1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2016 Linaro Limited. All rights reserved.
4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 */
6
7 #include <linux/atomic.h>
8 #include <linux/coresight.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/iommu.h>
11 #include <linux/idr.h>
12 #include <linux/mutex.h>
13 #include <linux/refcount.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/vmalloc.h>
17 #include "coresight-catu.h"
18 #include "coresight-etm-perf.h"
19 #include "coresight-priv.h"
20 #include "coresight-tmc.h"
21
22 struct etr_flat_buf {
23 struct device *dev;
24 dma_addr_t daddr;
25 void *vaddr;
26 size_t size;
27 };
28
29 /*
30 * etr_perf_buffer - Perf buffer used for ETR
31 * @drvdata - The ETR drvdaga this buffer has been allocated for.
32 * @etr_buf - Actual buffer used by the ETR
33 * @pid - The PID this etr_perf_buffer belongs to.
34 * @snaphost - Perf session mode
35 * @head - handle->head at the beginning of the session.
36 * @nr_pages - Number of pages in the ring buffer.
37 * @pages - Array of Pages in the ring buffer.
38 */
39 struct etr_perf_buffer {
40 struct tmc_drvdata *drvdata;
41 struct etr_buf *etr_buf;
42 pid_t pid;
43 bool snapshot;
44 unsigned long head;
45 int nr_pages;
46 void **pages;
47 };
48
49 /* Convert the perf index to an offset within the ETR buffer */
50 #define PERF_IDX2OFF(idx, buf) \
51 ((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT))
52
53 /* Lower limit for ETR hardware buffer */
54 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M
55
56 /*
57 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
58 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
59 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
60 * contain more than one SG buffer and tables.
61 *
62 * A table entry has the following format:
63 *
64 * ---Bit31------------Bit4-------Bit1-----Bit0--
65 * | Address[39:12] | SBZ | Entry Type |
66 * ----------------------------------------------
67 *
68 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
69 * always zero.
70 *
71 * Entry type:
72 * b00 - Reserved.
73 * b01 - Last entry in the tables, points to 4K page buffer.
74 * b10 - Normal entry, points to 4K page buffer.
75 * b11 - Link. The address points to the base of next table.
76 */
77
78 typedef u32 sgte_t;
79
80 #define ETR_SG_PAGE_SHIFT 12
81 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT)
82 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE)
83 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
84 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t))
85
86 #define ETR_SG_ET_MASK 0x3
87 #define ETR_SG_ET_LAST 0x1
88 #define ETR_SG_ET_NORMAL 0x2
89 #define ETR_SG_ET_LINK 0x3
90
91 #define ETR_SG_ADDR_SHIFT 4
92
93 #define ETR_SG_ENTRY(addr, type) \
94 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
95 (type & ETR_SG_ET_MASK))
96
97 #define ETR_SG_ADDR(entry) \
98 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
99 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK)
100
101 /*
102 * struct etr_sg_table : ETR SG Table
103 * @sg_table: Generic SG Table holding the data/table pages.
104 * @hwaddr: hwaddress used by the TMC, which is the base
105 * address of the table.
106 */
107 struct etr_sg_table {
108 struct tmc_sg_table *sg_table;
109 dma_addr_t hwaddr;
110 };
111
112 /*
113 * tmc_etr_sg_table_entries: Total number of table entries required to map
114 * @nr_pages system pages.
115 *
116 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
117 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
118 * with the last entry pointing to another page of table entries.
119 * If we spill over to a new page for mapping 1 entry, we could as
120 * well replace the link entry of the previous page with the last entry.
121 */
122 static inline unsigned long __attribute_const__
tmc_etr_sg_table_entries(int nr_pages)123 tmc_etr_sg_table_entries(int nr_pages)
124 {
125 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
126 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
127 /*
128 * If we spill over to a new page for 1 entry, we could as well
129 * make it the LAST entry in the previous page, skipping the Link
130 * address.
131 */
132 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
133 nr_sglinks--;
134 return nr_sgpages + nr_sglinks;
135 }
136
137 /*
138 * tmc_pages_get_offset: Go through all the pages in the tmc_pages
139 * and map the device address @addr to an offset within the virtual
140 * contiguous buffer.
141 */
142 static long
tmc_pages_get_offset(struct tmc_pages * tmc_pages,dma_addr_t addr)143 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
144 {
145 int i;
146 dma_addr_t page_start;
147
148 for (i = 0; i < tmc_pages->nr_pages; i++) {
149 page_start = tmc_pages->daddrs[i];
150 if (addr >= page_start && addr < (page_start + PAGE_SIZE))
151 return i * PAGE_SIZE + (addr - page_start);
152 }
153
154 return -EINVAL;
155 }
156
157 /*
158 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
159 * If the pages were not allocated in tmc_pages_alloc(), we would
160 * simply drop the refcount.
161 */
tmc_pages_free(struct tmc_pages * tmc_pages,struct device * dev,enum dma_data_direction dir)162 static void tmc_pages_free(struct tmc_pages *tmc_pages,
163 struct device *dev, enum dma_data_direction dir)
164 {
165 int i;
166 struct device *real_dev = dev->parent;
167
168 for (i = 0; i < tmc_pages->nr_pages; i++) {
169 if (tmc_pages->daddrs && tmc_pages->daddrs[i])
170 dma_unmap_page(real_dev, tmc_pages->daddrs[i],
171 PAGE_SIZE, dir);
172 if (tmc_pages->pages && tmc_pages->pages[i])
173 __free_page(tmc_pages->pages[i]);
174 }
175
176 kfree(tmc_pages->pages);
177 kfree(tmc_pages->daddrs);
178 tmc_pages->pages = NULL;
179 tmc_pages->daddrs = NULL;
180 tmc_pages->nr_pages = 0;
181 }
182
183 /*
184 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
185 * If @pages is not NULL, the list of page virtual addresses are
186 * used as the data pages. The pages are then dma_map'ed for @dev
187 * with dma_direction @dir.
188 *
189 * Returns 0 upon success, else the error number.
190 */
tmc_pages_alloc(struct tmc_pages * tmc_pages,struct device * dev,int node,enum dma_data_direction dir,void ** pages)191 static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
192 struct device *dev, int node,
193 enum dma_data_direction dir, void **pages)
194 {
195 int i, nr_pages;
196 dma_addr_t paddr;
197 struct page *page;
198 struct device *real_dev = dev->parent;
199
200 nr_pages = tmc_pages->nr_pages;
201 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
202 GFP_KERNEL);
203 if (!tmc_pages->daddrs)
204 return -ENOMEM;
205 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
206 GFP_KERNEL);
207 if (!tmc_pages->pages) {
208 kfree(tmc_pages->daddrs);
209 tmc_pages->daddrs = NULL;
210 return -ENOMEM;
211 }
212
213 for (i = 0; i < nr_pages; i++) {
214 if (pages && pages[i]) {
215 page = virt_to_page(pages[i]);
216 /* Hold a refcount on the page */
217 get_page(page);
218 } else {
219 page = alloc_pages_node(node,
220 GFP_KERNEL | __GFP_ZERO, 0);
221 if (!page)
222 goto err;
223 }
224 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
225 if (dma_mapping_error(real_dev, paddr))
226 goto err;
227 tmc_pages->daddrs[i] = paddr;
228 tmc_pages->pages[i] = page;
229 }
230 return 0;
231 err:
232 tmc_pages_free(tmc_pages, dev, dir);
233 return -ENOMEM;
234 }
235
236 static inline long
tmc_sg_get_data_page_offset(struct tmc_sg_table * sg_table,dma_addr_t addr)237 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
238 {
239 return tmc_pages_get_offset(&sg_table->data_pages, addr);
240 }
241
tmc_free_table_pages(struct tmc_sg_table * sg_table)242 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
243 {
244 if (sg_table->table_vaddr)
245 vunmap(sg_table->table_vaddr);
246 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
247 }
248
tmc_free_data_pages(struct tmc_sg_table * sg_table)249 static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
250 {
251 if (sg_table->data_vaddr)
252 vunmap(sg_table->data_vaddr);
253 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
254 }
255
tmc_free_sg_table(struct tmc_sg_table * sg_table)256 void tmc_free_sg_table(struct tmc_sg_table *sg_table)
257 {
258 tmc_free_table_pages(sg_table);
259 tmc_free_data_pages(sg_table);
260 }
261
262 /*
263 * Alloc pages for the table. Since this will be used by the device,
264 * allocate the pages closer to the device (i.e, dev_to_node(dev)
265 * rather than the CPU node).
266 */
tmc_alloc_table_pages(struct tmc_sg_table * sg_table)267 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
268 {
269 int rc;
270 struct tmc_pages *table_pages = &sg_table->table_pages;
271
272 rc = tmc_pages_alloc(table_pages, sg_table->dev,
273 dev_to_node(sg_table->dev),
274 DMA_TO_DEVICE, NULL);
275 if (rc)
276 return rc;
277 sg_table->table_vaddr = vmap(table_pages->pages,
278 table_pages->nr_pages,
279 VM_MAP,
280 PAGE_KERNEL);
281 if (!sg_table->table_vaddr)
282 rc = -ENOMEM;
283 else
284 sg_table->table_daddr = table_pages->daddrs[0];
285 return rc;
286 }
287
tmc_alloc_data_pages(struct tmc_sg_table * sg_table,void ** pages)288 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
289 {
290 int rc;
291
292 /* Allocate data pages on the node requested by the caller */
293 rc = tmc_pages_alloc(&sg_table->data_pages,
294 sg_table->dev, sg_table->node,
295 DMA_FROM_DEVICE, pages);
296 if (!rc) {
297 sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
298 sg_table->data_pages.nr_pages,
299 VM_MAP,
300 PAGE_KERNEL);
301 if (!sg_table->data_vaddr)
302 rc = -ENOMEM;
303 }
304 return rc;
305 }
306
307 /*
308 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
309 * and data buffers. TMC writes to the data buffers and reads from the SG
310 * Table pages.
311 *
312 * @dev - Coresight device to which page should be DMA mapped.
313 * @node - Numa node for mem allocations
314 * @nr_tpages - Number of pages for the table entries.
315 * @nr_dpages - Number of pages for Data buffer.
316 * @pages - Optional list of virtual address of pages.
317 */
tmc_alloc_sg_table(struct device * dev,int node,int nr_tpages,int nr_dpages,void ** pages)318 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
319 int node,
320 int nr_tpages,
321 int nr_dpages,
322 void **pages)
323 {
324 long rc;
325 struct tmc_sg_table *sg_table;
326
327 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
328 if (!sg_table)
329 return ERR_PTR(-ENOMEM);
330 sg_table->data_pages.nr_pages = nr_dpages;
331 sg_table->table_pages.nr_pages = nr_tpages;
332 sg_table->node = node;
333 sg_table->dev = dev;
334
335 rc = tmc_alloc_data_pages(sg_table, pages);
336 if (!rc)
337 rc = tmc_alloc_table_pages(sg_table);
338 if (rc) {
339 tmc_free_sg_table(sg_table);
340 kfree(sg_table);
341 return ERR_PTR(rc);
342 }
343
344 return sg_table;
345 }
346
347 /*
348 * tmc_sg_table_sync_data_range: Sync the data buffer written
349 * by the device from @offset upto a @size bytes.
350 */
tmc_sg_table_sync_data_range(struct tmc_sg_table * table,u64 offset,u64 size)351 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
352 u64 offset, u64 size)
353 {
354 int i, index, start;
355 int npages = DIV_ROUND_UP(size, PAGE_SIZE);
356 struct device *real_dev = table->dev->parent;
357 struct tmc_pages *data = &table->data_pages;
358
359 start = offset >> PAGE_SHIFT;
360 for (i = start; i < (start + npages); i++) {
361 index = i % data->nr_pages;
362 dma_sync_single_for_cpu(real_dev, data->daddrs[index],
363 PAGE_SIZE, DMA_FROM_DEVICE);
364 }
365 }
366
367 /* tmc_sg_sync_table: Sync the page table */
tmc_sg_table_sync_table(struct tmc_sg_table * sg_table)368 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
369 {
370 int i;
371 struct device *real_dev = sg_table->dev->parent;
372 struct tmc_pages *table_pages = &sg_table->table_pages;
373
374 for (i = 0; i < table_pages->nr_pages; i++)
375 dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
376 PAGE_SIZE, DMA_TO_DEVICE);
377 }
378
379 /*
380 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
381 * in the SG buffer. The @bufpp is updated to point to the buffer.
382 * Returns :
383 * the length of linear data available at @offset.
384 * or
385 * <= 0 if no data is available.
386 */
tmc_sg_table_get_data(struct tmc_sg_table * sg_table,u64 offset,size_t len,char ** bufpp)387 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
388 u64 offset, size_t len, char **bufpp)
389 {
390 size_t size;
391 int pg_idx = offset >> PAGE_SHIFT;
392 int pg_offset = offset & (PAGE_SIZE - 1);
393 struct tmc_pages *data_pages = &sg_table->data_pages;
394
395 size = tmc_sg_table_buf_size(sg_table);
396 if (offset >= size)
397 return -EINVAL;
398
399 /* Make sure we don't go beyond the end */
400 len = (len < (size - offset)) ? len : size - offset;
401 /* Respect the page boundaries */
402 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
403 if (len > 0)
404 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
405 return len;
406 }
407
408 #ifdef ETR_SG_DEBUG
409 /* Map a dma address to virtual address */
410 static unsigned long
tmc_sg_daddr_to_vaddr(struct tmc_sg_table * sg_table,dma_addr_t addr,bool table)411 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
412 dma_addr_t addr, bool table)
413 {
414 long offset;
415 unsigned long base;
416 struct tmc_pages *tmc_pages;
417
418 if (table) {
419 tmc_pages = &sg_table->table_pages;
420 base = (unsigned long)sg_table->table_vaddr;
421 } else {
422 tmc_pages = &sg_table->data_pages;
423 base = (unsigned long)sg_table->data_vaddr;
424 }
425
426 offset = tmc_pages_get_offset(tmc_pages, addr);
427 if (offset < 0)
428 return 0;
429 return base + offset;
430 }
431
432 /* Dump the given sg_table */
tmc_etr_sg_table_dump(struct etr_sg_table * etr_table)433 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
434 {
435 sgte_t *ptr;
436 int i = 0;
437 dma_addr_t addr;
438 struct tmc_sg_table *sg_table = etr_table->sg_table;
439
440 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
441 etr_table->hwaddr, true);
442 while (ptr) {
443 addr = ETR_SG_ADDR(*ptr);
444 switch (ETR_SG_ET(*ptr)) {
445 case ETR_SG_ET_NORMAL:
446 dev_dbg(sg_table->dev,
447 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
448 ptr++;
449 break;
450 case ETR_SG_ET_LINK:
451 dev_dbg(sg_table->dev,
452 "%05d: *** %p\t:{L} 0x%llx ***\n",
453 i, ptr, addr);
454 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
455 addr, true);
456 break;
457 case ETR_SG_ET_LAST:
458 dev_dbg(sg_table->dev,
459 "%05d: ### %p\t:[L] 0x%llx ###\n",
460 i, ptr, addr);
461 return;
462 default:
463 dev_dbg(sg_table->dev,
464 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
465 i, ptr, addr);
466 return;
467 }
468 i++;
469 }
470 dev_dbg(sg_table->dev, "******* End of Table *****\n");
471 }
472 #else
tmc_etr_sg_table_dump(struct etr_sg_table * etr_table)473 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
474 #endif
475
476 /*
477 * Populate the SG Table page table entries from table/data
478 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
479 * So does a Table page. So we keep track of indices of the tables
480 * in each system page and move the pointers accordingly.
481 */
482 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
tmc_etr_sg_table_populate(struct etr_sg_table * etr_table)483 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
484 {
485 dma_addr_t paddr;
486 int i, type, nr_entries;
487 int tpidx = 0; /* index to the current system table_page */
488 int sgtidx = 0; /* index to the sg_table within the current syspage */
489 int sgtentry = 0; /* the entry within the sg_table */
490 int dpidx = 0; /* index to the current system data_page */
491 int spidx = 0; /* index to the SG page within the current data page */
492 sgte_t *ptr; /* pointer to the table entry to fill */
493 struct tmc_sg_table *sg_table = etr_table->sg_table;
494 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
495 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
496
497 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
498 /*
499 * Use the contiguous virtual address of the table to update entries.
500 */
501 ptr = sg_table->table_vaddr;
502 /*
503 * Fill all the entries, except the last entry to avoid special
504 * checks within the loop.
505 */
506 for (i = 0; i < nr_entries - 1; i++) {
507 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
508 /*
509 * Last entry in a sg_table page is a link address to
510 * the next table page. If this sg_table is the last
511 * one in the system page, it links to the first
512 * sg_table in the next system page. Otherwise, it
513 * links to the next sg_table page within the system
514 * page.
515 */
516 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
517 paddr = table_daddrs[tpidx + 1];
518 } else {
519 paddr = table_daddrs[tpidx] +
520 (ETR_SG_PAGE_SIZE * (sgtidx + 1));
521 }
522 type = ETR_SG_ET_LINK;
523 } else {
524 /*
525 * Update the indices to the data_pages to point to the
526 * next sg_page in the data buffer.
527 */
528 type = ETR_SG_ET_NORMAL;
529 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
530 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
531 dpidx++;
532 }
533 *ptr++ = ETR_SG_ENTRY(paddr, type);
534 /*
535 * Move to the next table pointer, moving the table page index
536 * if necessary
537 */
538 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
539 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
540 tpidx++;
541 }
542 }
543
544 /* Set up the last entry, which is always a data pointer */
545 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
546 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
547 }
548
549 /*
550 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
551 * populate the table.
552 *
553 * @dev - Device pointer for the TMC
554 * @node - NUMA node where the memory should be allocated
555 * @size - Total size of the data buffer
556 * @pages - Optional list of page virtual address
557 */
558 static struct etr_sg_table *
tmc_init_etr_sg_table(struct device * dev,int node,unsigned long size,void ** pages)559 tmc_init_etr_sg_table(struct device *dev, int node,
560 unsigned long size, void **pages)
561 {
562 int nr_entries, nr_tpages;
563 int nr_dpages = size >> PAGE_SHIFT;
564 struct tmc_sg_table *sg_table;
565 struct etr_sg_table *etr_table;
566
567 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
568 if (!etr_table)
569 return ERR_PTR(-ENOMEM);
570 nr_entries = tmc_etr_sg_table_entries(nr_dpages);
571 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
572
573 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
574 if (IS_ERR(sg_table)) {
575 kfree(etr_table);
576 return ERR_CAST(sg_table);
577 }
578
579 etr_table->sg_table = sg_table;
580 /* TMC should use table base address for DBA */
581 etr_table->hwaddr = sg_table->table_daddr;
582 tmc_etr_sg_table_populate(etr_table);
583 /* Sync the table pages for the HW */
584 tmc_sg_table_sync_table(sg_table);
585 tmc_etr_sg_table_dump(etr_table);
586
587 return etr_table;
588 }
589
590 /*
591 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
592 */
tmc_etr_alloc_flat_buf(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf,int node,void ** pages)593 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
594 struct etr_buf *etr_buf, int node,
595 void **pages)
596 {
597 struct etr_flat_buf *flat_buf;
598 struct device *real_dev = drvdata->csdev->dev.parent;
599
600 /* We cannot reuse existing pages for flat buf */
601 if (pages)
602 return -EINVAL;
603
604 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
605 if (!flat_buf)
606 return -ENOMEM;
607
608 flat_buf->vaddr = dma_alloc_coherent(real_dev, etr_buf->size,
609 &flat_buf->daddr, GFP_KERNEL);
610 if (!flat_buf->vaddr) {
611 kfree(flat_buf);
612 return -ENOMEM;
613 }
614
615 flat_buf->size = etr_buf->size;
616 flat_buf->dev = &drvdata->csdev->dev;
617 etr_buf->hwaddr = flat_buf->daddr;
618 etr_buf->mode = ETR_MODE_FLAT;
619 etr_buf->private = flat_buf;
620 return 0;
621 }
622
tmc_etr_free_flat_buf(struct etr_buf * etr_buf)623 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
624 {
625 struct etr_flat_buf *flat_buf = etr_buf->private;
626
627 if (flat_buf && flat_buf->daddr) {
628 struct device *real_dev = flat_buf->dev->parent;
629
630 dma_free_coherent(real_dev, flat_buf->size,
631 flat_buf->vaddr, flat_buf->daddr);
632 }
633 kfree(flat_buf);
634 }
635
tmc_etr_sync_flat_buf(struct etr_buf * etr_buf,u64 rrp,u64 rwp)636 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
637 {
638 /*
639 * Adjust the buffer to point to the beginning of the trace data
640 * and update the available trace data.
641 */
642 etr_buf->offset = rrp - etr_buf->hwaddr;
643 if (etr_buf->full)
644 etr_buf->len = etr_buf->size;
645 else
646 etr_buf->len = rwp - rrp;
647 }
648
tmc_etr_get_data_flat_buf(struct etr_buf * etr_buf,u64 offset,size_t len,char ** bufpp)649 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
650 u64 offset, size_t len, char **bufpp)
651 {
652 struct etr_flat_buf *flat_buf = etr_buf->private;
653
654 *bufpp = (char *)flat_buf->vaddr + offset;
655 /*
656 * tmc_etr_buf_get_data already adjusts the length to handle
657 * buffer wrapping around.
658 */
659 return len;
660 }
661
662 static const struct etr_buf_operations etr_flat_buf_ops = {
663 .alloc = tmc_etr_alloc_flat_buf,
664 .free = tmc_etr_free_flat_buf,
665 .sync = tmc_etr_sync_flat_buf,
666 .get_data = tmc_etr_get_data_flat_buf,
667 };
668
669 /*
670 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
671 * appropriately.
672 */
tmc_etr_alloc_sg_buf(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf,int node,void ** pages)673 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
674 struct etr_buf *etr_buf, int node,
675 void **pages)
676 {
677 struct etr_sg_table *etr_table;
678 struct device *dev = &drvdata->csdev->dev;
679
680 etr_table = tmc_init_etr_sg_table(dev, node,
681 etr_buf->size, pages);
682 if (IS_ERR(etr_table))
683 return -ENOMEM;
684 etr_buf->hwaddr = etr_table->hwaddr;
685 etr_buf->mode = ETR_MODE_ETR_SG;
686 etr_buf->private = etr_table;
687 return 0;
688 }
689
tmc_etr_free_sg_buf(struct etr_buf * etr_buf)690 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
691 {
692 struct etr_sg_table *etr_table = etr_buf->private;
693
694 if (etr_table) {
695 tmc_free_sg_table(etr_table->sg_table);
696 kfree(etr_table);
697 }
698 }
699
tmc_etr_get_data_sg_buf(struct etr_buf * etr_buf,u64 offset,size_t len,char ** bufpp)700 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
701 size_t len, char **bufpp)
702 {
703 struct etr_sg_table *etr_table = etr_buf->private;
704
705 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
706 }
707
tmc_etr_sync_sg_buf(struct etr_buf * etr_buf,u64 rrp,u64 rwp)708 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
709 {
710 long r_offset, w_offset;
711 struct etr_sg_table *etr_table = etr_buf->private;
712 struct tmc_sg_table *table = etr_table->sg_table;
713
714 /* Convert hw address to offset in the buffer */
715 r_offset = tmc_sg_get_data_page_offset(table, rrp);
716 if (r_offset < 0) {
717 dev_warn(table->dev,
718 "Unable to map RRP %llx to offset\n", rrp);
719 etr_buf->len = 0;
720 return;
721 }
722
723 w_offset = tmc_sg_get_data_page_offset(table, rwp);
724 if (w_offset < 0) {
725 dev_warn(table->dev,
726 "Unable to map RWP %llx to offset\n", rwp);
727 etr_buf->len = 0;
728 return;
729 }
730
731 etr_buf->offset = r_offset;
732 if (etr_buf->full)
733 etr_buf->len = etr_buf->size;
734 else
735 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
736 w_offset - r_offset;
737 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
738 }
739
740 static const struct etr_buf_operations etr_sg_buf_ops = {
741 .alloc = tmc_etr_alloc_sg_buf,
742 .free = tmc_etr_free_sg_buf,
743 .sync = tmc_etr_sync_sg_buf,
744 .get_data = tmc_etr_get_data_sg_buf,
745 };
746
747 /*
748 * TMC ETR could be connected to a CATU device, which can provide address
749 * translation service. This is represented by the Output port of the TMC
750 * (ETR) connected to the input port of the CATU.
751 *
752 * Returns : coresight_device ptr for the CATU device if a CATU is found.
753 * : NULL otherwise.
754 */
755 struct coresight_device *
tmc_etr_get_catu_device(struct tmc_drvdata * drvdata)756 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
757 {
758 int i;
759 struct coresight_device *tmp, *etr = drvdata->csdev;
760
761 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
762 return NULL;
763
764 for (i = 0; i < etr->pdata->nr_outport; i++) {
765 tmp = etr->pdata->conns[i].child_dev;
766 if (tmp && coresight_is_catu_device(tmp))
767 return tmp;
768 }
769
770 return NULL;
771 }
772
tmc_etr_enable_catu(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf)773 static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
774 struct etr_buf *etr_buf)
775 {
776 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
777
778 if (catu && helper_ops(catu)->enable)
779 return helper_ops(catu)->enable(catu, etr_buf);
780 return 0;
781 }
782
tmc_etr_disable_catu(struct tmc_drvdata * drvdata)783 static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
784 {
785 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
786
787 if (catu && helper_ops(catu)->disable)
788 helper_ops(catu)->disable(catu, drvdata->etr_buf);
789 }
790
791 static const struct etr_buf_operations *etr_buf_ops[] = {
792 [ETR_MODE_FLAT] = &etr_flat_buf_ops,
793 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
794 [ETR_MODE_CATU] = IS_ENABLED(CONFIG_CORESIGHT_CATU)
795 ? &etr_catu_buf_ops : NULL,
796 };
797
tmc_etr_mode_alloc_buf(int mode,struct tmc_drvdata * drvdata,struct etr_buf * etr_buf,int node,void ** pages)798 static inline int tmc_etr_mode_alloc_buf(int mode,
799 struct tmc_drvdata *drvdata,
800 struct etr_buf *etr_buf, int node,
801 void **pages)
802 {
803 int rc = -EINVAL;
804
805 switch (mode) {
806 case ETR_MODE_FLAT:
807 case ETR_MODE_ETR_SG:
808 case ETR_MODE_CATU:
809 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
810 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
811 node, pages);
812 if (!rc)
813 etr_buf->ops = etr_buf_ops[mode];
814 return rc;
815 default:
816 return -EINVAL;
817 }
818 }
819
820 /*
821 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
822 * @drvdata : ETR device details.
823 * @size : size of the requested buffer.
824 * @flags : Required properties for the buffer.
825 * @node : Node for memory allocations.
826 * @pages : An optional list of pages.
827 */
tmc_alloc_etr_buf(struct tmc_drvdata * drvdata,ssize_t size,int flags,int node,void ** pages)828 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
829 ssize_t size, int flags,
830 int node, void **pages)
831 {
832 int rc = -ENOMEM;
833 bool has_etr_sg, has_iommu;
834 bool has_sg, has_catu;
835 struct etr_buf *etr_buf;
836 struct device *dev = &drvdata->csdev->dev;
837
838 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
839 has_iommu = iommu_get_domain_for_dev(dev->parent);
840 has_catu = !!tmc_etr_get_catu_device(drvdata);
841
842 has_sg = has_catu || has_etr_sg;
843
844 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
845 if (!etr_buf)
846 return ERR_PTR(-ENOMEM);
847
848 etr_buf->size = size;
849
850 /*
851 * If we have to use an existing list of pages, we cannot reliably
852 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
853 * we use the contiguous DMA memory if at least one of the following
854 * conditions is true:
855 * a) The ETR cannot use Scatter-Gather.
856 * b) we have a backing IOMMU
857 * c) The requested memory size is smaller (< 1M).
858 *
859 * Fallback to available mechanisms.
860 *
861 */
862 if (!pages &&
863 (!has_sg || has_iommu || size < SZ_1M))
864 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
865 etr_buf, node, pages);
866 if (rc && has_etr_sg)
867 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
868 etr_buf, node, pages);
869 if (rc && has_catu)
870 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
871 etr_buf, node, pages);
872 if (rc) {
873 kfree(etr_buf);
874 return ERR_PTR(rc);
875 }
876
877 refcount_set(&etr_buf->refcount, 1);
878 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
879 (unsigned long)size >> 10, etr_buf->mode);
880 return etr_buf;
881 }
882
tmc_free_etr_buf(struct etr_buf * etr_buf)883 static void tmc_free_etr_buf(struct etr_buf *etr_buf)
884 {
885 WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
886 etr_buf->ops->free(etr_buf);
887 kfree(etr_buf);
888 }
889
890 /*
891 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
892 * with a maximum of @len bytes.
893 * Returns: The size of the linear data available @pos, with *bufpp
894 * updated to point to the buffer.
895 */
tmc_etr_buf_get_data(struct etr_buf * etr_buf,u64 offset,size_t len,char ** bufpp)896 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
897 u64 offset, size_t len, char **bufpp)
898 {
899 /* Adjust the length to limit this transaction to end of buffer */
900 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
901
902 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
903 }
904
905 static inline s64
tmc_etr_buf_insert_barrier_packet(struct etr_buf * etr_buf,u64 offset)906 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
907 {
908 ssize_t len;
909 char *bufp;
910
911 len = tmc_etr_buf_get_data(etr_buf, offset,
912 CORESIGHT_BARRIER_PKT_SIZE, &bufp);
913 if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE))
914 return -EINVAL;
915 coresight_insert_barrier_packet(bufp);
916 return offset + CORESIGHT_BARRIER_PKT_SIZE;
917 }
918
919 /*
920 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
921 * Makes sure the trace data is synced to the memory for consumption.
922 * @etr_buf->offset will hold the offset to the beginning of the trace data
923 * within the buffer, with @etr_buf->len bytes to consume.
924 */
tmc_sync_etr_buf(struct tmc_drvdata * drvdata)925 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
926 {
927 struct etr_buf *etr_buf = drvdata->etr_buf;
928 u64 rrp, rwp;
929 u32 status;
930
931 rrp = tmc_read_rrp(drvdata);
932 rwp = tmc_read_rwp(drvdata);
933 status = readl_relaxed(drvdata->base + TMC_STS);
934
935 /*
936 * If there were memory errors in the session, truncate the
937 * buffer.
938 */
939 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
940 dev_dbg(&drvdata->csdev->dev,
941 "tmc memory error detected, truncating buffer\n");
942 etr_buf->len = 0;
943 etr_buf->full = 0;
944 return;
945 }
946
947 etr_buf->full = status & TMC_STS_FULL;
948
949 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
950
951 etr_buf->ops->sync(etr_buf, rrp, rwp);
952 }
953
__tmc_etr_enable_hw(struct tmc_drvdata * drvdata)954 static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
955 {
956 u32 axictl, sts;
957 struct etr_buf *etr_buf = drvdata->etr_buf;
958
959 CS_UNLOCK(drvdata->base);
960
961 /* Wait for TMCSReady bit to be set */
962 tmc_wait_for_tmcready(drvdata);
963
964 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
965 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
966
967 axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
968 axictl &= ~TMC_AXICTL_CLEAR_MASK;
969 axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
970 axictl |= TMC_AXICTL_AXCACHE_OS;
971
972 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
973 axictl &= ~TMC_AXICTL_ARCACHE_MASK;
974 axictl |= TMC_AXICTL_ARCACHE_OS;
975 }
976
977 if (etr_buf->mode == ETR_MODE_ETR_SG)
978 axictl |= TMC_AXICTL_SCT_GAT_MODE;
979
980 writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
981 tmc_write_dba(drvdata, etr_buf->hwaddr);
982 /*
983 * If the TMC pointers must be programmed before the session,
984 * we have to set it properly (i.e, RRP/RWP to base address and
985 * STS to "not full").
986 */
987 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
988 tmc_write_rrp(drvdata, etr_buf->hwaddr);
989 tmc_write_rwp(drvdata, etr_buf->hwaddr);
990 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
991 writel_relaxed(sts, drvdata->base + TMC_STS);
992 }
993
994 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
995 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
996 TMC_FFCR_TRIGON_TRIGIN,
997 drvdata->base + TMC_FFCR);
998 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
999 tmc_enable_hw(drvdata);
1000
1001 CS_LOCK(drvdata->base);
1002 }
1003
tmc_etr_enable_hw(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf)1004 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
1005 struct etr_buf *etr_buf)
1006 {
1007 int rc;
1008
1009 /* Callers should provide an appropriate buffer for use */
1010 if (WARN_ON(!etr_buf))
1011 return -EINVAL;
1012
1013 if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1014 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1015 return -EINVAL;
1016
1017 if (WARN_ON(drvdata->etr_buf))
1018 return -EBUSY;
1019
1020 /*
1021 * If this ETR is connected to a CATU, enable it before we turn
1022 * this on.
1023 */
1024 rc = tmc_etr_enable_catu(drvdata, etr_buf);
1025 if (rc)
1026 return rc;
1027 rc = coresight_claim_device(drvdata->base);
1028 if (!rc) {
1029 drvdata->etr_buf = etr_buf;
1030 __tmc_etr_enable_hw(drvdata);
1031 }
1032
1033 return rc;
1034 }
1035
1036 /*
1037 * Return the available trace data in the buffer (starts at etr_buf->offset,
1038 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1039 * also updating the @bufpp on where to find it. Since the trace data
1040 * starts at anywhere in the buffer, depending on the RRP, we adjust the
1041 * @len returned to handle buffer wrapping around.
1042 *
1043 * We are protected here by drvdata->reading != 0, which ensures the
1044 * sysfs_buf stays alive.
1045 */
tmc_etr_get_sysfs_trace(struct tmc_drvdata * drvdata,loff_t pos,size_t len,char ** bufpp)1046 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1047 loff_t pos, size_t len, char **bufpp)
1048 {
1049 s64 offset;
1050 ssize_t actual = len;
1051 struct etr_buf *etr_buf = drvdata->sysfs_buf;
1052
1053 if (pos + actual > etr_buf->len)
1054 actual = etr_buf->len - pos;
1055 if (actual <= 0)
1056 return actual;
1057
1058 /* Compute the offset from which we read the data */
1059 offset = etr_buf->offset + pos;
1060 if (offset >= etr_buf->size)
1061 offset -= etr_buf->size;
1062 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1063 }
1064
1065 static struct etr_buf *
tmc_etr_setup_sysfs_buf(struct tmc_drvdata * drvdata)1066 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1067 {
1068 return tmc_alloc_etr_buf(drvdata, drvdata->size,
1069 0, cpu_to_node(0), NULL);
1070 }
1071
1072 static void
tmc_etr_free_sysfs_buf(struct etr_buf * buf)1073 tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1074 {
1075 if (buf)
1076 tmc_free_etr_buf(buf);
1077 }
1078
tmc_etr_sync_sysfs_buf(struct tmc_drvdata * drvdata)1079 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1080 {
1081 struct etr_buf *etr_buf = drvdata->etr_buf;
1082
1083 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1084 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1085 drvdata->sysfs_buf = NULL;
1086 } else {
1087 tmc_sync_etr_buf(drvdata);
1088 /*
1089 * Insert barrier packets at the beginning, if there was
1090 * an overflow.
1091 */
1092 if (etr_buf->full)
1093 tmc_etr_buf_insert_barrier_packet(etr_buf,
1094 etr_buf->offset);
1095 }
1096 }
1097
__tmc_etr_disable_hw(struct tmc_drvdata * drvdata)1098 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1099 {
1100 CS_UNLOCK(drvdata->base);
1101
1102 tmc_flush_and_stop(drvdata);
1103 /*
1104 * When operating in sysFS mode the content of the buffer needs to be
1105 * read before the TMC is disabled.
1106 */
1107 if (drvdata->mode == CS_MODE_SYSFS)
1108 tmc_etr_sync_sysfs_buf(drvdata);
1109
1110 tmc_disable_hw(drvdata);
1111
1112 CS_LOCK(drvdata->base);
1113
1114 }
1115
tmc_etr_disable_hw(struct tmc_drvdata * drvdata)1116 static void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1117 {
1118 __tmc_etr_disable_hw(drvdata);
1119 /* Disable CATU device if this ETR is connected to one */
1120 tmc_etr_disable_catu(drvdata);
1121 coresight_disclaim_device(drvdata->base);
1122 /* Reset the ETR buf used by hardware */
1123 drvdata->etr_buf = NULL;
1124 }
1125
tmc_enable_etr_sink_sysfs(struct coresight_device * csdev)1126 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1127 {
1128 int ret = 0;
1129 unsigned long flags;
1130 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1131 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1132
1133 /*
1134 * If we are enabling the ETR from disabled state, we need to make
1135 * sure we have a buffer with the right size. The etr_buf is not reset
1136 * immediately after we stop the tracing in SYSFS mode as we wait for
1137 * the user to collect the data. We may be able to reuse the existing
1138 * buffer, provided the size matches. Any allocation has to be done
1139 * with the lock released.
1140 */
1141 spin_lock_irqsave(&drvdata->spinlock, flags);
1142 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1143 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1144 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1145
1146 /* Allocate memory with the locks released */
1147 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1148 if (IS_ERR(new_buf))
1149 return PTR_ERR(new_buf);
1150
1151 /* Let's try again */
1152 spin_lock_irqsave(&drvdata->spinlock, flags);
1153 }
1154
1155 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1156 ret = -EBUSY;
1157 goto out;
1158 }
1159
1160 /*
1161 * In sysFS mode we can have multiple writers per sink. Since this
1162 * sink is already enabled no memory is needed and the HW need not be
1163 * touched, even if the buffer size has changed.
1164 */
1165 if (drvdata->mode == CS_MODE_SYSFS) {
1166 atomic_inc(csdev->refcnt);
1167 goto out;
1168 }
1169
1170 /*
1171 * If we don't have a buffer or it doesn't match the requested size,
1172 * use the buffer allocated above. Otherwise reuse the existing buffer.
1173 */
1174 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1175 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1176 free_buf = sysfs_buf;
1177 drvdata->sysfs_buf = new_buf;
1178 }
1179
1180 ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
1181 if (!ret) {
1182 drvdata->mode = CS_MODE_SYSFS;
1183 atomic_inc(csdev->refcnt);
1184 }
1185 out:
1186 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1187
1188 /* Free memory outside the spinlock if need be */
1189 if (free_buf)
1190 tmc_etr_free_sysfs_buf(free_buf);
1191
1192 if (!ret)
1193 dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1194
1195 return ret;
1196 }
1197
1198 /*
1199 * alloc_etr_buf: Allocate ETR buffer for use by perf.
1200 * The size of the hardware buffer is dependent on the size configured
1201 * via sysfs and the perf ring buffer size. We prefer to allocate the
1202 * largest possible size, scaling down the size by half until it
1203 * reaches a minimum limit (1M), beyond which we give up.
1204 */
1205 static struct etr_buf *
alloc_etr_buf(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1206 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1207 int nr_pages, void **pages, bool snapshot)
1208 {
1209 int node;
1210 struct etr_buf *etr_buf;
1211 unsigned long size;
1212
1213 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1214 /*
1215 * Try to match the perf ring buffer size if it is larger
1216 * than the size requested via sysfs.
1217 */
1218 if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1219 etr_buf = tmc_alloc_etr_buf(drvdata, ((ssize_t)nr_pages << PAGE_SHIFT),
1220 0, node, NULL);
1221 if (!IS_ERR(etr_buf))
1222 goto done;
1223 }
1224
1225 /*
1226 * Else switch to configured size for this ETR
1227 * and scale down until we hit the minimum limit.
1228 */
1229 size = drvdata->size;
1230 do {
1231 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1232 if (!IS_ERR(etr_buf))
1233 goto done;
1234 size /= 2;
1235 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1236
1237 return ERR_PTR(-ENOMEM);
1238
1239 done:
1240 return etr_buf;
1241 }
1242
1243 static struct etr_buf *
get_perf_etr_buf_cpu_wide(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1244 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1245 struct perf_event *event, int nr_pages,
1246 void **pages, bool snapshot)
1247 {
1248 int ret;
1249 pid_t pid = task_pid_nr(event->owner);
1250 struct etr_buf *etr_buf;
1251
1252 retry:
1253 /*
1254 * An etr_perf_buffer is associated with an event and holds a reference
1255 * to the AUX ring buffer that was created for that event. In CPU-wide
1256 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1257 * buffer, share a sink. As such an etr_perf_buffer is created for each
1258 * event but a single etr_buf associated with the ETR is shared between
1259 * them. The last event in a trace session will copy the content of the
1260 * etr_buf to its AUX ring buffer. Ring buffer associated to other
1261 * events are simply not used an freed as events are destoyed. We still
1262 * need to allocate a ring buffer for each event since we don't know
1263 * which event will be last.
1264 */
1265
1266 /*
1267 * The first thing to do here is check if an etr_buf has already been
1268 * allocated for this session. If so it is shared with this event,
1269 * otherwise it is created.
1270 */
1271 mutex_lock(&drvdata->idr_mutex);
1272 etr_buf = idr_find(&drvdata->idr, pid);
1273 if (etr_buf) {
1274 refcount_inc(&etr_buf->refcount);
1275 mutex_unlock(&drvdata->idr_mutex);
1276 return etr_buf;
1277 }
1278
1279 /* If we made it here no buffer has been allocated, do so now. */
1280 mutex_unlock(&drvdata->idr_mutex);
1281
1282 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1283 if (IS_ERR(etr_buf))
1284 return etr_buf;
1285
1286 /* Now that we have a buffer, add it to the IDR. */
1287 mutex_lock(&drvdata->idr_mutex);
1288 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1289 mutex_unlock(&drvdata->idr_mutex);
1290
1291 /* Another event with this session ID has allocated this buffer. */
1292 if (ret == -ENOSPC) {
1293 tmc_free_etr_buf(etr_buf);
1294 goto retry;
1295 }
1296
1297 /* The IDR can't allocate room for a new session, abandon ship. */
1298 if (ret == -ENOMEM) {
1299 tmc_free_etr_buf(etr_buf);
1300 return ERR_PTR(ret);
1301 }
1302
1303
1304 return etr_buf;
1305 }
1306
1307 static struct etr_buf *
get_perf_etr_buf_per_thread(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1308 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1309 struct perf_event *event, int nr_pages,
1310 void **pages, bool snapshot)
1311 {
1312 /*
1313 * In per-thread mode the etr_buf isn't shared, so just go ahead
1314 * with memory allocation.
1315 */
1316 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1317 }
1318
1319 static struct etr_buf *
get_perf_etr_buf(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1320 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1321 int nr_pages, void **pages, bool snapshot)
1322 {
1323 if (event->cpu == -1)
1324 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1325 pages, snapshot);
1326
1327 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1328 pages, snapshot);
1329 }
1330
1331 static struct etr_perf_buffer *
tmc_etr_setup_perf_buf(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1332 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1333 int nr_pages, void **pages, bool snapshot)
1334 {
1335 int node;
1336 struct etr_buf *etr_buf;
1337 struct etr_perf_buffer *etr_perf;
1338
1339 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1340
1341 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1342 if (!etr_perf)
1343 return ERR_PTR(-ENOMEM);
1344
1345 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1346 if (!IS_ERR(etr_buf))
1347 goto done;
1348
1349 kfree(etr_perf);
1350 return ERR_PTR(-ENOMEM);
1351
1352 done:
1353 /*
1354 * Keep a reference to the ETR this buffer has been allocated for
1355 * in order to have access to the IDR in tmc_free_etr_buffer().
1356 */
1357 etr_perf->drvdata = drvdata;
1358 etr_perf->etr_buf = etr_buf;
1359
1360 return etr_perf;
1361 }
1362
1363
tmc_alloc_etr_buffer(struct coresight_device * csdev,struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1364 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1365 struct perf_event *event, void **pages,
1366 int nr_pages, bool snapshot)
1367 {
1368 struct etr_perf_buffer *etr_perf;
1369 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1370
1371 etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1372 nr_pages, pages, snapshot);
1373 if (IS_ERR(etr_perf)) {
1374 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1375 return NULL;
1376 }
1377
1378 etr_perf->pid = task_pid_nr(event->owner);
1379 etr_perf->snapshot = snapshot;
1380 etr_perf->nr_pages = nr_pages;
1381 etr_perf->pages = pages;
1382
1383 return etr_perf;
1384 }
1385
tmc_free_etr_buffer(void * config)1386 static void tmc_free_etr_buffer(void *config)
1387 {
1388 struct etr_perf_buffer *etr_perf = config;
1389 struct tmc_drvdata *drvdata = etr_perf->drvdata;
1390 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1391
1392 if (!etr_buf)
1393 goto free_etr_perf_buffer;
1394
1395 mutex_lock(&drvdata->idr_mutex);
1396 /* If we are not the last one to use the buffer, don't touch it. */
1397 if (!refcount_dec_and_test(&etr_buf->refcount)) {
1398 mutex_unlock(&drvdata->idr_mutex);
1399 goto free_etr_perf_buffer;
1400 }
1401
1402 /* We are the last one, remove from the IDR and free the buffer. */
1403 buf = idr_remove(&drvdata->idr, etr_perf->pid);
1404 mutex_unlock(&drvdata->idr_mutex);
1405
1406 /*
1407 * Something went very wrong if the buffer associated with this ID
1408 * is not the same in the IDR. Leak to avoid use after free.
1409 */
1410 if (buf && WARN_ON(buf != etr_buf))
1411 goto free_etr_perf_buffer;
1412
1413 tmc_free_etr_buf(etr_perf->etr_buf);
1414
1415 free_etr_perf_buffer:
1416 kfree(etr_perf);
1417 }
1418
1419 /*
1420 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1421 * buffer to the perf ring buffer.
1422 */
tmc_etr_sync_perf_buffer(struct etr_perf_buffer * etr_perf,unsigned long src_offset,unsigned long to_copy)1423 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
1424 unsigned long src_offset,
1425 unsigned long to_copy)
1426 {
1427 long bytes;
1428 long pg_idx, pg_offset;
1429 unsigned long head = etr_perf->head;
1430 char **dst_pages, *src_buf;
1431 struct etr_buf *etr_buf = etr_perf->etr_buf;
1432
1433 head = etr_perf->head;
1434 pg_idx = head >> PAGE_SHIFT;
1435 pg_offset = head & (PAGE_SIZE - 1);
1436 dst_pages = (char **)etr_perf->pages;
1437
1438 while (to_copy > 0) {
1439 /*
1440 * In one iteration, we can copy minimum of :
1441 * 1) what is available in the source buffer,
1442 * 2) what is available in the source buffer, before it
1443 * wraps around.
1444 * 3) what is available in the destination page.
1445 * in one iteration.
1446 */
1447 if (src_offset >= etr_buf->size)
1448 src_offset -= etr_buf->size;
1449 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1450 &src_buf);
1451 if (WARN_ON_ONCE(bytes <= 0))
1452 break;
1453 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1454
1455 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1456
1457 to_copy -= bytes;
1458
1459 /* Move destination pointers */
1460 pg_offset += bytes;
1461 if (pg_offset == PAGE_SIZE) {
1462 pg_offset = 0;
1463 if (++pg_idx == etr_perf->nr_pages)
1464 pg_idx = 0;
1465 }
1466
1467 /* Move source pointers */
1468 src_offset += bytes;
1469 }
1470 }
1471
1472 /*
1473 * tmc_update_etr_buffer : Update the perf ring buffer with the
1474 * available trace data. We use software double buffering at the moment.
1475 *
1476 * TODO: Add support for reusing the perf ring buffer.
1477 */
1478 static unsigned long
tmc_update_etr_buffer(struct coresight_device * csdev,struct perf_output_handle * handle,void * config)1479 tmc_update_etr_buffer(struct coresight_device *csdev,
1480 struct perf_output_handle *handle,
1481 void *config)
1482 {
1483 bool lost = false;
1484 unsigned long flags, offset, size = 0;
1485 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1486 struct etr_perf_buffer *etr_perf = config;
1487 struct etr_buf *etr_buf = etr_perf->etr_buf;
1488
1489 spin_lock_irqsave(&drvdata->spinlock, flags);
1490
1491 /* Don't do anything if another tracer is using this sink */
1492 if (atomic_read(csdev->refcnt) != 1) {
1493 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1494 goto out;
1495 }
1496
1497 if (WARN_ON(drvdata->perf_buf != etr_buf)) {
1498 lost = true;
1499 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1500 goto out;
1501 }
1502
1503 CS_UNLOCK(drvdata->base);
1504
1505 tmc_flush_and_stop(drvdata);
1506 tmc_sync_etr_buf(drvdata);
1507
1508 CS_LOCK(drvdata->base);
1509 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1510
1511 lost = etr_buf->full;
1512 offset = etr_buf->offset;
1513 size = etr_buf->len;
1514
1515 /*
1516 * The ETR buffer may be bigger than the space available in the
1517 * perf ring buffer (handle->size). If so advance the offset so that we
1518 * get the latest trace data. In snapshot mode none of that matters
1519 * since we are expected to clobber stale data in favour of the latest
1520 * traces.
1521 */
1522 if (!etr_perf->snapshot && size > handle->size) {
1523 u32 mask = tmc_get_memwidth_mask(drvdata);
1524
1525 /*
1526 * Make sure the new size is aligned in accordance with the
1527 * requirement explained in function tmc_get_memwidth_mask().
1528 */
1529 size = handle->size & mask;
1530 offset = etr_buf->offset + etr_buf->len - size;
1531
1532 if (offset >= etr_buf->size)
1533 offset -= etr_buf->size;
1534 lost = true;
1535 }
1536
1537 /* Insert barrier packets at the beginning, if there was an overflow */
1538 if (lost)
1539 tmc_etr_buf_insert_barrier_packet(etr_buf, offset);
1540 tmc_etr_sync_perf_buffer(etr_perf, offset, size);
1541
1542 /*
1543 * In snapshot mode we simply increment the head by the number of byte
1544 * that were written. User space function cs_etm_find_snapshot() will
1545 * figure out how many bytes to get from the AUX buffer based on the
1546 * position of the head.
1547 */
1548 if (etr_perf->snapshot)
1549 handle->head += size;
1550 out:
1551 /*
1552 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1553 * captured buffer is expected to be truncated and 2) a full buffer
1554 * prevents the event from being re-enabled by the perf core,
1555 * resulting in stale data being send to user space.
1556 */
1557 if (!etr_perf->snapshot && lost)
1558 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1559 return size;
1560 }
1561
tmc_enable_etr_sink_perf(struct coresight_device * csdev,void * data)1562 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1563 {
1564 int rc = 0;
1565 pid_t pid;
1566 unsigned long flags;
1567 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1568 struct perf_output_handle *handle = data;
1569 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1570
1571 spin_lock_irqsave(&drvdata->spinlock, flags);
1572 /* Don't use this sink if it is already claimed by sysFS */
1573 if (drvdata->mode == CS_MODE_SYSFS) {
1574 rc = -EBUSY;
1575 goto unlock_out;
1576 }
1577
1578 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1579 rc = -EINVAL;
1580 goto unlock_out;
1581 }
1582
1583 /* Get a handle on the pid of the process to monitor */
1584 pid = etr_perf->pid;
1585
1586 /* Do not proceed if this device is associated with another session */
1587 if (drvdata->pid != -1 && drvdata->pid != pid) {
1588 rc = -EBUSY;
1589 goto unlock_out;
1590 }
1591
1592 etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
1593
1594 /*
1595 * No HW configuration is needed if the sink is already in
1596 * use for this session.
1597 */
1598 if (drvdata->pid == pid) {
1599 atomic_inc(csdev->refcnt);
1600 goto unlock_out;
1601 }
1602
1603 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1604 if (!rc) {
1605 /* Associate with monitored process. */
1606 drvdata->pid = pid;
1607 drvdata->mode = CS_MODE_PERF;
1608 drvdata->perf_buf = etr_perf->etr_buf;
1609 atomic_inc(csdev->refcnt);
1610 }
1611
1612 unlock_out:
1613 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1614 return rc;
1615 }
1616
tmc_enable_etr_sink(struct coresight_device * csdev,u32 mode,void * data)1617 static int tmc_enable_etr_sink(struct coresight_device *csdev,
1618 u32 mode, void *data)
1619 {
1620 switch (mode) {
1621 case CS_MODE_SYSFS:
1622 return tmc_enable_etr_sink_sysfs(csdev);
1623 case CS_MODE_PERF:
1624 return tmc_enable_etr_sink_perf(csdev, data);
1625 }
1626
1627 /* We shouldn't be here */
1628 return -EINVAL;
1629 }
1630
tmc_disable_etr_sink(struct coresight_device * csdev)1631 static int tmc_disable_etr_sink(struct coresight_device *csdev)
1632 {
1633 unsigned long flags;
1634 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1635
1636 spin_lock_irqsave(&drvdata->spinlock, flags);
1637
1638 if (drvdata->reading) {
1639 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1640 return -EBUSY;
1641 }
1642
1643 if (atomic_dec_return(csdev->refcnt)) {
1644 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1645 return -EBUSY;
1646 }
1647
1648 /* Complain if we (somehow) got out of sync */
1649 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1650 tmc_etr_disable_hw(drvdata);
1651 /* Dissociate from monitored process. */
1652 drvdata->pid = -1;
1653 drvdata->mode = CS_MODE_DISABLED;
1654 /* Reset perf specific data */
1655 drvdata->perf_buf = NULL;
1656
1657 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1658
1659 dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1660 return 0;
1661 }
1662
1663 static const struct coresight_ops_sink tmc_etr_sink_ops = {
1664 .enable = tmc_enable_etr_sink,
1665 .disable = tmc_disable_etr_sink,
1666 .alloc_buffer = tmc_alloc_etr_buffer,
1667 .update_buffer = tmc_update_etr_buffer,
1668 .free_buffer = tmc_free_etr_buffer,
1669 };
1670
1671 const struct coresight_ops tmc_etr_cs_ops = {
1672 .sink_ops = &tmc_etr_sink_ops,
1673 };
1674
tmc_read_prepare_etr(struct tmc_drvdata * drvdata)1675 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1676 {
1677 int ret = 0;
1678 unsigned long flags;
1679
1680 /* config types are set a boot time and never change */
1681 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1682 return -EINVAL;
1683
1684 spin_lock_irqsave(&drvdata->spinlock, flags);
1685 if (drvdata->reading) {
1686 ret = -EBUSY;
1687 goto out;
1688 }
1689
1690 /*
1691 * We can safely allow reads even if the ETR is operating in PERF mode,
1692 * since the sysfs session is captured in mode specific data.
1693 * If drvdata::sysfs_data is NULL the trace data has been read already.
1694 */
1695 if (!drvdata->sysfs_buf) {
1696 ret = -EINVAL;
1697 goto out;
1698 }
1699
1700 /* Disable the TMC if we are trying to read from a running session. */
1701 if (drvdata->mode == CS_MODE_SYSFS)
1702 __tmc_etr_disable_hw(drvdata);
1703
1704 drvdata->reading = true;
1705 out:
1706 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1707
1708 return ret;
1709 }
1710
tmc_read_unprepare_etr(struct tmc_drvdata * drvdata)1711 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1712 {
1713 unsigned long flags;
1714 struct etr_buf *sysfs_buf = NULL;
1715
1716 /* config types are set a boot time and never change */
1717 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1718 return -EINVAL;
1719
1720 spin_lock_irqsave(&drvdata->spinlock, flags);
1721
1722 /* RE-enable the TMC if need be */
1723 if (drvdata->mode == CS_MODE_SYSFS) {
1724 /*
1725 * The trace run will continue with the same allocated trace
1726 * buffer. Since the tracer is still enabled drvdata::buf can't
1727 * be NULL.
1728 */
1729 __tmc_etr_enable_hw(drvdata);
1730 } else {
1731 /*
1732 * The ETR is not tracing and the buffer was just read.
1733 * As such prepare to free the trace buffer.
1734 */
1735 sysfs_buf = drvdata->sysfs_buf;
1736 drvdata->sysfs_buf = NULL;
1737 }
1738
1739 drvdata->reading = false;
1740 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1741
1742 /* Free allocated memory out side of the spinlock */
1743 if (sysfs_buf)
1744 tmc_etr_free_sysfs_buf(sysfs_buf);
1745
1746 return 0;
1747 }
1748