• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/interrupt.h>
13 #include <linux/module.h>
14 #include <linux/mtd/partitions.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/dma/mxs-dma.h>
19 #include "gpmi-nand.h"
20 #include "gpmi-regs.h"
21 #include "bch-regs.h"
22 
23 /* Resource names for the GPMI NAND driver. */
24 #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
25 #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
26 #define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
27 
28 /* Converts time to clock cycles */
29 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
30 
31 #define MXS_SET_ADDR		0x4
32 #define MXS_CLR_ADDR		0x8
33 /*
34  * Clear the bit and poll it cleared.  This is usually called with
35  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
36  * (bit 30).
37  */
clear_poll_bit(void __iomem * addr,u32 mask)38 static int clear_poll_bit(void __iomem *addr, u32 mask)
39 {
40 	int timeout = 0x400;
41 
42 	/* clear the bit */
43 	writel(mask, addr + MXS_CLR_ADDR);
44 
45 	/*
46 	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
47 	 * recommends to wait 1us.
48 	 */
49 	udelay(1);
50 
51 	/* poll the bit becoming clear */
52 	while ((readl(addr) & mask) && --timeout)
53 		/* nothing */;
54 
55 	return !timeout;
56 }
57 
58 #define MODULE_CLKGATE		(1 << 30)
59 #define MODULE_SFTRST		(1 << 31)
60 /*
61  * The current mxs_reset_block() will do two things:
62  *  [1] enable the module.
63  *  [2] reset the module.
64  *
65  * In most of the cases, it's ok.
66  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
67  * If you try to soft reset the BCH block, it becomes unusable until
68  * the next hard reset. This case occurs in the NAND boot mode. When the board
69  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
70  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
71  * You will see a DMA timeout in this case. The bug has been fixed
72  * in the following chips, such as MX28.
73  *
74  * To avoid this bug, just add a new parameter `just_enable` for
75  * the mxs_reset_block(), and rewrite it here.
76  */
gpmi_reset_block(void __iomem * reset_addr,bool just_enable)77 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
78 {
79 	int ret;
80 	int timeout = 0x400;
81 
82 	/* clear and poll SFTRST */
83 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
84 	if (unlikely(ret))
85 		goto error;
86 
87 	/* clear CLKGATE */
88 	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
89 
90 	if (!just_enable) {
91 		/* set SFTRST to reset the block */
92 		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
93 		udelay(1);
94 
95 		/* poll CLKGATE becoming set */
96 		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
97 			/* nothing */;
98 		if (unlikely(!timeout))
99 			goto error;
100 	}
101 
102 	/* clear and poll SFTRST */
103 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
104 	if (unlikely(ret))
105 		goto error;
106 
107 	/* clear and poll CLKGATE */
108 	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
109 	if (unlikely(ret))
110 		goto error;
111 
112 	return 0;
113 
114 error:
115 	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
116 	return -ETIMEDOUT;
117 }
118 
__gpmi_enable_clk(struct gpmi_nand_data * this,bool v)119 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
120 {
121 	struct clk *clk;
122 	int ret;
123 	int i;
124 
125 	for (i = 0; i < GPMI_CLK_MAX; i++) {
126 		clk = this->resources.clock[i];
127 		if (!clk)
128 			break;
129 
130 		if (v) {
131 			ret = clk_prepare_enable(clk);
132 			if (ret)
133 				goto err_clk;
134 		} else {
135 			clk_disable_unprepare(clk);
136 		}
137 	}
138 	return 0;
139 
140 err_clk:
141 	for (; i > 0; i--)
142 		clk_disable_unprepare(this->resources.clock[i - 1]);
143 	return ret;
144 }
145 
gpmi_init(struct gpmi_nand_data * this)146 static int gpmi_init(struct gpmi_nand_data *this)
147 {
148 	struct resources *r = &this->resources;
149 	int ret;
150 
151 	ret = pm_runtime_get_sync(this->dev);
152 	if (ret < 0) {
153 		pm_runtime_put_noidle(this->dev);
154 		return ret;
155 	}
156 
157 	ret = gpmi_reset_block(r->gpmi_regs, false);
158 	if (ret)
159 		goto err_out;
160 
161 	/*
162 	 * Reset BCH here, too. We got failures otherwise :(
163 	 * See later BCH reset for explanation of MX23 and MX28 handling
164 	 */
165 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
166 	if (ret)
167 		goto err_out;
168 
169 	/* Choose NAND mode. */
170 	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
171 
172 	/* Set the IRQ polarity. */
173 	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
174 				r->gpmi_regs + HW_GPMI_CTRL1_SET);
175 
176 	/* Disable Write-Protection. */
177 	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
178 
179 	/* Select BCH ECC. */
180 	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
181 
182 	/*
183 	 * Decouple the chip select from dma channel. We use dma0 for all
184 	 * the chips.
185 	 */
186 	writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
187 
188 err_out:
189 	pm_runtime_mark_last_busy(this->dev);
190 	pm_runtime_put_autosuspend(this->dev);
191 	return ret;
192 }
193 
194 /* This function is very useful. It is called only when the bug occur. */
gpmi_dump_info(struct gpmi_nand_data * this)195 static void gpmi_dump_info(struct gpmi_nand_data *this)
196 {
197 	struct resources *r = &this->resources;
198 	struct bch_geometry *geo = &this->bch_geometry;
199 	u32 reg;
200 	int i;
201 
202 	dev_err(this->dev, "Show GPMI registers :\n");
203 	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
204 		reg = readl(r->gpmi_regs + i * 0x10);
205 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
206 	}
207 
208 	/* start to print out the BCH info */
209 	dev_err(this->dev, "Show BCH registers :\n");
210 	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
211 		reg = readl(r->bch_regs + i * 0x10);
212 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
213 	}
214 	dev_err(this->dev, "BCH Geometry :\n"
215 		"GF length              : %u\n"
216 		"ECC Strength           : %u\n"
217 		"Page Size in Bytes     : %u\n"
218 		"Metadata Size in Bytes : %u\n"
219 		"ECC Chunk Size in Bytes: %u\n"
220 		"ECC Chunk Count        : %u\n"
221 		"Payload Size in Bytes  : %u\n"
222 		"Auxiliary Size in Bytes: %u\n"
223 		"Auxiliary Status Offset: %u\n"
224 		"Block Mark Byte Offset : %u\n"
225 		"Block Mark Bit Offset  : %u\n",
226 		geo->gf_len,
227 		geo->ecc_strength,
228 		geo->page_size,
229 		geo->metadata_size,
230 		geo->ecc_chunk_size,
231 		geo->ecc_chunk_count,
232 		geo->payload_size,
233 		geo->auxiliary_size,
234 		geo->auxiliary_status_offset,
235 		geo->block_mark_byte_offset,
236 		geo->block_mark_bit_offset);
237 }
238 
gpmi_check_ecc(struct gpmi_nand_data * this)239 static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
240 {
241 	struct bch_geometry *geo = &this->bch_geometry;
242 
243 	/* Do the sanity check. */
244 	if (GPMI_IS_MXS(this)) {
245 		/* The mx23/mx28 only support the GF13. */
246 		if (geo->gf_len == 14)
247 			return false;
248 	}
249 	return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
250 }
251 
252 /*
253  * If we can get the ECC information from the nand chip, we do not
254  * need to calculate them ourselves.
255  *
256  * We may have available oob space in this case.
257  */
set_geometry_by_ecc_info(struct gpmi_nand_data * this,unsigned int ecc_strength,unsigned int ecc_step)258 static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
259 				    unsigned int ecc_strength,
260 				    unsigned int ecc_step)
261 {
262 	struct bch_geometry *geo = &this->bch_geometry;
263 	struct nand_chip *chip = &this->nand;
264 	struct mtd_info *mtd = nand_to_mtd(chip);
265 	unsigned int block_mark_bit_offset;
266 
267 	switch (ecc_step) {
268 	case SZ_512:
269 		geo->gf_len = 13;
270 		break;
271 	case SZ_1K:
272 		geo->gf_len = 14;
273 		break;
274 	default:
275 		dev_err(this->dev,
276 			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
277 			chip->base.eccreq.strength,
278 			chip->base.eccreq.step_size);
279 		return -EINVAL;
280 	}
281 	geo->ecc_chunk_size = ecc_step;
282 	geo->ecc_strength = round_up(ecc_strength, 2);
283 	if (!gpmi_check_ecc(this))
284 		return -EINVAL;
285 
286 	/* Keep the C >= O */
287 	if (geo->ecc_chunk_size < mtd->oobsize) {
288 		dev_err(this->dev,
289 			"unsupported nand chip. ecc size: %d, oob size : %d\n",
290 			ecc_step, mtd->oobsize);
291 		return -EINVAL;
292 	}
293 
294 	/* The default value, see comment in the legacy_set_geometry(). */
295 	geo->metadata_size = 10;
296 
297 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
298 
299 	/*
300 	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
301 	 *
302 	 *    |                          P                            |
303 	 *    |<----------------------------------------------------->|
304 	 *    |                                                       |
305 	 *    |                                        (Block Mark)   |
306 	 *    |                      P'                      |      | |     |
307 	 *    |<-------------------------------------------->|  D   | |  O' |
308 	 *    |                                              |<---->| |<--->|
309 	 *    V                                              V      V V     V
310 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
311 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
312 	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
313 	 *                                                   ^              ^
314 	 *                                                   |      O       |
315 	 *                                                   |<------------>|
316 	 *                                                   |              |
317 	 *
318 	 *	P : the page size for BCH module.
319 	 *	E : The ECC strength.
320 	 *	G : the length of Galois Field.
321 	 *	N : The chunk count of per page.
322 	 *	M : the metasize of per page.
323 	 *	C : the ecc chunk size, aka the "data" above.
324 	 *	P': the nand chip's page size.
325 	 *	O : the nand chip's oob size.
326 	 *	O': the free oob.
327 	 *
328 	 *	The formula for P is :
329 	 *
330 	 *	            E * G * N
331 	 *	       P = ------------ + P' + M
332 	 *                      8
333 	 *
334 	 * The position of block mark moves forward in the ECC-based view
335 	 * of page, and the delta is:
336 	 *
337 	 *                   E * G * (N - 1)
338 	 *             D = (---------------- + M)
339 	 *                          8
340 	 *
341 	 * Please see the comment in legacy_set_geometry().
342 	 * With the condition C >= O , we still can get same result.
343 	 * So the bit position of the physical block mark within the ECC-based
344 	 * view of the page is :
345 	 *             (P' - D) * 8
346 	 */
347 	geo->page_size = mtd->writesize + geo->metadata_size +
348 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
349 
350 	geo->payload_size = mtd->writesize;
351 
352 	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
353 	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
354 				+ ALIGN(geo->ecc_chunk_count, 4);
355 
356 	if (!this->swap_block_mark)
357 		return 0;
358 
359 	/* For bit swap. */
360 	block_mark_bit_offset = mtd->writesize * 8 -
361 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
362 				+ geo->metadata_size * 8);
363 
364 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
365 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
366 	return 0;
367 }
368 
369 /*
370  *  Calculate the ECC strength by hand:
371  *	E : The ECC strength.
372  *	G : the length of Galois Field.
373  *	N : The chunk count of per page.
374  *	O : the oobsize of the NAND chip.
375  *	M : the metasize of per page.
376  *
377  *	The formula is :
378  *		E * G * N
379  *	      ------------ <= (O - M)
380  *                  8
381  *
382  *      So, we get E by:
383  *                    (O - M) * 8
384  *              E <= -------------
385  *                       G * N
386  */
get_ecc_strength(struct gpmi_nand_data * this)387 static inline int get_ecc_strength(struct gpmi_nand_data *this)
388 {
389 	struct bch_geometry *geo = &this->bch_geometry;
390 	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
391 	int ecc_strength;
392 
393 	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
394 			/ (geo->gf_len * geo->ecc_chunk_count);
395 
396 	/* We need the minor even number. */
397 	return round_down(ecc_strength, 2);
398 }
399 
legacy_set_geometry(struct gpmi_nand_data * this)400 static int legacy_set_geometry(struct gpmi_nand_data *this)
401 {
402 	struct bch_geometry *geo = &this->bch_geometry;
403 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
404 	unsigned int metadata_size;
405 	unsigned int status_size;
406 	unsigned int block_mark_bit_offset;
407 
408 	/*
409 	 * The size of the metadata can be changed, though we set it to 10
410 	 * bytes now. But it can't be too large, because we have to save
411 	 * enough space for BCH.
412 	 */
413 	geo->metadata_size = 10;
414 
415 	/* The default for the length of Galois Field. */
416 	geo->gf_len = 13;
417 
418 	/* The default for chunk size. */
419 	geo->ecc_chunk_size = 512;
420 	while (geo->ecc_chunk_size < mtd->oobsize) {
421 		geo->ecc_chunk_size *= 2; /* keep C >= O */
422 		geo->gf_len = 14;
423 	}
424 
425 	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
426 
427 	/* We use the same ECC strength for all chunks. */
428 	geo->ecc_strength = get_ecc_strength(this);
429 	if (!gpmi_check_ecc(this)) {
430 		dev_err(this->dev,
431 			"ecc strength: %d cannot be supported by the controller (%d)\n"
432 			"try to use minimum ecc strength that NAND chip required\n",
433 			geo->ecc_strength,
434 			this->devdata->bch_max_ecc_strength);
435 		return -EINVAL;
436 	}
437 
438 	geo->page_size = mtd->writesize + geo->metadata_size +
439 		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
440 	geo->payload_size = mtd->writesize;
441 
442 	/*
443 	 * The auxiliary buffer contains the metadata and the ECC status. The
444 	 * metadata is padded to the nearest 32-bit boundary. The ECC status
445 	 * contains one byte for every ECC chunk, and is also padded to the
446 	 * nearest 32-bit boundary.
447 	 */
448 	metadata_size = ALIGN(geo->metadata_size, 4);
449 	status_size   = ALIGN(geo->ecc_chunk_count, 4);
450 
451 	geo->auxiliary_size = metadata_size + status_size;
452 	geo->auxiliary_status_offset = metadata_size;
453 
454 	if (!this->swap_block_mark)
455 		return 0;
456 
457 	/*
458 	 * We need to compute the byte and bit offsets of
459 	 * the physical block mark within the ECC-based view of the page.
460 	 *
461 	 * NAND chip with 2K page shows below:
462 	 *                                             (Block Mark)
463 	 *                                                   |      |
464 	 *                                                   |  D   |
465 	 *                                                   |<---->|
466 	 *                                                   V      V
467 	 *    +---+----------+-+----------+-+----------+-+----------+-+
468 	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
469 	 *    +---+----------+-+----------+-+----------+-+----------+-+
470 	 *
471 	 * The position of block mark moves forward in the ECC-based view
472 	 * of page, and the delta is:
473 	 *
474 	 *                   E * G * (N - 1)
475 	 *             D = (---------------- + M)
476 	 *                          8
477 	 *
478 	 * With the formula to compute the ECC strength, and the condition
479 	 *       : C >= O         (C is the ecc chunk size)
480 	 *
481 	 * It's easy to deduce to the following result:
482 	 *
483 	 *         E * G       (O - M)      C - M         C - M
484 	 *      ----------- <= ------- <=  --------  <  ---------
485 	 *           8            N           N          (N - 1)
486 	 *
487 	 *  So, we get:
488 	 *
489 	 *                   E * G * (N - 1)
490 	 *             D = (---------------- + M) < C
491 	 *                          8
492 	 *
493 	 *  The above inequality means the position of block mark
494 	 *  within the ECC-based view of the page is still in the data chunk,
495 	 *  and it's NOT in the ECC bits of the chunk.
496 	 *
497 	 *  Use the following to compute the bit position of the
498 	 *  physical block mark within the ECC-based view of the page:
499 	 *          (page_size - D) * 8
500 	 *
501 	 *  --Huang Shijie
502 	 */
503 	block_mark_bit_offset = mtd->writesize * 8 -
504 		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
505 				+ geo->metadata_size * 8);
506 
507 	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
508 	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
509 	return 0;
510 }
511 
common_nfc_set_geometry(struct gpmi_nand_data * this)512 static int common_nfc_set_geometry(struct gpmi_nand_data *this)
513 {
514 	struct nand_chip *chip = &this->nand;
515 
516 	if (chip->ecc.strength > 0 && chip->ecc.size > 0)
517 		return set_geometry_by_ecc_info(this, chip->ecc.strength,
518 						chip->ecc.size);
519 
520 	if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
521 				|| legacy_set_geometry(this)) {
522 		if (!(chip->base.eccreq.strength > 0 &&
523 		      chip->base.eccreq.step_size > 0))
524 			return -EINVAL;
525 
526 		return set_geometry_by_ecc_info(this,
527 						chip->base.eccreq.strength,
528 						chip->base.eccreq.step_size);
529 	}
530 
531 	return 0;
532 }
533 
534 /* Configures the geometry for BCH.  */
bch_set_geometry(struct gpmi_nand_data * this)535 static int bch_set_geometry(struct gpmi_nand_data *this)
536 {
537 	struct resources *r = &this->resources;
538 	int ret;
539 
540 	ret = common_nfc_set_geometry(this);
541 	if (ret)
542 		return ret;
543 
544 	ret = pm_runtime_get_sync(this->dev);
545 	if (ret < 0) {
546 		pm_runtime_put_autosuspend(this->dev);
547 		return ret;
548 	}
549 
550 	/*
551 	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
552 	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
553 	* and MX28.
554 	*/
555 	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
556 	if (ret)
557 		goto err_out;
558 
559 	/* Set *all* chip selects to use layout 0. */
560 	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
561 
562 	ret = 0;
563 err_out:
564 	pm_runtime_mark_last_busy(this->dev);
565 	pm_runtime_put_autosuspend(this->dev);
566 
567 	return ret;
568 }
569 
570 /*
571  * <1> Firstly, we should know what's the GPMI-clock means.
572  *     The GPMI-clock is the internal clock in the gpmi nand controller.
573  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
574  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
575  *
576  * <2> Secondly, we should know what's the frequency on the nand chip pins.
577  *     The frequency on the nand chip pins is derived from the GPMI-clock.
578  *     We can get it from the following equation:
579  *
580  *         F = G / (DS + DH)
581  *
582  *         F  : the frequency on the nand chip pins.
583  *         G  : the GPMI clock, such as 100MHz.
584  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
585  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
586  *
587  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
588  *     the nand EDO(extended Data Out) timing could be applied.
589  *     The GPMI implements a feedback read strobe to sample the read data.
590  *     The feedback read strobe can be delayed to support the nand EDO timing
591  *     where the read strobe may deasserts before the read data is valid, and
592  *     read data is valid for some time after read strobe.
593  *
594  *     The following figure illustrates some aspects of a NAND Flash read:
595  *
596  *                   |<---tREA---->|
597  *                   |             |
598  *                   |         |   |
599  *                   |<--tRP-->|   |
600  *                   |         |   |
601  *                  __          ___|__________________________________
602  *     RDN            \________/   |
603  *                                 |
604  *                                 /---------\
605  *     Read Data    --------------<           >---------
606  *                                 \---------/
607  *                                |     |
608  *                                |<-D->|
609  *     FeedbackRDN  ________             ____________
610  *                          \___________/
611  *
612  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
613  *
614  *
615  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
616  *
617  *  4.1) From the aspect of the nand chip pins:
618  *        Delay = (tREA + C - tRP)               {1}
619  *
620  *        tREA : the maximum read access time.
621  *        C    : a constant to adjust the delay. default is 4000ps.
622  *        tRP  : the read pulse width, which is exactly:
623  *                   tRP = (GPMI-clock-period) * DATA_SETUP
624  *
625  *  4.2) From the aspect of the GPMI nand controller:
626  *         Delay = RDN_DELAY * 0.125 * RP        {2}
627  *
628  *         RP   : the DLL reference period.
629  *            if (GPMI-clock-period > DLL_THRETHOLD)
630  *                   RP = GPMI-clock-period / 2;
631  *            else
632  *                   RP = GPMI-clock-period;
633  *
634  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
635  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
636  *            is 16000ps, but in mx6q, we use 12000ps.
637  *
638  *  4.3) since {1} equals {2}, we get:
639  *
640  *                     (tREA + 4000 - tRP) * 8
641  *         RDN_DELAY = -----------------------     {3}
642  *                           RP
643  */
gpmi_nfc_compute_timings(struct gpmi_nand_data * this,const struct nand_sdr_timings * sdr)644 static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
645 				     const struct nand_sdr_timings *sdr)
646 {
647 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
648 	struct resources *r = &this->resources;
649 	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
650 	unsigned int period_ps, reference_period_ps;
651 	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
652 	unsigned int tRP_ps;
653 	bool use_half_period;
654 	int sample_delay_ps, sample_delay_factor;
655 	unsigned int busy_timeout_cycles;
656 	u8 wrn_dly_sel;
657 	u64 busy_timeout_ps;
658 
659 	if (sdr->tRC_min >= 30000) {
660 		/* ONFI non-EDO modes [0-3] */
661 		hw->clk_rate = 22000000;
662 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
663 	} else if (sdr->tRC_min >= 25000) {
664 		/* ONFI EDO mode 4 */
665 		hw->clk_rate = 80000000;
666 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
667 	} else {
668 		/* ONFI EDO mode 5 */
669 		hw->clk_rate = 100000000;
670 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
671 	}
672 
673 	hw->clk_rate = clk_round_rate(r->clock[0], hw->clk_rate);
674 
675 	/* SDR core timings are given in picoseconds */
676 	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
677 
678 	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
679 	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
680 	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
681 	busy_timeout_ps = max(sdr->tBERS_max, sdr->tPROG_max);
682 	busy_timeout_cycles = TO_CYCLES(busy_timeout_ps, period_ps);
683 
684 	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
685 		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
686 		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
687 	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(DIV_ROUND_UP(busy_timeout_cycles, 4096));
688 
689 	/*
690 	 * Derive NFC ideal delay from {3}:
691 	 *
692 	 *                     (tREA + 4000 - tRP) * 8
693 	 *         RDN_DELAY = -----------------------
694 	 *                                RP
695 	 */
696 	if (period_ps > dll_threshold_ps) {
697 		use_half_period = true;
698 		reference_period_ps = period_ps / 2;
699 	} else {
700 		use_half_period = false;
701 		reference_period_ps = period_ps;
702 	}
703 
704 	tRP_ps = data_setup_cycles * period_ps;
705 	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
706 	if (sample_delay_ps > 0)
707 		sample_delay_factor = sample_delay_ps / reference_period_ps;
708 	else
709 		sample_delay_factor = 0;
710 
711 	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
712 	if (sample_delay_factor)
713 		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
714 			      BM_GPMI_CTRL1_DLL_ENABLE |
715 			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
716 }
717 
gpmi_nfc_apply_timings(struct gpmi_nand_data * this)718 static int gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
719 {
720 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
721 	struct resources *r = &this->resources;
722 	void __iomem *gpmi_regs = r->gpmi_regs;
723 	unsigned int dll_wait_time_us;
724 	int ret;
725 
726 	/* Clock dividers do NOT guarantee a clean clock signal on its output
727 	 * during the change of the divide factor on i.MX6Q/UL/SX. On i.MX7/8,
728 	 * all clock dividers provide these guarantee.
729 	 */
730 	if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this))
731 		clk_disable_unprepare(r->clock[0]);
732 
733 	ret = clk_set_rate(r->clock[0], hw->clk_rate);
734 	if (ret) {
735 		dev_err(this->dev, "cannot set clock rate to %lu Hz: %d\n", hw->clk_rate, ret);
736 		return ret;
737 	}
738 
739 	if (GPMI_IS_MX6Q(this) || GPMI_IS_MX6SX(this)) {
740 		ret = clk_prepare_enable(r->clock[0]);
741 		if (ret)
742 			return ret;
743 	}
744 
745 	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
746 	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
747 
748 	/*
749 	 * Clear several CTRL1 fields, DLL must be disabled when setting
750 	 * RDN_DELAY or HALF_PERIOD.
751 	 */
752 	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
753 	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
754 
755 	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
756 	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
757 	if (!dll_wait_time_us)
758 		dll_wait_time_us = 1;
759 
760 	/* Wait for the DLL to settle. */
761 	udelay(dll_wait_time_us);
762 
763 	return 0;
764 }
765 
gpmi_setup_data_interface(struct nand_chip * chip,int chipnr,const struct nand_data_interface * conf)766 static int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr,
767 				     const struct nand_data_interface *conf)
768 {
769 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
770 	const struct nand_sdr_timings *sdr;
771 
772 	/* Retrieve required NAND timings */
773 	sdr = nand_get_sdr_timings(conf);
774 	if (IS_ERR(sdr))
775 		return PTR_ERR(sdr);
776 
777 	/* Only MX6 GPMI controller can reach EDO timings */
778 	if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
779 		return -ENOTSUPP;
780 
781 	/* Stop here if this call was just a check */
782 	if (chipnr < 0)
783 		return 0;
784 
785 	/* Do the actual derivation of the controller timings */
786 	gpmi_nfc_compute_timings(this, sdr);
787 
788 	this->hw.must_apply_timings = true;
789 
790 	return 0;
791 }
792 
793 /* Clears a BCH interrupt. */
gpmi_clear_bch(struct gpmi_nand_data * this)794 static void gpmi_clear_bch(struct gpmi_nand_data *this)
795 {
796 	struct resources *r = &this->resources;
797 	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
798 }
799 
get_dma_chan(struct gpmi_nand_data * this)800 static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
801 {
802 	/* We use the DMA channel 0 to access all the nand chips. */
803 	return this->dma_chans[0];
804 }
805 
806 /* This will be called after the DMA operation is finished. */
dma_irq_callback(void * param)807 static void dma_irq_callback(void *param)
808 {
809 	struct gpmi_nand_data *this = param;
810 	struct completion *dma_c = &this->dma_done;
811 
812 	complete(dma_c);
813 }
814 
bch_irq(int irq,void * cookie)815 static irqreturn_t bch_irq(int irq, void *cookie)
816 {
817 	struct gpmi_nand_data *this = cookie;
818 
819 	gpmi_clear_bch(this);
820 	complete(&this->bch_done);
821 	return IRQ_HANDLED;
822 }
823 
gpmi_raw_len_to_len(struct gpmi_nand_data * this,int raw_len)824 static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
825 {
826 	/*
827 	 * raw_len is the length to read/write including bch data which
828 	 * we are passed in exec_op. Calculate the data length from it.
829 	 */
830 	if (this->bch)
831 		return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size);
832 	else
833 		return raw_len;
834 }
835 
836 /* Can we use the upper's buffer directly for DMA? */
prepare_data_dma(struct gpmi_nand_data * this,const void * buf,int raw_len,struct scatterlist * sgl,enum dma_data_direction dr)837 static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
838 			     int raw_len, struct scatterlist *sgl,
839 			     enum dma_data_direction dr)
840 {
841 	int ret;
842 	int len = gpmi_raw_len_to_len(this, raw_len);
843 
844 	/* first try to map the upper buffer directly */
845 	if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
846 		sg_init_one(sgl, buf, len);
847 		ret = dma_map_sg(this->dev, sgl, 1, dr);
848 		if (ret == 0)
849 			goto map_fail;
850 
851 		return true;
852 	}
853 
854 map_fail:
855 	/* We have to use our own DMA buffer. */
856 	sg_init_one(sgl, this->data_buffer_dma, len);
857 
858 	if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
859 		memcpy(this->data_buffer_dma, buf, len);
860 
861 	dma_map_sg(this->dev, sgl, 1, dr);
862 
863 	return false;
864 }
865 
866 /**
867  * gpmi_copy_bits - copy bits from one memory region to another
868  * @dst: destination buffer
869  * @dst_bit_off: bit offset we're starting to write at
870  * @src: source buffer
871  * @src_bit_off: bit offset we're starting to read from
872  * @nbits: number of bits to copy
873  *
874  * This functions copies bits from one memory region to another, and is used by
875  * the GPMI driver to copy ECC sections which are not guaranteed to be byte
876  * aligned.
877  *
878  * src and dst should not overlap.
879  *
880  */
gpmi_copy_bits(u8 * dst,size_t dst_bit_off,const u8 * src,size_t src_bit_off,size_t nbits)881 static void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, const u8 *src,
882 			   size_t src_bit_off, size_t nbits)
883 {
884 	size_t i;
885 	size_t nbytes;
886 	u32 src_buffer = 0;
887 	size_t bits_in_src_buffer = 0;
888 
889 	if (!nbits)
890 		return;
891 
892 	/*
893 	 * Move src and dst pointers to the closest byte pointer and store bit
894 	 * offsets within a byte.
895 	 */
896 	src += src_bit_off / 8;
897 	src_bit_off %= 8;
898 
899 	dst += dst_bit_off / 8;
900 	dst_bit_off %= 8;
901 
902 	/*
903 	 * Initialize the src_buffer value with bits available in the first
904 	 * byte of data so that we end up with a byte aligned src pointer.
905 	 */
906 	if (src_bit_off) {
907 		src_buffer = src[0] >> src_bit_off;
908 		if (nbits >= (8 - src_bit_off)) {
909 			bits_in_src_buffer += 8 - src_bit_off;
910 		} else {
911 			src_buffer &= GENMASK(nbits - 1, 0);
912 			bits_in_src_buffer += nbits;
913 		}
914 		nbits -= bits_in_src_buffer;
915 		src++;
916 	}
917 
918 	/* Calculate the number of bytes that can be copied from src to dst. */
919 	nbytes = nbits / 8;
920 
921 	/* Try to align dst to a byte boundary. */
922 	if (dst_bit_off) {
923 		if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
924 			src_buffer |= src[0] << bits_in_src_buffer;
925 			bits_in_src_buffer += 8;
926 			src++;
927 			nbytes--;
928 		}
929 
930 		if (bits_in_src_buffer >= (8 - dst_bit_off)) {
931 			dst[0] &= GENMASK(dst_bit_off - 1, 0);
932 			dst[0] |= src_buffer << dst_bit_off;
933 			src_buffer >>= (8 - dst_bit_off);
934 			bits_in_src_buffer -= (8 - dst_bit_off);
935 			dst_bit_off = 0;
936 			dst++;
937 			if (bits_in_src_buffer > 7) {
938 				bits_in_src_buffer -= 8;
939 				dst[0] = src_buffer;
940 				dst++;
941 				src_buffer >>= 8;
942 			}
943 		}
944 	}
945 
946 	if (!bits_in_src_buffer && !dst_bit_off) {
947 		/*
948 		 * Both src and dst pointers are byte aligned, thus we can
949 		 * just use the optimized memcpy function.
950 		 */
951 		if (nbytes)
952 			memcpy(dst, src, nbytes);
953 	} else {
954 		/*
955 		 * src buffer is not byte aligned, hence we have to copy each
956 		 * src byte to the src_buffer variable before extracting a byte
957 		 * to store in dst.
958 		 */
959 		for (i = 0; i < nbytes; i++) {
960 			src_buffer |= src[i] << bits_in_src_buffer;
961 			dst[i] = src_buffer;
962 			src_buffer >>= 8;
963 		}
964 	}
965 	/* Update dst and src pointers */
966 	dst += nbytes;
967 	src += nbytes;
968 
969 	/*
970 	 * nbits is the number of remaining bits. It should not exceed 8 as
971 	 * we've already copied as much bytes as possible.
972 	 */
973 	nbits %= 8;
974 
975 	/*
976 	 * If there's no more bits to copy to the destination and src buffer
977 	 * was already byte aligned, then we're done.
978 	 */
979 	if (!nbits && !bits_in_src_buffer)
980 		return;
981 
982 	/* Copy the remaining bits to src_buffer */
983 	if (nbits)
984 		src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
985 			      bits_in_src_buffer;
986 	bits_in_src_buffer += nbits;
987 
988 	/*
989 	 * In case there were not enough bits to get a byte aligned dst buffer
990 	 * prepare the src_buffer variable to match the dst organization (shift
991 	 * src_buffer by dst_bit_off and retrieve the least significant bits
992 	 * from dst).
993 	 */
994 	if (dst_bit_off)
995 		src_buffer = (src_buffer << dst_bit_off) |
996 			     (*dst & GENMASK(dst_bit_off - 1, 0));
997 	bits_in_src_buffer += dst_bit_off;
998 
999 	/*
1000 	 * Keep most significant bits from dst if we end up with an unaligned
1001 	 * number of bits.
1002 	 */
1003 	nbytes = bits_in_src_buffer / 8;
1004 	if (bits_in_src_buffer % 8) {
1005 		src_buffer |= (dst[nbytes] &
1006 			       GENMASK(7, bits_in_src_buffer % 8)) <<
1007 			      (nbytes * 8);
1008 		nbytes++;
1009 	}
1010 
1011 	/* Copy the remaining bytes to dst */
1012 	for (i = 0; i < nbytes; i++) {
1013 		dst[i] = src_buffer;
1014 		src_buffer >>= 8;
1015 	}
1016 }
1017 
1018 /* add our owner bbt descriptor */
1019 static uint8_t scan_ff_pattern[] = { 0xff };
1020 static struct nand_bbt_descr gpmi_bbt_descr = {
1021 	.options	= 0,
1022 	.offs		= 0,
1023 	.len		= 1,
1024 	.pattern	= scan_ff_pattern
1025 };
1026 
1027 /*
1028  * We may change the layout if we can get the ECC info from the datasheet,
1029  * else we will use all the (page + OOB).
1030  */
gpmi_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1031 static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
1032 			      struct mtd_oob_region *oobregion)
1033 {
1034 	struct nand_chip *chip = mtd_to_nand(mtd);
1035 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1036 	struct bch_geometry *geo = &this->bch_geometry;
1037 
1038 	if (section)
1039 		return -ERANGE;
1040 
1041 	oobregion->offset = 0;
1042 	oobregion->length = geo->page_size - mtd->writesize;
1043 
1044 	return 0;
1045 }
1046 
gpmi_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1047 static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
1048 			       struct mtd_oob_region *oobregion)
1049 {
1050 	struct nand_chip *chip = mtd_to_nand(mtd);
1051 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1052 	struct bch_geometry *geo = &this->bch_geometry;
1053 
1054 	if (section)
1055 		return -ERANGE;
1056 
1057 	/* The available oob size we have. */
1058 	if (geo->page_size < mtd->writesize + mtd->oobsize) {
1059 		oobregion->offset = geo->page_size - mtd->writesize;
1060 		oobregion->length = mtd->oobsize - oobregion->offset;
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 static const char * const gpmi_clks_for_mx2x[] = {
1067 	"gpmi_io",
1068 };
1069 
1070 static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
1071 	.ecc = gpmi_ooblayout_ecc,
1072 	.free = gpmi_ooblayout_free,
1073 };
1074 
1075 static const struct gpmi_devdata gpmi_devdata_imx23 = {
1076 	.type = IS_MX23,
1077 	.bch_max_ecc_strength = 20,
1078 	.max_chain_delay = 16000,
1079 	.clks = gpmi_clks_for_mx2x,
1080 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1081 };
1082 
1083 static const struct gpmi_devdata gpmi_devdata_imx28 = {
1084 	.type = IS_MX28,
1085 	.bch_max_ecc_strength = 20,
1086 	.max_chain_delay = 16000,
1087 	.clks = gpmi_clks_for_mx2x,
1088 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
1089 };
1090 
1091 static const char * const gpmi_clks_for_mx6[] = {
1092 	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
1093 };
1094 
1095 static const struct gpmi_devdata gpmi_devdata_imx6q = {
1096 	.type = IS_MX6Q,
1097 	.bch_max_ecc_strength = 40,
1098 	.max_chain_delay = 12000,
1099 	.clks = gpmi_clks_for_mx6,
1100 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1101 };
1102 
1103 static const struct gpmi_devdata gpmi_devdata_imx6sx = {
1104 	.type = IS_MX6SX,
1105 	.bch_max_ecc_strength = 62,
1106 	.max_chain_delay = 12000,
1107 	.clks = gpmi_clks_for_mx6,
1108 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
1109 };
1110 
1111 static const char * const gpmi_clks_for_mx7d[] = {
1112 	"gpmi_io", "gpmi_bch_apb",
1113 };
1114 
1115 static const struct gpmi_devdata gpmi_devdata_imx7d = {
1116 	.type = IS_MX7D,
1117 	.bch_max_ecc_strength = 62,
1118 	.max_chain_delay = 12000,
1119 	.clks = gpmi_clks_for_mx7d,
1120 	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
1121 };
1122 
acquire_register_block(struct gpmi_nand_data * this,const char * res_name)1123 static int acquire_register_block(struct gpmi_nand_data *this,
1124 				  const char *res_name)
1125 {
1126 	struct platform_device *pdev = this->pdev;
1127 	struct resources *res = &this->resources;
1128 	struct resource *r;
1129 	void __iomem *p;
1130 
1131 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
1132 	p = devm_ioremap_resource(&pdev->dev, r);
1133 	if (IS_ERR(p))
1134 		return PTR_ERR(p);
1135 
1136 	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
1137 		res->gpmi_regs = p;
1138 	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
1139 		res->bch_regs = p;
1140 	else
1141 		dev_err(this->dev, "unknown resource name : %s\n", res_name);
1142 
1143 	return 0;
1144 }
1145 
acquire_bch_irq(struct gpmi_nand_data * this,irq_handler_t irq_h)1146 static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
1147 {
1148 	struct platform_device *pdev = this->pdev;
1149 	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
1150 	struct resource *r;
1151 	int err;
1152 
1153 	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
1154 	if (!r) {
1155 		dev_err(this->dev, "Can't get resource for %s\n", res_name);
1156 		return -ENODEV;
1157 	}
1158 
1159 	err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
1160 	if (err)
1161 		dev_err(this->dev, "error requesting BCH IRQ\n");
1162 
1163 	return err;
1164 }
1165 
release_dma_channels(struct gpmi_nand_data * this)1166 static void release_dma_channels(struct gpmi_nand_data *this)
1167 {
1168 	unsigned int i;
1169 	for (i = 0; i < DMA_CHANS; i++)
1170 		if (this->dma_chans[i]) {
1171 			dma_release_channel(this->dma_chans[i]);
1172 			this->dma_chans[i] = NULL;
1173 		}
1174 }
1175 
acquire_dma_channels(struct gpmi_nand_data * this)1176 static int acquire_dma_channels(struct gpmi_nand_data *this)
1177 {
1178 	struct platform_device *pdev = this->pdev;
1179 	struct dma_chan *dma_chan;
1180 
1181 	/* request dma channel */
1182 	dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
1183 	if (!dma_chan) {
1184 		dev_err(this->dev, "Failed to request DMA channel.\n");
1185 		goto acquire_err;
1186 	}
1187 
1188 	this->dma_chans[0] = dma_chan;
1189 	return 0;
1190 
1191 acquire_err:
1192 	release_dma_channels(this);
1193 	return -EINVAL;
1194 }
1195 
gpmi_get_clks(struct gpmi_nand_data * this)1196 static int gpmi_get_clks(struct gpmi_nand_data *this)
1197 {
1198 	struct resources *r = &this->resources;
1199 	struct clk *clk;
1200 	int err, i;
1201 
1202 	for (i = 0; i < this->devdata->clks_count; i++) {
1203 		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
1204 		if (IS_ERR(clk)) {
1205 			err = PTR_ERR(clk);
1206 			goto err_clock;
1207 		}
1208 
1209 		r->clock[i] = clk;
1210 	}
1211 
1212 	return 0;
1213 
1214 err_clock:
1215 	dev_dbg(this->dev, "failed in finding the clocks.\n");
1216 	return err;
1217 }
1218 
acquire_resources(struct gpmi_nand_data * this)1219 static int acquire_resources(struct gpmi_nand_data *this)
1220 {
1221 	int ret;
1222 
1223 	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
1224 	if (ret)
1225 		goto exit_regs;
1226 
1227 	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
1228 	if (ret)
1229 		goto exit_regs;
1230 
1231 	ret = acquire_bch_irq(this, bch_irq);
1232 	if (ret)
1233 		goto exit_regs;
1234 
1235 	ret = acquire_dma_channels(this);
1236 	if (ret)
1237 		goto exit_regs;
1238 
1239 	ret = gpmi_get_clks(this);
1240 	if (ret)
1241 		goto exit_clock;
1242 	return 0;
1243 
1244 exit_clock:
1245 	release_dma_channels(this);
1246 exit_regs:
1247 	return ret;
1248 }
1249 
release_resources(struct gpmi_nand_data * this)1250 static void release_resources(struct gpmi_nand_data *this)
1251 {
1252 	release_dma_channels(this);
1253 }
1254 
gpmi_free_dma_buffer(struct gpmi_nand_data * this)1255 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
1256 {
1257 	struct device *dev = this->dev;
1258 	struct bch_geometry *geo = &this->bch_geometry;
1259 
1260 	if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
1261 		dma_free_coherent(dev, geo->auxiliary_size,
1262 					this->auxiliary_virt,
1263 					this->auxiliary_phys);
1264 	kfree(this->data_buffer_dma);
1265 	kfree(this->raw_buffer);
1266 
1267 	this->data_buffer_dma	= NULL;
1268 	this->raw_buffer	= NULL;
1269 }
1270 
1271 /* Allocate the DMA buffers */
gpmi_alloc_dma_buffer(struct gpmi_nand_data * this)1272 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
1273 {
1274 	struct bch_geometry *geo = &this->bch_geometry;
1275 	struct device *dev = this->dev;
1276 	struct mtd_info *mtd = nand_to_mtd(&this->nand);
1277 
1278 	/*
1279 	 * [2] Allocate a read/write data buffer.
1280 	 *     The gpmi_alloc_dma_buffer can be called twice.
1281 	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
1282 	 *     is called before the NAND identification; and we allocate a
1283 	 *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
1284 	 *     is called after.
1285 	 */
1286 	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
1287 					GFP_DMA | GFP_KERNEL);
1288 	if (this->data_buffer_dma == NULL)
1289 		goto error_alloc;
1290 
1291 	this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
1292 					&this->auxiliary_phys, GFP_DMA);
1293 	if (!this->auxiliary_virt)
1294 		goto error_alloc;
1295 
1296 	this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
1297 	if (!this->raw_buffer)
1298 		goto error_alloc;
1299 
1300 	return 0;
1301 
1302 error_alloc:
1303 	gpmi_free_dma_buffer(this);
1304 	return -ENOMEM;
1305 }
1306 
1307 /*
1308  * Handles block mark swapping.
1309  * It can be called in swapping the block mark, or swapping it back,
1310  * because the the operations are the same.
1311  */
block_mark_swapping(struct gpmi_nand_data * this,void * payload,void * auxiliary)1312 static void block_mark_swapping(struct gpmi_nand_data *this,
1313 				void *payload, void *auxiliary)
1314 {
1315 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1316 	unsigned char *p;
1317 	unsigned char *a;
1318 	unsigned int  bit;
1319 	unsigned char mask;
1320 	unsigned char from_data;
1321 	unsigned char from_oob;
1322 
1323 	if (!this->swap_block_mark)
1324 		return;
1325 
1326 	/*
1327 	 * If control arrives here, we're swapping. Make some convenience
1328 	 * variables.
1329 	 */
1330 	bit = nfc_geo->block_mark_bit_offset;
1331 	p   = payload + nfc_geo->block_mark_byte_offset;
1332 	a   = auxiliary;
1333 
1334 	/*
1335 	 * Get the byte from the data area that overlays the block mark. Since
1336 	 * the ECC engine applies its own view to the bits in the page, the
1337 	 * physical block mark won't (in general) appear on a byte boundary in
1338 	 * the data.
1339 	 */
1340 	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
1341 
1342 	/* Get the byte from the OOB. */
1343 	from_oob = a[0];
1344 
1345 	/* Swap them. */
1346 	a[0] = from_data;
1347 
1348 	mask = (0x1 << bit) - 1;
1349 	p[0] = (p[0] & mask) | (from_oob << bit);
1350 
1351 	mask = ~0 << bit;
1352 	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
1353 }
1354 
gpmi_count_bitflips(struct nand_chip * chip,void * buf,int first,int last,int meta)1355 static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
1356 			       int last, int meta)
1357 {
1358 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1359 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1360 	struct mtd_info *mtd = nand_to_mtd(chip);
1361 	int i;
1362 	unsigned char *status;
1363 	unsigned int max_bitflips = 0;
1364 
1365 	/* Loop over status bytes, accumulating ECC status. */
1366 	status = this->auxiliary_virt + ALIGN(meta, 4);
1367 
1368 	for (i = first; i < last; i++, status++) {
1369 		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
1370 			continue;
1371 
1372 		if (*status == STATUS_UNCORRECTABLE) {
1373 			int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1374 			u8 *eccbuf = this->raw_buffer;
1375 			int offset, bitoffset;
1376 			int eccbytes;
1377 			int flips;
1378 
1379 			/* Read ECC bytes into our internal raw_buffer */
1380 			offset = nfc_geo->metadata_size * 8;
1381 			offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
1382 			offset -= eccbits;
1383 			bitoffset = offset % 8;
1384 			eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
1385 			offset /= 8;
1386 			eccbytes -= offset;
1387 			nand_change_read_column_op(chip, offset, eccbuf,
1388 						   eccbytes, false);
1389 
1390 			/*
1391 			 * ECC data are not byte aligned and we may have
1392 			 * in-band data in the first and last byte of
1393 			 * eccbuf. Set non-eccbits to one so that
1394 			 * nand_check_erased_ecc_chunk() does not count them
1395 			 * as bitflips.
1396 			 */
1397 			if (bitoffset)
1398 				eccbuf[0] |= GENMASK(bitoffset - 1, 0);
1399 
1400 			bitoffset = (bitoffset + eccbits) % 8;
1401 			if (bitoffset)
1402 				eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
1403 
1404 			/*
1405 			 * The ECC hardware has an uncorrectable ECC status
1406 			 * code in case we have bitflips in an erased page. As
1407 			 * nothing was written into this subpage the ECC is
1408 			 * obviously wrong and we can not trust it. We assume
1409 			 * at this point that we are reading an erased page and
1410 			 * try to correct the bitflips in buffer up to
1411 			 * ecc_strength bitflips. If this is a page with random
1412 			 * data, we exceed this number of bitflips and have a
1413 			 * ECC failure. Otherwise we use the corrected buffer.
1414 			 */
1415 			if (i == 0) {
1416 				/* The first block includes metadata */
1417 				flips = nand_check_erased_ecc_chunk(
1418 						buf + i * nfc_geo->ecc_chunk_size,
1419 						nfc_geo->ecc_chunk_size,
1420 						eccbuf, eccbytes,
1421 						this->auxiliary_virt,
1422 						nfc_geo->metadata_size,
1423 						nfc_geo->ecc_strength);
1424 			} else {
1425 				flips = nand_check_erased_ecc_chunk(
1426 						buf + i * nfc_geo->ecc_chunk_size,
1427 						nfc_geo->ecc_chunk_size,
1428 						eccbuf, eccbytes,
1429 						NULL, 0,
1430 						nfc_geo->ecc_strength);
1431 			}
1432 
1433 			if (flips > 0) {
1434 				max_bitflips = max_t(unsigned int, max_bitflips,
1435 						     flips);
1436 				mtd->ecc_stats.corrected += flips;
1437 				continue;
1438 			}
1439 
1440 			mtd->ecc_stats.failed++;
1441 			continue;
1442 		}
1443 
1444 		mtd->ecc_stats.corrected += *status;
1445 		max_bitflips = max_t(unsigned int, max_bitflips, *status);
1446 	}
1447 
1448 	return max_bitflips;
1449 }
1450 
gpmi_bch_layout_std(struct gpmi_nand_data * this)1451 static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
1452 {
1453 	struct bch_geometry *geo = &this->bch_geometry;
1454 	unsigned int ecc_strength = geo->ecc_strength >> 1;
1455 	unsigned int gf_len = geo->gf_len;
1456 	unsigned int block_size = geo->ecc_chunk_size;
1457 
1458 	this->bch_flashlayout0 =
1459 		BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
1460 		BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
1461 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1462 		BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
1463 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this);
1464 
1465 	this->bch_flashlayout1 =
1466 		BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
1467 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1468 		BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
1469 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this);
1470 }
1471 
gpmi_ecc_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1472 static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
1473 			      int oob_required, int page)
1474 {
1475 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1476 	struct mtd_info *mtd = nand_to_mtd(chip);
1477 	struct bch_geometry *geo = &this->bch_geometry;
1478 	unsigned int max_bitflips;
1479 	int ret;
1480 
1481 	gpmi_bch_layout_std(this);
1482 	this->bch = true;
1483 
1484 	ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
1485 	if (ret)
1486 		return ret;
1487 
1488 	max_bitflips = gpmi_count_bitflips(chip, buf, 0,
1489 					   geo->ecc_chunk_count,
1490 					   geo->auxiliary_status_offset);
1491 
1492 	/* handle the block mark swapping */
1493 	block_mark_swapping(this, buf, this->auxiliary_virt);
1494 
1495 	if (oob_required) {
1496 		/*
1497 		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
1498 		 * for details about our policy for delivering the OOB.
1499 		 *
1500 		 * We fill the caller's buffer with set bits, and then copy the
1501 		 * block mark to th caller's buffer. Note that, if block mark
1502 		 * swapping was necessary, it has already been done, so we can
1503 		 * rely on the first byte of the auxiliary buffer to contain
1504 		 * the block mark.
1505 		 */
1506 		memset(chip->oob_poi, ~0, mtd->oobsize);
1507 		chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
1508 	}
1509 
1510 	return max_bitflips;
1511 }
1512 
1513 /* Fake a virtual small page for the subpage read */
gpmi_ecc_read_subpage(struct nand_chip * chip,uint32_t offs,uint32_t len,uint8_t * buf,int page)1514 static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
1515 				 uint32_t len, uint8_t *buf, int page)
1516 {
1517 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1518 	struct bch_geometry *geo = &this->bch_geometry;
1519 	int size = chip->ecc.size; /* ECC chunk size */
1520 	int meta, n, page_size;
1521 	unsigned int max_bitflips;
1522 	unsigned int ecc_strength;
1523 	int first, last, marker_pos;
1524 	int ecc_parity_size;
1525 	int col = 0;
1526 	int ret;
1527 
1528 	/* The size of ECC parity */
1529 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1530 
1531 	/* Align it with the chunk size */
1532 	first = offs / size;
1533 	last = (offs + len - 1) / size;
1534 
1535 	if (this->swap_block_mark) {
1536 		/*
1537 		 * Find the chunk which contains the Block Marker.
1538 		 * If this chunk is in the range of [first, last],
1539 		 * we have to read out the whole page.
1540 		 * Why? since we had swapped the data at the position of Block
1541 		 * Marker to the metadata which is bound with the chunk 0.
1542 		 */
1543 		marker_pos = geo->block_mark_byte_offset / size;
1544 		if (last >= marker_pos && first <= marker_pos) {
1545 			dev_dbg(this->dev,
1546 				"page:%d, first:%d, last:%d, marker at:%d\n",
1547 				page, first, last, marker_pos);
1548 			return gpmi_ecc_read_page(chip, buf, 0, page);
1549 		}
1550 	}
1551 
1552 	meta = geo->metadata_size;
1553 	if (first) {
1554 		col = meta + (size + ecc_parity_size) * first;
1555 		meta = 0;
1556 		buf = buf + first * size;
1557 	}
1558 
1559 	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
1560 
1561 	n = last - first + 1;
1562 	page_size = meta + (size + ecc_parity_size) * n;
1563 	ecc_strength = geo->ecc_strength >> 1;
1564 
1565 	this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) |
1566 		BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
1567 		BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
1568 		BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
1569 		BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this);
1570 
1571 	this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
1572 		BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
1573 		BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
1574 		BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this);
1575 
1576 	this->bch = true;
1577 
1578 	ret = nand_read_page_op(chip, page, col, buf, page_size);
1579 	if (ret)
1580 		return ret;
1581 
1582 	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
1583 		page, offs, len, col, first, n, page_size);
1584 
1585 	max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
1586 
1587 	return max_bitflips;
1588 }
1589 
gpmi_ecc_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1590 static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
1591 			       int oob_required, int page)
1592 {
1593 	struct mtd_info *mtd = nand_to_mtd(chip);
1594 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1595 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1596 	int ret;
1597 
1598 	dev_dbg(this->dev, "ecc write page.\n");
1599 
1600 	gpmi_bch_layout_std(this);
1601 	this->bch = true;
1602 
1603 	memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
1604 
1605 	if (this->swap_block_mark) {
1606 		/*
1607 		 * When doing bad block marker swapping we must always copy the
1608 		 * input buffer as we can't modify the const buffer.
1609 		 */
1610 		memcpy(this->data_buffer_dma, buf, mtd->writesize);
1611 		buf = this->data_buffer_dma;
1612 		block_mark_swapping(this, this->data_buffer_dma,
1613 				    this->auxiliary_virt);
1614 	}
1615 
1616 	ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
1617 
1618 	return ret;
1619 }
1620 
1621 /*
1622  * There are several places in this driver where we have to handle the OOB and
1623  * block marks. This is the function where things are the most complicated, so
1624  * this is where we try to explain it all. All the other places refer back to
1625  * here.
1626  *
1627  * These are the rules, in order of decreasing importance:
1628  *
1629  * 1) Nothing the caller does can be allowed to imperil the block mark.
1630  *
1631  * 2) In read operations, the first byte of the OOB we return must reflect the
1632  *    true state of the block mark, no matter where that block mark appears in
1633  *    the physical page.
1634  *
1635  * 3) ECC-based read operations return an OOB full of set bits (since we never
1636  *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1637  *    return).
1638  *
1639  * 4) "Raw" read operations return a direct view of the physical bytes in the
1640  *    page, using the conventional definition of which bytes are data and which
1641  *    are OOB. This gives the caller a way to see the actual, physical bytes
1642  *    in the page, without the distortions applied by our ECC engine.
1643  *
1644  *
1645  * What we do for this specific read operation depends on two questions:
1646  *
1647  * 1) Are we doing a "raw" read, or an ECC-based read?
1648  *
1649  * 2) Are we using block mark swapping or transcription?
1650  *
1651  * There are four cases, illustrated by the following Karnaugh map:
1652  *
1653  *                    |           Raw           |         ECC-based       |
1654  *       -------------+-------------------------+-------------------------+
1655  *                    | Read the conventional   |                         |
1656  *                    | OOB at the end of the   |                         |
1657  *       Swapping     | page and return it. It  |                         |
1658  *                    | contains exactly what   |                         |
1659  *                    | we want.                | Read the block mark and |
1660  *       -------------+-------------------------+ return it in a buffer   |
1661  *                    | Read the conventional   | full of set bits.       |
1662  *                    | OOB at the end of the   |                         |
1663  *                    | page and also the block |                         |
1664  *       Transcribing | mark in the metadata.   |                         |
1665  *                    | Copy the block mark     |                         |
1666  *                    | into the first byte of  |                         |
1667  *                    | the OOB.                |                         |
1668  *       -------------+-------------------------+-------------------------+
1669  *
1670  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1671  * giving an accurate view of the actual, physical bytes in the page (we're
1672  * overwriting the block mark). That's OK because it's more important to follow
1673  * rule #2.
1674  *
1675  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1676  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1677  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1678  * ECC-based or raw view of the page is implicit in which function it calls
1679  * (there is a similar pair of ECC-based/raw functions for writing).
1680  */
gpmi_ecc_read_oob(struct nand_chip * chip,int page)1681 static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
1682 {
1683 	struct mtd_info *mtd = nand_to_mtd(chip);
1684 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1685 	int ret;
1686 
1687 	/* clear the OOB buffer */
1688 	memset(chip->oob_poi, ~0, mtd->oobsize);
1689 
1690 	/* Read out the conventional OOB. */
1691 	ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
1692 				mtd->oobsize);
1693 	if (ret)
1694 		return ret;
1695 
1696 	/*
1697 	 * Now, we want to make sure the block mark is correct. In the
1698 	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
1699 	 * Otherwise, we need to explicitly read it.
1700 	 */
1701 	if (GPMI_IS_MX23(this)) {
1702 		/* Read the block mark into the first byte of the OOB buffer. */
1703 		ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
1704 		if (ret)
1705 			return ret;
1706 	}
1707 
1708 	return 0;
1709 }
1710 
gpmi_ecc_write_oob(struct nand_chip * chip,int page)1711 static int gpmi_ecc_write_oob(struct nand_chip *chip, int page)
1712 {
1713 	struct mtd_info *mtd = nand_to_mtd(chip);
1714 	struct mtd_oob_region of = { };
1715 
1716 	/* Do we have available oob area? */
1717 	mtd_ooblayout_free(mtd, 0, &of);
1718 	if (!of.length)
1719 		return -EPERM;
1720 
1721 	if (!nand_is_slc(chip))
1722 		return -EPERM;
1723 
1724 	return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
1725 				 chip->oob_poi + of.offset, of.length);
1726 }
1727 
1728 /*
1729  * This function reads a NAND page without involving the ECC engine (no HW
1730  * ECC correction).
1731  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1732  * inline (interleaved with payload DATA), and do not align data chunk on
1733  * byte boundaries.
1734  * We thus need to take care moving the payload data and ECC bits stored in the
1735  * page into the provided buffers, which is why we're using gpmi_copy_bits.
1736  *
1737  * See set_geometry_by_ecc_info inline comments to have a full description
1738  * of the layout used by the GPMI controller.
1739  */
gpmi_ecc_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1740 static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1741 				  int oob_required, int page)
1742 {
1743 	struct mtd_info *mtd = nand_to_mtd(chip);
1744 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1745 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1746 	int eccsize = nfc_geo->ecc_chunk_size;
1747 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1748 	u8 *tmp_buf = this->raw_buffer;
1749 	size_t src_bit_off;
1750 	size_t oob_bit_off;
1751 	size_t oob_byte_off;
1752 	uint8_t *oob = chip->oob_poi;
1753 	int step;
1754 	int ret;
1755 
1756 	ret = nand_read_page_op(chip, page, 0, tmp_buf,
1757 				mtd->writesize + mtd->oobsize);
1758 	if (ret)
1759 		return ret;
1760 
1761 	/*
1762 	 * If required, swap the bad block marker and the data stored in the
1763 	 * metadata section, so that we don't wrongly consider a block as bad.
1764 	 *
1765 	 * See the layout description for a detailed explanation on why this
1766 	 * is needed.
1767 	 */
1768 	if (this->swap_block_mark)
1769 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1770 
1771 	/*
1772 	 * Copy the metadata section into the oob buffer (this section is
1773 	 * guaranteed to be aligned on a byte boundary).
1774 	 */
1775 	if (oob_required)
1776 		memcpy(oob, tmp_buf, nfc_geo->metadata_size);
1777 
1778 	oob_bit_off = nfc_geo->metadata_size * 8;
1779 	src_bit_off = oob_bit_off;
1780 
1781 	/* Extract interleaved payload data and ECC bits */
1782 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1783 		if (buf)
1784 			gpmi_copy_bits(buf, step * eccsize * 8,
1785 				       tmp_buf, src_bit_off,
1786 				       eccsize * 8);
1787 		src_bit_off += eccsize * 8;
1788 
1789 		/* Align last ECC block to align a byte boundary */
1790 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1791 		    (oob_bit_off + eccbits) % 8)
1792 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1793 
1794 		if (oob_required)
1795 			gpmi_copy_bits(oob, oob_bit_off,
1796 				       tmp_buf, src_bit_off,
1797 				       eccbits);
1798 
1799 		src_bit_off += eccbits;
1800 		oob_bit_off += eccbits;
1801 	}
1802 
1803 	if (oob_required) {
1804 		oob_byte_off = oob_bit_off / 8;
1805 
1806 		if (oob_byte_off < mtd->oobsize)
1807 			memcpy(oob + oob_byte_off,
1808 			       tmp_buf + mtd->writesize + oob_byte_off,
1809 			       mtd->oobsize - oob_byte_off);
1810 	}
1811 
1812 	return 0;
1813 }
1814 
1815 /*
1816  * This function writes a NAND page without involving the ECC engine (no HW
1817  * ECC generation).
1818  * The tricky part in the GPMI/BCH controller is that it stores ECC bits
1819  * inline (interleaved with payload DATA), and do not align data chunk on
1820  * byte boundaries.
1821  * We thus need to take care moving the OOB area at the right place in the
1822  * final page, which is why we're using gpmi_copy_bits.
1823  *
1824  * See set_geometry_by_ecc_info inline comments to have a full description
1825  * of the layout used by the GPMI controller.
1826  */
gpmi_ecc_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)1827 static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1828 				   int oob_required, int page)
1829 {
1830 	struct mtd_info *mtd = nand_to_mtd(chip);
1831 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1832 	struct bch_geometry *nfc_geo = &this->bch_geometry;
1833 	int eccsize = nfc_geo->ecc_chunk_size;
1834 	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
1835 	u8 *tmp_buf = this->raw_buffer;
1836 	uint8_t *oob = chip->oob_poi;
1837 	size_t dst_bit_off;
1838 	size_t oob_bit_off;
1839 	size_t oob_byte_off;
1840 	int step;
1841 
1842 	/*
1843 	 * Initialize all bits to 1 in case we don't have a buffer for the
1844 	 * payload or oob data in order to leave unspecified bits of data
1845 	 * to their initial state.
1846 	 */
1847 	if (!buf || !oob_required)
1848 		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
1849 
1850 	/*
1851 	 * First copy the metadata section (stored in oob buffer) at the
1852 	 * beginning of the page, as imposed by the GPMI layout.
1853 	 */
1854 	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
1855 	oob_bit_off = nfc_geo->metadata_size * 8;
1856 	dst_bit_off = oob_bit_off;
1857 
1858 	/* Interleave payload data and ECC bits */
1859 	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
1860 		if (buf)
1861 			gpmi_copy_bits(tmp_buf, dst_bit_off,
1862 				       buf, step * eccsize * 8, eccsize * 8);
1863 		dst_bit_off += eccsize * 8;
1864 
1865 		/* Align last ECC block to align a byte boundary */
1866 		if (step == nfc_geo->ecc_chunk_count - 1 &&
1867 		    (oob_bit_off + eccbits) % 8)
1868 			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
1869 
1870 		if (oob_required)
1871 			gpmi_copy_bits(tmp_buf, dst_bit_off,
1872 				       oob, oob_bit_off, eccbits);
1873 
1874 		dst_bit_off += eccbits;
1875 		oob_bit_off += eccbits;
1876 	}
1877 
1878 	oob_byte_off = oob_bit_off / 8;
1879 
1880 	if (oob_required && oob_byte_off < mtd->oobsize)
1881 		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
1882 		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);
1883 
1884 	/*
1885 	 * If required, swap the bad block marker and the first byte of the
1886 	 * metadata section, so that we don't modify the bad block marker.
1887 	 *
1888 	 * See the layout description for a detailed explanation on why this
1889 	 * is needed.
1890 	 */
1891 	if (this->swap_block_mark)
1892 		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
1893 
1894 	return nand_prog_page_op(chip, page, 0, tmp_buf,
1895 				 mtd->writesize + mtd->oobsize);
1896 }
1897 
gpmi_ecc_read_oob_raw(struct nand_chip * chip,int page)1898 static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page)
1899 {
1900 	return gpmi_ecc_read_page_raw(chip, NULL, 1, page);
1901 }
1902 
gpmi_ecc_write_oob_raw(struct nand_chip * chip,int page)1903 static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page)
1904 {
1905 	return gpmi_ecc_write_page_raw(chip, NULL, 1, page);
1906 }
1907 
gpmi_block_markbad(struct nand_chip * chip,loff_t ofs)1908 static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs)
1909 {
1910 	struct mtd_info *mtd = nand_to_mtd(chip);
1911 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
1912 	int ret = 0;
1913 	uint8_t *block_mark;
1914 	int column, page, chipnr;
1915 
1916 	chipnr = (int)(ofs >> chip->chip_shift);
1917 	nand_select_target(chip, chipnr);
1918 
1919 	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
1920 
1921 	/* Write the block mark. */
1922 	block_mark = this->data_buffer_dma;
1923 	block_mark[0] = 0; /* bad block marker */
1924 
1925 	/* Shift to get page */
1926 	page = (int)(ofs >> chip->page_shift);
1927 
1928 	ret = nand_prog_page_op(chip, page, column, block_mark, 1);
1929 
1930 	nand_deselect_target(chip);
1931 
1932 	return ret;
1933 }
1934 
nand_boot_set_geometry(struct gpmi_nand_data * this)1935 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1936 {
1937 	struct boot_rom_geometry *geometry = &this->rom_geometry;
1938 
1939 	/*
1940 	 * Set the boot block stride size.
1941 	 *
1942 	 * In principle, we should be reading this from the OTP bits, since
1943 	 * that's where the ROM is going to get it. In fact, we don't have any
1944 	 * way to read the OTP bits, so we go with the default and hope for the
1945 	 * best.
1946 	 */
1947 	geometry->stride_size_in_pages = 64;
1948 
1949 	/*
1950 	 * Set the search area stride exponent.
1951 	 *
1952 	 * In principle, we should be reading this from the OTP bits, since
1953 	 * that's where the ROM is going to get it. In fact, we don't have any
1954 	 * way to read the OTP bits, so we go with the default and hope for the
1955 	 * best.
1956 	 */
1957 	geometry->search_area_stride_exponent = 2;
1958 	return 0;
1959 }
1960 
1961 static const char  *fingerprint = "STMP";
mx23_check_transcription_stamp(struct gpmi_nand_data * this)1962 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1963 {
1964 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1965 	struct device *dev = this->dev;
1966 	struct nand_chip *chip = &this->nand;
1967 	unsigned int search_area_size_in_strides;
1968 	unsigned int stride;
1969 	unsigned int page;
1970 	u8 *buffer = nand_get_data_buf(chip);
1971 	int found_an_ncb_fingerprint = false;
1972 	int ret;
1973 
1974 	/* Compute the number of strides in a search area. */
1975 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1976 
1977 	nand_select_target(chip, 0);
1978 
1979 	/*
1980 	 * Loop through the first search area, looking for the NCB fingerprint.
1981 	 */
1982 	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1983 
1984 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
1985 		/* Compute the page addresses. */
1986 		page = stride * rom_geo->stride_size_in_pages;
1987 
1988 		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1989 
1990 		/*
1991 		 * Read the NCB fingerprint. The fingerprint is four bytes long
1992 		 * and starts in the 12th byte of the page.
1993 		 */
1994 		ret = nand_read_page_op(chip, page, 12, buffer,
1995 					strlen(fingerprint));
1996 		if (ret)
1997 			continue;
1998 
1999 		/* Look for the fingerprint. */
2000 		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
2001 			found_an_ncb_fingerprint = true;
2002 			break;
2003 		}
2004 
2005 	}
2006 
2007 	nand_deselect_target(chip);
2008 
2009 	if (found_an_ncb_fingerprint)
2010 		dev_dbg(dev, "\tFound a fingerprint\n");
2011 	else
2012 		dev_dbg(dev, "\tNo fingerprint found\n");
2013 	return found_an_ncb_fingerprint;
2014 }
2015 
2016 /* Writes a transcription stamp. */
mx23_write_transcription_stamp(struct gpmi_nand_data * this)2017 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
2018 {
2019 	struct device *dev = this->dev;
2020 	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
2021 	struct nand_chip *chip = &this->nand;
2022 	struct mtd_info *mtd = nand_to_mtd(chip);
2023 	unsigned int block_size_in_pages;
2024 	unsigned int search_area_size_in_strides;
2025 	unsigned int search_area_size_in_pages;
2026 	unsigned int search_area_size_in_blocks;
2027 	unsigned int block;
2028 	unsigned int stride;
2029 	unsigned int page;
2030 	u8 *buffer = nand_get_data_buf(chip);
2031 	int status;
2032 
2033 	/* Compute the search area geometry. */
2034 	block_size_in_pages = mtd->erasesize / mtd->writesize;
2035 	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
2036 	search_area_size_in_pages = search_area_size_in_strides *
2037 					rom_geo->stride_size_in_pages;
2038 	search_area_size_in_blocks =
2039 		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
2040 				    block_size_in_pages;
2041 
2042 	dev_dbg(dev, "Search Area Geometry :\n");
2043 	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
2044 	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
2045 	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
2046 
2047 	nand_select_target(chip, 0);
2048 
2049 	/* Loop over blocks in the first search area, erasing them. */
2050 	dev_dbg(dev, "Erasing the search area...\n");
2051 
2052 	for (block = 0; block < search_area_size_in_blocks; block++) {
2053 		/* Erase this block. */
2054 		dev_dbg(dev, "\tErasing block 0x%x\n", block);
2055 		status = nand_erase_op(chip, block);
2056 		if (status)
2057 			dev_err(dev, "[%s] Erase failed.\n", __func__);
2058 	}
2059 
2060 	/* Write the NCB fingerprint into the page buffer. */
2061 	memset(buffer, ~0, mtd->writesize);
2062 	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
2063 
2064 	/* Loop through the first search area, writing NCB fingerprints. */
2065 	dev_dbg(dev, "Writing NCB fingerprints...\n");
2066 	for (stride = 0; stride < search_area_size_in_strides; stride++) {
2067 		/* Compute the page addresses. */
2068 		page = stride * rom_geo->stride_size_in_pages;
2069 
2070 		/* Write the first page of the current stride. */
2071 		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
2072 
2073 		status = chip->ecc.write_page_raw(chip, buffer, 0, page);
2074 		if (status)
2075 			dev_err(dev, "[%s] Write failed.\n", __func__);
2076 	}
2077 
2078 	nand_deselect_target(chip);
2079 
2080 	return 0;
2081 }
2082 
mx23_boot_init(struct gpmi_nand_data * this)2083 static int mx23_boot_init(struct gpmi_nand_data  *this)
2084 {
2085 	struct device *dev = this->dev;
2086 	struct nand_chip *chip = &this->nand;
2087 	struct mtd_info *mtd = nand_to_mtd(chip);
2088 	unsigned int block_count;
2089 	unsigned int block;
2090 	int     chipnr;
2091 	int     page;
2092 	loff_t  byte;
2093 	uint8_t block_mark;
2094 	int     ret = 0;
2095 
2096 	/*
2097 	 * If control arrives here, we can't use block mark swapping, which
2098 	 * means we're forced to use transcription. First, scan for the
2099 	 * transcription stamp. If we find it, then we don't have to do
2100 	 * anything -- the block marks are already transcribed.
2101 	 */
2102 	if (mx23_check_transcription_stamp(this))
2103 		return 0;
2104 
2105 	/*
2106 	 * If control arrives here, we couldn't find a transcription stamp, so
2107 	 * so we presume the block marks are in the conventional location.
2108 	 */
2109 	dev_dbg(dev, "Transcribing bad block marks...\n");
2110 
2111 	/* Compute the number of blocks in the entire medium. */
2112 	block_count = nanddev_eraseblocks_per_target(&chip->base);
2113 
2114 	/*
2115 	 * Loop over all the blocks in the medium, transcribing block marks as
2116 	 * we go.
2117 	 */
2118 	for (block = 0; block < block_count; block++) {
2119 		/*
2120 		 * Compute the chip, page and byte addresses for this block's
2121 		 * conventional mark.
2122 		 */
2123 		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
2124 		page = block << (chip->phys_erase_shift - chip->page_shift);
2125 		byte = block <<  chip->phys_erase_shift;
2126 
2127 		/* Send the command to read the conventional block mark. */
2128 		nand_select_target(chip, chipnr);
2129 		ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
2130 					1);
2131 		nand_deselect_target(chip);
2132 
2133 		if (ret)
2134 			continue;
2135 
2136 		/*
2137 		 * Check if the block is marked bad. If so, we need to mark it
2138 		 * again, but this time the result will be a mark in the
2139 		 * location where we transcribe block marks.
2140 		 */
2141 		if (block_mark != 0xff) {
2142 			dev_dbg(dev, "Transcribing mark in block %u\n", block);
2143 			ret = chip->legacy.block_markbad(chip, byte);
2144 			if (ret)
2145 				dev_err(dev,
2146 					"Failed to mark block bad with ret %d\n",
2147 					ret);
2148 		}
2149 	}
2150 
2151 	/* Write the stamp that indicates we've transcribed the block marks. */
2152 	mx23_write_transcription_stamp(this);
2153 	return 0;
2154 }
2155 
nand_boot_init(struct gpmi_nand_data * this)2156 static int nand_boot_init(struct gpmi_nand_data  *this)
2157 {
2158 	nand_boot_set_geometry(this);
2159 
2160 	/* This is ROM arch-specific initilization before the BBT scanning. */
2161 	if (GPMI_IS_MX23(this))
2162 		return mx23_boot_init(this);
2163 	return 0;
2164 }
2165 
gpmi_set_geometry(struct gpmi_nand_data * this)2166 static int gpmi_set_geometry(struct gpmi_nand_data *this)
2167 {
2168 	int ret;
2169 
2170 	/* Free the temporary DMA memory for reading ID. */
2171 	gpmi_free_dma_buffer(this);
2172 
2173 	/* Set up the NFC geometry which is used by BCH. */
2174 	ret = bch_set_geometry(this);
2175 	if (ret) {
2176 		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
2177 		return ret;
2178 	}
2179 
2180 	/* Alloc the new DMA buffers according to the pagesize and oobsize */
2181 	return gpmi_alloc_dma_buffer(this);
2182 }
2183 
gpmi_init_last(struct gpmi_nand_data * this)2184 static int gpmi_init_last(struct gpmi_nand_data *this)
2185 {
2186 	struct nand_chip *chip = &this->nand;
2187 	struct mtd_info *mtd = nand_to_mtd(chip);
2188 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2189 	struct bch_geometry *bch_geo = &this->bch_geometry;
2190 	int ret;
2191 
2192 	/* Set up the medium geometry */
2193 	ret = gpmi_set_geometry(this);
2194 	if (ret)
2195 		return ret;
2196 
2197 	/* Init the nand_ecc_ctrl{} */
2198 	ecc->read_page	= gpmi_ecc_read_page;
2199 	ecc->write_page	= gpmi_ecc_write_page;
2200 	ecc->read_oob	= gpmi_ecc_read_oob;
2201 	ecc->write_oob	= gpmi_ecc_write_oob;
2202 	ecc->read_page_raw = gpmi_ecc_read_page_raw;
2203 	ecc->write_page_raw = gpmi_ecc_write_page_raw;
2204 	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
2205 	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
2206 	ecc->mode	= NAND_ECC_HW;
2207 	ecc->size	= bch_geo->ecc_chunk_size;
2208 	ecc->strength	= bch_geo->ecc_strength;
2209 	mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
2210 
2211 	/*
2212 	 * We only enable the subpage read when:
2213 	 *  (1) the chip is imx6, and
2214 	 *  (2) the size of the ECC parity is byte aligned.
2215 	 */
2216 	if (GPMI_IS_MX6(this) &&
2217 		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
2218 		ecc->read_subpage = gpmi_ecc_read_subpage;
2219 		chip->options |= NAND_SUBPAGE_READ;
2220 	}
2221 
2222 	return 0;
2223 }
2224 
gpmi_nand_attach_chip(struct nand_chip * chip)2225 static int gpmi_nand_attach_chip(struct nand_chip *chip)
2226 {
2227 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2228 	int ret;
2229 
2230 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2231 		chip->bbt_options |= NAND_BBT_NO_OOB;
2232 
2233 		if (of_property_read_bool(this->dev->of_node,
2234 					  "fsl,no-blockmark-swap"))
2235 			this->swap_block_mark = false;
2236 	}
2237 	dev_dbg(this->dev, "Blockmark swapping %sabled\n",
2238 		this->swap_block_mark ? "en" : "dis");
2239 
2240 	ret = gpmi_init_last(this);
2241 	if (ret)
2242 		return ret;
2243 
2244 	chip->options |= NAND_SKIP_BBTSCAN;
2245 
2246 	return 0;
2247 }
2248 
get_next_transfer(struct gpmi_nand_data * this)2249 static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
2250 {
2251 	struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
2252 
2253 	this->ntransfers++;
2254 
2255 	if (this->ntransfers == GPMI_MAX_TRANSFERS)
2256 		return NULL;
2257 
2258 	return transfer;
2259 }
2260 
gpmi_chain_command(struct gpmi_nand_data * this,u8 cmd,const u8 * addr,int naddr)2261 static struct dma_async_tx_descriptor *gpmi_chain_command(
2262 	struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
2263 {
2264 	struct dma_chan *channel = get_dma_chan(this);
2265 	struct dma_async_tx_descriptor *desc;
2266 	struct gpmi_transfer *transfer;
2267 	int chip = this->nand.cur_cs;
2268 	u32 pio[3];
2269 
2270 	/* [1] send out the PIO words */
2271 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2272 		| BM_GPMI_CTRL0_WORD_LENGTH
2273 		| BF_GPMI_CTRL0_CS(chip, this)
2274 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2275 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
2276 		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
2277 		| BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
2278 	pio[1] = 0;
2279 	pio[2] = 0;
2280 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2281 				      DMA_TRANS_NONE, 0);
2282 	if (!desc)
2283 		return NULL;
2284 
2285 	transfer = get_next_transfer(this);
2286 	if (!transfer)
2287 		return NULL;
2288 
2289 	transfer->cmdbuf[0] = cmd;
2290 	if (naddr)
2291 		memcpy(&transfer->cmdbuf[1], addr, naddr);
2292 
2293 	sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
2294 	dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
2295 
2296 	transfer->direction = DMA_TO_DEVICE;
2297 
2298 	desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
2299 				       MXS_DMA_CTRL_WAIT4END);
2300 	return desc;
2301 }
2302 
gpmi_chain_wait_ready(struct gpmi_nand_data * this)2303 static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
2304 	struct gpmi_nand_data *this)
2305 {
2306 	struct dma_chan *channel = get_dma_chan(this);
2307 	u32 pio[2];
2308 
2309 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
2310 		| BM_GPMI_CTRL0_WORD_LENGTH
2311 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2312 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2313 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2314 		| BF_GPMI_CTRL0_XFER_COUNT(0);
2315 	pio[1] = 0;
2316 
2317 	return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
2318 				MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
2319 }
2320 
gpmi_chain_data_read(struct gpmi_nand_data * this,void * buf,int raw_len,bool * direct)2321 static struct dma_async_tx_descriptor *gpmi_chain_data_read(
2322 	struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
2323 {
2324 	struct dma_async_tx_descriptor *desc;
2325 	struct dma_chan *channel = get_dma_chan(this);
2326 	struct gpmi_transfer *transfer;
2327 	u32 pio[6] = {};
2328 
2329 	transfer = get_next_transfer(this);
2330 	if (!transfer)
2331 		return NULL;
2332 
2333 	transfer->direction = DMA_FROM_DEVICE;
2334 
2335 	*direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
2336 				   DMA_FROM_DEVICE);
2337 
2338 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
2339 		| BM_GPMI_CTRL0_WORD_LENGTH
2340 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2341 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2342 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2343 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2344 
2345 	if (this->bch) {
2346 		pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
2347 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
2348 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
2349 				| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2350 		pio[3] = raw_len;
2351 		pio[4] = transfer->sgl.dma_address;
2352 		pio[5] = this->auxiliary_phys;
2353 	}
2354 
2355 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2356 				      DMA_TRANS_NONE, 0);
2357 	if (!desc)
2358 		return NULL;
2359 
2360 	if (!this->bch)
2361 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2362 					     DMA_DEV_TO_MEM,
2363 					     MXS_DMA_CTRL_WAIT4END);
2364 
2365 	return desc;
2366 }
2367 
gpmi_chain_data_write(struct gpmi_nand_data * this,const void * buf,int raw_len)2368 static struct dma_async_tx_descriptor *gpmi_chain_data_write(
2369 	struct gpmi_nand_data *this, const void *buf, int raw_len)
2370 {
2371 	struct dma_chan *channel = get_dma_chan(this);
2372 	struct dma_async_tx_descriptor *desc;
2373 	struct gpmi_transfer *transfer;
2374 	u32 pio[6] = {};
2375 
2376 	transfer = get_next_transfer(this);
2377 	if (!transfer)
2378 		return NULL;
2379 
2380 	transfer->direction = DMA_TO_DEVICE;
2381 
2382 	prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
2383 
2384 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
2385 		| BM_GPMI_CTRL0_WORD_LENGTH
2386 		| BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
2387 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
2388 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
2389 		| BF_GPMI_CTRL0_XFER_COUNT(raw_len);
2390 
2391 	if (this->bch) {
2392 		pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
2393 			| BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
2394 			| BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
2395 					BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
2396 		pio[3] = raw_len;
2397 		pio[4] = transfer->sgl.dma_address;
2398 		pio[5] = this->auxiliary_phys;
2399 	}
2400 
2401 	desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
2402 				      DMA_TRANS_NONE,
2403 				      (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
2404 	if (!desc)
2405 		return NULL;
2406 
2407 	if (!this->bch)
2408 		desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
2409 					       DMA_MEM_TO_DEV,
2410 					       MXS_DMA_CTRL_WAIT4END);
2411 
2412 	return desc;
2413 }
2414 
gpmi_nfc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)2415 static int gpmi_nfc_exec_op(struct nand_chip *chip,
2416 			     const struct nand_operation *op,
2417 			     bool check_only)
2418 {
2419 	const struct nand_op_instr *instr;
2420 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
2421 	struct dma_async_tx_descriptor *desc = NULL;
2422 	int i, ret, buf_len = 0, nbufs = 0;
2423 	u8 cmd = 0;
2424 	void *buf_read = NULL;
2425 	const void *buf_write = NULL;
2426 	bool direct = false;
2427 	struct completion *dma_completion, *bch_completion;
2428 	unsigned long to;
2429 
2430 	this->ntransfers = 0;
2431 	for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
2432 		this->transfers[i].direction = DMA_NONE;
2433 
2434 	ret = pm_runtime_get_sync(this->dev);
2435 	if (ret < 0) {
2436 		pm_runtime_put_noidle(this->dev);
2437 		return ret;
2438 	}
2439 
2440 	/*
2441 	 * This driver currently supports only one NAND chip. Plus, dies share
2442 	 * the same configuration. So once timings have been applied on the
2443 	 * controller side, they will not change anymore. When the time will
2444 	 * come, the check on must_apply_timings will have to be dropped.
2445 	 */
2446 	if (this->hw.must_apply_timings) {
2447 		this->hw.must_apply_timings = false;
2448 		ret = gpmi_nfc_apply_timings(this);
2449 		if (ret)
2450 			goto out_pm;
2451 	}
2452 
2453 	dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
2454 
2455 	for (i = 0; i < op->ninstrs; i++) {
2456 		instr = &op->instrs[i];
2457 
2458 		nand_op_trace("  ", instr);
2459 
2460 		switch (instr->type) {
2461 		case NAND_OP_WAITRDY_INSTR:
2462 			desc = gpmi_chain_wait_ready(this);
2463 			break;
2464 		case NAND_OP_CMD_INSTR:
2465 			cmd = instr->ctx.cmd.opcode;
2466 
2467 			/*
2468 			 * When this command has an address cycle chain it
2469 			 * together with the address cycle
2470 			 */
2471 			if (i + 1 != op->ninstrs &&
2472 			    op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
2473 				continue;
2474 
2475 			desc = gpmi_chain_command(this, cmd, NULL, 0);
2476 
2477 			break;
2478 		case NAND_OP_ADDR_INSTR:
2479 			desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
2480 						  instr->ctx.addr.naddrs);
2481 			break;
2482 		case NAND_OP_DATA_OUT_INSTR:
2483 			buf_write = instr->ctx.data.buf.out;
2484 			buf_len = instr->ctx.data.len;
2485 			nbufs++;
2486 
2487 			desc = gpmi_chain_data_write(this, buf_write, buf_len);
2488 
2489 			break;
2490 		case NAND_OP_DATA_IN_INSTR:
2491 			if (!instr->ctx.data.len)
2492 				break;
2493 			buf_read = instr->ctx.data.buf.in;
2494 			buf_len = instr->ctx.data.len;
2495 			nbufs++;
2496 
2497 			desc = gpmi_chain_data_read(this, buf_read, buf_len,
2498 						   &direct);
2499 			break;
2500 		}
2501 
2502 		if (!desc) {
2503 			ret = -ENXIO;
2504 			goto unmap;
2505 		}
2506 	}
2507 
2508 	dev_dbg(this->dev, "%s setup done\n", __func__);
2509 
2510 	if (nbufs > 1) {
2511 		dev_err(this->dev, "Multiple data instructions not supported\n");
2512 		ret = -EINVAL;
2513 		goto unmap;
2514 	}
2515 
2516 	if (this->bch) {
2517 		writel(this->bch_flashlayout0,
2518 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
2519 		writel(this->bch_flashlayout1,
2520 		       this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
2521 	}
2522 
2523 	desc->callback = dma_irq_callback;
2524 	desc->callback_param = this;
2525 	dma_completion = &this->dma_done;
2526 	bch_completion = NULL;
2527 
2528 	init_completion(dma_completion);
2529 
2530 	if (this->bch && buf_read) {
2531 		writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2532 		       this->resources.bch_regs + HW_BCH_CTRL_SET);
2533 		bch_completion = &this->bch_done;
2534 		init_completion(bch_completion);
2535 	}
2536 
2537 	dmaengine_submit(desc);
2538 	dma_async_issue_pending(get_dma_chan(this));
2539 
2540 	to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
2541 	if (!to) {
2542 		dev_err(this->dev, "DMA timeout, last DMA\n");
2543 		gpmi_dump_info(this);
2544 		ret = -ETIMEDOUT;
2545 		goto unmap;
2546 	}
2547 
2548 	if (this->bch && buf_read) {
2549 		to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000));
2550 		if (!to) {
2551 			dev_err(this->dev, "BCH timeout, last DMA\n");
2552 			gpmi_dump_info(this);
2553 			ret = -ETIMEDOUT;
2554 			goto unmap;
2555 		}
2556 	}
2557 
2558 	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
2559 	       this->resources.bch_regs + HW_BCH_CTRL_CLR);
2560 	gpmi_clear_bch(this);
2561 
2562 	ret = 0;
2563 
2564 unmap:
2565 	for (i = 0; i < this->ntransfers; i++) {
2566 		struct gpmi_transfer *transfer = &this->transfers[i];
2567 
2568 		if (transfer->direction != DMA_NONE)
2569 			dma_unmap_sg(this->dev, &transfer->sgl, 1,
2570 				     transfer->direction);
2571 	}
2572 
2573 	if (!ret && buf_read && !direct)
2574 		memcpy(buf_read, this->data_buffer_dma,
2575 		       gpmi_raw_len_to_len(this, buf_len));
2576 
2577 	this->bch = false;
2578 
2579 out_pm:
2580 	pm_runtime_mark_last_busy(this->dev);
2581 	pm_runtime_put_autosuspend(this->dev);
2582 
2583 	return ret;
2584 }
2585 
2586 static const struct nand_controller_ops gpmi_nand_controller_ops = {
2587 	.attach_chip = gpmi_nand_attach_chip,
2588 	.setup_data_interface = gpmi_setup_data_interface,
2589 	.exec_op = gpmi_nfc_exec_op,
2590 };
2591 
gpmi_nand_init(struct gpmi_nand_data * this)2592 static int gpmi_nand_init(struct gpmi_nand_data *this)
2593 {
2594 	struct nand_chip *chip = &this->nand;
2595 	struct mtd_info  *mtd = nand_to_mtd(chip);
2596 	int ret;
2597 
2598 	/* init the MTD data structures */
2599 	mtd->name		= "gpmi-nand";
2600 	mtd->dev.parent		= this->dev;
2601 
2602 	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
2603 	nand_set_controller_data(chip, this);
2604 	nand_set_flash_node(chip, this->pdev->dev.of_node);
2605 	chip->legacy.block_markbad = gpmi_block_markbad;
2606 	chip->badblock_pattern	= &gpmi_bbt_descr;
2607 	chip->options		|= NAND_NO_SUBPAGE_WRITE;
2608 
2609 	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
2610 	this->swap_block_mark = !GPMI_IS_MX23(this);
2611 
2612 	/*
2613 	 * Allocate a temporary DMA buffer for reading ID in the
2614 	 * nand_scan_ident().
2615 	 */
2616 	this->bch_geometry.payload_size = 1024;
2617 	this->bch_geometry.auxiliary_size = 128;
2618 	ret = gpmi_alloc_dma_buffer(this);
2619 	if (ret)
2620 		return ret;
2621 
2622 	nand_controller_init(&this->base);
2623 	this->base.ops = &gpmi_nand_controller_ops;
2624 	chip->controller = &this->base;
2625 
2626 	ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
2627 	if (ret)
2628 		goto err_out;
2629 
2630 	ret = nand_boot_init(this);
2631 	if (ret)
2632 		goto err_nand_cleanup;
2633 	ret = nand_create_bbt(chip);
2634 	if (ret)
2635 		goto err_nand_cleanup;
2636 
2637 	ret = mtd_device_register(mtd, NULL, 0);
2638 	if (ret)
2639 		goto err_nand_cleanup;
2640 	return 0;
2641 
2642 err_nand_cleanup:
2643 	nand_cleanup(chip);
2644 err_out:
2645 	gpmi_free_dma_buffer(this);
2646 	return ret;
2647 }
2648 
2649 static const struct of_device_id gpmi_nand_id_table[] = {
2650 	{
2651 		.compatible = "fsl,imx23-gpmi-nand",
2652 		.data = &gpmi_devdata_imx23,
2653 	}, {
2654 		.compatible = "fsl,imx28-gpmi-nand",
2655 		.data = &gpmi_devdata_imx28,
2656 	}, {
2657 		.compatible = "fsl,imx6q-gpmi-nand",
2658 		.data = &gpmi_devdata_imx6q,
2659 	}, {
2660 		.compatible = "fsl,imx6sx-gpmi-nand",
2661 		.data = &gpmi_devdata_imx6sx,
2662 	}, {
2663 		.compatible = "fsl,imx7d-gpmi-nand",
2664 		.data = &gpmi_devdata_imx7d,
2665 	}, {}
2666 };
2667 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
2668 
gpmi_nand_probe(struct platform_device * pdev)2669 static int gpmi_nand_probe(struct platform_device *pdev)
2670 {
2671 	struct gpmi_nand_data *this;
2672 	const struct of_device_id *of_id;
2673 	int ret;
2674 
2675 	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
2676 	if (!this)
2677 		return -ENOMEM;
2678 
2679 	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
2680 	if (of_id) {
2681 		this->devdata = of_id->data;
2682 	} else {
2683 		dev_err(&pdev->dev, "Failed to find the right device id.\n");
2684 		return -ENODEV;
2685 	}
2686 
2687 	platform_set_drvdata(pdev, this);
2688 	this->pdev  = pdev;
2689 	this->dev   = &pdev->dev;
2690 
2691 	ret = acquire_resources(this);
2692 	if (ret)
2693 		goto exit_acquire_resources;
2694 
2695 	ret = __gpmi_enable_clk(this, true);
2696 	if (ret)
2697 		goto exit_nfc_init;
2698 
2699 	pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
2700 	pm_runtime_use_autosuspend(&pdev->dev);
2701 	pm_runtime_set_active(&pdev->dev);
2702 	pm_runtime_enable(&pdev->dev);
2703 	pm_runtime_get_sync(&pdev->dev);
2704 
2705 	ret = gpmi_init(this);
2706 	if (ret)
2707 		goto exit_nfc_init;
2708 
2709 	ret = gpmi_nand_init(this);
2710 	if (ret)
2711 		goto exit_nfc_init;
2712 
2713 	pm_runtime_mark_last_busy(&pdev->dev);
2714 	pm_runtime_put_autosuspend(&pdev->dev);
2715 
2716 	dev_info(this->dev, "driver registered.\n");
2717 
2718 	return 0;
2719 
2720 exit_nfc_init:
2721 	pm_runtime_put(&pdev->dev);
2722 	pm_runtime_disable(&pdev->dev);
2723 	release_resources(this);
2724 exit_acquire_resources:
2725 
2726 	return ret;
2727 }
2728 
gpmi_nand_remove(struct platform_device * pdev)2729 static int gpmi_nand_remove(struct platform_device *pdev)
2730 {
2731 	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
2732 
2733 	pm_runtime_put_sync(&pdev->dev);
2734 	pm_runtime_disable(&pdev->dev);
2735 
2736 	nand_release(&this->nand);
2737 	gpmi_free_dma_buffer(this);
2738 	release_resources(this);
2739 	return 0;
2740 }
2741 
2742 #ifdef CONFIG_PM_SLEEP
gpmi_pm_suspend(struct device * dev)2743 static int gpmi_pm_suspend(struct device *dev)
2744 {
2745 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2746 
2747 	release_dma_channels(this);
2748 	return 0;
2749 }
2750 
gpmi_pm_resume(struct device * dev)2751 static int gpmi_pm_resume(struct device *dev)
2752 {
2753 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2754 	int ret;
2755 
2756 	ret = acquire_dma_channels(this);
2757 	if (ret < 0)
2758 		return ret;
2759 
2760 	/* re-init the GPMI registers */
2761 	ret = gpmi_init(this);
2762 	if (ret) {
2763 		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
2764 		return ret;
2765 	}
2766 
2767 	/* Set flag to get timing setup restored for next exec_op */
2768 	if (this->hw.clk_rate)
2769 		this->hw.must_apply_timings = true;
2770 
2771 	/* re-init the BCH registers */
2772 	ret = bch_set_geometry(this);
2773 	if (ret) {
2774 		dev_err(this->dev, "Error setting BCH : %d\n", ret);
2775 		return ret;
2776 	}
2777 
2778 	return 0;
2779 }
2780 #endif /* CONFIG_PM_SLEEP */
2781 
gpmi_runtime_suspend(struct device * dev)2782 static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
2783 {
2784 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2785 
2786 	return __gpmi_enable_clk(this, false);
2787 }
2788 
gpmi_runtime_resume(struct device * dev)2789 static int __maybe_unused gpmi_runtime_resume(struct device *dev)
2790 {
2791 	struct gpmi_nand_data *this = dev_get_drvdata(dev);
2792 
2793 	return __gpmi_enable_clk(this, true);
2794 }
2795 
2796 static const struct dev_pm_ops gpmi_pm_ops = {
2797 	SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
2798 	SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
2799 };
2800 
2801 static struct platform_driver gpmi_nand_driver = {
2802 	.driver = {
2803 		.name = "gpmi-nand",
2804 		.pm = &gpmi_pm_ops,
2805 		.of_match_table = gpmi_nand_id_table,
2806 	},
2807 	.probe   = gpmi_nand_probe,
2808 	.remove  = gpmi_nand_remove,
2809 };
2810 module_platform_driver(gpmi_nand_driver);
2811 
2812 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
2813 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
2814 MODULE_LICENSE("GPL");
2815