• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  * Copyright (c) Nokia Corporation, 2007
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём),
7  *         Frank Haverkamp
8  */
9 
10 /*
11  * This file includes UBI initialization and building of UBI devices.
12  *
13  * When UBI is initialized, it attaches all the MTD devices specified as the
14  * module load parameters or the kernel boot parameters. If MTD devices were
15  * specified, UBI does not attach any MTD device, but it is possible to do
16  * later using the "UBI control device".
17  */
18 
19 #include <linux/err.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/stringify.h>
23 #include <linux/namei.h>
24 #include <linux/stat.h>
25 #include <linux/miscdevice.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/log2.h>
28 #include <linux/kthread.h>
29 #include <linux/kernel.h>
30 #include <linux/slab.h>
31 #include <linux/major.h>
32 #include "ubi.h"
33 
34 /* Maximum length of the 'mtd=' parameter */
35 #define MTD_PARAM_LEN_MAX 64
36 
37 /* Maximum number of comma-separated items in the 'mtd=' parameter */
38 #define MTD_PARAM_MAX_COUNT 4
39 
40 /* Maximum value for the number of bad PEBs per 1024 PEBs */
41 #define MAX_MTD_UBI_BEB_LIMIT 768
42 
43 #ifdef CONFIG_MTD_UBI_MODULE
44 #define ubi_is_module() 1
45 #else
46 #define ubi_is_module() 0
47 #endif
48 
49 /**
50  * struct mtd_dev_param - MTD device parameter description data structure.
51  * @name: MTD character device node path, MTD device name, or MTD device number
52  *        string
53  * @vid_hdr_offs: VID header offset
54  * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
55  */
56 struct mtd_dev_param {
57 	char name[MTD_PARAM_LEN_MAX];
58 	int ubi_num;
59 	int vid_hdr_offs;
60 	int max_beb_per1024;
61 };
62 
63 /* Numbers of elements set in the @mtd_dev_param array */
64 static int mtd_devs;
65 
66 /* MTD devices specification parameters */
67 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
68 #ifdef CONFIG_MTD_UBI_FASTMAP
69 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
70 static bool fm_autoconvert;
71 static bool fm_debug;
72 #endif
73 
74 /* Slab cache for wear-leveling entries */
75 struct kmem_cache *ubi_wl_entry_slab;
76 
77 /* UBI control character device */
78 static struct miscdevice ubi_ctrl_cdev = {
79 	.minor = MISC_DYNAMIC_MINOR,
80 	.name = "ubi_ctrl",
81 	.fops = &ubi_ctrl_cdev_operations,
82 };
83 
84 /* All UBI devices in system */
85 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
86 
87 /* Serializes UBI devices creations and removals */
88 DEFINE_MUTEX(ubi_devices_mutex);
89 
90 /* Protects @ubi_devices and @ubi->ref_count */
91 static DEFINE_SPINLOCK(ubi_devices_lock);
92 
93 /* "Show" method for files in '/<sysfs>/class/ubi/' */
94 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
version_show(struct class * class,struct class_attribute * attr,char * buf)95 static ssize_t version_show(struct class *class, struct class_attribute *attr,
96 			    char *buf)
97 {
98 	return sprintf(buf, "%d\n", UBI_VERSION);
99 }
100 static CLASS_ATTR_RO(version);
101 
102 static struct attribute *ubi_class_attrs[] = {
103 	&class_attr_version.attr,
104 	NULL,
105 };
106 ATTRIBUTE_GROUPS(ubi_class);
107 
108 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
109 struct class ubi_class = {
110 	.name		= UBI_NAME_STR,
111 	.owner		= THIS_MODULE,
112 	.class_groups	= ubi_class_groups,
113 };
114 
115 static ssize_t dev_attribute_show(struct device *dev,
116 				  struct device_attribute *attr, char *buf);
117 
118 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
119 static struct device_attribute dev_eraseblock_size =
120 	__ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
121 static struct device_attribute dev_avail_eraseblocks =
122 	__ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
123 static struct device_attribute dev_total_eraseblocks =
124 	__ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
125 static struct device_attribute dev_volumes_count =
126 	__ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
127 static struct device_attribute dev_max_ec =
128 	__ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
129 static struct device_attribute dev_reserved_for_bad =
130 	__ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
131 static struct device_attribute dev_bad_peb_count =
132 	__ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
133 static struct device_attribute dev_max_vol_count =
134 	__ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
135 static struct device_attribute dev_min_io_size =
136 	__ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
137 static struct device_attribute dev_bgt_enabled =
138 	__ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
139 static struct device_attribute dev_mtd_num =
140 	__ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
141 static struct device_attribute dev_ro_mode =
142 	__ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL);
143 
144 /**
145  * ubi_volume_notify - send a volume change notification.
146  * @ubi: UBI device description object
147  * @vol: volume description object of the changed volume
148  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
149  *
150  * This is a helper function which notifies all subscribers about a volume
151  * change event (creation, removal, re-sizing, re-naming, updating). Returns
152  * zero in case of success and a negative error code in case of failure.
153  */
ubi_volume_notify(struct ubi_device * ubi,struct ubi_volume * vol,int ntype)154 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
155 {
156 	int ret;
157 	struct ubi_notification nt;
158 
159 	ubi_do_get_device_info(ubi, &nt.di);
160 	ubi_do_get_volume_info(ubi, vol, &nt.vi);
161 
162 	switch (ntype) {
163 	case UBI_VOLUME_ADDED:
164 	case UBI_VOLUME_REMOVED:
165 	case UBI_VOLUME_RESIZED:
166 	case UBI_VOLUME_RENAMED:
167 		ret = ubi_update_fastmap(ubi);
168 		if (ret)
169 			ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
170 	}
171 
172 	return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
173 }
174 
175 /**
176  * ubi_notify_all - send a notification to all volumes.
177  * @ubi: UBI device description object
178  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
179  * @nb: the notifier to call
180  *
181  * This function walks all volumes of UBI device @ubi and sends the @ntype
182  * notification for each volume. If @nb is %NULL, then all registered notifiers
183  * are called, otherwise only the @nb notifier is called. Returns the number of
184  * sent notifications.
185  */
ubi_notify_all(struct ubi_device * ubi,int ntype,struct notifier_block * nb)186 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
187 {
188 	struct ubi_notification nt;
189 	int i, count = 0;
190 
191 	ubi_do_get_device_info(ubi, &nt.di);
192 
193 	mutex_lock(&ubi->device_mutex);
194 	for (i = 0; i < ubi->vtbl_slots; i++) {
195 		/*
196 		 * Since the @ubi->device is locked, and we are not going to
197 		 * change @ubi->volumes, we do not have to lock
198 		 * @ubi->volumes_lock.
199 		 */
200 		if (!ubi->volumes[i])
201 			continue;
202 
203 		ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
204 		if (nb)
205 			nb->notifier_call(nb, ntype, &nt);
206 		else
207 			blocking_notifier_call_chain(&ubi_notifiers, ntype,
208 						     &nt);
209 		count += 1;
210 	}
211 	mutex_unlock(&ubi->device_mutex);
212 
213 	return count;
214 }
215 
216 /**
217  * ubi_enumerate_volumes - send "add" notification for all existing volumes.
218  * @nb: the notifier to call
219  *
220  * This function walks all UBI devices and volumes and sends the
221  * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
222  * registered notifiers are called, otherwise only the @nb notifier is called.
223  * Returns the number of sent notifications.
224  */
ubi_enumerate_volumes(struct notifier_block * nb)225 int ubi_enumerate_volumes(struct notifier_block *nb)
226 {
227 	int i, count = 0;
228 
229 	/*
230 	 * Since the @ubi_devices_mutex is locked, and we are not going to
231 	 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
232 	 */
233 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
234 		struct ubi_device *ubi = ubi_devices[i];
235 
236 		if (!ubi)
237 			continue;
238 		count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
239 	}
240 
241 	return count;
242 }
243 
244 /**
245  * ubi_get_device - get UBI device.
246  * @ubi_num: UBI device number
247  *
248  * This function returns UBI device description object for UBI device number
249  * @ubi_num, or %NULL if the device does not exist. This function increases the
250  * device reference count to prevent removal of the device. In other words, the
251  * device cannot be removed if its reference count is not zero.
252  */
ubi_get_device(int ubi_num)253 struct ubi_device *ubi_get_device(int ubi_num)
254 {
255 	struct ubi_device *ubi;
256 
257 	spin_lock(&ubi_devices_lock);
258 	ubi = ubi_devices[ubi_num];
259 	if (ubi) {
260 		ubi_assert(ubi->ref_count >= 0);
261 		ubi->ref_count += 1;
262 		get_device(&ubi->dev);
263 	}
264 	spin_unlock(&ubi_devices_lock);
265 
266 	return ubi;
267 }
268 
269 /**
270  * ubi_put_device - drop an UBI device reference.
271  * @ubi: UBI device description object
272  */
ubi_put_device(struct ubi_device * ubi)273 void ubi_put_device(struct ubi_device *ubi)
274 {
275 	spin_lock(&ubi_devices_lock);
276 	ubi->ref_count -= 1;
277 	put_device(&ubi->dev);
278 	spin_unlock(&ubi_devices_lock);
279 }
280 
281 /**
282  * ubi_get_by_major - get UBI device by character device major number.
283  * @major: major number
284  *
285  * This function is similar to 'ubi_get_device()', but it searches the device
286  * by its major number.
287  */
ubi_get_by_major(int major)288 struct ubi_device *ubi_get_by_major(int major)
289 {
290 	int i;
291 	struct ubi_device *ubi;
292 
293 	spin_lock(&ubi_devices_lock);
294 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
295 		ubi = ubi_devices[i];
296 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
297 			ubi_assert(ubi->ref_count >= 0);
298 			ubi->ref_count += 1;
299 			get_device(&ubi->dev);
300 			spin_unlock(&ubi_devices_lock);
301 			return ubi;
302 		}
303 	}
304 	spin_unlock(&ubi_devices_lock);
305 
306 	return NULL;
307 }
308 
309 /**
310  * ubi_major2num - get UBI device number by character device major number.
311  * @major: major number
312  *
313  * This function searches UBI device number object by its major number. If UBI
314  * device was not found, this function returns -ENODEV, otherwise the UBI device
315  * number is returned.
316  */
ubi_major2num(int major)317 int ubi_major2num(int major)
318 {
319 	int i, ubi_num = -ENODEV;
320 
321 	spin_lock(&ubi_devices_lock);
322 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
323 		struct ubi_device *ubi = ubi_devices[i];
324 
325 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
326 			ubi_num = ubi->ubi_num;
327 			break;
328 		}
329 	}
330 	spin_unlock(&ubi_devices_lock);
331 
332 	return ubi_num;
333 }
334 
335 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
dev_attribute_show(struct device * dev,struct device_attribute * attr,char * buf)336 static ssize_t dev_attribute_show(struct device *dev,
337 				  struct device_attribute *attr, char *buf)
338 {
339 	ssize_t ret;
340 	struct ubi_device *ubi;
341 
342 	/*
343 	 * The below code looks weird, but it actually makes sense. We get the
344 	 * UBI device reference from the contained 'struct ubi_device'. But it
345 	 * is unclear if the device was removed or not yet. Indeed, if the
346 	 * device was removed before we increased its reference count,
347 	 * 'ubi_get_device()' will return -ENODEV and we fail.
348 	 *
349 	 * Remember, 'struct ubi_device' is freed in the release function, so
350 	 * we still can use 'ubi->ubi_num'.
351 	 */
352 	ubi = container_of(dev, struct ubi_device, dev);
353 
354 	if (attr == &dev_eraseblock_size)
355 		ret = sprintf(buf, "%d\n", ubi->leb_size);
356 	else if (attr == &dev_avail_eraseblocks)
357 		ret = sprintf(buf, "%d\n", ubi->avail_pebs);
358 	else if (attr == &dev_total_eraseblocks)
359 		ret = sprintf(buf, "%d\n", ubi->good_peb_count);
360 	else if (attr == &dev_volumes_count)
361 		ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
362 	else if (attr == &dev_max_ec)
363 		ret = sprintf(buf, "%d\n", ubi->max_ec);
364 	else if (attr == &dev_reserved_for_bad)
365 		ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
366 	else if (attr == &dev_bad_peb_count)
367 		ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
368 	else if (attr == &dev_max_vol_count)
369 		ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
370 	else if (attr == &dev_min_io_size)
371 		ret = sprintf(buf, "%d\n", ubi->min_io_size);
372 	else if (attr == &dev_bgt_enabled)
373 		ret = sprintf(buf, "%d\n", ubi->thread_enabled);
374 	else if (attr == &dev_mtd_num)
375 		ret = sprintf(buf, "%d\n", ubi->mtd->index);
376 	else if (attr == &dev_ro_mode)
377 		ret = sprintf(buf, "%d\n", ubi->ro_mode);
378 	else
379 		ret = -EINVAL;
380 
381 	return ret;
382 }
383 
384 static struct attribute *ubi_dev_attrs[] = {
385 	&dev_eraseblock_size.attr,
386 	&dev_avail_eraseblocks.attr,
387 	&dev_total_eraseblocks.attr,
388 	&dev_volumes_count.attr,
389 	&dev_max_ec.attr,
390 	&dev_reserved_for_bad.attr,
391 	&dev_bad_peb_count.attr,
392 	&dev_max_vol_count.attr,
393 	&dev_min_io_size.attr,
394 	&dev_bgt_enabled.attr,
395 	&dev_mtd_num.attr,
396 	&dev_ro_mode.attr,
397 	NULL
398 };
399 ATTRIBUTE_GROUPS(ubi_dev);
400 
dev_release(struct device * dev)401 static void dev_release(struct device *dev)
402 {
403 	struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
404 
405 	kfree(ubi);
406 }
407 
408 /**
409  * kill_volumes - destroy all user volumes.
410  * @ubi: UBI device description object
411  */
kill_volumes(struct ubi_device * ubi)412 static void kill_volumes(struct ubi_device *ubi)
413 {
414 	int i;
415 
416 	for (i = 0; i < ubi->vtbl_slots; i++)
417 		if (ubi->volumes[i])
418 			ubi_free_volume(ubi, ubi->volumes[i]);
419 }
420 
421 /**
422  * uif_init - initialize user interfaces for an UBI device.
423  * @ubi: UBI device description object
424  *
425  * This function initializes various user interfaces for an UBI device. If the
426  * initialization fails at an early stage, this function frees all the
427  * resources it allocated, returns an error.
428  *
429  * This function returns zero in case of success and a negative error code in
430  * case of failure.
431  */
uif_init(struct ubi_device * ubi)432 static int uif_init(struct ubi_device *ubi)
433 {
434 	int i, err;
435 	dev_t dev;
436 
437 	sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
438 
439 	/*
440 	 * Major numbers for the UBI character devices are allocated
441 	 * dynamically. Major numbers of volume character devices are
442 	 * equivalent to ones of the corresponding UBI character device. Minor
443 	 * numbers of UBI character devices are 0, while minor numbers of
444 	 * volume character devices start from 1. Thus, we allocate one major
445 	 * number and ubi->vtbl_slots + 1 minor numbers.
446 	 */
447 	err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
448 	if (err) {
449 		ubi_err(ubi, "cannot register UBI character devices");
450 		return err;
451 	}
452 
453 	ubi->dev.devt = dev;
454 
455 	ubi_assert(MINOR(dev) == 0);
456 	cdev_init(&ubi->cdev, &ubi_cdev_operations);
457 	dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
458 	ubi->cdev.owner = THIS_MODULE;
459 
460 	dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num);
461 	err = cdev_device_add(&ubi->cdev, &ubi->dev);
462 	if (err)
463 		goto out_unreg;
464 
465 	for (i = 0; i < ubi->vtbl_slots; i++)
466 		if (ubi->volumes[i]) {
467 			err = ubi_add_volume(ubi, ubi->volumes[i]);
468 			if (err) {
469 				ubi_err(ubi, "cannot add volume %d", i);
470 				ubi->volumes[i] = NULL;
471 				goto out_volumes;
472 			}
473 		}
474 
475 	return 0;
476 
477 out_volumes:
478 	kill_volumes(ubi);
479 	cdev_device_del(&ubi->cdev, &ubi->dev);
480 out_unreg:
481 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
482 	ubi_err(ubi, "cannot initialize UBI %s, error %d",
483 		ubi->ubi_name, err);
484 	return err;
485 }
486 
487 /**
488  * uif_close - close user interfaces for an UBI device.
489  * @ubi: UBI device description object
490  *
491  * Note, since this function un-registers UBI volume device objects (@vol->dev),
492  * the memory allocated voe the volumes is freed as well (in the release
493  * function).
494  */
uif_close(struct ubi_device * ubi)495 static void uif_close(struct ubi_device *ubi)
496 {
497 	kill_volumes(ubi);
498 	cdev_device_del(&ubi->cdev, &ubi->dev);
499 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
500 }
501 
502 /**
503  * ubi_free_internal_volumes - free internal volumes.
504  * @ubi: UBI device description object
505  */
ubi_free_internal_volumes(struct ubi_device * ubi)506 void ubi_free_internal_volumes(struct ubi_device *ubi)
507 {
508 	int i;
509 
510 	for (i = ubi->vtbl_slots;
511 	     i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
512 		ubi_eba_replace_table(ubi->volumes[i], NULL);
513 		ubi_fastmap_destroy_checkmap(ubi->volumes[i]);
514 		kfree(ubi->volumes[i]);
515 	}
516 }
517 
get_bad_peb_limit(const struct ubi_device * ubi,int max_beb_per1024)518 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
519 {
520 	int limit, device_pebs;
521 	uint64_t device_size;
522 
523 	if (!max_beb_per1024) {
524 		/*
525 		 * Since max_beb_per1024 has not been set by the user in either
526 		 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the
527 		 * limit if it is supported by the device.
528 		 */
529 		limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size);
530 		if (limit < 0)
531 			return 0;
532 		return limit;
533 	}
534 
535 	/*
536 	 * Here we are using size of the entire flash chip and
537 	 * not just the MTD partition size because the maximum
538 	 * number of bad eraseblocks is a percentage of the
539 	 * whole device and bad eraseblocks are not fairly
540 	 * distributed over the flash chip. So the worst case
541 	 * is that all the bad eraseblocks of the chip are in
542 	 * the MTD partition we are attaching (ubi->mtd).
543 	 */
544 	device_size = mtd_get_device_size(ubi->mtd);
545 	device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
546 	limit = mult_frac(device_pebs, max_beb_per1024, 1024);
547 
548 	/* Round it up */
549 	if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
550 		limit += 1;
551 
552 	return limit;
553 }
554 
555 /**
556  * io_init - initialize I/O sub-system for a given UBI device.
557  * @ubi: UBI device description object
558  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
559  *
560  * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
561  * assumed:
562  *   o EC header is always at offset zero - this cannot be changed;
563  *   o VID header starts just after the EC header at the closest address
564  *     aligned to @io->hdrs_min_io_size;
565  *   o data starts just after the VID header at the closest address aligned to
566  *     @io->min_io_size
567  *
568  * This function returns zero in case of success and a negative error code in
569  * case of failure.
570  */
io_init(struct ubi_device * ubi,int max_beb_per1024)571 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
572 {
573 	dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
574 	dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
575 
576 	if (ubi->mtd->numeraseregions != 0) {
577 		/*
578 		 * Some flashes have several erase regions. Different regions
579 		 * may have different eraseblock size and other
580 		 * characteristics. It looks like mostly multi-region flashes
581 		 * have one "main" region and one or more small regions to
582 		 * store boot loader code or boot parameters or whatever. I
583 		 * guess we should just pick the largest region. But this is
584 		 * not implemented.
585 		 */
586 		ubi_err(ubi, "multiple regions, not implemented");
587 		return -EINVAL;
588 	}
589 
590 	if (ubi->vid_hdr_offset < 0)
591 		return -EINVAL;
592 
593 	/*
594 	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
595 	 * physical eraseblocks maximum.
596 	 */
597 
598 	ubi->peb_size   = ubi->mtd->erasesize;
599 	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
600 	ubi->flash_size = ubi->mtd->size;
601 
602 	if (mtd_can_have_bb(ubi->mtd)) {
603 		ubi->bad_allowed = 1;
604 		ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
605 	}
606 
607 	if (ubi->mtd->type == MTD_NORFLASH) {
608 		ubi_assert(ubi->mtd->writesize == 1);
609 		ubi->nor_flash = 1;
610 	}
611 
612 	ubi->min_io_size = ubi->mtd->writesize;
613 	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
614 
615 	/*
616 	 * Make sure minimal I/O unit is power of 2. Note, there is no
617 	 * fundamental reason for this assumption. It is just an optimization
618 	 * which allows us to avoid costly division operations.
619 	 */
620 	if (!is_power_of_2(ubi->min_io_size)) {
621 		ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
622 			ubi->min_io_size);
623 		return -EINVAL;
624 	}
625 
626 	ubi_assert(ubi->hdrs_min_io_size > 0);
627 	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
628 	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
629 
630 	ubi->max_write_size = ubi->mtd->writebufsize;
631 	/*
632 	 * Maximum write size has to be greater or equivalent to min. I/O
633 	 * size, and be multiple of min. I/O size.
634 	 */
635 	if (ubi->max_write_size < ubi->min_io_size ||
636 	    ubi->max_write_size % ubi->min_io_size ||
637 	    !is_power_of_2(ubi->max_write_size)) {
638 		ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
639 			ubi->max_write_size, ubi->min_io_size);
640 		return -EINVAL;
641 	}
642 
643 	/* Calculate default aligned sizes of EC and VID headers */
644 	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
645 	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
646 
647 	dbg_gen("min_io_size      %d", ubi->min_io_size);
648 	dbg_gen("max_write_size   %d", ubi->max_write_size);
649 	dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
650 	dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
651 	dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
652 
653 	if (ubi->vid_hdr_offset == 0)
654 		/* Default offset */
655 		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
656 				      ubi->ec_hdr_alsize;
657 	else {
658 		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
659 						~(ubi->hdrs_min_io_size - 1);
660 		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
661 						ubi->vid_hdr_aloffset;
662 	}
663 
664 	/*
665 	 * Memory allocation for VID header is ubi->vid_hdr_alsize
666 	 * which is described in comments in io.c.
667 	 * Make sure VID header shift + UBI_VID_HDR_SIZE not exceeds
668 	 * ubi->vid_hdr_alsize, so that all vid header operations
669 	 * won't access memory out of bounds.
670 	 */
671 	if ((ubi->vid_hdr_shift + UBI_VID_HDR_SIZE) > ubi->vid_hdr_alsize) {
672 		ubi_err(ubi, "Invalid VID header offset %d, VID header shift(%d)"
673 			" + VID header size(%zu) > VID header aligned size(%d).",
674 			ubi->vid_hdr_offset, ubi->vid_hdr_shift,
675 			UBI_VID_HDR_SIZE, ubi->vid_hdr_alsize);
676 		return -EINVAL;
677 	}
678 
679 	/* Similar for the data offset */
680 	ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
681 	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
682 
683 	dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
684 	dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
685 	dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
686 	dbg_gen("leb_start        %d", ubi->leb_start);
687 
688 	/* The shift must be aligned to 32-bit boundary */
689 	if (ubi->vid_hdr_shift % 4) {
690 		ubi_err(ubi, "unaligned VID header shift %d",
691 			ubi->vid_hdr_shift);
692 		return -EINVAL;
693 	}
694 
695 	/* Check sanity */
696 	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
697 	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
698 	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
699 	    ubi->leb_start & (ubi->min_io_size - 1)) {
700 		ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
701 			ubi->vid_hdr_offset, ubi->leb_start);
702 		return -EINVAL;
703 	}
704 
705 	/*
706 	 * Set maximum amount of physical erroneous eraseblocks to be 10%.
707 	 * Erroneous PEB are those which have read errors.
708 	 */
709 	ubi->max_erroneous = ubi->peb_count / 10;
710 	if (ubi->max_erroneous < 16)
711 		ubi->max_erroneous = 16;
712 	dbg_gen("max_erroneous    %d", ubi->max_erroneous);
713 
714 	/*
715 	 * It may happen that EC and VID headers are situated in one minimal
716 	 * I/O unit. In this case we can only accept this UBI image in
717 	 * read-only mode.
718 	 */
719 	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
720 		ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
721 		ubi->ro_mode = 1;
722 	}
723 
724 	ubi->leb_size = ubi->peb_size - ubi->leb_start;
725 
726 	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
727 		ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
728 			ubi->mtd->index);
729 		ubi->ro_mode = 1;
730 	}
731 
732 	/*
733 	 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
734 	 * unfortunately, MTD does not provide this information. We should loop
735 	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
736 	 * each physical eraseblock. So, we leave @ubi->bad_peb_count
737 	 * uninitialized so far.
738 	 */
739 
740 	return 0;
741 }
742 
743 /**
744  * autoresize - re-size the volume which has the "auto-resize" flag set.
745  * @ubi: UBI device description object
746  * @vol_id: ID of the volume to re-size
747  *
748  * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
749  * the volume table to the largest possible size. See comments in ubi-header.h
750  * for more description of the flag. Returns zero in case of success and a
751  * negative error code in case of failure.
752  */
autoresize(struct ubi_device * ubi,int vol_id)753 static int autoresize(struct ubi_device *ubi, int vol_id)
754 {
755 	struct ubi_volume_desc desc;
756 	struct ubi_volume *vol = ubi->volumes[vol_id];
757 	int err, old_reserved_pebs = vol->reserved_pebs;
758 
759 	if (ubi->ro_mode) {
760 		ubi_warn(ubi, "skip auto-resize because of R/O mode");
761 		return 0;
762 	}
763 
764 	/*
765 	 * Clear the auto-resize flag in the volume in-memory copy of the
766 	 * volume table, and 'ubi_resize_volume()' will propagate this change
767 	 * to the flash.
768 	 */
769 	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
770 
771 	if (ubi->avail_pebs == 0) {
772 		struct ubi_vtbl_record vtbl_rec;
773 
774 		/*
775 		 * No available PEBs to re-size the volume, clear the flag on
776 		 * flash and exit.
777 		 */
778 		vtbl_rec = ubi->vtbl[vol_id];
779 		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
780 		if (err)
781 			ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
782 				vol_id);
783 	} else {
784 		desc.vol = vol;
785 		err = ubi_resize_volume(&desc,
786 					old_reserved_pebs + ubi->avail_pebs);
787 		if (err)
788 			ubi_err(ubi, "cannot auto-resize volume %d",
789 				vol_id);
790 	}
791 
792 	if (err)
793 		return err;
794 
795 	ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
796 		vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
797 	return 0;
798 }
799 
800 /**
801  * ubi_attach_mtd_dev - attach an MTD device.
802  * @mtd: MTD device description object
803  * @ubi_num: number to assign to the new UBI device
804  * @vid_hdr_offset: VID header offset
805  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
806  *
807  * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
808  * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
809  * which case this function finds a vacant device number and assigns it
810  * automatically. Returns the new UBI device number in case of success and a
811  * negative error code in case of failure.
812  *
813  * Note, the invocations of this function has to be serialized by the
814  * @ubi_devices_mutex.
815  */
ubi_attach_mtd_dev(struct mtd_info * mtd,int ubi_num,int vid_hdr_offset,int max_beb_per1024)816 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
817 		       int vid_hdr_offset, int max_beb_per1024)
818 {
819 	struct ubi_device *ubi;
820 	int i, err;
821 
822 	if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
823 		return -EINVAL;
824 
825 	if (!max_beb_per1024)
826 		max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
827 
828 	/*
829 	 * Check if we already have the same MTD device attached.
830 	 *
831 	 * Note, this function assumes that UBI devices creations and deletions
832 	 * are serialized, so it does not take the &ubi_devices_lock.
833 	 */
834 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
835 		ubi = ubi_devices[i];
836 		if (ubi && mtd->index == ubi->mtd->index) {
837 			pr_err("ubi: mtd%d is already attached to ubi%d\n",
838 				mtd->index, i);
839 			return -EEXIST;
840 		}
841 	}
842 
843 	/*
844 	 * Make sure this MTD device is not emulated on top of an UBI volume
845 	 * already. Well, generally this recursion works fine, but there are
846 	 * different problems like the UBI module takes a reference to itself
847 	 * by attaching (and thus, opening) the emulated MTD device. This
848 	 * results in inability to unload the module. And in general it makes
849 	 * no sense to attach emulated MTD devices, so we prohibit this.
850 	 */
851 	if (mtd->type == MTD_UBIVOLUME) {
852 		pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n",
853 			mtd->index);
854 		return -EINVAL;
855 	}
856 
857 	/*
858 	 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes.
859 	 * MLC NAND is different and needs special care, otherwise UBI or UBIFS
860 	 * will die soon and you will lose all your data.
861 	 */
862 	if (mtd->type == MTD_MLCNANDFLASH) {
863 		pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n",
864 			mtd->index);
865 		return -EINVAL;
866 	}
867 
868 	/* UBI cannot work on flashes with zero erasesize. */
869 	if (!mtd->erasesize) {
870 		pr_err("ubi: refuse attaching mtd%d - zero erasesize flash is not supported\n",
871 			mtd->index);
872 		return -EINVAL;
873 	}
874 
875 	if (ubi_num == UBI_DEV_NUM_AUTO) {
876 		/* Search for an empty slot in the @ubi_devices array */
877 		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
878 			if (!ubi_devices[ubi_num])
879 				break;
880 		if (ubi_num == UBI_MAX_DEVICES) {
881 			pr_err("ubi: only %d UBI devices may be created\n",
882 				UBI_MAX_DEVICES);
883 			return -ENFILE;
884 		}
885 	} else {
886 		if (ubi_num >= UBI_MAX_DEVICES)
887 			return -EINVAL;
888 
889 		/* Make sure ubi_num is not busy */
890 		if (ubi_devices[ubi_num]) {
891 			pr_err("ubi: ubi%i already exists\n", ubi_num);
892 			return -EEXIST;
893 		}
894 	}
895 
896 	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
897 	if (!ubi)
898 		return -ENOMEM;
899 
900 	device_initialize(&ubi->dev);
901 	ubi->dev.release = dev_release;
902 	ubi->dev.class = &ubi_class;
903 	ubi->dev.groups = ubi_dev_groups;
904 
905 	ubi->mtd = mtd;
906 	ubi->ubi_num = ubi_num;
907 	ubi->vid_hdr_offset = vid_hdr_offset;
908 	ubi->autoresize_vol_id = -1;
909 
910 #ifdef CONFIG_MTD_UBI_FASTMAP
911 	ubi->fm_pool.used = ubi->fm_pool.size = 0;
912 	ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
913 
914 	/*
915 	 * fm_pool.max_size is 5% of the total number of PEBs but it's also
916 	 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
917 	 */
918 	ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
919 		ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
920 	ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
921 		UBI_FM_MIN_POOL_SIZE);
922 
923 	ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
924 	ubi->fm_disabled = !fm_autoconvert;
925 	if (fm_debug)
926 		ubi_enable_dbg_chk_fastmap(ubi);
927 
928 	if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
929 	    <= UBI_FM_MAX_START) {
930 		ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
931 			UBI_FM_MAX_START);
932 		ubi->fm_disabled = 1;
933 	}
934 
935 	ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
936 	ubi_msg(ubi, "default fastmap WL pool size: %d",
937 		ubi->fm_wl_pool.max_size);
938 #else
939 	ubi->fm_disabled = 1;
940 #endif
941 	mutex_init(&ubi->buf_mutex);
942 	mutex_init(&ubi->ckvol_mutex);
943 	mutex_init(&ubi->device_mutex);
944 	spin_lock_init(&ubi->volumes_lock);
945 	init_rwsem(&ubi->fm_protect);
946 	init_rwsem(&ubi->fm_eba_sem);
947 
948 	ubi_msg(ubi, "attaching mtd%d", mtd->index);
949 
950 	err = io_init(ubi, max_beb_per1024);
951 	if (err)
952 		goto out_free;
953 
954 	err = -ENOMEM;
955 	ubi->peb_buf = vmalloc(ubi->peb_size);
956 	if (!ubi->peb_buf)
957 		goto out_free;
958 
959 #ifdef CONFIG_MTD_UBI_FASTMAP
960 	ubi->fm_size = ubi_calc_fm_size(ubi);
961 	ubi->fm_buf = vzalloc(ubi->fm_size);
962 	if (!ubi->fm_buf)
963 		goto out_free;
964 #endif
965 	err = ubi_attach(ubi, 0);
966 	if (err) {
967 		ubi_err(ubi, "failed to attach mtd%d, error %d",
968 			mtd->index, err);
969 		goto out_free;
970 	}
971 
972 	if (ubi->autoresize_vol_id != -1) {
973 		err = autoresize(ubi, ubi->autoresize_vol_id);
974 		if (err)
975 			goto out_detach;
976 	}
977 
978 	err = uif_init(ubi);
979 	if (err)
980 		goto out_detach;
981 
982 	err = ubi_debugfs_init_dev(ubi);
983 	if (err)
984 		goto out_uif;
985 
986 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
987 	if (IS_ERR(ubi->bgt_thread)) {
988 		err = PTR_ERR(ubi->bgt_thread);
989 		ubi_err(ubi, "cannot spawn \"%s\", error %d",
990 			ubi->bgt_name, err);
991 		goto out_debugfs;
992 	}
993 
994 	ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
995 		mtd->index, mtd->name, ubi->flash_size >> 20);
996 	ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
997 		ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
998 	ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
999 		ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1000 	ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1001 		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1002 	ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1003 		ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1004 	ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1005 		ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1006 		ubi->vtbl_slots);
1007 	ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1008 		ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1009 		ubi->image_seq);
1010 	ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1011 		ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1012 
1013 	/*
1014 	 * The below lock makes sure we do not race with 'ubi_thread()' which
1015 	 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1016 	 */
1017 	spin_lock(&ubi->wl_lock);
1018 	ubi->thread_enabled = 1;
1019 	wake_up_process(ubi->bgt_thread);
1020 	spin_unlock(&ubi->wl_lock);
1021 
1022 	ubi_devices[ubi_num] = ubi;
1023 	ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1024 	return ubi_num;
1025 
1026 out_debugfs:
1027 	ubi_debugfs_exit_dev(ubi);
1028 out_uif:
1029 	uif_close(ubi);
1030 out_detach:
1031 	ubi_wl_close(ubi);
1032 	ubi_free_internal_volumes(ubi);
1033 	vfree(ubi->vtbl);
1034 out_free:
1035 	vfree(ubi->peb_buf);
1036 	vfree(ubi->fm_buf);
1037 	put_device(&ubi->dev);
1038 	return err;
1039 }
1040 
1041 /**
1042  * ubi_detach_mtd_dev - detach an MTD device.
1043  * @ubi_num: UBI device number to detach from
1044  * @anyway: detach MTD even if device reference count is not zero
1045  *
1046  * This function destroys an UBI device number @ubi_num and detaches the
1047  * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1048  * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1049  * exist.
1050  *
1051  * Note, the invocations of this function has to be serialized by the
1052  * @ubi_devices_mutex.
1053  */
ubi_detach_mtd_dev(int ubi_num,int anyway)1054 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1055 {
1056 	struct ubi_device *ubi;
1057 
1058 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1059 		return -EINVAL;
1060 
1061 	ubi = ubi_get_device(ubi_num);
1062 	if (!ubi)
1063 		return -EINVAL;
1064 
1065 	spin_lock(&ubi_devices_lock);
1066 	put_device(&ubi->dev);
1067 	ubi->ref_count -= 1;
1068 	if (ubi->ref_count) {
1069 		if (!anyway) {
1070 			spin_unlock(&ubi_devices_lock);
1071 			return -EBUSY;
1072 		}
1073 		/* This may only happen if there is a bug */
1074 		ubi_err(ubi, "%s reference count %d, destroy anyway",
1075 			ubi->ubi_name, ubi->ref_count);
1076 	}
1077 	ubi_devices[ubi_num] = NULL;
1078 	spin_unlock(&ubi_devices_lock);
1079 
1080 	ubi_assert(ubi_num == ubi->ubi_num);
1081 	ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1082 	ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1083 #ifdef CONFIG_MTD_UBI_FASTMAP
1084 	/* If we don't write a new fastmap at detach time we lose all
1085 	 * EC updates that have been made since the last written fastmap.
1086 	 * In case of fastmap debugging we omit the update to simulate an
1087 	 * unclean shutdown. */
1088 	if (!ubi_dbg_chk_fastmap(ubi))
1089 		ubi_update_fastmap(ubi);
1090 #endif
1091 	/*
1092 	 * Before freeing anything, we have to stop the background thread to
1093 	 * prevent it from doing anything on this device while we are freeing.
1094 	 */
1095 	if (ubi->bgt_thread)
1096 		kthread_stop(ubi->bgt_thread);
1097 
1098 #ifdef CONFIG_MTD_UBI_FASTMAP
1099 	cancel_work_sync(&ubi->fm_work);
1100 #endif
1101 	ubi_debugfs_exit_dev(ubi);
1102 	uif_close(ubi);
1103 
1104 	ubi_wl_close(ubi);
1105 	ubi_free_internal_volumes(ubi);
1106 	vfree(ubi->vtbl);
1107 	vfree(ubi->peb_buf);
1108 	vfree(ubi->fm_buf);
1109 	ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1110 	put_mtd_device(ubi->mtd);
1111 	put_device(&ubi->dev);
1112 	return 0;
1113 }
1114 
1115 /**
1116  * open_mtd_by_chdev - open an MTD device by its character device node path.
1117  * @mtd_dev: MTD character device node path
1118  *
1119  * This helper function opens an MTD device by its character node device path.
1120  * Returns MTD device description object in case of success and a negative
1121  * error code in case of failure.
1122  */
open_mtd_by_chdev(const char * mtd_dev)1123 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1124 {
1125 	int err, minor;
1126 	struct path path;
1127 	struct kstat stat;
1128 
1129 	/* Probably this is an MTD character device node path */
1130 	err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1131 	if (err)
1132 		return ERR_PTR(err);
1133 
1134 	err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
1135 	path_put(&path);
1136 	if (err)
1137 		return ERR_PTR(err);
1138 
1139 	/* MTD device number is defined by the major / minor numbers */
1140 	if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode))
1141 		return ERR_PTR(-EINVAL);
1142 
1143 	minor = MINOR(stat.rdev);
1144 
1145 	if (minor & 1)
1146 		/*
1147 		 * Just do not think the "/dev/mtdrX" devices support is need,
1148 		 * so do not support them to avoid doing extra work.
1149 		 */
1150 		return ERR_PTR(-EINVAL);
1151 
1152 	return get_mtd_device(NULL, minor / 2);
1153 }
1154 
1155 /**
1156  * open_mtd_device - open MTD device by name, character device path, or number.
1157  * @mtd_dev: name, character device node path, or MTD device device number
1158  *
1159  * This function tries to open and MTD device described by @mtd_dev string,
1160  * which is first treated as ASCII MTD device number, and if it is not true, it
1161  * is treated as MTD device name, and if that is also not true, it is treated
1162  * as MTD character device node path. Returns MTD device description object in
1163  * case of success and a negative error code in case of failure.
1164  */
open_mtd_device(const char * mtd_dev)1165 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1166 {
1167 	struct mtd_info *mtd;
1168 	int mtd_num;
1169 	char *endp;
1170 
1171 	mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1172 	if (*endp != '\0' || mtd_dev == endp) {
1173 		/*
1174 		 * This does not look like an ASCII integer, probably this is
1175 		 * MTD device name.
1176 		 */
1177 		mtd = get_mtd_device_nm(mtd_dev);
1178 		if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1179 			/* Probably this is an MTD character device node path */
1180 			mtd = open_mtd_by_chdev(mtd_dev);
1181 	} else
1182 		mtd = get_mtd_device(NULL, mtd_num);
1183 
1184 	return mtd;
1185 }
1186 
ubi_init(void)1187 static int __init ubi_init(void)
1188 {
1189 	int err, i, k;
1190 
1191 	/* Ensure that EC and VID headers have correct size */
1192 	BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1193 	BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1194 
1195 	if (mtd_devs > UBI_MAX_DEVICES) {
1196 		pr_err("UBI error: too many MTD devices, maximum is %d\n",
1197 		       UBI_MAX_DEVICES);
1198 		return -EINVAL;
1199 	}
1200 
1201 	/* Create base sysfs directory and sysfs files */
1202 	err = class_register(&ubi_class);
1203 	if (err < 0)
1204 		return err;
1205 
1206 	err = misc_register(&ubi_ctrl_cdev);
1207 	if (err) {
1208 		pr_err("UBI error: cannot register device\n");
1209 		goto out;
1210 	}
1211 
1212 	ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1213 					      sizeof(struct ubi_wl_entry),
1214 					      0, 0, NULL);
1215 	if (!ubi_wl_entry_slab) {
1216 		err = -ENOMEM;
1217 		goto out_dev_unreg;
1218 	}
1219 
1220 	err = ubi_debugfs_init();
1221 	if (err)
1222 		goto out_slab;
1223 
1224 
1225 	/* Attach MTD devices */
1226 	for (i = 0; i < mtd_devs; i++) {
1227 		struct mtd_dev_param *p = &mtd_dev_param[i];
1228 		struct mtd_info *mtd;
1229 
1230 		cond_resched();
1231 
1232 		mtd = open_mtd_device(p->name);
1233 		if (IS_ERR(mtd)) {
1234 			err = PTR_ERR(mtd);
1235 			pr_err("UBI error: cannot open mtd %s, error %d\n",
1236 			       p->name, err);
1237 			/* See comment below re-ubi_is_module(). */
1238 			if (ubi_is_module())
1239 				goto out_detach;
1240 			continue;
1241 		}
1242 
1243 		mutex_lock(&ubi_devices_mutex);
1244 		err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1245 					 p->vid_hdr_offs, p->max_beb_per1024);
1246 		mutex_unlock(&ubi_devices_mutex);
1247 		if (err < 0) {
1248 			pr_err("UBI error: cannot attach mtd%d\n",
1249 			       mtd->index);
1250 			put_mtd_device(mtd);
1251 
1252 			/*
1253 			 * Originally UBI stopped initializing on any error.
1254 			 * However, later on it was found out that this
1255 			 * behavior is not very good when UBI is compiled into
1256 			 * the kernel and the MTD devices to attach are passed
1257 			 * through the command line. Indeed, UBI failure
1258 			 * stopped whole boot sequence.
1259 			 *
1260 			 * To fix this, we changed the behavior for the
1261 			 * non-module case, but preserved the old behavior for
1262 			 * the module case, just for compatibility. This is a
1263 			 * little inconsistent, though.
1264 			 */
1265 			if (ubi_is_module())
1266 				goto out_detach;
1267 		}
1268 	}
1269 
1270 	err = ubiblock_init();
1271 	if (err) {
1272 		pr_err("UBI error: block: cannot initialize, error %d\n", err);
1273 
1274 		/* See comment above re-ubi_is_module(). */
1275 		if (ubi_is_module())
1276 			goto out_detach;
1277 	}
1278 
1279 	return 0;
1280 
1281 out_detach:
1282 	for (k = 0; k < i; k++)
1283 		if (ubi_devices[k]) {
1284 			mutex_lock(&ubi_devices_mutex);
1285 			ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1286 			mutex_unlock(&ubi_devices_mutex);
1287 		}
1288 	ubi_debugfs_exit();
1289 out_slab:
1290 	kmem_cache_destroy(ubi_wl_entry_slab);
1291 out_dev_unreg:
1292 	misc_deregister(&ubi_ctrl_cdev);
1293 out:
1294 	class_unregister(&ubi_class);
1295 	pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1296 	return err;
1297 }
1298 late_initcall(ubi_init);
1299 
ubi_exit(void)1300 static void __exit ubi_exit(void)
1301 {
1302 	int i;
1303 
1304 	ubiblock_exit();
1305 
1306 	for (i = 0; i < UBI_MAX_DEVICES; i++)
1307 		if (ubi_devices[i]) {
1308 			mutex_lock(&ubi_devices_mutex);
1309 			ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1310 			mutex_unlock(&ubi_devices_mutex);
1311 		}
1312 	ubi_debugfs_exit();
1313 	kmem_cache_destroy(ubi_wl_entry_slab);
1314 	misc_deregister(&ubi_ctrl_cdev);
1315 	class_unregister(&ubi_class);
1316 }
1317 module_exit(ubi_exit);
1318 
1319 /**
1320  * bytes_str_to_int - convert a number of bytes string into an integer.
1321  * @str: the string to convert
1322  *
1323  * This function returns positive resulting integer in case of success and a
1324  * negative error code in case of failure.
1325  */
bytes_str_to_int(const char * str)1326 static int bytes_str_to_int(const char *str)
1327 {
1328 	char *endp;
1329 	unsigned long result;
1330 
1331 	result = simple_strtoul(str, &endp, 0);
1332 	if (str == endp || result >= INT_MAX) {
1333 		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1334 		return -EINVAL;
1335 	}
1336 
1337 	switch (*endp) {
1338 	case 'G':
1339 		result *= 1024;
1340 		/* fall through */
1341 	case 'M':
1342 		result *= 1024;
1343 		/* fall through */
1344 	case 'K':
1345 		result *= 1024;
1346 		if (endp[1] == 'i' && endp[2] == 'B')
1347 			endp += 2;
1348 	case '\0':
1349 		break;
1350 	default:
1351 		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1352 		return -EINVAL;
1353 	}
1354 
1355 	return result;
1356 }
1357 
1358 /**
1359  * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1360  * @val: the parameter value to parse
1361  * @kp: not used
1362  *
1363  * This function returns zero in case of success and a negative error code in
1364  * case of error.
1365  */
ubi_mtd_param_parse(const char * val,const struct kernel_param * kp)1366 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp)
1367 {
1368 	int i, len;
1369 	struct mtd_dev_param *p;
1370 	char buf[MTD_PARAM_LEN_MAX];
1371 	char *pbuf = &buf[0];
1372 	char *tokens[MTD_PARAM_MAX_COUNT], *token;
1373 
1374 	if (!val)
1375 		return -EINVAL;
1376 
1377 	if (mtd_devs == UBI_MAX_DEVICES) {
1378 		pr_err("UBI error: too many parameters, max. is %d\n",
1379 		       UBI_MAX_DEVICES);
1380 		return -EINVAL;
1381 	}
1382 
1383 	len = strnlen(val, MTD_PARAM_LEN_MAX);
1384 	if (len == MTD_PARAM_LEN_MAX) {
1385 		pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1386 		       val, MTD_PARAM_LEN_MAX);
1387 		return -EINVAL;
1388 	}
1389 
1390 	if (len == 0) {
1391 		pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1392 		return 0;
1393 	}
1394 
1395 	strcpy(buf, val);
1396 
1397 	/* Get rid of the final newline */
1398 	if (buf[len - 1] == '\n')
1399 		buf[len - 1] = '\0';
1400 
1401 	for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1402 		tokens[i] = strsep(&pbuf, ",");
1403 
1404 	if (pbuf) {
1405 		pr_err("UBI error: too many arguments at \"%s\"\n", val);
1406 		return -EINVAL;
1407 	}
1408 
1409 	p = &mtd_dev_param[mtd_devs];
1410 	strcpy(&p->name[0], tokens[0]);
1411 
1412 	token = tokens[1];
1413 	if (token) {
1414 		p->vid_hdr_offs = bytes_str_to_int(token);
1415 
1416 		if (p->vid_hdr_offs < 0)
1417 			return p->vid_hdr_offs;
1418 	}
1419 
1420 	token = tokens[2];
1421 	if (token) {
1422 		int err = kstrtoint(token, 10, &p->max_beb_per1024);
1423 
1424 		if (err) {
1425 			pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1426 			       token);
1427 			return -EINVAL;
1428 		}
1429 	}
1430 
1431 	token = tokens[3];
1432 	if (token) {
1433 		int err = kstrtoint(token, 10, &p->ubi_num);
1434 
1435 		if (err) {
1436 			pr_err("UBI error: bad value for ubi_num parameter: %s",
1437 			       token);
1438 			return -EINVAL;
1439 		}
1440 	} else
1441 		p->ubi_num = UBI_DEV_NUM_AUTO;
1442 
1443 	mtd_devs += 1;
1444 	return 0;
1445 }
1446 
1447 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400);
1448 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1449 		      "Multiple \"mtd\" parameters may be specified.\n"
1450 		      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1451 		      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1452 		      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1453 		      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1454 		      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1455 		      "\n"
1456 		      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1457 		      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1458 		      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1459 		      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1460 		      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1461 #ifdef CONFIG_MTD_UBI_FASTMAP
1462 module_param(fm_autoconvert, bool, 0644);
1463 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1464 module_param(fm_debug, bool, 0);
1465 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1466 #endif
1467 MODULE_VERSION(__stringify(UBI_VERSION));
1468 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1469 MODULE_AUTHOR("Artem Bityutskiy");
1470 MODULE_LICENSE("GPL");
1471