1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2015 Linaro Limited. All rights reserved.
4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 */
6
7 #include <linux/coresight.h>
8 #include <linux/coresight-pmu.h>
9 #include <linux/cpumask.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/perf_event.h>
15 #include <linux/percpu-defs.h>
16 #include <linux/slab.h>
17 #include <linux/stringhash.h>
18 #include <linux/types.h>
19 #include <linux/workqueue.h>
20
21 #include "coresight-etm-perf.h"
22 #include "coresight-priv.h"
23
24 static struct pmu etm_pmu;
25 static bool etm_perf_up;
26
27 static DEFINE_PER_CPU(struct perf_output_handle, ctx_handle);
28 static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
29
30 /* ETMv3.5/PTM's ETMCR is 'config' */
31 PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC));
32 PMU_FORMAT_ATTR(contextid, "config:" __stringify(ETM_OPT_CTXTID));
33 PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS));
34 PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK));
35 /* Sink ID - same for all ETMs */
36 PMU_FORMAT_ATTR(sinkid, "config2:0-31");
37
38 static struct attribute *etm_config_formats_attr[] = {
39 &format_attr_cycacc.attr,
40 &format_attr_contextid.attr,
41 &format_attr_timestamp.attr,
42 &format_attr_retstack.attr,
43 &format_attr_sinkid.attr,
44 NULL,
45 };
46
47 static const struct attribute_group etm_pmu_format_group = {
48 .name = "format",
49 .attrs = etm_config_formats_attr,
50 };
51
52 static struct attribute *etm_config_sinks_attr[] = {
53 NULL,
54 };
55
56 static const struct attribute_group etm_pmu_sinks_group = {
57 .name = "sinks",
58 .attrs = etm_config_sinks_attr,
59 };
60
61 static const struct attribute_group *etm_pmu_attr_groups[] = {
62 &etm_pmu_format_group,
63 &etm_pmu_sinks_group,
64 NULL,
65 };
66
67 static inline struct list_head **
etm_event_cpu_path_ptr(struct etm_event_data * data,int cpu)68 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
69 {
70 return per_cpu_ptr(data->path, cpu);
71 }
72
73 static inline struct list_head *
etm_event_cpu_path(struct etm_event_data * data,int cpu)74 etm_event_cpu_path(struct etm_event_data *data, int cpu)
75 {
76 return *etm_event_cpu_path_ptr(data, cpu);
77 }
78
etm_event_read(struct perf_event * event)79 static void etm_event_read(struct perf_event *event) {}
80
etm_addr_filters_alloc(struct perf_event * event)81 static int etm_addr_filters_alloc(struct perf_event *event)
82 {
83 struct etm_filters *filters;
84 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
85
86 filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
87 if (!filters)
88 return -ENOMEM;
89
90 if (event->parent)
91 memcpy(filters, event->parent->hw.addr_filters,
92 sizeof(*filters));
93
94 event->hw.addr_filters = filters;
95
96 return 0;
97 }
98
etm_event_destroy(struct perf_event * event)99 static void etm_event_destroy(struct perf_event *event)
100 {
101 kfree(event->hw.addr_filters);
102 event->hw.addr_filters = NULL;
103 }
104
etm_event_init(struct perf_event * event)105 static int etm_event_init(struct perf_event *event)
106 {
107 int ret = 0;
108
109 if (event->attr.type != etm_pmu.type) {
110 ret = -ENOENT;
111 goto out;
112 }
113
114 ret = etm_addr_filters_alloc(event);
115 if (ret)
116 goto out;
117
118 event->destroy = etm_event_destroy;
119 out:
120 return ret;
121 }
122
free_sink_buffer(struct etm_event_data * event_data)123 static void free_sink_buffer(struct etm_event_data *event_data)
124 {
125 int cpu;
126 cpumask_t *mask = &event_data->mask;
127 struct coresight_device *sink;
128
129 if (!event_data->snk_config)
130 return;
131
132 if (WARN_ON(cpumask_empty(mask)))
133 return;
134
135 cpu = cpumask_first(mask);
136 sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
137 sink_ops(sink)->free_buffer(event_data->snk_config);
138 }
139
free_event_data(struct work_struct * work)140 static void free_event_data(struct work_struct *work)
141 {
142 int cpu;
143 cpumask_t *mask;
144 struct etm_event_data *event_data;
145
146 event_data = container_of(work, struct etm_event_data, work);
147 mask = &event_data->mask;
148
149 /* Free the sink buffers, if there are any */
150 free_sink_buffer(event_data);
151
152 for_each_cpu(cpu, mask) {
153 struct list_head **ppath;
154
155 ppath = etm_event_cpu_path_ptr(event_data, cpu);
156 if (!(IS_ERR_OR_NULL(*ppath)))
157 coresight_release_path(*ppath);
158 *ppath = NULL;
159 }
160
161 free_percpu(event_data->path);
162 kfree(event_data);
163 }
164
alloc_event_data(int cpu)165 static void *alloc_event_data(int cpu)
166 {
167 cpumask_t *mask;
168 struct etm_event_data *event_data;
169
170 /* First get memory for the session's data */
171 event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
172 if (!event_data)
173 return NULL;
174
175
176 mask = &event_data->mask;
177 if (cpu != -1)
178 cpumask_set_cpu(cpu, mask);
179 else
180 cpumask_copy(mask, cpu_present_mask);
181
182 /*
183 * Each CPU has a single path between source and destination. As such
184 * allocate an array using CPU numbers as indexes. That way a path
185 * for any CPU can easily be accessed at any given time. We proceed
186 * the same way for sessions involving a single CPU. The cost of
187 * unused memory when dealing with single CPU trace scenarios is small
188 * compared to the cost of searching through an optimized array.
189 */
190 event_data->path = alloc_percpu(struct list_head *);
191
192 if (!event_data->path) {
193 kfree(event_data);
194 return NULL;
195 }
196
197 return event_data;
198 }
199
etm_free_aux(void * data)200 static void etm_free_aux(void *data)
201 {
202 struct etm_event_data *event_data = data;
203
204 schedule_work(&event_data->work);
205 }
206
etm_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool overwrite)207 static void *etm_setup_aux(struct perf_event *event, void **pages,
208 int nr_pages, bool overwrite)
209 {
210 u32 id;
211 int cpu = event->cpu;
212 cpumask_t *mask;
213 struct coresight_device *sink;
214 struct etm_event_data *event_data = NULL;
215
216 event_data = alloc_event_data(cpu);
217 if (!event_data)
218 return NULL;
219 INIT_WORK(&event_data->work, free_event_data);
220
221 /* First get the selected sink from user space. */
222 if (event->attr.config2) {
223 id = (u32)event->attr.config2;
224 sink = coresight_get_sink_by_id(id);
225 } else {
226 sink = coresight_get_enabled_sink(true);
227 }
228
229 if (!sink)
230 goto err;
231
232 mask = &event_data->mask;
233
234 /*
235 * Setup the path for each CPU in a trace session. We try to build
236 * trace path for each CPU in the mask. If we don't find an ETM
237 * for the CPU or fail to build a path, we clear the CPU from the
238 * mask and continue with the rest. If ever we try to trace on those
239 * CPUs, we can handle it and fail the session.
240 */
241 for_each_cpu(cpu, mask) {
242 struct list_head *path;
243 struct coresight_device *csdev;
244
245 csdev = per_cpu(csdev_src, cpu);
246 /*
247 * If there is no ETM associated with this CPU clear it from
248 * the mask and continue with the rest. If ever we try to trace
249 * on this CPU, we handle it accordingly.
250 */
251 if (!csdev) {
252 cpumask_clear_cpu(cpu, mask);
253 continue;
254 }
255
256 /*
257 * Building a path doesn't enable it, it simply builds a
258 * list of devices from source to sink that can be
259 * referenced later when the path is actually needed.
260 */
261 path = coresight_build_path(csdev, sink);
262 if (IS_ERR(path)) {
263 cpumask_clear_cpu(cpu, mask);
264 continue;
265 }
266
267 *etm_event_cpu_path_ptr(event_data, cpu) = path;
268 }
269
270 /* If we don't have any CPUs ready for tracing, abort */
271 cpu = cpumask_first(mask);
272 if (cpu >= nr_cpu_ids)
273 goto err;
274
275 if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
276 goto err;
277
278 /* Allocate the sink buffer for this session */
279 event_data->snk_config =
280 sink_ops(sink)->alloc_buffer(sink, event, pages,
281 nr_pages, overwrite);
282 if (!event_data->snk_config)
283 goto err;
284
285 out:
286 return event_data;
287
288 err:
289 etm_free_aux(event_data);
290 event_data = NULL;
291 goto out;
292 }
293
etm_event_start(struct perf_event * event,int flags)294 static void etm_event_start(struct perf_event *event, int flags)
295 {
296 int cpu = smp_processor_id();
297 struct etm_event_data *event_data;
298 struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
299 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
300 struct list_head *path;
301
302 if (!csdev)
303 goto fail;
304
305 /*
306 * Deal with the ring buffer API and get a handle on the
307 * session's information.
308 */
309 event_data = perf_aux_output_begin(handle, event);
310 if (!event_data)
311 goto fail;
312
313 /*
314 * Check if this ETM is allowed to trace, as decided
315 * at etm_setup_aux(). This could be due to an unreachable
316 * sink from this ETM. We can't do much in this case if
317 * the sink was specified or hinted to the driver. For
318 * now, simply don't record anything on this ETM.
319 */
320 if (!cpumask_test_cpu(cpu, &event_data->mask))
321 goto fail_end_stop;
322
323 path = etm_event_cpu_path(event_data, cpu);
324 /* We need a sink, no need to continue without one */
325 sink = coresight_get_sink(path);
326 if (WARN_ON_ONCE(!sink))
327 goto fail_end_stop;
328
329 /* Nothing will happen without a path */
330 if (coresight_enable_path(path, CS_MODE_PERF, handle))
331 goto fail_end_stop;
332
333 /* Tell the perf core the event is alive */
334 event->hw.state = 0;
335
336 /* Finally enable the tracer */
337 if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
338 goto fail_disable_path;
339
340 out:
341 return;
342
343 fail_disable_path:
344 coresight_disable_path(path);
345 fail_end_stop:
346 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
347 perf_aux_output_end(handle, 0);
348 fail:
349 event->hw.state = PERF_HES_STOPPED;
350 goto out;
351 }
352
etm_event_stop(struct perf_event * event,int mode)353 static void etm_event_stop(struct perf_event *event, int mode)
354 {
355 int cpu = smp_processor_id();
356 unsigned long size;
357 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
358 struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
359 struct etm_event_data *event_data = perf_get_aux(handle);
360 struct list_head *path;
361
362 if (event->hw.state == PERF_HES_STOPPED)
363 return;
364
365 if (!csdev)
366 return;
367
368 path = etm_event_cpu_path(event_data, cpu);
369 if (!path)
370 return;
371
372 sink = coresight_get_sink(path);
373 if (!sink)
374 return;
375
376 /* stop tracer */
377 source_ops(csdev)->disable(csdev, event);
378
379 /* tell the core */
380 event->hw.state = PERF_HES_STOPPED;
381
382 if (mode & PERF_EF_UPDATE) {
383 if (WARN_ON_ONCE(handle->event != event))
384 return;
385
386 /* update trace information */
387 if (!sink_ops(sink)->update_buffer)
388 return;
389
390 size = sink_ops(sink)->update_buffer(sink, handle,
391 event_data->snk_config);
392 perf_aux_output_end(handle, size);
393 }
394
395 /* Disabling the path make its elements available to other sessions */
396 coresight_disable_path(path);
397 }
398
etm_event_add(struct perf_event * event,int mode)399 static int etm_event_add(struct perf_event *event, int mode)
400 {
401 int ret = 0;
402 struct hw_perf_event *hwc = &event->hw;
403
404 if (mode & PERF_EF_START) {
405 etm_event_start(event, 0);
406 if (hwc->state & PERF_HES_STOPPED)
407 ret = -EINVAL;
408 } else {
409 hwc->state = PERF_HES_STOPPED;
410 }
411
412 return ret;
413 }
414
etm_event_del(struct perf_event * event,int mode)415 static void etm_event_del(struct perf_event *event, int mode)
416 {
417 etm_event_stop(event, PERF_EF_UPDATE);
418 }
419
etm_addr_filters_validate(struct list_head * filters)420 static int etm_addr_filters_validate(struct list_head *filters)
421 {
422 bool range = false, address = false;
423 int index = 0;
424 struct perf_addr_filter *filter;
425
426 list_for_each_entry(filter, filters, entry) {
427 /*
428 * No need to go further if there's no more
429 * room for filters.
430 */
431 if (++index > ETM_ADDR_CMP_MAX)
432 return -EOPNOTSUPP;
433
434 /* filter::size==0 means single address trigger */
435 if (filter->size) {
436 /*
437 * The existing code relies on START/STOP filters
438 * being address filters.
439 */
440 if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
441 filter->action == PERF_ADDR_FILTER_ACTION_STOP)
442 return -EOPNOTSUPP;
443
444 range = true;
445 } else
446 address = true;
447
448 /*
449 * At this time we don't allow range and start/stop filtering
450 * to cohabitate, they have to be mutually exclusive.
451 */
452 if (range && address)
453 return -EOPNOTSUPP;
454 }
455
456 return 0;
457 }
458
etm_addr_filters_sync(struct perf_event * event)459 static void etm_addr_filters_sync(struct perf_event *event)
460 {
461 struct perf_addr_filters_head *head = perf_event_addr_filters(event);
462 unsigned long start, stop;
463 struct perf_addr_filter_range *fr = event->addr_filter_ranges;
464 struct etm_filters *filters = event->hw.addr_filters;
465 struct etm_filter *etm_filter;
466 struct perf_addr_filter *filter;
467 int i = 0;
468
469 list_for_each_entry(filter, &head->list, entry) {
470 start = fr[i].start;
471 stop = start + fr[i].size;
472 etm_filter = &filters->etm_filter[i];
473
474 switch (filter->action) {
475 case PERF_ADDR_FILTER_ACTION_FILTER:
476 etm_filter->start_addr = start;
477 etm_filter->stop_addr = stop;
478 etm_filter->type = ETM_ADDR_TYPE_RANGE;
479 break;
480 case PERF_ADDR_FILTER_ACTION_START:
481 etm_filter->start_addr = start;
482 etm_filter->type = ETM_ADDR_TYPE_START;
483 break;
484 case PERF_ADDR_FILTER_ACTION_STOP:
485 etm_filter->stop_addr = stop;
486 etm_filter->type = ETM_ADDR_TYPE_STOP;
487 break;
488 }
489 i++;
490 }
491
492 filters->nr_filters = i;
493 }
494
etm_perf_symlink(struct coresight_device * csdev,bool link)495 int etm_perf_symlink(struct coresight_device *csdev, bool link)
496 {
497 char entry[sizeof("cpu9999999")];
498 int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
499 struct device *pmu_dev = etm_pmu.dev;
500 struct device *cs_dev = &csdev->dev;
501
502 sprintf(entry, "cpu%d", cpu);
503
504 if (!etm_perf_up)
505 return -EPROBE_DEFER;
506
507 if (link) {
508 ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
509 if (ret)
510 return ret;
511 per_cpu(csdev_src, cpu) = csdev;
512 } else {
513 sysfs_remove_link(&pmu_dev->kobj, entry);
514 per_cpu(csdev_src, cpu) = NULL;
515 }
516
517 return 0;
518 }
519
etm_perf_sink_name_show(struct device * dev,struct device_attribute * dattr,char * buf)520 static ssize_t etm_perf_sink_name_show(struct device *dev,
521 struct device_attribute *dattr,
522 char *buf)
523 {
524 struct dev_ext_attribute *ea;
525
526 ea = container_of(dattr, struct dev_ext_attribute, attr);
527 return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
528 }
529
etm_perf_add_symlink_sink(struct coresight_device * csdev)530 int etm_perf_add_symlink_sink(struct coresight_device *csdev)
531 {
532 int ret;
533 unsigned long hash;
534 const char *name;
535 struct device *pmu_dev = etm_pmu.dev;
536 struct device *dev = &csdev->dev;
537 struct dev_ext_attribute *ea;
538
539 if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
540 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
541 return -EINVAL;
542
543 if (csdev->ea != NULL)
544 return -EINVAL;
545
546 if (!etm_perf_up)
547 return -EPROBE_DEFER;
548
549 ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
550 if (!ea)
551 return -ENOMEM;
552
553 name = dev_name(dev);
554 /* See function coresight_get_sink_by_id() to know where this is used */
555 hash = hashlen_hash(hashlen_string(NULL, name));
556
557 sysfs_attr_init(&ea->attr.attr);
558 ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
559 if (!ea->attr.attr.name)
560 return -ENOMEM;
561
562 ea->attr.attr.mode = 0444;
563 ea->attr.show = etm_perf_sink_name_show;
564 ea->var = (unsigned long *)hash;
565
566 ret = sysfs_add_file_to_group(&pmu_dev->kobj,
567 &ea->attr.attr, "sinks");
568
569 if (!ret)
570 csdev->ea = ea;
571
572 return ret;
573 }
574
etm_perf_del_symlink_sink(struct coresight_device * csdev)575 void etm_perf_del_symlink_sink(struct coresight_device *csdev)
576 {
577 struct device *pmu_dev = etm_pmu.dev;
578 struct dev_ext_attribute *ea = csdev->ea;
579
580 if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
581 csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
582 return;
583
584 if (!ea)
585 return;
586
587 sysfs_remove_file_from_group(&pmu_dev->kobj,
588 &ea->attr.attr, "sinks");
589 csdev->ea = NULL;
590 }
591
etm_perf_init(void)592 static int __init etm_perf_init(void)
593 {
594 int ret;
595
596 etm_pmu.capabilities = (PERF_PMU_CAP_EXCLUSIVE |
597 PERF_PMU_CAP_ITRACE);
598
599 etm_pmu.attr_groups = etm_pmu_attr_groups;
600 etm_pmu.task_ctx_nr = perf_sw_context;
601 etm_pmu.read = etm_event_read;
602 etm_pmu.event_init = etm_event_init;
603 etm_pmu.setup_aux = etm_setup_aux;
604 etm_pmu.free_aux = etm_free_aux;
605 etm_pmu.start = etm_event_start;
606 etm_pmu.stop = etm_event_stop;
607 etm_pmu.add = etm_event_add;
608 etm_pmu.del = etm_event_del;
609 etm_pmu.addr_filters_sync = etm_addr_filters_sync;
610 etm_pmu.addr_filters_validate = etm_addr_filters_validate;
611 etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX;
612
613 ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
614 if (ret == 0)
615 etm_perf_up = true;
616
617 return ret;
618 }
619 device_initcall(etm_perf_init);
620