1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <trace/events/block.h>
9 #include "nvme.h"
10
11 static bool multipath = true;
12 module_param(multipath, bool, 0444);
13 MODULE_PARM_DESC(multipath,
14 "turn on native support for multiple controllers per subsystem");
15
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
17 {
18 struct nvme_ns_head *h;
19
20 lockdep_assert_held(&subsys->lock);
21 list_for_each_entry(h, &subsys->nsheads, entry)
22 if (h->disk)
23 blk_mq_unfreeze_queue(h->disk->queue);
24 }
25
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
27 {
28 struct nvme_ns_head *h;
29
30 lockdep_assert_held(&subsys->lock);
31 list_for_each_entry(h, &subsys->nsheads, entry)
32 if (h->disk)
33 blk_mq_freeze_queue_wait(h->disk->queue);
34 }
35
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
37 {
38 struct nvme_ns_head *h;
39
40 lockdep_assert_held(&subsys->lock);
41 list_for_each_entry(h, &subsys->nsheads, entry)
42 if (h->disk)
43 blk_freeze_queue_start(h->disk->queue);
44 }
45
46 /*
47 * If multipathing is enabled we need to always use the subsystem instance
48 * number for numbering our devices to avoid conflicts between subsystems that
49 * have multiple controllers and thus use the multipath-aware subsystem node
50 * and those that have a single controller and use the controller node
51 * directly.
52 */
nvme_set_disk_name(char * disk_name,struct nvme_ns * ns,struct nvme_ctrl * ctrl,int * flags)53 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
54 struct nvme_ctrl *ctrl, int *flags)
55 {
56 if (!multipath) {
57 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
58 } else if (ns->head->disk) {
59 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
60 ctrl->instance, ns->head->instance);
61 *flags = GENHD_FL_HIDDEN;
62 } else {
63 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
64 ns->head->instance);
65 }
66 }
67
nvme_failover_req(struct request * req)68 bool nvme_failover_req(struct request *req)
69 {
70 struct nvme_ns *ns = req->q->queuedata;
71 u16 status = nvme_req(req)->status;
72 unsigned long flags;
73
74 switch (status & 0x7ff) {
75 case NVME_SC_ANA_TRANSITION:
76 case NVME_SC_ANA_INACCESSIBLE:
77 case NVME_SC_ANA_PERSISTENT_LOSS:
78 /*
79 * If we got back an ANA error we know the controller is alive,
80 * but not ready to serve this namespaces. The spec suggests
81 * we should update our general state here, but due to the fact
82 * that the admin and I/O queues are not serialized that is
83 * fundamentally racy. So instead just clear the current path,
84 * mark the the path as pending and kick of a re-read of the ANA
85 * log page ASAP.
86 */
87 nvme_mpath_clear_current_path(ns);
88 if (ns->ctrl->ana_log_buf) {
89 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
90 queue_work(nvme_wq, &ns->ctrl->ana_work);
91 }
92 break;
93 case NVME_SC_HOST_PATH_ERROR:
94 case NVME_SC_HOST_ABORTED_CMD:
95 /*
96 * Temporary transport disruption in talking to the controller.
97 * Try to send on a new path.
98 */
99 nvme_mpath_clear_current_path(ns);
100 break;
101 default:
102 /* This was a non-ANA error so follow the normal error path. */
103 return false;
104 }
105
106 spin_lock_irqsave(&ns->head->requeue_lock, flags);
107 blk_steal_bios(&ns->head->requeue_list, req);
108 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
109 blk_mq_end_request(req, 0);
110
111 kblockd_schedule_work(&ns->head->requeue_work);
112 return true;
113 }
114
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)115 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
116 {
117 struct nvme_ns *ns;
118
119 down_read(&ctrl->namespaces_rwsem);
120 list_for_each_entry(ns, &ctrl->namespaces, list) {
121 if (ns->head->disk)
122 kblockd_schedule_work(&ns->head->requeue_work);
123 }
124 up_read(&ctrl->namespaces_rwsem);
125 }
126
127 static const char *nvme_ana_state_names[] = {
128 [0] = "invalid state",
129 [NVME_ANA_OPTIMIZED] = "optimized",
130 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
131 [NVME_ANA_INACCESSIBLE] = "inaccessible",
132 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
133 [NVME_ANA_CHANGE] = "change",
134 };
135
nvme_mpath_clear_current_path(struct nvme_ns * ns)136 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
137 {
138 struct nvme_ns_head *head = ns->head;
139 bool changed = false;
140 int node;
141
142 if (!head)
143 goto out;
144
145 for_each_node(node) {
146 if (ns == rcu_access_pointer(head->current_path[node])) {
147 rcu_assign_pointer(head->current_path[node], NULL);
148 changed = true;
149 }
150 }
151 out:
152 return changed;
153 }
154
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)155 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
156 {
157 struct nvme_ns *ns;
158
159 down_read(&ctrl->namespaces_rwsem);
160 list_for_each_entry(ns, &ctrl->namespaces, list) {
161 nvme_mpath_clear_current_path(ns);
162 kblockd_schedule_work(&ns->head->requeue_work);
163 }
164 up_read(&ctrl->namespaces_rwsem);
165 }
166
nvme_path_is_disabled(struct nvme_ns * ns)167 static bool nvme_path_is_disabled(struct nvme_ns *ns)
168 {
169 return ns->ctrl->state != NVME_CTRL_LIVE ||
170 test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
171 test_bit(NVME_NS_REMOVING, &ns->flags);
172 }
173
__nvme_find_path(struct nvme_ns_head * head,int node)174 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
175 {
176 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
177 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
178
179 list_for_each_entry_rcu(ns, &head->list, siblings) {
180 if (nvme_path_is_disabled(ns))
181 continue;
182
183 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
184 distance = node_distance(node, ns->ctrl->numa_node);
185 else
186 distance = LOCAL_DISTANCE;
187
188 switch (ns->ana_state) {
189 case NVME_ANA_OPTIMIZED:
190 if (distance < found_distance) {
191 found_distance = distance;
192 found = ns;
193 }
194 break;
195 case NVME_ANA_NONOPTIMIZED:
196 if (distance < fallback_distance) {
197 fallback_distance = distance;
198 fallback = ns;
199 }
200 break;
201 default:
202 break;
203 }
204 }
205
206 if (!found)
207 found = fallback;
208 if (found)
209 rcu_assign_pointer(head->current_path[node], found);
210 return found;
211 }
212
nvme_next_ns(struct nvme_ns_head * head,struct nvme_ns * ns)213 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
214 struct nvme_ns *ns)
215 {
216 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
217 siblings);
218 if (ns)
219 return ns;
220 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
221 }
222
nvme_round_robin_path(struct nvme_ns_head * head,int node,struct nvme_ns * old)223 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
224 int node, struct nvme_ns *old)
225 {
226 struct nvme_ns *ns, *found, *fallback = NULL;
227
228 if (list_is_singular(&head->list)) {
229 if (nvme_path_is_disabled(old))
230 return NULL;
231 return old;
232 }
233
234 for (ns = nvme_next_ns(head, old);
235 ns && ns != old;
236 ns = nvme_next_ns(head, ns)) {
237 if (nvme_path_is_disabled(ns))
238 continue;
239
240 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
241 found = ns;
242 goto out;
243 }
244 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
245 fallback = ns;
246 }
247
248 /*
249 * The loop above skips the current path for round-robin semantics.
250 * Fall back to the current path if either:
251 * - no other optimized path found and current is optimized,
252 * - no other usable path found and current is usable.
253 */
254 if (!nvme_path_is_disabled(old) &&
255 (old->ana_state == NVME_ANA_OPTIMIZED ||
256 (!fallback && old->ana_state == NVME_ANA_NONOPTIMIZED)))
257 return old;
258
259 if (!fallback)
260 return NULL;
261 found = fallback;
262 out:
263 rcu_assign_pointer(head->current_path[node], found);
264 return found;
265 }
266
nvme_path_is_optimized(struct nvme_ns * ns)267 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
268 {
269 return ns->ctrl->state == NVME_CTRL_LIVE &&
270 ns->ana_state == NVME_ANA_OPTIMIZED;
271 }
272
nvme_find_path(struct nvme_ns_head * head)273 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
274 {
275 int node = numa_node_id();
276 struct nvme_ns *ns;
277
278 ns = srcu_dereference(head->current_path[node], &head->srcu);
279 if (unlikely(!ns))
280 return __nvme_find_path(head, node);
281
282 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
283 return nvme_round_robin_path(head, node, ns);
284 if (unlikely(!nvme_path_is_optimized(ns)))
285 return __nvme_find_path(head, node);
286 return ns;
287 }
288
nvme_available_path(struct nvme_ns_head * head)289 static bool nvme_available_path(struct nvme_ns_head *head)
290 {
291 struct nvme_ns *ns;
292
293 list_for_each_entry_rcu(ns, &head->list, siblings) {
294 switch (ns->ctrl->state) {
295 case NVME_CTRL_LIVE:
296 case NVME_CTRL_RESETTING:
297 case NVME_CTRL_CONNECTING:
298 /* fallthru */
299 return true;
300 default:
301 break;
302 }
303 }
304 return false;
305 }
306
nvme_ns_head_make_request(struct request_queue * q,struct bio * bio)307 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q,
308 struct bio *bio)
309 {
310 struct nvme_ns_head *head = q->queuedata;
311 struct device *dev = disk_to_dev(head->disk);
312 struct nvme_ns *ns;
313 blk_qc_t ret = BLK_QC_T_NONE;
314 int srcu_idx;
315
316 /*
317 * The namespace might be going away and the bio might
318 * be moved to a different queue via blk_steal_bios(),
319 * so we need to use the bio_split pool from the original
320 * queue to allocate the bvecs from.
321 */
322 blk_queue_split(q, &bio);
323
324 srcu_idx = srcu_read_lock(&head->srcu);
325 ns = nvme_find_path(head);
326 if (likely(ns)) {
327 bio->bi_disk = ns->disk;
328 bio->bi_opf |= REQ_NVME_MPATH;
329 trace_block_bio_remap(bio->bi_disk->queue, bio,
330 disk_devt(ns->head->disk),
331 bio->bi_iter.bi_sector);
332 ret = generic_make_request(bio);
333 } else if (nvme_available_path(head)) {
334 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
335
336 spin_lock_irq(&head->requeue_lock);
337 bio_list_add(&head->requeue_list, bio);
338 spin_unlock_irq(&head->requeue_lock);
339 } else {
340 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
341
342 bio->bi_status = BLK_STS_IOERR;
343 bio_endio(bio);
344 }
345
346 srcu_read_unlock(&head->srcu, srcu_idx);
347 return ret;
348 }
349
nvme_requeue_work(struct work_struct * work)350 static void nvme_requeue_work(struct work_struct *work)
351 {
352 struct nvme_ns_head *head =
353 container_of(work, struct nvme_ns_head, requeue_work);
354 struct bio *bio, *next;
355
356 spin_lock_irq(&head->requeue_lock);
357 next = bio_list_get(&head->requeue_list);
358 spin_unlock_irq(&head->requeue_lock);
359
360 while ((bio = next) != NULL) {
361 next = bio->bi_next;
362 bio->bi_next = NULL;
363
364 /*
365 * Reset disk to the mpath node and resubmit to select a new
366 * path.
367 */
368 bio->bi_disk = head->disk;
369 generic_make_request(bio);
370 }
371 }
372
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)373 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
374 {
375 struct request_queue *q;
376 bool vwc = false;
377
378 mutex_init(&head->lock);
379 bio_list_init(&head->requeue_list);
380 spin_lock_init(&head->requeue_lock);
381 INIT_WORK(&head->requeue_work, nvme_requeue_work);
382
383 /*
384 * Add a multipath node if the subsystems supports multiple controllers.
385 * We also do this for private namespaces as the namespace sharing data could
386 * change after a rescan.
387 */
388 if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath)
389 return 0;
390
391 q = blk_alloc_queue_node(GFP_KERNEL, ctrl->numa_node);
392 if (!q)
393 goto out;
394 q->queuedata = head;
395 blk_queue_make_request(q, nvme_ns_head_make_request);
396 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
397 /* set to a default value for 512 until disk is validated */
398 blk_queue_logical_block_size(q, 512);
399 blk_set_stacking_limits(&q->limits);
400
401 /* we need to propagate up the VMC settings */
402 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
403 vwc = true;
404 blk_queue_write_cache(q, vwc, vwc);
405
406 head->disk = alloc_disk(0);
407 if (!head->disk)
408 goto out_cleanup_queue;
409 head->disk->fops = &nvme_ns_head_ops;
410 head->disk->private_data = head;
411 head->disk->queue = q;
412 head->disk->flags = GENHD_FL_EXT_DEVT;
413 sprintf(head->disk->disk_name, "nvme%dn%d",
414 ctrl->subsys->instance, head->instance);
415 return 0;
416
417 out_cleanup_queue:
418 blk_cleanup_queue(q);
419 out:
420 return -ENOMEM;
421 }
422
nvme_mpath_set_live(struct nvme_ns * ns)423 static void nvme_mpath_set_live(struct nvme_ns *ns)
424 {
425 struct nvme_ns_head *head = ns->head;
426
427 if (!head->disk)
428 return;
429
430 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags))
431 device_add_disk(&head->subsys->dev, head->disk,
432 nvme_ns_id_attr_groups);
433
434 mutex_lock(&head->lock);
435 if (nvme_path_is_optimized(ns)) {
436 int node, srcu_idx;
437
438 srcu_idx = srcu_read_lock(&head->srcu);
439 for_each_node(node)
440 __nvme_find_path(head, node);
441 srcu_read_unlock(&head->srcu, srcu_idx);
442 }
443 mutex_unlock(&head->lock);
444
445 synchronize_srcu(&head->srcu);
446 kblockd_schedule_work(&head->requeue_work);
447 }
448
nvme_parse_ana_log(struct nvme_ctrl * ctrl,void * data,int (* cb)(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc *,void *))449 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
450 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
451 void *))
452 {
453 void *base = ctrl->ana_log_buf;
454 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
455 int error, i;
456
457 lockdep_assert_held(&ctrl->ana_lock);
458
459 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
460 struct nvme_ana_group_desc *desc = base + offset;
461 u32 nr_nsids;
462 size_t nsid_buf_size;
463
464 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
465 return -EINVAL;
466
467 nr_nsids = le32_to_cpu(desc->nnsids);
468 nsid_buf_size = nr_nsids * sizeof(__le32);
469
470 if (WARN_ON_ONCE(desc->grpid == 0))
471 return -EINVAL;
472 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
473 return -EINVAL;
474 if (WARN_ON_ONCE(desc->state == 0))
475 return -EINVAL;
476 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
477 return -EINVAL;
478
479 offset += sizeof(*desc);
480 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
481 return -EINVAL;
482
483 error = cb(ctrl, desc, data);
484 if (error)
485 return error;
486
487 offset += nsid_buf_size;
488 }
489
490 return 0;
491 }
492
nvme_state_is_live(enum nvme_ana_state state)493 static inline bool nvme_state_is_live(enum nvme_ana_state state)
494 {
495 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
496 }
497
nvme_update_ns_ana_state(struct nvme_ana_group_desc * desc,struct nvme_ns * ns)498 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
499 struct nvme_ns *ns)
500 {
501 ns->ana_grpid = le32_to_cpu(desc->grpid);
502 ns->ana_state = desc->state;
503 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
504 /*
505 * nvme_mpath_set_live() will trigger I/O to the multipath path device
506 * and in turn to this path device. However we cannot accept this I/O
507 * if the controller is not live. This may deadlock if called from
508 * nvme_mpath_init_identify() and the ctrl will never complete
509 * initialization, preventing I/O from completing. For this case we
510 * will reprocess the ANA log page in nvme_mpath_update() once the
511 * controller is ready.
512 */
513 if (nvme_state_is_live(ns->ana_state) &&
514 ns->ctrl->state == NVME_CTRL_LIVE)
515 nvme_mpath_set_live(ns);
516 }
517
nvme_update_ana_state(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)518 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
519 struct nvme_ana_group_desc *desc, void *data)
520 {
521 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
522 unsigned *nr_change_groups = data;
523 struct nvme_ns *ns;
524
525 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
526 le32_to_cpu(desc->grpid),
527 nvme_ana_state_names[desc->state]);
528
529 if (desc->state == NVME_ANA_CHANGE)
530 (*nr_change_groups)++;
531
532 if (!nr_nsids)
533 return 0;
534
535 down_read(&ctrl->namespaces_rwsem);
536 list_for_each_entry(ns, &ctrl->namespaces, list) {
537 unsigned nsid;
538 again:
539 nsid = le32_to_cpu(desc->nsids[n]);
540 if (ns->head->ns_id < nsid)
541 continue;
542 if (ns->head->ns_id == nsid)
543 nvme_update_ns_ana_state(desc, ns);
544 if (++n == nr_nsids)
545 break;
546 if (ns->head->ns_id > nsid)
547 goto again;
548 }
549 up_read(&ctrl->namespaces_rwsem);
550 return 0;
551 }
552
nvme_read_ana_log(struct nvme_ctrl * ctrl)553 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
554 {
555 u32 nr_change_groups = 0;
556 int error;
557
558 mutex_lock(&ctrl->ana_lock);
559 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0,
560 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
561 if (error) {
562 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
563 goto out_unlock;
564 }
565
566 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
567 nvme_update_ana_state);
568 if (error)
569 goto out_unlock;
570
571 /*
572 * In theory we should have an ANATT timer per group as they might enter
573 * the change state at different times. But that is a lot of overhead
574 * just to protect against a target that keeps entering new changes
575 * states while never finishing previous ones. But we'll still
576 * eventually time out once all groups are in change state, so this
577 * isn't a big deal.
578 *
579 * We also double the ANATT value to provide some slack for transports
580 * or AEN processing overhead.
581 */
582 if (nr_change_groups)
583 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
584 else
585 del_timer_sync(&ctrl->anatt_timer);
586 out_unlock:
587 mutex_unlock(&ctrl->ana_lock);
588 return error;
589 }
590
nvme_ana_work(struct work_struct * work)591 static void nvme_ana_work(struct work_struct *work)
592 {
593 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
594
595 nvme_read_ana_log(ctrl);
596 }
597
nvme_mpath_update(struct nvme_ctrl * ctrl)598 void nvme_mpath_update(struct nvme_ctrl *ctrl)
599 {
600 u32 nr_change_groups = 0;
601
602 if (!ctrl->ana_log_buf)
603 return;
604
605 mutex_lock(&ctrl->ana_lock);
606 nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
607 mutex_unlock(&ctrl->ana_lock);
608 }
609
nvme_anatt_timeout(struct timer_list * t)610 static void nvme_anatt_timeout(struct timer_list *t)
611 {
612 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
613
614 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
615 nvme_reset_ctrl(ctrl);
616 }
617
nvme_mpath_stop(struct nvme_ctrl * ctrl)618 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
619 {
620 if (!nvme_ctrl_use_ana(ctrl))
621 return;
622 del_timer_sync(&ctrl->anatt_timer);
623 cancel_work_sync(&ctrl->ana_work);
624 }
625
626 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
627 struct device_attribute subsys_attr_##_name = \
628 __ATTR(_name, _mode, _show, _store)
629
630 static const char *nvme_iopolicy_names[] = {
631 [NVME_IOPOLICY_NUMA] = "numa",
632 [NVME_IOPOLICY_RR] = "round-robin",
633 };
634
nvme_subsys_iopolicy_show(struct device * dev,struct device_attribute * attr,char * buf)635 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
636 struct device_attribute *attr, char *buf)
637 {
638 struct nvme_subsystem *subsys =
639 container_of(dev, struct nvme_subsystem, dev);
640
641 return sprintf(buf, "%s\n",
642 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
643 }
644
nvme_subsys_iopolicy_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)645 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
646 struct device_attribute *attr, const char *buf, size_t count)
647 {
648 struct nvme_subsystem *subsys =
649 container_of(dev, struct nvme_subsystem, dev);
650 int i;
651
652 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
653 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
654 WRITE_ONCE(subsys->iopolicy, i);
655 return count;
656 }
657 }
658
659 return -EINVAL;
660 }
661 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
662 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
663
ana_grpid_show(struct device * dev,struct device_attribute * attr,char * buf)664 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
665 char *buf)
666 {
667 return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
668 }
669 DEVICE_ATTR_RO(ana_grpid);
670
ana_state_show(struct device * dev,struct device_attribute * attr,char * buf)671 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
672 char *buf)
673 {
674 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
675
676 return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
677 }
678 DEVICE_ATTR_RO(ana_state);
679
nvme_lookup_ana_group_desc(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)680 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
681 struct nvme_ana_group_desc *desc, void *data)
682 {
683 struct nvme_ana_group_desc *dst = data;
684
685 if (desc->grpid != dst->grpid)
686 return 0;
687
688 *dst = *desc;
689 return -ENXIO; /* just break out of the loop */
690 }
691
nvme_mpath_add_disk(struct nvme_ns * ns,struct nvme_id_ns * id)692 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
693 {
694 if (nvme_ctrl_use_ana(ns->ctrl)) {
695 struct nvme_ana_group_desc desc = {
696 .grpid = id->anagrpid,
697 .state = 0,
698 };
699
700 mutex_lock(&ns->ctrl->ana_lock);
701 ns->ana_grpid = le32_to_cpu(id->anagrpid);
702 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
703 mutex_unlock(&ns->ctrl->ana_lock);
704 if (desc.state) {
705 /* found the group desc: update */
706 nvme_update_ns_ana_state(&desc, ns);
707 } else {
708 /* group desc not found: trigger a re-read */
709 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
710 queue_work(nvme_wq, &ns->ctrl->ana_work);
711 }
712 } else {
713 ns->ana_state = NVME_ANA_OPTIMIZED;
714 nvme_mpath_set_live(ns);
715 }
716
717 if (bdi_cap_stable_pages_required(ns->queue->backing_dev_info)) {
718 struct gendisk *disk = ns->head->disk;
719
720 if (disk)
721 disk->queue->backing_dev_info->capabilities |=
722 BDI_CAP_STABLE_WRITES;
723 }
724 }
725
nvme_mpath_remove_disk(struct nvme_ns_head * head)726 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
727 {
728 if (!head->disk)
729 return;
730 if (head->disk->flags & GENHD_FL_UP)
731 del_gendisk(head->disk);
732 blk_set_queue_dying(head->disk->queue);
733 /* make sure all pending bios are cleaned up */
734 kblockd_schedule_work(&head->requeue_work);
735 flush_work(&head->requeue_work);
736 blk_cleanup_queue(head->disk->queue);
737 if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
738 /*
739 * if device_add_disk wasn't called, prevent
740 * disk release to put a bogus reference on the
741 * request queue
742 */
743 head->disk->queue = NULL;
744 }
745 put_disk(head->disk);
746 }
747
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)748 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
749 {
750 mutex_init(&ctrl->ana_lock);
751 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
752 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
753 }
754
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)755 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
756 {
757 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
758 size_t ana_log_size;
759 int error = 0;
760
761 /* check if multipath is enabled and we have the capability */
762 if (!multipath || !ctrl->subsys || !(ctrl->subsys->cmic & (1 << 3)))
763 return 0;
764
765 ctrl->anacap = id->anacap;
766 ctrl->anatt = id->anatt;
767 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
768 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
769
770 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
771 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
772 ctrl->max_namespaces * sizeof(__le32);
773 if (ana_log_size > max_transfer_size) {
774 dev_err(ctrl->device,
775 "ANA log page size (%zd) larger than MDTS (%zd).\n",
776 ana_log_size, max_transfer_size);
777 dev_err(ctrl->device, "disabling ANA support.\n");
778 goto out_uninit;
779 }
780 if (ana_log_size > ctrl->ana_log_size) {
781 nvme_mpath_stop(ctrl);
782 kfree(ctrl->ana_log_buf);
783 ctrl->ana_log_buf = kmalloc(ana_log_size, GFP_KERNEL);
784 if (!ctrl->ana_log_buf)
785 return -ENOMEM;
786 }
787 ctrl->ana_log_size = ana_log_size;
788 error = nvme_read_ana_log(ctrl);
789 if (error)
790 goto out_uninit;
791 return 0;
792
793 out_uninit:
794 nvme_mpath_uninit(ctrl);
795 return error;
796 }
797
nvme_mpath_uninit(struct nvme_ctrl * ctrl)798 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
799 {
800 kfree(ctrl->ana_log_buf);
801 ctrl->ana_log_buf = NULL;
802 }
803
804