• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPU-agnostic ARM page table allocator.
4  *
5  * ARMv7 Short-descriptor format, supporting
6  * - Basic memory attributes
7  * - Simplified access permissions (AP[2:1] model)
8  * - Backwards-compatible TEX remap
9  * - Large pages/supersections (if indicated by the caller)
10  *
11  * Not supporting:
12  * - Legacy access permissions (AP[2:0] model)
13  *
14  * Almost certainly never supporting:
15  * - PXN
16  * - Domains
17  *
18  * Copyright (C) 2014-2015 ARM Limited
19  * Copyright (c) 2014-2015 MediaTek Inc.
20  */
21 
22 #define pr_fmt(fmt)	"arm-v7s io-pgtable: " fmt
23 
24 #include <linux/atomic.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/gfp.h>
27 #include <linux/io-pgtable.h>
28 #include <linux/iommu.h>
29 #include <linux/kernel.h>
30 #include <linux/kmemleak.h>
31 #include <linux/sizes.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 #include <linux/types.h>
35 
36 #include <asm/barrier.h>
37 
38 /* Struct accessors */
39 #define io_pgtable_to_data(x)						\
40 	container_of((x), struct arm_v7s_io_pgtable, iop)
41 
42 #define io_pgtable_ops_to_data(x)					\
43 	io_pgtable_to_data(io_pgtable_ops_to_pgtable(x))
44 
45 /*
46  * We have 32 bits total; 12 bits resolved at level 1, 8 bits at level 2,
47  * and 12 bits in a page. With some carefully-chosen coefficients we can
48  * hide the ugly inconsistencies behind these macros and at least let the
49  * rest of the code pretend to be somewhat sane.
50  */
51 #define ARM_V7S_ADDR_BITS		32
52 #define _ARM_V7S_LVL_BITS(lvl)		(16 - (lvl) * 4)
53 /* MediaTek: totally 34bits, 14bits at lvl1 and 8bits at lvl2. */
54 #define _ARM_V7S_LVL_BITS_MTK(lvl)	(20 - (lvl) * 6)
55 #define ARM_V7S_LVL_SHIFT(lvl)		(ARM_V7S_ADDR_BITS - (4 + 8 * (lvl)))
56 #define ARM_V7S_TABLE_SHIFT		10
57 
58 #define ARM_V7S_PTES_PER_LVL(lvl, cfg)	({				\
59 	!arm_v7s_is_mtk_enabled(cfg) ?					\
60 	 (1 << _ARM_V7S_LVL_BITS(lvl)) : (1 << _ARM_V7S_LVL_BITS_MTK(lvl));\
61 })
62 
63 #define ARM_V7S_TABLE_SIZE(lvl, cfg)					\
64 	(ARM_V7S_PTES_PER_LVL(lvl, cfg) * sizeof(arm_v7s_iopte))
65 
66 #define ARM_V7S_BLOCK_SIZE(lvl)		(1UL << ARM_V7S_LVL_SHIFT(lvl))
67 #define ARM_V7S_LVL_MASK(lvl)		((u32)(~0U << ARM_V7S_LVL_SHIFT(lvl)))
68 #define ARM_V7S_TABLE_MASK		((u32)(~0U << ARM_V7S_TABLE_SHIFT))
69 #define _ARM_V7S_IDX_MASK(lvl, cfg)	(ARM_V7S_PTES_PER_LVL(lvl, cfg) - 1)
70 #define ARM_V7S_LVL_IDX(addr, lvl, cfg)	({			\
71 	int _l = lvl;							\
72 	((addr) >> ARM_V7S_LVL_SHIFT(_l)) & _ARM_V7S_IDX_MASK(_l, cfg); \
73 })
74 
75 /*
76  * Large page/supersection entries are effectively a block of 16 page/section
77  * entries, along the lines of the LPAE contiguous hint, but all with the
78  * same output address. For want of a better common name we'll call them
79  * "contiguous" versions of their respective page/section entries here, but
80  * noting the distinction (WRT to TLB maintenance) that they represent *one*
81  * entry repeated 16 times, not 16 separate entries (as in the LPAE case).
82  */
83 #define ARM_V7S_CONT_PAGES		16
84 
85 /* PTE type bits: these are all mixed up with XN/PXN bits in most cases */
86 #define ARM_V7S_PTE_TYPE_TABLE		0x1
87 #define ARM_V7S_PTE_TYPE_PAGE		0x2
88 #define ARM_V7S_PTE_TYPE_CONT_PAGE	0x1
89 
90 #define ARM_V7S_PTE_IS_VALID(pte)	(((pte) & 0x3) != 0)
91 #define ARM_V7S_PTE_IS_TABLE(pte, lvl) \
92 	((lvl) == 1 && (((pte) & 0x3) == ARM_V7S_PTE_TYPE_TABLE))
93 
94 /* Page table bits */
95 #define ARM_V7S_ATTR_XN(lvl)		BIT(4 * (2 - (lvl)))
96 #define ARM_V7S_ATTR_B			BIT(2)
97 #define ARM_V7S_ATTR_C			BIT(3)
98 #define ARM_V7S_ATTR_NS_TABLE		BIT(3)
99 #define ARM_V7S_ATTR_NS_SECTION		BIT(19)
100 
101 #define ARM_V7S_CONT_SECTION		BIT(18)
102 #define ARM_V7S_CONT_PAGE_XN_SHIFT	15
103 
104 /*
105  * The attribute bits are consistently ordered*, but occupy bits [17:10] of
106  * a level 1 PTE vs. bits [11:4] at level 2. Thus we define the individual
107  * fields relative to that 8-bit block, plus a total shift relative to the PTE.
108  */
109 #define ARM_V7S_ATTR_SHIFT(lvl)		(16 - (lvl) * 6)
110 
111 #define ARM_V7S_ATTR_MASK		0xff
112 #define ARM_V7S_ATTR_AP0		BIT(0)
113 #define ARM_V7S_ATTR_AP1		BIT(1)
114 #define ARM_V7S_ATTR_AP2		BIT(5)
115 #define ARM_V7S_ATTR_S			BIT(6)
116 #define ARM_V7S_ATTR_NG			BIT(7)
117 #define ARM_V7S_TEX_SHIFT		2
118 #define ARM_V7S_TEX_MASK		0x7
119 #define ARM_V7S_ATTR_TEX(val)		(((val) & ARM_V7S_TEX_MASK) << ARM_V7S_TEX_SHIFT)
120 
121 /* MediaTek extend the bits below for PA 32bit/33bit/34bit */
122 #define ARM_V7S_ATTR_MTK_PA_BIT32	BIT(9)
123 #define ARM_V7S_ATTR_MTK_PA_BIT33	BIT(4)
124 #define ARM_V7S_ATTR_MTK_PA_BIT34	BIT(5)
125 
126 /* *well, except for TEX on level 2 large pages, of course :( */
127 #define ARM_V7S_CONT_PAGE_TEX_SHIFT	6
128 #define ARM_V7S_CONT_PAGE_TEX_MASK	(ARM_V7S_TEX_MASK << ARM_V7S_CONT_PAGE_TEX_SHIFT)
129 
130 /* Simplified access permissions */
131 #define ARM_V7S_PTE_AF			ARM_V7S_ATTR_AP0
132 #define ARM_V7S_PTE_AP_UNPRIV		ARM_V7S_ATTR_AP1
133 #define ARM_V7S_PTE_AP_RDONLY		ARM_V7S_ATTR_AP2
134 
135 /* Register bits */
136 #define ARM_V7S_RGN_NC			0
137 #define ARM_V7S_RGN_WBWA		1
138 #define ARM_V7S_RGN_WT			2
139 #define ARM_V7S_RGN_WB			3
140 
141 #define ARM_V7S_PRRR_TYPE_DEVICE	1
142 #define ARM_V7S_PRRR_TYPE_NORMAL	2
143 #define ARM_V7S_PRRR_TR(n, type)	(((type) & 0x3) << ((n) * 2))
144 #define ARM_V7S_PRRR_DS0		BIT(16)
145 #define ARM_V7S_PRRR_DS1		BIT(17)
146 #define ARM_V7S_PRRR_NS0		BIT(18)
147 #define ARM_V7S_PRRR_NS1		BIT(19)
148 #define ARM_V7S_PRRR_NOS(n)		BIT((n) + 24)
149 
150 #define ARM_V7S_NMRR_IR(n, attr)	(((attr) & 0x3) << ((n) * 2))
151 #define ARM_V7S_NMRR_OR(n, attr)	(((attr) & 0x3) << ((n) * 2 + 16))
152 
153 #define ARM_V7S_TTBR_S			BIT(1)
154 #define ARM_V7S_TTBR_NOS		BIT(5)
155 #define ARM_V7S_TTBR_ORGN_ATTR(attr)	(((attr) & 0x3) << 3)
156 #define ARM_V7S_TTBR_IRGN_ATTR(attr)					\
157 	((((attr) & 0x1) << 6) | (((attr) & 0x2) >> 1))
158 
159 #define ARM_V7S_TCR_PD1			BIT(5)
160 
161 #ifdef CONFIG_ZONE_DMA32
162 #define ARM_V7S_TABLE_GFP_DMA GFP_DMA32
163 #define ARM_V7S_TABLE_SLAB_FLAGS SLAB_CACHE_DMA32
164 #else
165 #define ARM_V7S_TABLE_GFP_DMA GFP_DMA
166 #define ARM_V7S_TABLE_SLAB_FLAGS SLAB_CACHE_DMA
167 #endif
168 
169 typedef u32 arm_v7s_iopte;
170 
171 static bool selftest_running;
172 
173 struct arm_v7s_io_pgtable {
174 	struct io_pgtable	iop;
175 
176 	arm_v7s_iopte		*pgd;
177 	struct kmem_cache	*l2_tables;
178 	spinlock_t		split_lock;
179 };
180 
181 static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl);
182 
__arm_v7s_dma_addr(void * pages)183 static dma_addr_t __arm_v7s_dma_addr(void *pages)
184 {
185 	return (dma_addr_t)virt_to_phys(pages);
186 }
187 
arm_v7s_is_mtk_enabled(struct io_pgtable_cfg * cfg)188 static bool arm_v7s_is_mtk_enabled(struct io_pgtable_cfg *cfg)
189 {
190 	return IS_ENABLED(CONFIG_PHYS_ADDR_T_64BIT) &&
191 		(cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_EXT);
192 }
193 
paddr_to_iopte(phys_addr_t paddr,int lvl,struct io_pgtable_cfg * cfg)194 static arm_v7s_iopte paddr_to_iopte(phys_addr_t paddr, int lvl,
195 				    struct io_pgtable_cfg *cfg)
196 {
197 	arm_v7s_iopte pte = paddr & ARM_V7S_LVL_MASK(lvl);
198 
199 	if (!arm_v7s_is_mtk_enabled(cfg))
200 		return pte;
201 
202 	if (paddr & BIT_ULL(32))
203 		pte |= ARM_V7S_ATTR_MTK_PA_BIT32;
204 	if (paddr & BIT_ULL(33))
205 		pte |= ARM_V7S_ATTR_MTK_PA_BIT33;
206 	if (paddr & BIT_ULL(34))
207 		pte |= ARM_V7S_ATTR_MTK_PA_BIT34;
208 	return pte;
209 }
210 
iopte_to_paddr(arm_v7s_iopte pte,int lvl,struct io_pgtable_cfg * cfg)211 static phys_addr_t iopte_to_paddr(arm_v7s_iopte pte, int lvl,
212 				  struct io_pgtable_cfg *cfg)
213 {
214 	arm_v7s_iopte mask;
215 	phys_addr_t paddr;
216 
217 	if (ARM_V7S_PTE_IS_TABLE(pte, lvl))
218 		mask = ARM_V7S_TABLE_MASK;
219 	else if (arm_v7s_pte_is_cont(pte, lvl))
220 		mask = ARM_V7S_LVL_MASK(lvl) * ARM_V7S_CONT_PAGES;
221 	else
222 		mask = ARM_V7S_LVL_MASK(lvl);
223 
224 	paddr = pte & mask;
225 	if (!arm_v7s_is_mtk_enabled(cfg))
226 		return paddr;
227 
228 	if (pte & ARM_V7S_ATTR_MTK_PA_BIT32)
229 		paddr |= BIT_ULL(32);
230 	if (pte & ARM_V7S_ATTR_MTK_PA_BIT33)
231 		paddr |= BIT_ULL(33);
232 	if (pte & ARM_V7S_ATTR_MTK_PA_BIT34)
233 		paddr |= BIT_ULL(34);
234 	return paddr;
235 }
236 
iopte_deref(arm_v7s_iopte pte,int lvl,struct arm_v7s_io_pgtable * data)237 static arm_v7s_iopte *iopte_deref(arm_v7s_iopte pte, int lvl,
238 				  struct arm_v7s_io_pgtable *data)
239 {
240 	return phys_to_virt(iopte_to_paddr(pte, lvl, &data->iop.cfg));
241 }
242 
__arm_v7s_alloc_table(int lvl,gfp_t gfp,struct arm_v7s_io_pgtable * data)243 static void *__arm_v7s_alloc_table(int lvl, gfp_t gfp,
244 				   struct arm_v7s_io_pgtable *data)
245 {
246 	struct io_pgtable_cfg *cfg = &data->iop.cfg;
247 	struct device *dev = cfg->iommu_dev;
248 	phys_addr_t phys;
249 	dma_addr_t dma;
250 	size_t size = ARM_V7S_TABLE_SIZE(lvl, cfg);
251 	void *table = NULL;
252 
253 	if (lvl == 1)
254 		table = (void *)__get_free_pages(
255 			__GFP_ZERO | ARM_V7S_TABLE_GFP_DMA, get_order(size));
256 	else if (lvl == 2)
257 		table = kmem_cache_zalloc(data->l2_tables, gfp);
258 
259 	if (!table)
260 		return NULL;
261 
262 	phys = virt_to_phys(table);
263 	if (phys != (arm_v7s_iopte)phys) {
264 		/* Doesn't fit in PTE */
265 		dev_err(dev, "Page table does not fit in PTE: %pa", &phys);
266 		goto out_free;
267 	}
268 	if (!cfg->coherent_walk) {
269 		dma = dma_map_single(dev, table, size, DMA_TO_DEVICE);
270 		if (dma_mapping_error(dev, dma))
271 			goto out_free;
272 		/*
273 		 * We depend on the IOMMU being able to work with any physical
274 		 * address directly, so if the DMA layer suggests otherwise by
275 		 * translating or truncating them, that bodes very badly...
276 		 */
277 		if (dma != phys)
278 			goto out_unmap;
279 	}
280 	if (lvl == 2)
281 		kmemleak_ignore(table);
282 	return table;
283 
284 out_unmap:
285 	dev_err(dev, "Cannot accommodate DMA translation for IOMMU page tables\n");
286 	dma_unmap_single(dev, dma, size, DMA_TO_DEVICE);
287 out_free:
288 	if (lvl == 1)
289 		free_pages((unsigned long)table, get_order(size));
290 	else
291 		kmem_cache_free(data->l2_tables, table);
292 	return NULL;
293 }
294 
__arm_v7s_free_table(void * table,int lvl,struct arm_v7s_io_pgtable * data)295 static void __arm_v7s_free_table(void *table, int lvl,
296 				 struct arm_v7s_io_pgtable *data)
297 {
298 	struct io_pgtable_cfg *cfg = &data->iop.cfg;
299 	struct device *dev = cfg->iommu_dev;
300 	size_t size = ARM_V7S_TABLE_SIZE(lvl, cfg);
301 
302 	if (!cfg->coherent_walk)
303 		dma_unmap_single(dev, __arm_v7s_dma_addr(table), size,
304 				 DMA_TO_DEVICE);
305 	if (lvl == 1)
306 		free_pages((unsigned long)table, get_order(size));
307 	else
308 		kmem_cache_free(data->l2_tables, table);
309 }
310 
__arm_v7s_pte_sync(arm_v7s_iopte * ptep,int num_entries,struct io_pgtable_cfg * cfg)311 static void __arm_v7s_pte_sync(arm_v7s_iopte *ptep, int num_entries,
312 			       struct io_pgtable_cfg *cfg)
313 {
314 	if (cfg->coherent_walk)
315 		return;
316 
317 	dma_sync_single_for_device(cfg->iommu_dev, __arm_v7s_dma_addr(ptep),
318 				   num_entries * sizeof(*ptep), DMA_TO_DEVICE);
319 }
__arm_v7s_set_pte(arm_v7s_iopte * ptep,arm_v7s_iopte pte,int num_entries,struct io_pgtable_cfg * cfg)320 static void __arm_v7s_set_pte(arm_v7s_iopte *ptep, arm_v7s_iopte pte,
321 			      int num_entries, struct io_pgtable_cfg *cfg)
322 {
323 	int i;
324 
325 	for (i = 0; i < num_entries; i++)
326 		ptep[i] = pte;
327 
328 	__arm_v7s_pte_sync(ptep, num_entries, cfg);
329 }
330 
arm_v7s_prot_to_pte(int prot,int lvl,struct io_pgtable_cfg * cfg)331 static arm_v7s_iopte arm_v7s_prot_to_pte(int prot, int lvl,
332 					 struct io_pgtable_cfg *cfg)
333 {
334 	bool ap = !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS);
335 	arm_v7s_iopte pte = ARM_V7S_ATTR_NG | ARM_V7S_ATTR_S;
336 
337 	if (!(prot & IOMMU_MMIO))
338 		pte |= ARM_V7S_ATTR_TEX(1);
339 	if (ap) {
340 		pte |= ARM_V7S_PTE_AF;
341 		if (!(prot & IOMMU_PRIV))
342 			pte |= ARM_V7S_PTE_AP_UNPRIV;
343 		if (!(prot & IOMMU_WRITE))
344 			pte |= ARM_V7S_PTE_AP_RDONLY;
345 	}
346 	pte <<= ARM_V7S_ATTR_SHIFT(lvl);
347 
348 	if ((prot & IOMMU_NOEXEC) && ap)
349 		pte |= ARM_V7S_ATTR_XN(lvl);
350 	if (prot & IOMMU_MMIO)
351 		pte |= ARM_V7S_ATTR_B;
352 	else if (prot & IOMMU_CACHE)
353 		pte |= ARM_V7S_ATTR_B | ARM_V7S_ATTR_C;
354 
355 	pte |= ARM_V7S_PTE_TYPE_PAGE;
356 	if (lvl == 1 && (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS))
357 		pte |= ARM_V7S_ATTR_NS_SECTION;
358 
359 	return pte;
360 }
361 
arm_v7s_pte_to_prot(arm_v7s_iopte pte,int lvl)362 static int arm_v7s_pte_to_prot(arm_v7s_iopte pte, int lvl)
363 {
364 	int prot = IOMMU_READ;
365 	arm_v7s_iopte attr = pte >> ARM_V7S_ATTR_SHIFT(lvl);
366 
367 	if (!(attr & ARM_V7S_PTE_AP_RDONLY))
368 		prot |= IOMMU_WRITE;
369 	if (!(attr & ARM_V7S_PTE_AP_UNPRIV))
370 		prot |= IOMMU_PRIV;
371 	if ((attr & (ARM_V7S_TEX_MASK << ARM_V7S_TEX_SHIFT)) == 0)
372 		prot |= IOMMU_MMIO;
373 	else if (pte & ARM_V7S_ATTR_C)
374 		prot |= IOMMU_CACHE;
375 	if (pte & ARM_V7S_ATTR_XN(lvl))
376 		prot |= IOMMU_NOEXEC;
377 
378 	return prot;
379 }
380 
arm_v7s_pte_to_cont(arm_v7s_iopte pte,int lvl)381 static arm_v7s_iopte arm_v7s_pte_to_cont(arm_v7s_iopte pte, int lvl)
382 {
383 	if (lvl == 1) {
384 		pte |= ARM_V7S_CONT_SECTION;
385 	} else if (lvl == 2) {
386 		arm_v7s_iopte xn = pte & ARM_V7S_ATTR_XN(lvl);
387 		arm_v7s_iopte tex = pte & ARM_V7S_CONT_PAGE_TEX_MASK;
388 
389 		pte ^= xn | tex | ARM_V7S_PTE_TYPE_PAGE;
390 		pte |= (xn << ARM_V7S_CONT_PAGE_XN_SHIFT) |
391 		       (tex << ARM_V7S_CONT_PAGE_TEX_SHIFT) |
392 		       ARM_V7S_PTE_TYPE_CONT_PAGE;
393 	}
394 	return pte;
395 }
396 
arm_v7s_cont_to_pte(arm_v7s_iopte pte,int lvl)397 static arm_v7s_iopte arm_v7s_cont_to_pte(arm_v7s_iopte pte, int lvl)
398 {
399 	if (lvl == 1) {
400 		pte &= ~ARM_V7S_CONT_SECTION;
401 	} else if (lvl == 2) {
402 		arm_v7s_iopte xn = pte & BIT(ARM_V7S_CONT_PAGE_XN_SHIFT);
403 		arm_v7s_iopte tex = pte & (ARM_V7S_CONT_PAGE_TEX_MASK <<
404 					   ARM_V7S_CONT_PAGE_TEX_SHIFT);
405 
406 		pte ^= xn | tex | ARM_V7S_PTE_TYPE_CONT_PAGE;
407 		pte |= (xn >> ARM_V7S_CONT_PAGE_XN_SHIFT) |
408 		       (tex >> ARM_V7S_CONT_PAGE_TEX_SHIFT) |
409 		       ARM_V7S_PTE_TYPE_PAGE;
410 	}
411 	return pte;
412 }
413 
arm_v7s_pte_is_cont(arm_v7s_iopte pte,int lvl)414 static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl)
415 {
416 	if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte, lvl))
417 		return pte & ARM_V7S_CONT_SECTION;
418 	else if (lvl == 2)
419 		return !(pte & ARM_V7S_PTE_TYPE_PAGE);
420 	return false;
421 }
422 
423 static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *,
424 			      struct iommu_iotlb_gather *, unsigned long,
425 			      size_t, int, arm_v7s_iopte *);
426 
arm_v7s_init_pte(struct arm_v7s_io_pgtable * data,unsigned long iova,phys_addr_t paddr,int prot,int lvl,int num_entries,arm_v7s_iopte * ptep)427 static int arm_v7s_init_pte(struct arm_v7s_io_pgtable *data,
428 			    unsigned long iova, phys_addr_t paddr, int prot,
429 			    int lvl, int num_entries, arm_v7s_iopte *ptep)
430 {
431 	struct io_pgtable_cfg *cfg = &data->iop.cfg;
432 	arm_v7s_iopte pte;
433 	int i;
434 
435 	for (i = 0; i < num_entries; i++)
436 		if (ARM_V7S_PTE_IS_TABLE(ptep[i], lvl)) {
437 			/*
438 			 * We need to unmap and free the old table before
439 			 * overwriting it with a block entry.
440 			 */
441 			arm_v7s_iopte *tblp;
442 			size_t sz = ARM_V7S_BLOCK_SIZE(lvl);
443 
444 			tblp = ptep - ARM_V7S_LVL_IDX(iova, lvl, cfg);
445 			if (WARN_ON(__arm_v7s_unmap(data, NULL, iova + i * sz,
446 						    sz, lvl, tblp) != sz))
447 				return -EINVAL;
448 		} else if (ptep[i]) {
449 			/* We require an unmap first */
450 			WARN_ON(!selftest_running);
451 			return -EEXIST;
452 		}
453 
454 	pte = arm_v7s_prot_to_pte(prot, lvl, cfg);
455 	if (num_entries > 1)
456 		pte = arm_v7s_pte_to_cont(pte, lvl);
457 
458 	pte |= paddr_to_iopte(paddr, lvl, cfg);
459 
460 	__arm_v7s_set_pte(ptep, pte, num_entries, cfg);
461 	return 0;
462 }
463 
arm_v7s_install_table(arm_v7s_iopte * table,arm_v7s_iopte * ptep,arm_v7s_iopte curr,struct io_pgtable_cfg * cfg)464 static arm_v7s_iopte arm_v7s_install_table(arm_v7s_iopte *table,
465 					   arm_v7s_iopte *ptep,
466 					   arm_v7s_iopte curr,
467 					   struct io_pgtable_cfg *cfg)
468 {
469 	arm_v7s_iopte old, new;
470 
471 	new = virt_to_phys(table) | ARM_V7S_PTE_TYPE_TABLE;
472 	if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS)
473 		new |= ARM_V7S_ATTR_NS_TABLE;
474 
475 	/*
476 	 * Ensure the table itself is visible before its PTE can be.
477 	 * Whilst we could get away with cmpxchg64_release below, this
478 	 * doesn't have any ordering semantics when !CONFIG_SMP.
479 	 */
480 	dma_wmb();
481 
482 	old = cmpxchg_relaxed(ptep, curr, new);
483 	__arm_v7s_pte_sync(ptep, 1, cfg);
484 
485 	return old;
486 }
487 
__arm_v7s_map(struct arm_v7s_io_pgtable * data,unsigned long iova,phys_addr_t paddr,size_t size,int prot,int lvl,arm_v7s_iopte * ptep)488 static int __arm_v7s_map(struct arm_v7s_io_pgtable *data, unsigned long iova,
489 			 phys_addr_t paddr, size_t size, int prot,
490 			 int lvl, arm_v7s_iopte *ptep)
491 {
492 	struct io_pgtable_cfg *cfg = &data->iop.cfg;
493 	arm_v7s_iopte pte, *cptep;
494 	int num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
495 
496 	/* Find our entry at the current level */
497 	ptep += ARM_V7S_LVL_IDX(iova, lvl, cfg);
498 
499 	/* If we can install a leaf entry at this level, then do so */
500 	if (num_entries)
501 		return arm_v7s_init_pte(data, iova, paddr, prot,
502 					lvl, num_entries, ptep);
503 
504 	/* We can't allocate tables at the final level */
505 	if (WARN_ON(lvl == 2))
506 		return -EINVAL;
507 
508 	/* Grab a pointer to the next level */
509 	pte = READ_ONCE(*ptep);
510 	if (!pte) {
511 		cptep = __arm_v7s_alloc_table(lvl + 1, GFP_ATOMIC, data);
512 		if (!cptep)
513 			return -ENOMEM;
514 
515 		pte = arm_v7s_install_table(cptep, ptep, 0, cfg);
516 		if (pte)
517 			__arm_v7s_free_table(cptep, lvl + 1, data);
518 	} else {
519 		/* We've no easy way of knowing if it's synced yet, so... */
520 		__arm_v7s_pte_sync(ptep, 1, cfg);
521 	}
522 
523 	if (ARM_V7S_PTE_IS_TABLE(pte, lvl)) {
524 		cptep = iopte_deref(pte, lvl, data);
525 	} else if (pte) {
526 		/* We require an unmap first */
527 		WARN_ON(!selftest_running);
528 		return -EEXIST;
529 	}
530 
531 	/* Rinse, repeat */
532 	return __arm_v7s_map(data, iova, paddr, size, prot, lvl + 1, cptep);
533 }
534 
arm_v7s_map(struct io_pgtable_ops * ops,unsigned long iova,phys_addr_t paddr,size_t size,int prot)535 static int arm_v7s_map(struct io_pgtable_ops *ops, unsigned long iova,
536 			phys_addr_t paddr, size_t size, int prot)
537 {
538 	struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
539 	struct io_pgtable *iop = &data->iop;
540 	int ret;
541 
542 	/* If no access, then nothing to do */
543 	if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
544 		return 0;
545 
546 	if (WARN_ON(iova >= (1ULL << data->iop.cfg.ias) ||
547 		    paddr >= (1ULL << data->iop.cfg.oas)))
548 		return -ERANGE;
549 
550 	ret = __arm_v7s_map(data, iova, paddr, size, prot, 1, data->pgd);
551 	/*
552 	 * Synchronise all PTE updates for the new mapping before there's
553 	 * a chance for anything to kick off a table walk for the new iova.
554 	 */
555 	if (iop->cfg.quirks & IO_PGTABLE_QUIRK_TLBI_ON_MAP) {
556 		io_pgtable_tlb_flush_walk(iop, iova, size,
557 					  ARM_V7S_BLOCK_SIZE(2));
558 	} else {
559 		wmb();
560 	}
561 
562 	return ret;
563 }
564 
arm_v7s_free_pgtable(struct io_pgtable * iop)565 static void arm_v7s_free_pgtable(struct io_pgtable *iop)
566 {
567 	struct arm_v7s_io_pgtable *data = io_pgtable_to_data(iop);
568 	int i;
569 
570 	for (i = 0; i < ARM_V7S_PTES_PER_LVL(1, &data->iop.cfg); i++) {
571 		arm_v7s_iopte pte = data->pgd[i];
572 
573 		if (ARM_V7S_PTE_IS_TABLE(pte, 1))
574 			__arm_v7s_free_table(iopte_deref(pte, 1, data),
575 					     2, data);
576 	}
577 	__arm_v7s_free_table(data->pgd, 1, data);
578 	kmem_cache_destroy(data->l2_tables);
579 	kfree(data);
580 }
581 
arm_v7s_split_cont(struct arm_v7s_io_pgtable * data,unsigned long iova,int idx,int lvl,arm_v7s_iopte * ptep)582 static arm_v7s_iopte arm_v7s_split_cont(struct arm_v7s_io_pgtable *data,
583 					unsigned long iova, int idx, int lvl,
584 					arm_v7s_iopte *ptep)
585 {
586 	struct io_pgtable *iop = &data->iop;
587 	arm_v7s_iopte pte;
588 	size_t size = ARM_V7S_BLOCK_SIZE(lvl);
589 	int i;
590 
591 	/* Check that we didn't lose a race to get the lock */
592 	pte = *ptep;
593 	if (!arm_v7s_pte_is_cont(pte, lvl))
594 		return pte;
595 
596 	ptep -= idx & (ARM_V7S_CONT_PAGES - 1);
597 	pte = arm_v7s_cont_to_pte(pte, lvl);
598 	for (i = 0; i < ARM_V7S_CONT_PAGES; i++)
599 		ptep[i] = pte + i * size;
600 
601 	__arm_v7s_pte_sync(ptep, ARM_V7S_CONT_PAGES, &iop->cfg);
602 
603 	size *= ARM_V7S_CONT_PAGES;
604 	io_pgtable_tlb_flush_leaf(iop, iova, size, size);
605 	return pte;
606 }
607 
arm_v7s_split_blk_unmap(struct arm_v7s_io_pgtable * data,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size,arm_v7s_iopte blk_pte,arm_v7s_iopte * ptep)608 static size_t arm_v7s_split_blk_unmap(struct arm_v7s_io_pgtable *data,
609 				      struct iommu_iotlb_gather *gather,
610 				      unsigned long iova, size_t size,
611 				      arm_v7s_iopte blk_pte,
612 				      arm_v7s_iopte *ptep)
613 {
614 	struct io_pgtable_cfg *cfg = &data->iop.cfg;
615 	arm_v7s_iopte pte, *tablep;
616 	int i, unmap_idx, num_entries, num_ptes;
617 
618 	tablep = __arm_v7s_alloc_table(2, GFP_ATOMIC, data);
619 	if (!tablep)
620 		return 0; /* Bytes unmapped */
621 
622 	num_ptes = ARM_V7S_PTES_PER_LVL(2, cfg);
623 	num_entries = size >> ARM_V7S_LVL_SHIFT(2);
624 	unmap_idx = ARM_V7S_LVL_IDX(iova, 2, cfg);
625 
626 	pte = arm_v7s_prot_to_pte(arm_v7s_pte_to_prot(blk_pte, 1), 2, cfg);
627 	if (num_entries > 1)
628 		pte = arm_v7s_pte_to_cont(pte, 2);
629 
630 	for (i = 0; i < num_ptes; i += num_entries, pte += size) {
631 		/* Unmap! */
632 		if (i == unmap_idx)
633 			continue;
634 
635 		__arm_v7s_set_pte(&tablep[i], pte, num_entries, cfg);
636 	}
637 
638 	pte = arm_v7s_install_table(tablep, ptep, blk_pte, cfg);
639 	if (pte != blk_pte) {
640 		__arm_v7s_free_table(tablep, 2, data);
641 
642 		if (!ARM_V7S_PTE_IS_TABLE(pte, 1))
643 			return 0;
644 
645 		tablep = iopte_deref(pte, 1, data);
646 		return __arm_v7s_unmap(data, gather, iova, size, 2, tablep);
647 	}
648 
649 	io_pgtable_tlb_add_page(&data->iop, gather, iova, size);
650 	return size;
651 }
652 
__arm_v7s_unmap(struct arm_v7s_io_pgtable * data,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size,int lvl,arm_v7s_iopte * ptep)653 static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *data,
654 			      struct iommu_iotlb_gather *gather,
655 			      unsigned long iova, size_t size, int lvl,
656 			      arm_v7s_iopte *ptep)
657 {
658 	arm_v7s_iopte pte[ARM_V7S_CONT_PAGES];
659 	struct io_pgtable *iop = &data->iop;
660 	int idx, i = 0, num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
661 
662 	/* Something went horribly wrong and we ran out of page table */
663 	if (WARN_ON(lvl > 2))
664 		return 0;
665 
666 	idx = ARM_V7S_LVL_IDX(iova, lvl, &iop->cfg);
667 	ptep += idx;
668 	do {
669 		pte[i] = READ_ONCE(ptep[i]);
670 		if (WARN_ON(!ARM_V7S_PTE_IS_VALID(pte[i])))
671 			return 0;
672 	} while (++i < num_entries);
673 
674 	/*
675 	 * If we've hit a contiguous 'large page' entry at this level, it
676 	 * needs splitting first, unless we're unmapping the whole lot.
677 	 *
678 	 * For splitting, we can't rewrite 16 PTEs atomically, and since we
679 	 * can't necessarily assume TEX remap we don't have a software bit to
680 	 * mark live entries being split. In practice (i.e. DMA API code), we
681 	 * will never be splitting large pages anyway, so just wrap this edge
682 	 * case in a lock for the sake of correctness and be done with it.
683 	 */
684 	if (num_entries <= 1 && arm_v7s_pte_is_cont(pte[0], lvl)) {
685 		unsigned long flags;
686 
687 		spin_lock_irqsave(&data->split_lock, flags);
688 		pte[0] = arm_v7s_split_cont(data, iova, idx, lvl, ptep);
689 		spin_unlock_irqrestore(&data->split_lock, flags);
690 	}
691 
692 	/* If the size matches this level, we're in the right place */
693 	if (num_entries) {
694 		size_t blk_size = ARM_V7S_BLOCK_SIZE(lvl);
695 
696 		__arm_v7s_set_pte(ptep, 0, num_entries, &iop->cfg);
697 
698 		for (i = 0; i < num_entries; i++) {
699 			if (ARM_V7S_PTE_IS_TABLE(pte[i], lvl)) {
700 				/* Also flush any partial walks */
701 				io_pgtable_tlb_flush_walk(iop, iova, blk_size,
702 						ARM_V7S_BLOCK_SIZE(lvl + 1));
703 				ptep = iopte_deref(pte[i], lvl, data);
704 				__arm_v7s_free_table(ptep, lvl + 1, data);
705 			} else if (iop->cfg.quirks & IO_PGTABLE_QUIRK_NON_STRICT) {
706 				/*
707 				 * Order the PTE update against queueing the IOVA, to
708 				 * guarantee that a flush callback from a different CPU
709 				 * has observed it before the TLBIALL can be issued.
710 				 */
711 				smp_wmb();
712 			} else {
713 				io_pgtable_tlb_add_page(iop, gather, iova, blk_size);
714 			}
715 			iova += blk_size;
716 		}
717 		return size;
718 	} else if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte[0], lvl)) {
719 		/*
720 		 * Insert a table at the next level to map the old region,
721 		 * minus the part we want to unmap
722 		 */
723 		return arm_v7s_split_blk_unmap(data, gather, iova, size, pte[0],
724 					       ptep);
725 	}
726 
727 	/* Keep on walkin' */
728 	ptep = iopte_deref(pte[0], lvl, data);
729 	return __arm_v7s_unmap(data, gather, iova, size, lvl + 1, ptep);
730 }
731 
arm_v7s_unmap(struct io_pgtable_ops * ops,unsigned long iova,size_t size,struct iommu_iotlb_gather * gather)732 static size_t arm_v7s_unmap(struct io_pgtable_ops *ops, unsigned long iova,
733 			    size_t size, struct iommu_iotlb_gather *gather)
734 {
735 	struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
736 
737 	if (WARN_ON(iova >= (1ULL << data->iop.cfg.ias)))
738 		return 0;
739 
740 	return __arm_v7s_unmap(data, gather, iova, size, 1, data->pgd);
741 }
742 
arm_v7s_iova_to_phys(struct io_pgtable_ops * ops,unsigned long iova)743 static phys_addr_t arm_v7s_iova_to_phys(struct io_pgtable_ops *ops,
744 					unsigned long iova)
745 {
746 	struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
747 	arm_v7s_iopte *ptep = data->pgd, pte;
748 	int lvl = 0;
749 	u32 mask;
750 
751 	do {
752 		ptep += ARM_V7S_LVL_IDX(iova, ++lvl, &data->iop.cfg);
753 		pte = READ_ONCE(*ptep);
754 		ptep = iopte_deref(pte, lvl, data);
755 	} while (ARM_V7S_PTE_IS_TABLE(pte, lvl));
756 
757 	if (!ARM_V7S_PTE_IS_VALID(pte))
758 		return 0;
759 
760 	mask = ARM_V7S_LVL_MASK(lvl);
761 	if (arm_v7s_pte_is_cont(pte, lvl))
762 		mask *= ARM_V7S_CONT_PAGES;
763 	return iopte_to_paddr(pte, lvl, &data->iop.cfg) | (iova & ~mask);
764 }
765 
arm_v7s_alloc_pgtable(struct io_pgtable_cfg * cfg,void * cookie)766 static struct io_pgtable *arm_v7s_alloc_pgtable(struct io_pgtable_cfg *cfg,
767 						void *cookie)
768 {
769 	struct arm_v7s_io_pgtable *data;
770 
771 	if (cfg->ias > (arm_v7s_is_mtk_enabled(cfg) ? 34 : ARM_V7S_ADDR_BITS))
772 		return NULL;
773 
774 	if (cfg->oas > (arm_v7s_is_mtk_enabled(cfg) ? 35 : ARM_V7S_ADDR_BITS))
775 		return NULL;
776 
777 	if (cfg->quirks & ~(IO_PGTABLE_QUIRK_ARM_NS |
778 			    IO_PGTABLE_QUIRK_NO_PERMS |
779 			    IO_PGTABLE_QUIRK_TLBI_ON_MAP |
780 			    IO_PGTABLE_QUIRK_ARM_MTK_EXT |
781 			    IO_PGTABLE_QUIRK_NON_STRICT))
782 		return NULL;
783 
784 	/* If ARM_MTK_4GB is enabled, the NO_PERMS is also expected. */
785 	if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_EXT &&
786 	    !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS))
787 			return NULL;
788 
789 	data = kmalloc(sizeof(*data), GFP_KERNEL);
790 	if (!data)
791 		return NULL;
792 
793 	spin_lock_init(&data->split_lock);
794 	data->l2_tables = kmem_cache_create("io-pgtable_armv7s_l2",
795 					    ARM_V7S_TABLE_SIZE(2, cfg),
796 					    ARM_V7S_TABLE_SIZE(2, cfg),
797 					    ARM_V7S_TABLE_SLAB_FLAGS, NULL);
798 	if (!data->l2_tables)
799 		goto out_free_data;
800 
801 	data->iop.ops = (struct io_pgtable_ops) {
802 		.map		= arm_v7s_map,
803 		.unmap		= arm_v7s_unmap,
804 		.iova_to_phys	= arm_v7s_iova_to_phys,
805 	};
806 
807 	/* We have to do this early for __arm_v7s_alloc_table to work... */
808 	data->iop.cfg = *cfg;
809 
810 	/*
811 	 * Unless the IOMMU driver indicates supersection support by
812 	 * having SZ_16M set in the initial bitmap, they won't be used.
813 	 */
814 	cfg->pgsize_bitmap &= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
815 
816 	/* TCR: T0SZ=0, disable TTBR1 */
817 	cfg->arm_v7s_cfg.tcr = ARM_V7S_TCR_PD1;
818 
819 	/*
820 	 * TEX remap: the indices used map to the closest equivalent types
821 	 * under the non-TEX-remap interpretation of those attribute bits,
822 	 * excepting various implementation-defined aspects of shareability.
823 	 */
824 	cfg->arm_v7s_cfg.prrr = ARM_V7S_PRRR_TR(1, ARM_V7S_PRRR_TYPE_DEVICE) |
825 				ARM_V7S_PRRR_TR(4, ARM_V7S_PRRR_TYPE_NORMAL) |
826 				ARM_V7S_PRRR_TR(7, ARM_V7S_PRRR_TYPE_NORMAL) |
827 				ARM_V7S_PRRR_DS0 | ARM_V7S_PRRR_DS1 |
828 				ARM_V7S_PRRR_NS1 | ARM_V7S_PRRR_NOS(7);
829 	cfg->arm_v7s_cfg.nmrr = ARM_V7S_NMRR_IR(7, ARM_V7S_RGN_WBWA) |
830 				ARM_V7S_NMRR_OR(7, ARM_V7S_RGN_WBWA);
831 
832 	/* Looking good; allocate a pgd */
833 	data->pgd = __arm_v7s_alloc_table(1, GFP_KERNEL, data);
834 	if (!data->pgd)
835 		goto out_free_data;
836 
837 	/* Ensure the empty pgd is visible before any actual TTBR write */
838 	wmb();
839 
840 	/* TTBRs */
841 	cfg->arm_v7s_cfg.ttbr[0] = virt_to_phys(data->pgd) |
842 				   ARM_V7S_TTBR_S | ARM_V7S_TTBR_NOS |
843 				   (cfg->coherent_walk ?
844 				   (ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_WBWA) |
845 				    ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_WBWA)) :
846 				   (ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_NC) |
847 				    ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_NC)));
848 	cfg->arm_v7s_cfg.ttbr[1] = 0;
849 	return &data->iop;
850 
851 out_free_data:
852 	kmem_cache_destroy(data->l2_tables);
853 	kfree(data);
854 	return NULL;
855 }
856 
857 struct io_pgtable_init_fns io_pgtable_arm_v7s_init_fns = {
858 	.alloc	= arm_v7s_alloc_pgtable,
859 	.free	= arm_v7s_free_pgtable,
860 };
861 
862 #ifdef CONFIG_IOMMU_IO_PGTABLE_ARMV7S_SELFTEST
863 
864 static struct io_pgtable_cfg *cfg_cookie;
865 
dummy_tlb_flush_all(void * cookie)866 static void dummy_tlb_flush_all(void *cookie)
867 {
868 	WARN_ON(cookie != cfg_cookie);
869 }
870 
dummy_tlb_flush(unsigned long iova,size_t size,size_t granule,void * cookie)871 static void dummy_tlb_flush(unsigned long iova, size_t size, size_t granule,
872 			    void *cookie)
873 {
874 	WARN_ON(cookie != cfg_cookie);
875 	WARN_ON(!(size & cfg_cookie->pgsize_bitmap));
876 }
877 
dummy_tlb_add_page(struct iommu_iotlb_gather * gather,unsigned long iova,size_t granule,void * cookie)878 static void dummy_tlb_add_page(struct iommu_iotlb_gather *gather,
879 			       unsigned long iova, size_t granule, void *cookie)
880 {
881 	dummy_tlb_flush(iova, granule, granule, cookie);
882 }
883 
884 static const struct iommu_flush_ops dummy_tlb_ops = {
885 	.tlb_flush_all	= dummy_tlb_flush_all,
886 	.tlb_flush_walk	= dummy_tlb_flush,
887 	.tlb_flush_leaf	= dummy_tlb_flush,
888 	.tlb_add_page	= dummy_tlb_add_page,
889 };
890 
891 #define __FAIL(ops)	({				\
892 		WARN(1, "selftest: test failed\n");	\
893 		selftest_running = false;		\
894 		-EFAULT;				\
895 })
896 
arm_v7s_do_selftests(void)897 static int __init arm_v7s_do_selftests(void)
898 {
899 	struct io_pgtable_ops *ops;
900 	struct io_pgtable_cfg cfg = {
901 		.tlb = &dummy_tlb_ops,
902 		.oas = 32,
903 		.ias = 32,
904 		.coherent_walk = true,
905 		.quirks = IO_PGTABLE_QUIRK_ARM_NS,
906 		.pgsize_bitmap = SZ_4K | SZ_64K | SZ_1M | SZ_16M,
907 	};
908 	unsigned int iova, size, iova_start;
909 	unsigned int i, loopnr = 0;
910 
911 	selftest_running = true;
912 
913 	cfg_cookie = &cfg;
914 
915 	ops = alloc_io_pgtable_ops(ARM_V7S, &cfg, &cfg);
916 	if (!ops) {
917 		pr_err("selftest: failed to allocate io pgtable ops\n");
918 		return -EINVAL;
919 	}
920 
921 	/*
922 	 * Initial sanity checks.
923 	 * Empty page tables shouldn't provide any translations.
924 	 */
925 	if (ops->iova_to_phys(ops, 42))
926 		return __FAIL(ops);
927 
928 	if (ops->iova_to_phys(ops, SZ_1G + 42))
929 		return __FAIL(ops);
930 
931 	if (ops->iova_to_phys(ops, SZ_2G + 42))
932 		return __FAIL(ops);
933 
934 	/*
935 	 * Distinct mappings of different granule sizes.
936 	 */
937 	iova = 0;
938 	for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
939 		size = 1UL << i;
940 		if (ops->map(ops, iova, iova, size, IOMMU_READ |
941 						    IOMMU_WRITE |
942 						    IOMMU_NOEXEC |
943 						    IOMMU_CACHE))
944 			return __FAIL(ops);
945 
946 		/* Overlapping mappings */
947 		if (!ops->map(ops, iova, iova + size, size,
948 			      IOMMU_READ | IOMMU_NOEXEC))
949 			return __FAIL(ops);
950 
951 		if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
952 			return __FAIL(ops);
953 
954 		iova += SZ_16M;
955 		loopnr++;
956 	}
957 
958 	/* Partial unmap */
959 	i = 1;
960 	size = 1UL << __ffs(cfg.pgsize_bitmap);
961 	while (i < loopnr) {
962 		iova_start = i * SZ_16M;
963 		if (ops->unmap(ops, iova_start + size, size, NULL) != size)
964 			return __FAIL(ops);
965 
966 		/* Remap of partial unmap */
967 		if (ops->map(ops, iova_start + size, size, size, IOMMU_READ))
968 			return __FAIL(ops);
969 
970 		if (ops->iova_to_phys(ops, iova_start + size + 42)
971 		    != (size + 42))
972 			return __FAIL(ops);
973 		i++;
974 	}
975 
976 	/* Full unmap */
977 	iova = 0;
978 	for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
979 		size = 1UL << i;
980 
981 		if (ops->unmap(ops, iova, size, NULL) != size)
982 			return __FAIL(ops);
983 
984 		if (ops->iova_to_phys(ops, iova + 42))
985 			return __FAIL(ops);
986 
987 		/* Remap full block */
988 		if (ops->map(ops, iova, iova, size, IOMMU_WRITE))
989 			return __FAIL(ops);
990 
991 		if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
992 			return __FAIL(ops);
993 
994 		iova += SZ_16M;
995 	}
996 
997 	free_io_pgtable_ops(ops);
998 
999 	selftest_running = false;
1000 
1001 	pr_info("self test ok\n");
1002 	return 0;
1003 }
1004 subsys_initcall(arm_v7s_do_selftests);
1005 #endif
1006