private
1259 	 * with 'struct imx_dma_data' in your own filter function if you want to
1260 	 * request dma channel by dma_request_channel() rather than
1261 	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1262 	 * to warn you to correct your filter function.
1263 	 */
1264 	if (!data) {
1265 		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1266 		mem_data.priority = 2;
1267 		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1268 		mem_data.dma_request = 0;
1269 		mem_data.dma_request2 = 0;
1270 		data = &mem_data;
1271 
1272 		sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1273 	}
1274 
1275 	switch (data->priority) {
1276 	case DMA_PRIO_HIGH:
1277 		prio = 3;
1278 		break;
1279 	case DMA_PRIO_MEDIUM:
1280 		prio = 2;
1281 		break;
1282 	case DMA_PRIO_LOW:
1283 	default:
1284 		prio = 1;
1285 		break;
1286 	}
1287 
1288 	sdmac->peripheral_type = data->peripheral_type;
1289 	sdmac->event_id0 = data->dma_request;
1290 	sdmac->event_id1 = data->dma_request2;
1291 
1292 	ret = clk_enable(sdmac->sdma->clk_ipg);
1293 	if (ret)
1294 		return ret;
1295 	ret = clk_enable(sdmac->sdma->clk_ahb);
1296 	if (ret)
1297 		goto disable_clk_ipg;
1298 
1299 	ret = sdma_set_channel_priority(sdmac, prio);
1300 	if (ret)
1301 		goto disable_clk_ahb;
1302 
1303 	return 0;
1304 
1305 disable_clk_ahb:
1306 	clk_disable(sdmac->sdma->clk_ahb);
1307 disable_clk_ipg:
1308 	clk_disable(sdmac->sdma->clk_ipg);
1309 	return ret;
1310 }
1311 
sdma_free_chan_resources(struct dma_chan * chan)1312 static void sdma_free_chan_resources(struct dma_chan *chan)
1313 {
1314 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1315 	struct sdma_engine *sdma = sdmac->sdma;
1316 
1317 	sdma_disable_channel_async(chan);
1318 
1319 	sdma_channel_synchronize(chan);
1320 
1321 	if (sdmac->event_id0 >= 0)
1322 		sdma_event_disable(sdmac, sdmac->event_id0);
1323 	if (sdmac->event_id1)
1324 		sdma_event_disable(sdmac, sdmac->event_id1);
1325 
1326 	sdmac->event_id0 = 0;
1327 	sdmac->event_id1 = 0;
1328 
1329 	sdma_set_channel_priority(sdmac, 0);
1330 
1331 	clk_disable(sdma->clk_ipg);
1332 	clk_disable(sdma->clk_ahb);
1333 }
1334 
sdma_transfer_init(struct sdma_channel * sdmac,enum dma_transfer_direction direction,u32 bds)1335 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1336 				enum dma_transfer_direction direction, u32 bds)
1337 {
1338 	struct sdma_desc *desc;
1339 
1340 	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1341 	if (!desc)
1342 		goto err_out;
1343 
1344 	sdmac->status = DMA_IN_PROGRESS;
1345 	sdmac->direction = direction;
1346 	sdmac->flags = 0;
1347 
1348 	desc->chn_count = 0;
1349 	desc->chn_real_count = 0;
1350 	desc->buf_tail = 0;
1351 	desc->buf_ptail = 0;
1352 	desc->sdmac = sdmac;
1353 	desc->num_bd = bds;
1354 
1355 	if (sdma_alloc_bd(desc))
1356 		goto err_desc_out;
1357 
1358 	/* No slave_config called in MEMCPY case, so do here */
1359 	if (direction == DMA_MEM_TO_MEM)
1360 		sdma_config_ownership(sdmac, false, true, false);
1361 
1362 	if (sdma_load_context(sdmac))
1363 		goto err_bd_out;
1364 
1365 	return desc;
1366 
1367 err_bd_out:
1368 	sdma_free_bd(desc);
1369 err_desc_out:
1370 	kfree(desc);
1371 err_out:
1372 	return NULL;
1373 }
1374 
sdma_prep_memcpy(struct dma_chan * chan,dma_addr_t dma_dst,dma_addr_t dma_src,size_t len,unsigned long flags)1375 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1376 		struct dma_chan *chan, dma_addr_t dma_dst,
1377 		dma_addr_t dma_src, size_t len, unsigned long flags)
1378 {
1379 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1380 	struct sdma_engine *sdma = sdmac->sdma;
1381 	int channel = sdmac->channel;
1382 	size_t count;
1383 	int i = 0, param;
1384 	struct sdma_buffer_descriptor *bd;
1385 	struct sdma_desc *desc;
1386 
1387 	if (!chan || !len)
1388 		return NULL;
1389 
1390 	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1391 		&dma_src, &dma_dst, len, channel);
1392 
1393 	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1394 					len / SDMA_BD_MAX_CNT + 1);
1395 	if (!desc)
1396 		return NULL;
1397 
1398 	do {
1399 		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1400 		bd = &desc->bd[i];
1401 		bd->buffer_addr = dma_src;
1402 		bd->ext_buffer_addr = dma_dst;
1403 		bd->mode.count = count;
1404 		desc->chn_count += count;
1405 		bd->mode.command = 0;
1406 
1407 		dma_src += count;
1408 		dma_dst += count;
1409 		len -= count;
1410 		i++;
1411 
1412 		param = BD_DONE | BD_EXTD | BD_CONT;
1413 		/* last bd */
1414 		if (!len) {
1415 			param |= BD_INTR;
1416 			param |= BD_LAST;
1417 			param &= ~BD_CONT;
1418 		}
1419 
1420 		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1421 				i, count, bd->buffer_addr,
1422 				param & BD_WRAP ? "wrap" : "",
1423 				param & BD_INTR ? " intr" : "");
1424 
1425 		bd->mode.status = param;
1426 	} while (len);
1427 
1428 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1429 }
1430 
sdma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1431 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1432 		struct dma_chan *chan, struct scatterlist *sgl,
1433 		unsigned int sg_len, enum dma_transfer_direction direction,
1434 		unsigned long flags, void *context)
1435 {
1436 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1437 	struct sdma_engine *sdma = sdmac->sdma;
1438 	int i, count;
1439 	int channel = sdmac->channel;
1440 	struct scatterlist *sg;
1441 	struct sdma_desc *desc;
1442 
1443 	sdma_config_write(chan, &sdmac->slave_config, direction);
1444 
1445 	desc = sdma_transfer_init(sdmac, direction, sg_len);
1446 	if (!desc)
1447 		goto err_out;
1448 
1449 	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1450 			sg_len, channel);
1451 
1452 	for_each_sg(sgl, sg, sg_len, i) {
1453 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1454 		int param;
1455 
1456 		bd->buffer_addr = sg->dma_address;
1457 
1458 		count = sg_dma_len(sg);
1459 
1460 		if (count > SDMA_BD_MAX_CNT) {
1461 			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1462 					channel, count, SDMA_BD_MAX_CNT);
1463 			goto err_bd_out;
1464 		}
1465 
1466 		bd->mode.count = count;
1467 		desc->chn_count += count;
1468 
1469 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1470 			goto err_bd_out;
1471 
1472 		switch (sdmac->word_size) {
1473 		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1474 			bd->mode.command = 0;
1475 			if (count & 3 || sg->dma_address & 3)
1476 				goto err_bd_out;
1477 			break;
1478 		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1479 			bd->mode.command = 2;
1480 			if (count & 1 || sg->dma_address & 1)
1481 				goto err_bd_out;
1482 			break;
1483 		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1484 			bd->mode.command = 1;
1485 			break;
1486 		default:
1487 			goto err_bd_out;
1488 		}
1489 
1490 		param = BD_DONE | BD_EXTD | BD_CONT;
1491 
1492 		if (i + 1 == sg_len) {
1493 			param |= BD_INTR;
1494 			param |= BD_LAST;
1495 			param &= ~BD_CONT;
1496 		}
1497 
1498 		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1499 				i, count, (u64)sg->dma_address,
1500 				param & BD_WRAP ? "wrap" : "",
1501 				param & BD_INTR ? " intr" : "");
1502 
1503 		bd->mode.status = param;
1504 	}
1505 
1506 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1507 err_bd_out:
1508 	sdma_free_bd(desc);
1509 	kfree(desc);
1510 err_out:
1511 	sdmac->status = DMA_ERROR;
1512 	return NULL;
1513 }
1514 
sdma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t dma_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)1515 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1516 		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1517 		size_t period_len, enum dma_transfer_direction direction,
1518 		unsigned long flags)
1519 {
1520 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1521 	struct sdma_engine *sdma = sdmac->sdma;
1522 	int num_periods = buf_len / period_len;
1523 	int channel = sdmac->channel;
1524 	int i = 0, buf = 0;
1525 	struct sdma_desc *desc;
1526 
1527 	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1528 
1529 	sdma_config_write(chan, &sdmac->slave_config, direction);
1530 
1531 	desc = sdma_transfer_init(sdmac, direction, num_periods);
1532 	if (!desc)
1533 		goto err_out;
1534 
1535 	desc->period_len = period_len;
1536 
1537 	sdmac->flags |= IMX_DMA_SG_LOOP;
1538 
1539 	if (period_len > SDMA_BD_MAX_CNT) {
1540 		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1541 				channel, period_len, SDMA_BD_MAX_CNT);
1542 		goto err_bd_out;
1543 	}
1544 
1545 	while (buf < buf_len) {
1546 		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1547 		int param;
1548 
1549 		bd->buffer_addr = dma_addr;
1550 
1551 		bd->mode.count = period_len;
1552 
1553 		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1554 			goto err_bd_out;
1555 		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1556 			bd->mode.command = 0;
1557 		else
1558 			bd->mode.command = sdmac->word_size;
1559 
1560 		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1561 		if (i + 1 == num_periods)
1562 			param |= BD_WRAP;
1563 
1564 		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1565 				i, period_len, (u64)dma_addr,
1566 				param & BD_WRAP ? "wrap" : "",
1567 				param & BD_INTR ? " intr" : "");
1568 
1569 		bd->mode.status = param;
1570 
1571 		dma_addr += period_len;
1572 		buf += period_len;
1573 
1574 		i++;
1575 	}
1576 
1577 	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1578 err_bd_out:
1579 	sdma_free_bd(desc);
1580 	kfree(desc);
1581 err_out:
1582 	sdmac->status = DMA_ERROR;
1583 	return NULL;
1584 }
1585 
sdma_config_write(struct dma_chan * chan,struct dma_slave_config * dmaengine_cfg,enum dma_transfer_direction direction)1586 static int sdma_config_write(struct dma_chan *chan,
1587 		       struct dma_slave_config *dmaengine_cfg,
1588 		       enum dma_transfer_direction direction)
1589 {
1590 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1591 
1592 	if (direction == DMA_DEV_TO_MEM) {
1593 		sdmac->per_address = dmaengine_cfg->src_addr;
1594 		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1595 			dmaengine_cfg->src_addr_width;
1596 		sdmac->word_size = dmaengine_cfg->src_addr_width;
1597 	} else if (direction == DMA_DEV_TO_DEV) {
1598 		sdmac->per_address2 = dmaengine_cfg->src_addr;
1599 		sdmac->per_address = dmaengine_cfg->dst_addr;
1600 		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1601 			SDMA_WATERMARK_LEVEL_LWML;
1602 		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1603 			SDMA_WATERMARK_LEVEL_HWML;
1604 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1605 	} else {
1606 		sdmac->per_address = dmaengine_cfg->dst_addr;
1607 		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1608 			dmaengine_cfg->dst_addr_width;
1609 		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1610 	}
1611 	sdmac->direction = direction;
1612 	return sdma_config_channel(chan);
1613 }
1614 
sdma_config(struct dma_chan * chan,struct dma_slave_config * dmaengine_cfg)1615 static int sdma_config(struct dma_chan *chan,
1616 		       struct dma_slave_config *dmaengine_cfg)
1617 {
1618 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1619 
1620 	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1621 
1622 	/* Set ENBLn earlier to make sure dma request triggered after that */
1623 	if (sdmac->event_id0 >= 0) {
1624 		if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1625 			return -EINVAL;
1626 		sdma_event_enable(sdmac, sdmac->event_id0);
1627 	}
1628 
1629 	if (sdmac->event_id1) {
1630 		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1631 			return -EINVAL;
1632 		sdma_event_enable(sdmac, sdmac->event_id1);
1633 	}
1634 
1635 	return 0;
1636 }
1637 
sdma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1638 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1639 				      dma_cookie_t cookie,
1640 				      struct dma_tx_state *txstate)
1641 {
1642 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1643 	struct sdma_desc *desc;
1644 	u32 residue;
1645 	struct virt_dma_desc *vd;
1646 	enum dma_status ret;
1647 	unsigned long flags;
1648 
1649 	ret = dma_cookie_status(chan, cookie, txstate);
1650 	if (ret == DMA_COMPLETE || !txstate)
1651 		return ret;
1652 
1653 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1654 	vd = vchan_find_desc(&sdmac->vc, cookie);
1655 	if (vd) {
1656 		desc = to_sdma_desc(&vd->tx);
1657 		if (sdmac->flags & IMX_DMA_SG_LOOP)
1658 			residue = (desc->num_bd - desc->buf_ptail) *
1659 				desc->period_len - desc->chn_real_count;
1660 		else
1661 			residue = desc->chn_count - desc->chn_real_count;
1662 	} else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) {
1663 		residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count;
1664 	} else {
1665 		residue = 0;
1666 	}
1667 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1668 
1669 	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1670 			 residue);
1671 
1672 	return sdmac->status;
1673 }
1674 
sdma_issue_pending(struct dma_chan * chan)1675 static void sdma_issue_pending(struct dma_chan *chan)
1676 {
1677 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1678 	unsigned long flags;
1679 
1680 	spin_lock_irqsave(&sdmac->vc.lock, flags);
1681 	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1682 		sdma_start_desc(sdmac);
1683 	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1684 }
1685 
1686 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
1687 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2	38
1688 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3	41
1689 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4	42
1690 
sdma_add_scripts(struct sdma_engine * sdma,const struct sdma_script_start_addrs * addr)1691 static void sdma_add_scripts(struct sdma_engine *sdma,
1692 		const struct sdma_script_start_addrs *addr)
1693 {
1694 	s32 *addr_arr = (u32 *)addr;
1695 	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1696 	int i;
1697 
1698 	/* use the default firmware in ROM if missing external firmware */
1699 	if (!sdma->script_number)
1700 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1701 
1702 	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1703 				  / sizeof(s32)) {
1704 		dev_err(sdma->dev,
1705 			"SDMA script number %d not match with firmware.\n",
1706 			sdma->script_number);
1707 		return;
1708 	}
1709 
1710 	for (i = 0; i < sdma->script_number; i++)
1711 		if (addr_arr[i] > 0)
1712 			saddr_arr[i] = addr_arr[i];
1713 }
1714 
sdma_load_firmware(const struct firmware * fw,void * context)1715 static void sdma_load_firmware(const struct firmware *fw, void *context)
1716 {
1717 	struct sdma_engine *sdma = context;
1718 	const struct sdma_firmware_header *header;
1719 	const struct sdma_script_start_addrs *addr;
1720 	unsigned short *ram_code;
1721 
1722 	if (!fw) {
1723 		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1724 		/* In this case we just use the ROM firmware. */
1725 		return;
1726 	}
1727 
1728 	if (fw->size < sizeof(*header))
1729 		goto err_firmware;
1730 
1731 	header = (struct sdma_firmware_header *)fw->data;
1732 
1733 	if (header->magic != SDMA_FIRMWARE_MAGIC)
1734 		goto err_firmware;
1735 	if (header->ram_code_start + header->ram_code_size > fw->size)
1736 		goto err_firmware;
1737 	switch (header->version_major) {
1738 	case 1:
1739 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1740 		break;
1741 	case 2:
1742 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1743 		break;
1744 	case 3:
1745 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1746 		break;
1747 	case 4:
1748 		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1749 		break;
1750 	default:
1751 		dev_err(sdma->dev, "unknown firmware version\n");
1752 		goto err_firmware;
1753 	}
1754 
1755 	addr = (void *)header + header->script_addrs_start;
1756 	ram_code = (void *)header + header->ram_code_start;
1757 
1758 	clk_enable(sdma->clk_ipg);
1759 	clk_enable(sdma->clk_ahb);
1760 	/* download the RAM image for SDMA */
1761 	sdma_load_script(sdma, ram_code,
1762 			header->ram_code_size,
1763 			addr->ram_code_start_addr);
1764 	clk_disable(sdma->clk_ipg);
1765 	clk_disable(sdma->clk_ahb);
1766 
1767 	sdma_add_scripts(sdma, addr);
1768 
1769 	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1770 			header->version_major,
1771 			header->version_minor);
1772 
1773 err_firmware:
1774 	release_firmware(fw);
1775 }
1776 
1777 #define EVENT_REMAP_CELLS 3
1778 
sdma_event_remap(struct sdma_engine * sdma)1779 static int sdma_event_remap(struct sdma_engine *sdma)
1780 {
1781 	struct device_node *np = sdma->dev->of_node;
1782 	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1783 	struct property *event_remap;
1784 	struct regmap *gpr;
1785 	char propname[] = "fsl,sdma-event-remap";
1786 	u32 reg, val, shift, num_map, i;
1787 	int ret = 0;
1788 
1789 	if (IS_ERR(np) || !gpr_np)
1790 		goto out;
1791 
1792 	event_remap = of_find_property(np, propname, NULL);
1793 	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1794 	if (!num_map) {
1795 		dev_dbg(sdma->dev, "no event needs to be remapped\n");
1796 		goto out;
1797 	} else if (num_map % EVENT_REMAP_CELLS) {
1798 		dev_err(sdma->dev, "the property %s must modulo %d\n",
1799 				propname, EVENT_REMAP_CELLS);
1800 		ret = -EINVAL;
1801 		goto out;
1802 	}
1803 
1804 	gpr = syscon_node_to_regmap(gpr_np);
1805 	if (IS_ERR(gpr)) {
1806 		dev_err(sdma->dev, "failed to get gpr regmap\n");
1807 		ret = PTR_ERR(gpr);
1808 		goto out;
1809 	}
1810 
1811 	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1812 		ret = of_property_read_u32_index(np, propname, i, &reg);
1813 		if (ret) {
1814 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1815 					propname, i);
1816 			goto out;
1817 		}
1818 
1819 		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1820 		if (ret) {
1821 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1822 					propname, i + 1);
1823 			goto out;
1824 		}
1825 
1826 		ret = of_property_read_u32_index(np, propname, i + 2, &val);
1827 		if (ret) {
1828 			dev_err(sdma->dev, "failed to read property %s index %d\n",
1829 					propname, i + 2);
1830 			goto out;
1831 		}
1832 
1833 		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1834 	}
1835 
1836 out:
1837 	if (gpr_np)
1838 		of_node_put(gpr_np);
1839 
1840 	return ret;
1841 }
1842 
sdma_get_firmware(struct sdma_engine * sdma,const char * fw_name)1843 static int sdma_get_firmware(struct sdma_engine *sdma,
1844 		const char *fw_name)
1845 {
1846 	int ret;
1847 
1848 	ret = request_firmware_nowait(THIS_MODULE,
1849 			FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1850 			GFP_KERNEL, sdma, sdma_load_firmware);
1851 
1852 	return ret;
1853 }
1854 
sdma_init(struct sdma_engine * sdma)1855 static int sdma_init(struct sdma_engine *sdma)
1856 {
1857 	int i, ret;
1858 	dma_addr_t ccb_phys;
1859 
1860 	ret = clk_enable(sdma->clk_ipg);
1861 	if (ret)
1862 		return ret;
1863 	ret = clk_enable(sdma->clk_ahb);
1864 	if (ret)
1865 		goto disable_clk_ipg;
1866 
1867 	if (sdma->drvdata->check_ratio &&
1868 	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1869 		sdma->clk_ratio = 1;
1870 
1871 	/* Be sure SDMA has not started yet */
1872 	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1873 
1874 	sdma->channel_control = dma_alloc_coherent(sdma->dev,
1875 			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1876 			sizeof(struct sdma_context_data),
1877 			&ccb_phys, GFP_KERNEL);
1878 
1879 	if (!sdma->channel_control) {
1880 		ret = -ENOMEM;
1881 		goto err_dma_alloc;
1882 	}
1883 
1884 	sdma->context = (void *)sdma->channel_control +
1885 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1886 	sdma->context_phys = ccb_phys +
1887 		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1888 
1889 	/* disable all channels */
1890 	for (i = 0; i < sdma->drvdata->num_events; i++)
1891 		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1892 
1893 	/* All channels have priority 0 */
1894 	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1895 		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1896 
1897 	ret = sdma_request_channel0(sdma);
1898 	if (ret)
1899 		goto err_dma_alloc;
1900 
1901 	sdma_config_ownership(&sdma->channel[0], false, true, false);
1902 
1903 	/* Set Command Channel (Channel Zero) */
1904 	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1905 
1906 	/* Set bits of CONFIG register but with static context switching */
1907 	if (sdma->clk_ratio)
1908 		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1909 	else
1910 		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1911 
1912 	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1913 
1914 	/* Initializes channel's priorities */
1915 	sdma_set_channel_priority(&sdma->channel[0], 7);
1916 
1917 	clk_disable(sdma->clk_ipg);
1918 	clk_disable(sdma->clk_ahb);
1919 
1920 	return 0;
1921 
1922 err_dma_alloc:
1923 	clk_disable(sdma->clk_ahb);
1924 disable_clk_ipg:
1925 	clk_disable(sdma->clk_ipg);
1926 	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1927 	return ret;
1928 }
1929 
sdma_filter_fn(struct dma_chan * chan,void * fn_param)1930 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1931 {
1932 	struct sdma_channel *sdmac = to_sdma_chan(chan);
1933 	struct imx_dma_data *data = fn_param;
1934 
1935 	if (!imx_dma_is_general_purpose(chan))
1936 		return false;
1937 
1938 	sdmac->data = *data;
1939 	chan->private = &sdmac->data;
1940 
1941 	return true;
1942 }
1943 
sdma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1944 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1945 				   struct of_dma *ofdma)
1946 {
1947 	struct sdma_engine *sdma = ofdma->of_dma_data;
1948 	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1949 	struct imx_dma_data data;
1950 
1951 	if (dma_spec->args_count != 3)
1952 		return NULL;
1953 
1954 	data.dma_request = dma_spec->args[0];
1955 	data.peripheral_type = dma_spec->args[1];
1956 	data.priority = dma_spec->args[2];
1957 	/*
1958 	 * init dma_request2 to zero, which is not used by the dts.
1959 	 * For P2P, dma_request2 is init from dma_request_channel(),
1960 	 * chan->private will point to the imx_dma_data, and in
1961 	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1962 	 * be set to sdmac->event_id1.
1963 	 */
1964 	data.dma_request2 = 0;
1965 
1966 	return __dma_request_channel(&mask, sdma_filter_fn, &data,
1967 				     ofdma->of_node);
1968 }
1969 
sdma_probe(struct platform_device * pdev)1970 static int sdma_probe(struct platform_device *pdev)
1971 {
1972 	const struct of_device_id *of_id =
1973 			of_match_device(sdma_dt_ids, &pdev->dev);
1974 	struct device_node *np = pdev->dev.of_node;
1975 	struct device_node *spba_bus;
1976 	const char *fw_name;
1977 	int ret;
1978 	int irq;
1979 	struct resource *iores;
1980 	struct resource spba_res;
1981 	struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1982 	int i;
1983 	struct sdma_engine *sdma;
1984 	s32 *saddr_arr;
1985 	const struct sdma_driver_data *drvdata = NULL;
1986 
1987 	if (of_id)
1988 		drvdata = of_id->data;
1989 	else if (pdev->id_entry)
1990 		drvdata = (void *)pdev->id_entry->driver_data;
1991 
1992 	if (!drvdata) {
1993 		dev_err(&pdev->dev, "unable to find driver data\n");
1994 		return -EINVAL;
1995 	}
1996 
1997 	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1998 	if (ret)
1999 		return ret;
2000 
2001 	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2002 	if (!sdma)
2003 		return -ENOMEM;
2004 
2005 	spin_lock_init(&sdma->channel_0_lock);
2006 
2007 	sdma->dev = &pdev->dev;
2008 	sdma->drvdata = drvdata;
2009 
2010 	irq = platform_get_irq(pdev, 0);
2011 	if (irq < 0)
2012 		return irq;
2013 
2014 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2015 	sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2016 	if (IS_ERR(sdma->regs))
2017 		return PTR_ERR(sdma->regs);
2018 
2019 	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2020 	if (IS_ERR(sdma->clk_ipg))
2021 		return PTR_ERR(sdma->clk_ipg);
2022 
2023 	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2024 	if (IS_ERR(sdma->clk_ahb))
2025 		return PTR_ERR(sdma->clk_ahb);
2026 
2027 	ret = clk_prepare(sdma->clk_ipg);
2028 	if (ret)
2029 		return ret;
2030 
2031 	ret = clk_prepare(sdma->clk_ahb);
2032 	if (ret)
2033 		goto err_clk;
2034 
2035 	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2036 			       sdma);
2037 	if (ret)
2038 		goto err_irq;
2039 
2040 	sdma->irq = irq;
2041 
2042 	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2043 	if (!sdma->script_addrs) {
2044 		ret = -ENOMEM;
2045 		goto err_irq;
2046 	}
2047 
2048 	/* initially no scripts available */
2049 	saddr_arr = (s32 *)sdma->script_addrs;
2050 	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
2051 		saddr_arr[i] = -EINVAL;
2052 
2053 	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2054 	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2055 	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2056 
2057 	INIT_LIST_HEAD(&sdma->dma_device.channels);
2058 	/* Initialize channel parameters */
2059 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2060 		struct sdma_channel *sdmac = &sdma->channel[i];
2061 
2062 		sdmac->sdma = sdma;
2063 
2064 		sdmac->channel = i;
2065 		sdmac->vc.desc_free = sdma_desc_free;
2066 		INIT_WORK(&sdmac->terminate_worker,
2067 				sdma_channel_terminate_work);
2068 		/*
2069 		 * Add the channel to the DMAC list. Do not add channel 0 though
2070 		 * because we need it internally in the SDMA driver. This also means
2071 		 * that channel 0 in dmaengine counting matches sdma channel 1.
2072 		 */
2073 		if (i)
2074 			vchan_init(&sdmac->vc, &sdma->dma_device);
2075 	}
2076 
2077 	ret = sdma_init(sdma);
2078 	if (ret)
2079 		goto err_init;
2080 
2081 	ret = sdma_event_remap(sdma);
2082 	if (ret)
2083 		goto err_init;
2084 
2085 	if (sdma->drvdata->script_addrs)
2086 		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2087 	if (pdata && pdata->script_addrs)
2088 		sdma_add_scripts(sdma, pdata->script_addrs);
2089 
2090 	sdma->dma_device.dev = &pdev->dev;
2091 
2092 	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2093 	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2094 	sdma->dma_device.device_tx_status = sdma_tx_status;
2095 	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2096 	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2097 	sdma->dma_device.device_config = sdma_config;
2098 	sdma->dma_device.device_terminate_all = sdma_disable_channel_async;
2099 	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2100 	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2101 	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2102 	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2103 	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2104 	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2105 	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2106 	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2107 	sdma->dma_device.copy_align = 2;
2108 	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2109 
2110 	platform_set_drvdata(pdev, sdma);
2111 
2112 	ret = dma_async_device_register(&sdma->dma_device);
2113 	if (ret) {
2114 		dev_err(&pdev->dev, "unable to register\n");
2115 		goto err_init;
2116 	}
2117 
2118 	if (np) {
2119 		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2120 		if (ret) {
2121 			dev_err(&pdev->dev, "failed to register controller\n");
2122 			goto err_register;
2123 		}
2124 
2125 		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2126 		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2127 		if (!ret) {
2128 			sdma->spba_start_addr = spba_res.start;
2129 			sdma->spba_end_addr = spba_res.end;
2130 		}
2131 		of_node_put(spba_bus);
2132 	}
2133 
2134 	/*
2135 	 * Kick off firmware loading as the very last step:
2136 	 * attempt to load firmware only if we're not on the error path, because
2137 	 * the firmware callback requires a fully functional and allocated sdma
2138 	 * instance.
2139 	 */
2140 	if (pdata) {
2141 		ret = sdma_get_firmware(sdma, pdata->fw_name);
2142 		if (ret)
2143 			dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2144 	} else {
2145 		/*
2146 		 * Because that device tree does not encode ROM script address,
2147 		 * the RAM script in firmware is mandatory for device tree
2148 		 * probe, otherwise it fails.
2149 		 */
2150 		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2151 					      &fw_name);
2152 		if (ret) {
2153 			dev_warn(&pdev->dev, "failed to get firmware name\n");
2154 		} else {
2155 			ret = sdma_get_firmware(sdma, fw_name);
2156 			if (ret)
2157 				dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2158 		}
2159 	}
2160 
2161 	return 0;
2162 
2163 err_register:
2164 	dma_async_device_unregister(&sdma->dma_device);
2165 err_init:
2166 	kfree(sdma->script_addrs);
2167 err_irq:
2168 	clk_unprepare(sdma->clk_ahb);
2169 err_clk:
2170 	clk_unprepare(sdma->clk_ipg);
2171 	return ret;
2172 }
2173 
sdma_remove(struct platform_device * pdev)2174 static int sdma_remove(struct platform_device *pdev)
2175 {
2176 	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2177 	int i;
2178 
2179 	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2180 	dma_async_device_unregister(&sdma->dma_device);
2181 	kfree(sdma->script_addrs);
2182 	clk_unprepare(sdma->clk_ahb);
2183 	clk_unprepare(sdma->clk_ipg);
2184 	/* Kill the tasklet */
2185 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2186 		struct sdma_channel *sdmac = &sdma->channel[i];
2187 
2188 		tasklet_kill(&sdmac->vc.task);
2189 		sdma_free_chan_resources(&sdmac->vc.chan);
2190 	}
2191 
2192 	platform_set_drvdata(pdev, NULL);
2193 	return 0;
2194 }
2195 
2196 static struct platform_driver sdma_driver = {
2197 	.driver		= {
2198 		.name	= "imx-sdma",
2199 		.of_match_table = sdma_dt_ids,
2200 	},
2201 	.id_table	= sdma_devtypes,
2202 	.remove		= sdma_remove,
2203 	.probe		= sdma_probe,
2204 };
2205 
2206 module_platform_driver(sdma_driver);
2207 
2208 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2209 MODULE_DESCRIPTION("i.MX SDMA driver");
2210 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2211 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2212 #endif
2213 #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2214 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2215 #endif
2216 MODULE_LICENSE("GPL");
2217