1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 *
7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8 *
9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11 * hash device. Setting this greatly improves performance when data and hash
12 * are on the same disk on different partitions on devices with poor random
13 * access behavior.
14 */
15
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include <linux/module.h>
20 #include <linux/reboot.h>
21
22 #define DM_MSG_PREFIX "verity"
23
24 #define DM_VERITY_ENV_LENGTH 42
25 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR"
26
27 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
28
29 #define DM_VERITY_MAX_CORRUPTED_ERRS 100
30
31 #define DM_VERITY_OPT_LOGGING "ignore_corruption"
32 #define DM_VERITY_OPT_RESTART "restart_on_corruption"
33 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks"
34 #define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once"
35
36 #define DM_VERITY_OPTS_MAX (3 + DM_VERITY_OPTS_FEC + \
37 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
38
39 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
40
41 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
42
43 struct dm_verity_prefetch_work {
44 struct work_struct work;
45 struct dm_verity *v;
46 sector_t block;
47 unsigned n_blocks;
48 };
49
50 /*
51 * Auxiliary structure appended to each dm-bufio buffer. If the value
52 * hash_verified is nonzero, hash of the block has been verified.
53 *
54 * The variable hash_verified is set to 0 when allocating the buffer, then
55 * it can be changed to 1 and it is never reset to 0 again.
56 *
57 * There is no lock around this value, a race condition can at worst cause
58 * that multiple processes verify the hash of the same buffer simultaneously
59 * and write 1 to hash_verified simultaneously.
60 * This condition is harmless, so we don't need locking.
61 */
62 struct buffer_aux {
63 int hash_verified;
64 };
65
66 /*
67 * Initialize struct buffer_aux for a freshly created buffer.
68 */
dm_bufio_alloc_callback(struct dm_buffer * buf)69 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
70 {
71 struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
72
73 aux->hash_verified = 0;
74 }
75
76 /*
77 * Translate input sector number to the sector number on the target device.
78 */
verity_map_sector(struct dm_verity * v,sector_t bi_sector)79 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
80 {
81 return v->data_start + dm_target_offset(v->ti, bi_sector);
82 }
83
84 /*
85 * Return hash position of a specified block at a specified tree level
86 * (0 is the lowest level).
87 * The lowest "hash_per_block_bits"-bits of the result denote hash position
88 * inside a hash block. The remaining bits denote location of the hash block.
89 */
verity_position_at_level(struct dm_verity * v,sector_t block,int level)90 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
91 int level)
92 {
93 return block >> (level * v->hash_per_block_bits);
94 }
95
verity_hash_update(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,struct crypto_wait * wait)96 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
97 const u8 *data, size_t len,
98 struct crypto_wait *wait)
99 {
100 struct scatterlist sg;
101
102 if (likely(!is_vmalloc_addr(data))) {
103 sg_init_one(&sg, data, len);
104 ahash_request_set_crypt(req, &sg, NULL, len);
105 return crypto_wait_req(crypto_ahash_update(req), wait);
106 } else {
107 do {
108 int r;
109 size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
110 flush_kernel_vmap_range((void *)data, this_step);
111 sg_init_table(&sg, 1);
112 sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
113 ahash_request_set_crypt(req, &sg, NULL, this_step);
114 r = crypto_wait_req(crypto_ahash_update(req), wait);
115 if (unlikely(r))
116 return r;
117 data += this_step;
118 len -= this_step;
119 } while (len);
120 return 0;
121 }
122 }
123
124 /*
125 * Wrapper for crypto_ahash_init, which handles verity salting.
126 */
verity_hash_init(struct dm_verity * v,struct ahash_request * req,struct crypto_wait * wait)127 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
128 struct crypto_wait *wait)
129 {
130 int r;
131
132 ahash_request_set_tfm(req, v->tfm);
133 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
134 CRYPTO_TFM_REQ_MAY_BACKLOG,
135 crypto_req_done, (void *)wait);
136 crypto_init_wait(wait);
137
138 r = crypto_wait_req(crypto_ahash_init(req), wait);
139
140 if (unlikely(r < 0)) {
141 DMERR("crypto_ahash_init failed: %d", r);
142 return r;
143 }
144
145 if (likely(v->salt_size && (v->version >= 1)))
146 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
147
148 return r;
149 }
150
verity_hash_final(struct dm_verity * v,struct ahash_request * req,u8 * digest,struct crypto_wait * wait)151 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
152 u8 *digest, struct crypto_wait *wait)
153 {
154 int r;
155
156 if (unlikely(v->salt_size && (!v->version))) {
157 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
158
159 if (r < 0) {
160 DMERR("verity_hash_final failed updating salt: %d", r);
161 goto out;
162 }
163 }
164
165 ahash_request_set_crypt(req, NULL, digest, 0);
166 r = crypto_wait_req(crypto_ahash_final(req), wait);
167 out:
168 return r;
169 }
170
verity_hash(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,u8 * digest)171 int verity_hash(struct dm_verity *v, struct ahash_request *req,
172 const u8 *data, size_t len, u8 *digest)
173 {
174 int r;
175 struct crypto_wait wait;
176
177 r = verity_hash_init(v, req, &wait);
178 if (unlikely(r < 0))
179 goto out;
180
181 r = verity_hash_update(v, req, data, len, &wait);
182 if (unlikely(r < 0))
183 goto out;
184
185 r = verity_hash_final(v, req, digest, &wait);
186
187 out:
188 return r;
189 }
190
verity_hash_at_level(struct dm_verity * v,sector_t block,int level,sector_t * hash_block,unsigned * offset)191 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
192 sector_t *hash_block, unsigned *offset)
193 {
194 sector_t position = verity_position_at_level(v, block, level);
195 unsigned idx;
196
197 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
198
199 if (!offset)
200 return;
201
202 idx = position & ((1 << v->hash_per_block_bits) - 1);
203 if (!v->version)
204 *offset = idx * v->digest_size;
205 else
206 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
207 }
208
209 /*
210 * Handle verification errors.
211 */
verity_handle_err(struct dm_verity * v,enum verity_block_type type,unsigned long long block)212 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
213 unsigned long long block)
214 {
215 char verity_env[DM_VERITY_ENV_LENGTH];
216 char *envp[] = { verity_env, NULL };
217 const char *type_str = "";
218 struct mapped_device *md = dm_table_get_md(v->ti->table);
219
220 /* Corruption should be visible in device status in all modes */
221 v->hash_failed = 1;
222
223 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
224 goto out;
225
226 v->corrupted_errs++;
227
228 switch (type) {
229 case DM_VERITY_BLOCK_TYPE_DATA:
230 type_str = "data";
231 break;
232 case DM_VERITY_BLOCK_TYPE_METADATA:
233 type_str = "metadata";
234 break;
235 default:
236 BUG();
237 }
238
239 DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
240 type_str, block);
241
242 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
243 DMERR("%s: reached maximum errors", v->data_dev->name);
244
245 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
246 DM_VERITY_ENV_VAR_NAME, type, block);
247
248 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
249
250 out:
251 if (v->mode == DM_VERITY_MODE_LOGGING)
252 return 0;
253
254 if (v->mode == DM_VERITY_MODE_RESTART)
255 kernel_restart("dm-verity device corrupted");
256
257 return 1;
258 }
259
260 /*
261 * Verify hash of a metadata block pertaining to the specified data block
262 * ("block" argument) at a specified level ("level" argument).
263 *
264 * On successful return, verity_io_want_digest(v, io) contains the hash value
265 * for a lower tree level or for the data block (if we're at the lowest level).
266 *
267 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
268 * If "skip_unverified" is false, unverified buffer is hashed and verified
269 * against current value of verity_io_want_digest(v, io).
270 */
verity_verify_level(struct dm_verity * v,struct dm_verity_io * io,sector_t block,int level,bool skip_unverified,u8 * want_digest)271 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
272 sector_t block, int level, bool skip_unverified,
273 u8 *want_digest)
274 {
275 struct dm_buffer *buf;
276 struct buffer_aux *aux;
277 u8 *data;
278 int r;
279 sector_t hash_block;
280 unsigned offset;
281
282 verity_hash_at_level(v, block, level, &hash_block, &offset);
283
284 data = dm_bufio_read(v->bufio, hash_block, &buf);
285 if (IS_ERR(data))
286 return PTR_ERR(data);
287
288 aux = dm_bufio_get_aux_data(buf);
289
290 if (!aux->hash_verified) {
291 if (skip_unverified) {
292 r = 1;
293 goto release_ret_r;
294 }
295
296 r = verity_hash(v, verity_io_hash_req(v, io),
297 data, 1 << v->hash_dev_block_bits,
298 verity_io_real_digest(v, io));
299 if (unlikely(r < 0))
300 goto release_ret_r;
301
302 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
303 v->digest_size) == 0))
304 aux->hash_verified = 1;
305 else if (verity_fec_decode(v, io,
306 DM_VERITY_BLOCK_TYPE_METADATA,
307 hash_block, data, NULL) == 0)
308 aux->hash_verified = 1;
309 else if (verity_handle_err(v,
310 DM_VERITY_BLOCK_TYPE_METADATA,
311 hash_block)) {
312 r = -EIO;
313 goto release_ret_r;
314 }
315 }
316
317 data += offset;
318 memcpy(want_digest, data, v->digest_size);
319 r = 0;
320
321 release_ret_r:
322 dm_bufio_release(buf);
323 return r;
324 }
325
326 /*
327 * Find a hash for a given block, write it to digest and verify the integrity
328 * of the hash tree if necessary.
329 */
verity_hash_for_block(struct dm_verity * v,struct dm_verity_io * io,sector_t block,u8 * digest,bool * is_zero)330 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
331 sector_t block, u8 *digest, bool *is_zero)
332 {
333 int r = 0, i;
334
335 if (likely(v->levels)) {
336 /*
337 * First, we try to get the requested hash for
338 * the current block. If the hash block itself is
339 * verified, zero is returned. If it isn't, this
340 * function returns 1 and we fall back to whole
341 * chain verification.
342 */
343 r = verity_verify_level(v, io, block, 0, true, digest);
344 if (likely(r <= 0))
345 goto out;
346 }
347
348 memcpy(digest, v->root_digest, v->digest_size);
349
350 for (i = v->levels - 1; i >= 0; i--) {
351 r = verity_verify_level(v, io, block, i, false, digest);
352 if (unlikely(r))
353 goto out;
354 }
355 out:
356 if (!r && v->zero_digest)
357 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
358 else
359 *is_zero = false;
360
361 return r;
362 }
363
364 /*
365 * Calculates the digest for the given bio
366 */
verity_for_io_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,struct crypto_wait * wait)367 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
368 struct bvec_iter *iter, struct crypto_wait *wait)
369 {
370 unsigned int todo = 1 << v->data_dev_block_bits;
371 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
372 struct scatterlist sg;
373 struct ahash_request *req = verity_io_hash_req(v, io);
374
375 do {
376 int r;
377 unsigned int len;
378 struct bio_vec bv = bio_iter_iovec(bio, *iter);
379
380 sg_init_table(&sg, 1);
381
382 len = bv.bv_len;
383
384 if (likely(len >= todo))
385 len = todo;
386 /*
387 * Operating on a single page at a time looks suboptimal
388 * until you consider the typical block size is 4,096B.
389 * Going through this loops twice should be very rare.
390 */
391 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
392 ahash_request_set_crypt(req, &sg, NULL, len);
393 r = crypto_wait_req(crypto_ahash_update(req), wait);
394
395 if (unlikely(r < 0)) {
396 DMERR("verity_for_io_block crypto op failed: %d", r);
397 return r;
398 }
399
400 bio_advance_iter(bio, iter, len);
401 todo -= len;
402 } while (todo);
403
404 return 0;
405 }
406
407 /*
408 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
409 * starting from iter.
410 */
verity_for_bv_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,int (* process)(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len))411 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
412 struct bvec_iter *iter,
413 int (*process)(struct dm_verity *v,
414 struct dm_verity_io *io, u8 *data,
415 size_t len))
416 {
417 unsigned todo = 1 << v->data_dev_block_bits;
418 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
419
420 do {
421 int r;
422 u8 *page;
423 unsigned len;
424 struct bio_vec bv = bio_iter_iovec(bio, *iter);
425
426 page = kmap_atomic(bv.bv_page);
427 len = bv.bv_len;
428
429 if (likely(len >= todo))
430 len = todo;
431
432 r = process(v, io, page + bv.bv_offset, len);
433 kunmap_atomic(page);
434
435 if (r < 0)
436 return r;
437
438 bio_advance_iter(bio, iter, len);
439 todo -= len;
440 } while (todo);
441
442 return 0;
443 }
444
verity_bv_zero(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len)445 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
446 u8 *data, size_t len)
447 {
448 memset(data, 0, len);
449 return 0;
450 }
451
452 /*
453 * Moves the bio iter one data block forward.
454 */
verity_bv_skip_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter)455 static inline void verity_bv_skip_block(struct dm_verity *v,
456 struct dm_verity_io *io,
457 struct bvec_iter *iter)
458 {
459 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
460
461 bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
462 }
463
464 /*
465 * Verify one "dm_verity_io" structure.
466 */
verity_verify_io(struct dm_verity_io * io)467 static int verity_verify_io(struct dm_verity_io *io)
468 {
469 bool is_zero;
470 struct dm_verity *v = io->v;
471 struct bvec_iter start;
472 unsigned b;
473 struct crypto_wait wait;
474 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
475
476 for (b = 0; b < io->n_blocks; b++) {
477 int r;
478 sector_t cur_block = io->block + b;
479 struct ahash_request *req = verity_io_hash_req(v, io);
480
481 if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
482 likely(test_bit(cur_block, v->validated_blocks))) {
483 verity_bv_skip_block(v, io, &io->iter);
484 continue;
485 }
486
487 r = verity_hash_for_block(v, io, cur_block,
488 verity_io_want_digest(v, io),
489 &is_zero);
490 if (unlikely(r < 0))
491 return r;
492
493 if (is_zero) {
494 /*
495 * If we expect a zero block, don't validate, just
496 * return zeros.
497 */
498 r = verity_for_bv_block(v, io, &io->iter,
499 verity_bv_zero);
500 if (unlikely(r < 0))
501 return r;
502
503 continue;
504 }
505
506 r = verity_hash_init(v, req, &wait);
507 if (unlikely(r < 0))
508 return r;
509
510 start = io->iter;
511 r = verity_for_io_block(v, io, &io->iter, &wait);
512 if (unlikely(r < 0))
513 return r;
514
515 r = verity_hash_final(v, req, verity_io_real_digest(v, io),
516 &wait);
517 if (unlikely(r < 0))
518 return r;
519
520 if (likely(memcmp(verity_io_real_digest(v, io),
521 verity_io_want_digest(v, io), v->digest_size) == 0)) {
522 if (v->validated_blocks)
523 set_bit(cur_block, v->validated_blocks);
524 continue;
525 }
526 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
527 cur_block, NULL, &start) == 0)
528 continue;
529 else {
530 if (bio->bi_status) {
531 /*
532 * Error correction failed; Just return error
533 */
534 return -EIO;
535 }
536 if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
537 cur_block))
538 return -EIO;
539 }
540 }
541
542 return 0;
543 }
544
545 /*
546 * Skip verity work in response to I/O error when system is shutting down.
547 */
verity_is_system_shutting_down(void)548 static inline bool verity_is_system_shutting_down(void)
549 {
550 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
551 || system_state == SYSTEM_RESTART;
552 }
553
554 /*
555 * End one "io" structure with a given error.
556 */
verity_finish_io(struct dm_verity_io * io,blk_status_t status)557 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
558 {
559 struct dm_verity *v = io->v;
560 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
561
562 bio->bi_end_io = io->orig_bi_end_io;
563 bio->bi_status = status;
564
565 verity_fec_finish_io(io);
566
567 bio_endio(bio);
568 }
569
verity_work(struct work_struct * w)570 static void verity_work(struct work_struct *w)
571 {
572 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
573
574 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
575 }
576
verity_end_io(struct bio * bio)577 static void verity_end_io(struct bio *bio)
578 {
579 struct dm_verity_io *io = bio->bi_private;
580
581 if (bio->bi_status &&
582 (!verity_fec_is_enabled(io->v) ||
583 verity_is_system_shutting_down() ||
584 (bio->bi_opf & REQ_RAHEAD))) {
585 verity_finish_io(io, bio->bi_status);
586 return;
587 }
588
589 INIT_WORK(&io->work, verity_work);
590 queue_work(io->v->verify_wq, &io->work);
591 }
592
593 /*
594 * Prefetch buffers for the specified io.
595 * The root buffer is not prefetched, it is assumed that it will be cached
596 * all the time.
597 */
verity_prefetch_io(struct work_struct * work)598 static void verity_prefetch_io(struct work_struct *work)
599 {
600 struct dm_verity_prefetch_work *pw =
601 container_of(work, struct dm_verity_prefetch_work, work);
602 struct dm_verity *v = pw->v;
603 int i;
604
605 for (i = v->levels - 2; i >= 0; i--) {
606 sector_t hash_block_start;
607 sector_t hash_block_end;
608 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
609 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
610 if (!i) {
611 unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
612
613 cluster >>= v->data_dev_block_bits;
614 if (unlikely(!cluster))
615 goto no_prefetch_cluster;
616
617 if (unlikely(cluster & (cluster - 1)))
618 cluster = 1 << __fls(cluster);
619
620 hash_block_start &= ~(sector_t)(cluster - 1);
621 hash_block_end |= cluster - 1;
622 if (unlikely(hash_block_end >= v->hash_blocks))
623 hash_block_end = v->hash_blocks - 1;
624 }
625 no_prefetch_cluster:
626 dm_bufio_prefetch(v->bufio, hash_block_start,
627 hash_block_end - hash_block_start + 1);
628 }
629
630 kfree(pw);
631 }
632
verity_submit_prefetch(struct dm_verity * v,struct dm_verity_io * io)633 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
634 {
635 struct dm_verity_prefetch_work *pw;
636
637 pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
638 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
639
640 if (!pw)
641 return;
642
643 INIT_WORK(&pw->work, verity_prefetch_io);
644 pw->v = v;
645 pw->block = io->block;
646 pw->n_blocks = io->n_blocks;
647 queue_work(v->verify_wq, &pw->work);
648 }
649
650 /*
651 * Bio map function. It allocates dm_verity_io structure and bio vector and
652 * fills them. Then it issues prefetches and the I/O.
653 */
verity_map(struct dm_target * ti,struct bio * bio)654 static int verity_map(struct dm_target *ti, struct bio *bio)
655 {
656 struct dm_verity *v = ti->private;
657 struct dm_verity_io *io;
658
659 bio_set_dev(bio, v->data_dev->bdev);
660 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
661
662 if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
663 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
664 DMERR_LIMIT("unaligned io");
665 return DM_MAPIO_KILL;
666 }
667
668 if (bio_end_sector(bio) >>
669 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
670 DMERR_LIMIT("io out of range");
671 return DM_MAPIO_KILL;
672 }
673
674 if (bio_data_dir(bio) == WRITE)
675 return DM_MAPIO_KILL;
676
677 io = dm_per_bio_data(bio, ti->per_io_data_size);
678 io->v = v;
679 io->orig_bi_end_io = bio->bi_end_io;
680 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
681 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
682
683 bio->bi_end_io = verity_end_io;
684 bio->bi_private = io;
685 io->iter = bio->bi_iter;
686
687 verity_fec_init_io(io);
688
689 verity_submit_prefetch(v, io);
690
691 generic_make_request(bio);
692
693 return DM_MAPIO_SUBMITTED;
694 }
695
696 /*
697 * Status: V (valid) or C (corruption found)
698 */
verity_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)699 static void verity_status(struct dm_target *ti, status_type_t type,
700 unsigned status_flags, char *result, unsigned maxlen)
701 {
702 struct dm_verity *v = ti->private;
703 unsigned args = 0;
704 unsigned sz = 0;
705 unsigned x;
706
707 switch (type) {
708 case STATUSTYPE_INFO:
709 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
710 break;
711 case STATUSTYPE_TABLE:
712 DMEMIT("%u %s %s %u %u %llu %llu %s ",
713 v->version,
714 v->data_dev->name,
715 v->hash_dev->name,
716 1 << v->data_dev_block_bits,
717 1 << v->hash_dev_block_bits,
718 (unsigned long long)v->data_blocks,
719 (unsigned long long)v->hash_start,
720 v->alg_name
721 );
722 for (x = 0; x < v->digest_size; x++)
723 DMEMIT("%02x", v->root_digest[x]);
724 DMEMIT(" ");
725 if (!v->salt_size)
726 DMEMIT("-");
727 else
728 for (x = 0; x < v->salt_size; x++)
729 DMEMIT("%02x", v->salt[x]);
730 if (v->mode != DM_VERITY_MODE_EIO)
731 args++;
732 if (verity_fec_is_enabled(v))
733 args += DM_VERITY_OPTS_FEC;
734 if (v->zero_digest)
735 args++;
736 if (v->validated_blocks)
737 args++;
738 if (v->signature_key_desc)
739 args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
740 if (!args)
741 return;
742 DMEMIT(" %u", args);
743 if (v->mode != DM_VERITY_MODE_EIO) {
744 DMEMIT(" ");
745 switch (v->mode) {
746 case DM_VERITY_MODE_LOGGING:
747 DMEMIT(DM_VERITY_OPT_LOGGING);
748 break;
749 case DM_VERITY_MODE_RESTART:
750 DMEMIT(DM_VERITY_OPT_RESTART);
751 break;
752 default:
753 BUG();
754 }
755 }
756 if (v->zero_digest)
757 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
758 if (v->validated_blocks)
759 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
760 sz = verity_fec_status_table(v, sz, result, maxlen);
761 if (v->signature_key_desc)
762 DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
763 " %s", v->signature_key_desc);
764 break;
765 }
766 }
767
verity_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev)768 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
769 {
770 struct dm_verity *v = ti->private;
771
772 *bdev = v->data_dev->bdev;
773
774 if (v->data_start ||
775 ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
776 return 1;
777 return 0;
778 }
779
verity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)780 static int verity_iterate_devices(struct dm_target *ti,
781 iterate_devices_callout_fn fn, void *data)
782 {
783 struct dm_verity *v = ti->private;
784
785 return fn(ti, v->data_dev, v->data_start, ti->len, data);
786 }
787
verity_io_hints(struct dm_target * ti,struct queue_limits * limits)788 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
789 {
790 struct dm_verity *v = ti->private;
791
792 if (limits->logical_block_size < 1 << v->data_dev_block_bits)
793 limits->logical_block_size = 1 << v->data_dev_block_bits;
794
795 if (limits->physical_block_size < 1 << v->data_dev_block_bits)
796 limits->physical_block_size = 1 << v->data_dev_block_bits;
797
798 blk_limits_io_min(limits, limits->logical_block_size);
799 }
800
verity_dtr(struct dm_target * ti)801 static void verity_dtr(struct dm_target *ti)
802 {
803 struct dm_verity *v = ti->private;
804
805 if (v->verify_wq)
806 destroy_workqueue(v->verify_wq);
807
808 if (v->bufio)
809 dm_bufio_client_destroy(v->bufio);
810
811 kvfree(v->validated_blocks);
812 kfree(v->salt);
813 kfree(v->root_digest);
814 kfree(v->zero_digest);
815
816 if (v->tfm)
817 crypto_free_ahash(v->tfm);
818
819 kfree(v->alg_name);
820
821 if (v->hash_dev)
822 dm_put_device(ti, v->hash_dev);
823
824 if (v->data_dev)
825 dm_put_device(ti, v->data_dev);
826
827 verity_fec_dtr(v);
828
829 kfree(v->signature_key_desc);
830
831 kfree(v);
832 }
833
verity_alloc_most_once(struct dm_verity * v)834 static int verity_alloc_most_once(struct dm_verity *v)
835 {
836 struct dm_target *ti = v->ti;
837
838 /* the bitset can only handle INT_MAX blocks */
839 if (v->data_blocks > INT_MAX) {
840 ti->error = "device too large to use check_at_most_once";
841 return -E2BIG;
842 }
843
844 v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
845 sizeof(unsigned long),
846 GFP_KERNEL);
847 if (!v->validated_blocks) {
848 ti->error = "failed to allocate bitset for check_at_most_once";
849 return -ENOMEM;
850 }
851
852 return 0;
853 }
854
verity_alloc_zero_digest(struct dm_verity * v)855 static int verity_alloc_zero_digest(struct dm_verity *v)
856 {
857 int r = -ENOMEM;
858 struct ahash_request *req;
859 u8 *zero_data;
860
861 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
862
863 if (!v->zero_digest)
864 return r;
865
866 req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
867
868 if (!req)
869 return r; /* verity_dtr will free zero_digest */
870
871 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
872
873 if (!zero_data)
874 goto out;
875
876 r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
877 v->zero_digest);
878
879 out:
880 kfree(req);
881 kfree(zero_data);
882
883 return r;
884 }
885
verity_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v,struct dm_verity_sig_opts * verify_args)886 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
887 struct dm_verity_sig_opts *verify_args)
888 {
889 int r;
890 unsigned argc;
891 struct dm_target *ti = v->ti;
892 const char *arg_name;
893
894 static const struct dm_arg _args[] = {
895 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
896 };
897
898 r = dm_read_arg_group(_args, as, &argc, &ti->error);
899 if (r)
900 return -EINVAL;
901
902 if (!argc)
903 return 0;
904
905 do {
906 arg_name = dm_shift_arg(as);
907 argc--;
908
909 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
910 v->mode = DM_VERITY_MODE_LOGGING;
911 continue;
912
913 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
914 v->mode = DM_VERITY_MODE_RESTART;
915 continue;
916
917 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
918 r = verity_alloc_zero_digest(v);
919 if (r) {
920 ti->error = "Cannot allocate zero digest";
921 return r;
922 }
923 continue;
924
925 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
926 r = verity_alloc_most_once(v);
927 if (r)
928 return r;
929 continue;
930
931 } else if (verity_is_fec_opt_arg(arg_name)) {
932 r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
933 if (r)
934 return r;
935 continue;
936 } else if (verity_verify_is_sig_opt_arg(arg_name)) {
937 r = verity_verify_sig_parse_opt_args(as, v,
938 verify_args,
939 &argc, arg_name);
940 if (r)
941 return r;
942 continue;
943
944 }
945
946 ti->error = "Unrecognized verity feature request";
947 return -EINVAL;
948 } while (argc && !r);
949
950 return r;
951 }
952
953 /*
954 * Target parameters:
955 * <version> The current format is version 1.
956 * Vsn 0 is compatible with original Chromium OS releases.
957 * <data device>
958 * <hash device>
959 * <data block size>
960 * <hash block size>
961 * <the number of data blocks>
962 * <hash start block>
963 * <algorithm>
964 * <digest>
965 * <salt> Hex string or "-" if no salt.
966 */
verity_ctr(struct dm_target * ti,unsigned argc,char ** argv)967 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
968 {
969 struct dm_verity *v;
970 struct dm_verity_sig_opts verify_args = {0};
971 struct dm_arg_set as;
972 unsigned int num;
973 unsigned long long num_ll;
974 int r;
975 int i;
976 sector_t hash_position;
977 char dummy;
978 char *root_hash_digest_to_validate;
979
980 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
981 if (!v) {
982 ti->error = "Cannot allocate verity structure";
983 return -ENOMEM;
984 }
985 ti->private = v;
986 v->ti = ti;
987
988 r = verity_fec_ctr_alloc(v);
989 if (r)
990 goto bad;
991
992 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
993 ti->error = "Device must be readonly";
994 r = -EINVAL;
995 goto bad;
996 }
997
998 if (argc < 10) {
999 ti->error = "Not enough arguments";
1000 r = -EINVAL;
1001 goto bad;
1002 }
1003
1004 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1005 num > 1) {
1006 ti->error = "Invalid version";
1007 r = -EINVAL;
1008 goto bad;
1009 }
1010 v->version = num;
1011
1012 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
1013 if (r) {
1014 ti->error = "Data device lookup failed";
1015 goto bad;
1016 }
1017
1018 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1019 if (r) {
1020 ti->error = "Hash device lookup failed";
1021 goto bad;
1022 }
1023
1024 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1025 !num || (num & (num - 1)) ||
1026 num < bdev_logical_block_size(v->data_dev->bdev) ||
1027 num > PAGE_SIZE) {
1028 ti->error = "Invalid data device block size";
1029 r = -EINVAL;
1030 goto bad;
1031 }
1032 v->data_dev_block_bits = __ffs(num);
1033
1034 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1035 !num || (num & (num - 1)) ||
1036 num < bdev_logical_block_size(v->hash_dev->bdev) ||
1037 num > INT_MAX) {
1038 ti->error = "Invalid hash device block size";
1039 r = -EINVAL;
1040 goto bad;
1041 }
1042 v->hash_dev_block_bits = __ffs(num);
1043
1044 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1045 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1046 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1047 ti->error = "Invalid data blocks";
1048 r = -EINVAL;
1049 goto bad;
1050 }
1051 v->data_blocks = num_ll;
1052
1053 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1054 ti->error = "Data device is too small";
1055 r = -EINVAL;
1056 goto bad;
1057 }
1058
1059 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1060 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1061 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1062 ti->error = "Invalid hash start";
1063 r = -EINVAL;
1064 goto bad;
1065 }
1066 v->hash_start = num_ll;
1067
1068 v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1069 if (!v->alg_name) {
1070 ti->error = "Cannot allocate algorithm name";
1071 r = -ENOMEM;
1072 goto bad;
1073 }
1074
1075 v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1076 if (IS_ERR(v->tfm)) {
1077 ti->error = "Cannot initialize hash function";
1078 r = PTR_ERR(v->tfm);
1079 v->tfm = NULL;
1080 goto bad;
1081 }
1082
1083 /*
1084 * dm-verity performance can vary greatly depending on which hash
1085 * algorithm implementation is used. Help people debug performance
1086 * problems by logging the ->cra_driver_name.
1087 */
1088 DMINFO("%s using implementation \"%s\"", v->alg_name,
1089 crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1090
1091 v->digest_size = crypto_ahash_digestsize(v->tfm);
1092 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1093 ti->error = "Digest size too big";
1094 r = -EINVAL;
1095 goto bad;
1096 }
1097 v->ahash_reqsize = sizeof(struct ahash_request) +
1098 crypto_ahash_reqsize(v->tfm);
1099
1100 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1101 if (!v->root_digest) {
1102 ti->error = "Cannot allocate root digest";
1103 r = -ENOMEM;
1104 goto bad;
1105 }
1106 if (strlen(argv[8]) != v->digest_size * 2 ||
1107 hex2bin(v->root_digest, argv[8], v->digest_size)) {
1108 ti->error = "Invalid root digest";
1109 r = -EINVAL;
1110 goto bad;
1111 }
1112 root_hash_digest_to_validate = argv[8];
1113
1114 if (strcmp(argv[9], "-")) {
1115 v->salt_size = strlen(argv[9]) / 2;
1116 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1117 if (!v->salt) {
1118 ti->error = "Cannot allocate salt";
1119 r = -ENOMEM;
1120 goto bad;
1121 }
1122 if (strlen(argv[9]) != v->salt_size * 2 ||
1123 hex2bin(v->salt, argv[9], v->salt_size)) {
1124 ti->error = "Invalid salt";
1125 r = -EINVAL;
1126 goto bad;
1127 }
1128 }
1129
1130 argv += 10;
1131 argc -= 10;
1132
1133 /* Optional parameters */
1134 if (argc) {
1135 as.argc = argc;
1136 as.argv = argv;
1137
1138 r = verity_parse_opt_args(&as, v, &verify_args);
1139 if (r < 0)
1140 goto bad;
1141 }
1142
1143 /* Root hash signature is a optional parameter*/
1144 r = verity_verify_root_hash(root_hash_digest_to_validate,
1145 strlen(root_hash_digest_to_validate),
1146 verify_args.sig,
1147 verify_args.sig_size);
1148 if (r < 0) {
1149 ti->error = "Root hash verification failed";
1150 goto bad;
1151 }
1152 v->hash_per_block_bits =
1153 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1154
1155 v->levels = 0;
1156 if (v->data_blocks)
1157 while (v->hash_per_block_bits * v->levels < 64 &&
1158 (unsigned long long)(v->data_blocks - 1) >>
1159 (v->hash_per_block_bits * v->levels))
1160 v->levels++;
1161
1162 if (v->levels > DM_VERITY_MAX_LEVELS) {
1163 ti->error = "Too many tree levels";
1164 r = -E2BIG;
1165 goto bad;
1166 }
1167
1168 hash_position = v->hash_start;
1169 for (i = v->levels - 1; i >= 0; i--) {
1170 sector_t s;
1171 v->hash_level_block[i] = hash_position;
1172 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1173 >> ((i + 1) * v->hash_per_block_bits);
1174 if (hash_position + s < hash_position) {
1175 ti->error = "Hash device offset overflow";
1176 r = -E2BIG;
1177 goto bad;
1178 }
1179 hash_position += s;
1180 }
1181 v->hash_blocks = hash_position;
1182
1183 v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1184 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1185 dm_bufio_alloc_callback, NULL);
1186 if (IS_ERR(v->bufio)) {
1187 ti->error = "Cannot initialize dm-bufio";
1188 r = PTR_ERR(v->bufio);
1189 v->bufio = NULL;
1190 goto bad;
1191 }
1192
1193 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1194 ti->error = "Hash device is too small";
1195 r = -E2BIG;
1196 goto bad;
1197 }
1198
1199 /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1200 v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1201 if (!v->verify_wq) {
1202 ti->error = "Cannot allocate workqueue";
1203 r = -ENOMEM;
1204 goto bad;
1205 }
1206
1207 ti->per_io_data_size = sizeof(struct dm_verity_io) +
1208 v->ahash_reqsize + v->digest_size * 2;
1209
1210 r = verity_fec_ctr(v);
1211 if (r)
1212 goto bad;
1213
1214 ti->per_io_data_size = roundup(ti->per_io_data_size,
1215 __alignof__(struct dm_verity_io));
1216
1217 verity_verify_sig_opts_cleanup(&verify_args);
1218
1219 return 0;
1220
1221 bad:
1222
1223 verity_verify_sig_opts_cleanup(&verify_args);
1224 verity_dtr(ti);
1225
1226 return r;
1227 }
1228
1229 static struct target_type verity_target = {
1230 .name = "verity",
1231 .features = DM_TARGET_IMMUTABLE,
1232 .version = {1, 5, 0},
1233 .module = THIS_MODULE,
1234 .ctr = verity_ctr,
1235 .dtr = verity_dtr,
1236 .map = verity_map,
1237 .status = verity_status,
1238 .prepare_ioctl = verity_prepare_ioctl,
1239 .iterate_devices = verity_iterate_devices,
1240 .io_hints = verity_io_hints,
1241 };
1242
dm_verity_init(void)1243 static int __init dm_verity_init(void)
1244 {
1245 int r;
1246
1247 r = dm_register_target(&verity_target);
1248 if (r < 0)
1249 DMERR("register failed %d", r);
1250
1251 return r;
1252 }
1253
dm_verity_exit(void)1254 static void __exit dm_verity_exit(void)
1255 {
1256 dm_unregister_target(&verity_target);
1257 }
1258
1259 module_init(dm_verity_init);
1260 module_exit(dm_verity_exit);
1261
1262 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1263 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1264 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1265 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1266 MODULE_LICENSE("GPL");
1267