1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "OF: " fmt
3
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/pci.h>
12 #include <linux/pci_regs.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16
17 #include "of_private.h"
18
19 /* Max address size we deal with */
20 #define OF_MAX_ADDR_CELLS 4
21 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
22 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
23
24 static struct of_bus *of_match_bus(struct device_node *np);
25 static int __of_address_to_resource(struct device_node *dev,
26 const __be32 *addrp, u64 size, unsigned int flags,
27 const char *name, struct resource *r);
28
29 /* Debug utility */
30 #ifdef DEBUG
of_dump_addr(const char * s,const __be32 * addr,int na)31 static void of_dump_addr(const char *s, const __be32 *addr, int na)
32 {
33 pr_debug("%s", s);
34 while (na--)
35 pr_cont(" %08x", be32_to_cpu(*(addr++)));
36 pr_cont("\n");
37 }
38 #else
of_dump_addr(const char * s,const __be32 * addr,int na)39 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
40 #endif
41
42 /* Callbacks for bus specific translators */
43 struct of_bus {
44 const char *name;
45 const char *addresses;
46 int (*match)(struct device_node *parent);
47 void (*count_cells)(struct device_node *child,
48 int *addrc, int *sizec);
49 u64 (*map)(__be32 *addr, const __be32 *range,
50 int na, int ns, int pna);
51 int (*translate)(__be32 *addr, u64 offset, int na);
52 unsigned int (*get_flags)(const __be32 *addr);
53 };
54
55 /*
56 * Default translator (generic bus)
57 */
58
of_bus_default_count_cells(struct device_node * dev,int * addrc,int * sizec)59 static void of_bus_default_count_cells(struct device_node *dev,
60 int *addrc, int *sizec)
61 {
62 if (addrc)
63 *addrc = of_n_addr_cells(dev);
64 if (sizec)
65 *sizec = of_n_size_cells(dev);
66 }
67
of_bus_default_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)68 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
69 int na, int ns, int pna)
70 {
71 u64 cp, s, da;
72
73 cp = of_read_number(range, na);
74 s = of_read_number(range + na + pna, ns);
75 da = of_read_number(addr, na);
76
77 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
78 (unsigned long long)cp, (unsigned long long)s,
79 (unsigned long long)da);
80
81 if (da < cp || da >= (cp + s))
82 return OF_BAD_ADDR;
83 return da - cp;
84 }
85
of_bus_default_translate(__be32 * addr,u64 offset,int na)86 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
87 {
88 u64 a = of_read_number(addr, na);
89 memset(addr, 0, na * 4);
90 a += offset;
91 if (na > 1)
92 addr[na - 2] = cpu_to_be32(a >> 32);
93 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
94
95 return 0;
96 }
97
of_bus_default_get_flags(const __be32 * addr)98 static unsigned int of_bus_default_get_flags(const __be32 *addr)
99 {
100 return IORESOURCE_MEM;
101 }
102
103 #ifdef CONFIG_PCI
104 /*
105 * PCI bus specific translator
106 */
107
of_bus_pci_match(struct device_node * np)108 static int of_bus_pci_match(struct device_node *np)
109 {
110 /*
111 * "pciex" is PCI Express
112 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
113 * "ht" is hypertransport
114 */
115 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
116 of_node_is_type(np, "vci") || of_node_is_type(np, "ht");
117 }
118
of_bus_pci_count_cells(struct device_node * np,int * addrc,int * sizec)119 static void of_bus_pci_count_cells(struct device_node *np,
120 int *addrc, int *sizec)
121 {
122 if (addrc)
123 *addrc = 3;
124 if (sizec)
125 *sizec = 2;
126 }
127
of_bus_pci_get_flags(const __be32 * addr)128 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
129 {
130 unsigned int flags = 0;
131 u32 w = be32_to_cpup(addr);
132
133 switch((w >> 24) & 0x03) {
134 case 0x01:
135 flags |= IORESOURCE_IO;
136 break;
137 case 0x02: /* 32 bits */
138 case 0x03: /* 64 bits */
139 flags |= IORESOURCE_MEM;
140 break;
141 }
142 if (w & 0x40000000)
143 flags |= IORESOURCE_PREFETCH;
144 return flags;
145 }
146
of_bus_pci_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)147 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
148 int pna)
149 {
150 u64 cp, s, da;
151 unsigned int af, rf;
152
153 af = of_bus_pci_get_flags(addr);
154 rf = of_bus_pci_get_flags(range);
155
156 /* Check address type match */
157 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
158 return OF_BAD_ADDR;
159
160 /* Read address values, skipping high cell */
161 cp = of_read_number(range + 1, na - 1);
162 s = of_read_number(range + na + pna, ns);
163 da = of_read_number(addr + 1, na - 1);
164
165 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
166 (unsigned long long)cp, (unsigned long long)s,
167 (unsigned long long)da);
168
169 if (da < cp || da >= (cp + s))
170 return OF_BAD_ADDR;
171 return da - cp;
172 }
173
of_bus_pci_translate(__be32 * addr,u64 offset,int na)174 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
175 {
176 return of_bus_default_translate(addr + 1, offset, na - 1);
177 }
178
of_get_pci_address(struct device_node * dev,int bar_no,u64 * size,unsigned int * flags)179 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
180 unsigned int *flags)
181 {
182 const __be32 *prop;
183 unsigned int psize;
184 struct device_node *parent;
185 struct of_bus *bus;
186 int onesize, i, na, ns;
187
188 /* Get parent & match bus type */
189 parent = of_get_parent(dev);
190 if (parent == NULL)
191 return NULL;
192 bus = of_match_bus(parent);
193 if (strcmp(bus->name, "pci")) {
194 of_node_put(parent);
195 return NULL;
196 }
197 bus->count_cells(dev, &na, &ns);
198 of_node_put(parent);
199 if (!OF_CHECK_ADDR_COUNT(na))
200 return NULL;
201
202 /* Get "reg" or "assigned-addresses" property */
203 prop = of_get_property(dev, bus->addresses, &psize);
204 if (prop == NULL)
205 return NULL;
206 psize /= 4;
207
208 onesize = na + ns;
209 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
210 u32 val = be32_to_cpu(prop[0]);
211 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
212 if (size)
213 *size = of_read_number(prop + na, ns);
214 if (flags)
215 *flags = bus->get_flags(prop);
216 return prop;
217 }
218 }
219 return NULL;
220 }
221 EXPORT_SYMBOL(of_get_pci_address);
222
of_pci_address_to_resource(struct device_node * dev,int bar,struct resource * r)223 int of_pci_address_to_resource(struct device_node *dev, int bar,
224 struct resource *r)
225 {
226 const __be32 *addrp;
227 u64 size;
228 unsigned int flags;
229
230 addrp = of_get_pci_address(dev, bar, &size, &flags);
231 if (addrp == NULL)
232 return -EINVAL;
233 return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
234 }
235 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
236
parser_init(struct of_pci_range_parser * parser,struct device_node * node,const char * name)237 static int parser_init(struct of_pci_range_parser *parser,
238 struct device_node *node, const char *name)
239 {
240 const int na = 3, ns = 2;
241 int rlen;
242
243 parser->node = node;
244 parser->pna = of_n_addr_cells(node);
245 parser->np = parser->pna + na + ns;
246 parser->dma = !strcmp(name, "dma-ranges");
247
248 parser->range = of_get_property(node, name, &rlen);
249 if (parser->range == NULL)
250 return -ENOENT;
251
252 parser->end = parser->range + rlen / sizeof(__be32);
253
254 return 0;
255 }
256
of_pci_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)257 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
258 struct device_node *node)
259 {
260 return parser_init(parser, node, "ranges");
261 }
262 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
263
of_pci_dma_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)264 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
265 struct device_node *node)
266 {
267 return parser_init(parser, node, "dma-ranges");
268 }
269 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
270
of_pci_range_parser_one(struct of_pci_range_parser * parser,struct of_pci_range * range)271 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
272 struct of_pci_range *range)
273 {
274 const int na = 3, ns = 2;
275
276 if (!range)
277 return NULL;
278
279 if (!parser->range || parser->range + parser->np > parser->end)
280 return NULL;
281
282 range->pci_space = be32_to_cpup(parser->range);
283 range->flags = of_bus_pci_get_flags(parser->range);
284 range->pci_addr = of_read_number(parser->range + 1, ns);
285 if (parser->dma)
286 range->cpu_addr = of_translate_dma_address(parser->node,
287 parser->range + na);
288 else
289 range->cpu_addr = of_translate_address(parser->node,
290 parser->range + na);
291 range->size = of_read_number(parser->range + parser->pna + na, ns);
292
293 parser->range += parser->np;
294
295 /* Now consume following elements while they are contiguous */
296 while (parser->range + parser->np <= parser->end) {
297 u32 flags;
298 u64 pci_addr, cpu_addr, size;
299
300 flags = of_bus_pci_get_flags(parser->range);
301 pci_addr = of_read_number(parser->range + 1, ns);
302 if (parser->dma)
303 cpu_addr = of_translate_dma_address(parser->node,
304 parser->range + na);
305 else
306 cpu_addr = of_translate_address(parser->node,
307 parser->range + na);
308 size = of_read_number(parser->range + parser->pna + na, ns);
309
310 if (flags != range->flags)
311 break;
312 if (pci_addr != range->pci_addr + range->size ||
313 cpu_addr != range->cpu_addr + range->size)
314 break;
315
316 range->size += size;
317 parser->range += parser->np;
318 }
319
320 return range;
321 }
322 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
323
324 /*
325 * of_pci_range_to_resource - Create a resource from an of_pci_range
326 * @range: the PCI range that describes the resource
327 * @np: device node where the range belongs to
328 * @res: pointer to a valid resource that will be updated to
329 * reflect the values contained in the range.
330 *
331 * Returns EINVAL if the range cannot be converted to resource.
332 *
333 * Note that if the range is an IO range, the resource will be converted
334 * using pci_address_to_pio() which can fail if it is called too early or
335 * if the range cannot be matched to any host bridge IO space (our case here).
336 * To guard against that we try to register the IO range first.
337 * If that fails we know that pci_address_to_pio() will do too.
338 */
of_pci_range_to_resource(struct of_pci_range * range,struct device_node * np,struct resource * res)339 int of_pci_range_to_resource(struct of_pci_range *range,
340 struct device_node *np, struct resource *res)
341 {
342 int err;
343 res->flags = range->flags;
344 res->parent = res->child = res->sibling = NULL;
345 res->name = np->full_name;
346
347 if (res->flags & IORESOURCE_IO) {
348 unsigned long port;
349 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
350 range->size);
351 if (err)
352 goto invalid_range;
353 port = pci_address_to_pio(range->cpu_addr);
354 if (port == (unsigned long)-1) {
355 err = -EINVAL;
356 goto invalid_range;
357 }
358 res->start = port;
359 } else {
360 if ((sizeof(resource_size_t) < 8) &&
361 upper_32_bits(range->cpu_addr)) {
362 err = -EINVAL;
363 goto invalid_range;
364 }
365
366 res->start = range->cpu_addr;
367 }
368 res->end = res->start + range->size - 1;
369 return 0;
370
371 invalid_range:
372 res->start = (resource_size_t)OF_BAD_ADDR;
373 res->end = (resource_size_t)OF_BAD_ADDR;
374 return err;
375 }
376 EXPORT_SYMBOL(of_pci_range_to_resource);
377 #endif /* CONFIG_PCI */
378
379 /*
380 * ISA bus specific translator
381 */
382
of_bus_isa_match(struct device_node * np)383 static int of_bus_isa_match(struct device_node *np)
384 {
385 return of_node_name_eq(np, "isa");
386 }
387
of_bus_isa_count_cells(struct device_node * child,int * addrc,int * sizec)388 static void of_bus_isa_count_cells(struct device_node *child,
389 int *addrc, int *sizec)
390 {
391 if (addrc)
392 *addrc = 2;
393 if (sizec)
394 *sizec = 1;
395 }
396
of_bus_isa_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)397 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
398 int pna)
399 {
400 u64 cp, s, da;
401
402 /* Check address type match */
403 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
404 return OF_BAD_ADDR;
405
406 /* Read address values, skipping high cell */
407 cp = of_read_number(range + 1, na - 1);
408 s = of_read_number(range + na + pna, ns);
409 da = of_read_number(addr + 1, na - 1);
410
411 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
412 (unsigned long long)cp, (unsigned long long)s,
413 (unsigned long long)da);
414
415 if (da < cp || da >= (cp + s))
416 return OF_BAD_ADDR;
417 return da - cp;
418 }
419
of_bus_isa_translate(__be32 * addr,u64 offset,int na)420 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
421 {
422 return of_bus_default_translate(addr + 1, offset, na - 1);
423 }
424
of_bus_isa_get_flags(const __be32 * addr)425 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
426 {
427 unsigned int flags = 0;
428 u32 w = be32_to_cpup(addr);
429
430 if (w & 1)
431 flags |= IORESOURCE_IO;
432 else
433 flags |= IORESOURCE_MEM;
434 return flags;
435 }
436
437 /*
438 * Array of bus specific translators
439 */
440
441 static struct of_bus of_busses[] = {
442 #ifdef CONFIG_PCI
443 /* PCI */
444 {
445 .name = "pci",
446 .addresses = "assigned-addresses",
447 .match = of_bus_pci_match,
448 .count_cells = of_bus_pci_count_cells,
449 .map = of_bus_pci_map,
450 .translate = of_bus_pci_translate,
451 .get_flags = of_bus_pci_get_flags,
452 },
453 #endif /* CONFIG_PCI */
454 /* ISA */
455 {
456 .name = "isa",
457 .addresses = "reg",
458 .match = of_bus_isa_match,
459 .count_cells = of_bus_isa_count_cells,
460 .map = of_bus_isa_map,
461 .translate = of_bus_isa_translate,
462 .get_flags = of_bus_isa_get_flags,
463 },
464 /* Default */
465 {
466 .name = "default",
467 .addresses = "reg",
468 .match = NULL,
469 .count_cells = of_bus_default_count_cells,
470 .map = of_bus_default_map,
471 .translate = of_bus_default_translate,
472 .get_flags = of_bus_default_get_flags,
473 },
474 };
475
of_match_bus(struct device_node * np)476 static struct of_bus *of_match_bus(struct device_node *np)
477 {
478 int i;
479
480 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
481 if (!of_busses[i].match || of_busses[i].match(np))
482 return &of_busses[i];
483 BUG();
484 return NULL;
485 }
486
of_empty_ranges_quirk(struct device_node * np)487 static int of_empty_ranges_quirk(struct device_node *np)
488 {
489 if (IS_ENABLED(CONFIG_PPC)) {
490 /* To save cycles, we cache the result for global "Mac" setting */
491 static int quirk_state = -1;
492
493 /* PA-SEMI sdc DT bug */
494 if (of_device_is_compatible(np, "1682m-sdc"))
495 return true;
496
497 /* Make quirk cached */
498 if (quirk_state < 0)
499 quirk_state =
500 of_machine_is_compatible("Power Macintosh") ||
501 of_machine_is_compatible("MacRISC");
502 return quirk_state;
503 }
504 return false;
505 }
506
of_translate_one(struct device_node * parent,struct of_bus * bus,struct of_bus * pbus,__be32 * addr,int na,int ns,int pna,const char * rprop)507 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
508 struct of_bus *pbus, __be32 *addr,
509 int na, int ns, int pna, const char *rprop)
510 {
511 const __be32 *ranges;
512 unsigned int rlen;
513 int rone;
514 u64 offset = OF_BAD_ADDR;
515
516 /*
517 * Normally, an absence of a "ranges" property means we are
518 * crossing a non-translatable boundary, and thus the addresses
519 * below the current cannot be converted to CPU physical ones.
520 * Unfortunately, while this is very clear in the spec, it's not
521 * what Apple understood, and they do have things like /uni-n or
522 * /ht nodes with no "ranges" property and a lot of perfectly
523 * useable mapped devices below them. Thus we treat the absence of
524 * "ranges" as equivalent to an empty "ranges" property which means
525 * a 1:1 translation at that level. It's up to the caller not to try
526 * to translate addresses that aren't supposed to be translated in
527 * the first place. --BenH.
528 *
529 * As far as we know, this damage only exists on Apple machines, so
530 * This code is only enabled on powerpc. --gcl
531 *
532 * This quirk also applies for 'dma-ranges' which frequently exist in
533 * child nodes without 'dma-ranges' in the parent nodes. --RobH
534 */
535 ranges = of_get_property(parent, rprop, &rlen);
536 if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
537 strcmp(rprop, "dma-ranges")) {
538 pr_debug("no ranges; cannot translate\n");
539 return 1;
540 }
541 if (ranges == NULL || rlen == 0) {
542 offset = of_read_number(addr, na);
543 memset(addr, 0, pna * 4);
544 pr_debug("empty ranges; 1:1 translation\n");
545 goto finish;
546 }
547
548 pr_debug("walking ranges...\n");
549
550 /* Now walk through the ranges */
551 rlen /= 4;
552 rone = na + pna + ns;
553 for (; rlen >= rone; rlen -= rone, ranges += rone) {
554 offset = bus->map(addr, ranges, na, ns, pna);
555 if (offset != OF_BAD_ADDR)
556 break;
557 }
558 if (offset == OF_BAD_ADDR) {
559 pr_debug("not found !\n");
560 return 1;
561 }
562 memcpy(addr, ranges + na, 4 * pna);
563
564 finish:
565 of_dump_addr("parent translation for:", addr, pna);
566 pr_debug("with offset: %llx\n", (unsigned long long)offset);
567
568 /* Translate it into parent bus space */
569 return pbus->translate(addr, offset, pna);
570 }
571
572 /*
573 * Translate an address from the device-tree into a CPU physical address,
574 * this walks up the tree and applies the various bus mappings on the
575 * way.
576 *
577 * Note: We consider that crossing any level with #size-cells == 0 to mean
578 * that translation is impossible (that is we are not dealing with a value
579 * that can be mapped to a cpu physical address). This is not really specified
580 * that way, but this is traditionally the way IBM at least do things
581 *
582 * Whenever the translation fails, the *host pointer will be set to the
583 * device that had registered logical PIO mapping, and the return code is
584 * relative to that node.
585 */
__of_translate_address(struct device_node * dev,struct device_node * (* get_parent)(const struct device_node *),const __be32 * in_addr,const char * rprop,struct device_node ** host)586 static u64 __of_translate_address(struct device_node *dev,
587 struct device_node *(*get_parent)(const struct device_node *),
588 const __be32 *in_addr, const char *rprop,
589 struct device_node **host)
590 {
591 struct device_node *parent = NULL;
592 struct of_bus *bus, *pbus;
593 __be32 addr[OF_MAX_ADDR_CELLS];
594 int na, ns, pna, pns;
595 u64 result = OF_BAD_ADDR;
596
597 pr_debug("** translation for device %pOF **\n", dev);
598
599 /* Increase refcount at current level */
600 of_node_get(dev);
601
602 *host = NULL;
603 /* Get parent & match bus type */
604 parent = get_parent(dev);
605 if (parent == NULL)
606 goto bail;
607 bus = of_match_bus(parent);
608
609 /* Count address cells & copy address locally */
610 bus->count_cells(dev, &na, &ns);
611 if (!OF_CHECK_COUNTS(na, ns)) {
612 pr_debug("Bad cell count for %pOF\n", dev);
613 goto bail;
614 }
615 memcpy(addr, in_addr, na * 4);
616
617 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
618 bus->name, na, ns, parent);
619 of_dump_addr("translating address:", addr, na);
620
621 /* Translate */
622 for (;;) {
623 struct logic_pio_hwaddr *iorange;
624
625 /* Switch to parent bus */
626 of_node_put(dev);
627 dev = parent;
628 parent = get_parent(dev);
629
630 /* If root, we have finished */
631 if (parent == NULL) {
632 pr_debug("reached root node\n");
633 result = of_read_number(addr, na);
634 break;
635 }
636
637 /*
638 * For indirectIO device which has no ranges property, get
639 * the address from reg directly.
640 */
641 iorange = find_io_range_by_fwnode(&dev->fwnode);
642 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
643 result = of_read_number(addr + 1, na - 1);
644 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
645 dev, result);
646 *host = of_node_get(dev);
647 break;
648 }
649
650 /* Get new parent bus and counts */
651 pbus = of_match_bus(parent);
652 pbus->count_cells(dev, &pna, &pns);
653 if (!OF_CHECK_COUNTS(pna, pns)) {
654 pr_err("Bad cell count for %pOF\n", dev);
655 break;
656 }
657
658 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
659 pbus->name, pna, pns, parent);
660
661 /* Apply bus translation */
662 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
663 break;
664
665 /* Complete the move up one level */
666 na = pna;
667 ns = pns;
668 bus = pbus;
669
670 of_dump_addr("one level translation:", addr, na);
671 }
672 bail:
673 of_node_put(parent);
674 of_node_put(dev);
675
676 return result;
677 }
678
of_translate_address(struct device_node * dev,const __be32 * in_addr)679 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
680 {
681 struct device_node *host;
682 u64 ret;
683
684 ret = __of_translate_address(dev, of_get_parent,
685 in_addr, "ranges", &host);
686 if (host) {
687 of_node_put(host);
688 return OF_BAD_ADDR;
689 }
690
691 return ret;
692 }
693 EXPORT_SYMBOL(of_translate_address);
694
__of_get_dma_parent(const struct device_node * np)695 static struct device_node *__of_get_dma_parent(const struct device_node *np)
696 {
697 struct of_phandle_args args;
698 int ret, index;
699
700 index = of_property_match_string(np, "interconnect-names", "dma-mem");
701 if (index < 0)
702 return of_get_parent(np);
703
704 ret = of_parse_phandle_with_args(np, "interconnects",
705 "#interconnect-cells",
706 index, &args);
707 if (ret < 0)
708 return of_get_parent(np);
709
710 return of_node_get(args.np);
711 }
712
of_get_next_dma_parent(struct device_node * np)713 static struct device_node *of_get_next_dma_parent(struct device_node *np)
714 {
715 struct device_node *parent;
716
717 parent = __of_get_dma_parent(np);
718 of_node_put(np);
719
720 return parent;
721 }
722
of_translate_dma_address(struct device_node * dev,const __be32 * in_addr)723 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
724 {
725 struct device_node *host;
726 u64 ret;
727
728 ret = __of_translate_address(dev, __of_get_dma_parent,
729 in_addr, "dma-ranges", &host);
730
731 if (host) {
732 of_node_put(host);
733 return OF_BAD_ADDR;
734 }
735
736 return ret;
737 }
738 EXPORT_SYMBOL(of_translate_dma_address);
739
of_get_address(struct device_node * dev,int index,u64 * size,unsigned int * flags)740 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
741 unsigned int *flags)
742 {
743 const __be32 *prop;
744 unsigned int psize;
745 struct device_node *parent;
746 struct of_bus *bus;
747 int onesize, i, na, ns;
748
749 /* Get parent & match bus type */
750 parent = of_get_parent(dev);
751 if (parent == NULL)
752 return NULL;
753 bus = of_match_bus(parent);
754 bus->count_cells(dev, &na, &ns);
755 of_node_put(parent);
756 if (!OF_CHECK_ADDR_COUNT(na))
757 return NULL;
758
759 /* Get "reg" or "assigned-addresses" property */
760 prop = of_get_property(dev, bus->addresses, &psize);
761 if (prop == NULL)
762 return NULL;
763 psize /= 4;
764
765 onesize = na + ns;
766 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
767 if (i == index) {
768 if (size)
769 *size = of_read_number(prop + na, ns);
770 if (flags)
771 *flags = bus->get_flags(prop);
772 return prop;
773 }
774 return NULL;
775 }
776 EXPORT_SYMBOL(of_get_address);
777
of_translate_ioport(struct device_node * dev,const __be32 * in_addr,u64 size)778 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
779 u64 size)
780 {
781 u64 taddr;
782 unsigned long port;
783 struct device_node *host;
784
785 taddr = __of_translate_address(dev, of_get_parent,
786 in_addr, "ranges", &host);
787 if (host) {
788 /* host-specific port access */
789 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
790 of_node_put(host);
791 } else {
792 /* memory-mapped I/O range */
793 port = pci_address_to_pio(taddr);
794 }
795
796 if (port == (unsigned long)-1)
797 return OF_BAD_ADDR;
798
799 return port;
800 }
801
__of_address_to_resource(struct device_node * dev,const __be32 * addrp,u64 size,unsigned int flags,const char * name,struct resource * r)802 static int __of_address_to_resource(struct device_node *dev,
803 const __be32 *addrp, u64 size, unsigned int flags,
804 const char *name, struct resource *r)
805 {
806 u64 taddr;
807
808 if (flags & IORESOURCE_MEM)
809 taddr = of_translate_address(dev, addrp);
810 else if (flags & IORESOURCE_IO)
811 taddr = of_translate_ioport(dev, addrp, size);
812 else
813 return -EINVAL;
814
815 if (taddr == OF_BAD_ADDR)
816 return -EINVAL;
817 memset(r, 0, sizeof(struct resource));
818
819 r->start = taddr;
820 r->end = taddr + size - 1;
821 r->flags = flags;
822 r->name = name ? name : dev->full_name;
823
824 return 0;
825 }
826
827 /**
828 * of_address_to_resource - Translate device tree address and return as resource
829 *
830 * Note that if your address is a PIO address, the conversion will fail if
831 * the physical address can't be internally converted to an IO token with
832 * pci_address_to_pio(), that is because it's either called too early or it
833 * can't be matched to any host bridge IO space
834 */
of_address_to_resource(struct device_node * dev,int index,struct resource * r)835 int of_address_to_resource(struct device_node *dev, int index,
836 struct resource *r)
837 {
838 const __be32 *addrp;
839 u64 size;
840 unsigned int flags;
841 const char *name = NULL;
842
843 addrp = of_get_address(dev, index, &size, &flags);
844 if (addrp == NULL)
845 return -EINVAL;
846
847 /* Get optional "reg-names" property to add a name to a resource */
848 of_property_read_string_index(dev, "reg-names", index, &name);
849
850 return __of_address_to_resource(dev, addrp, size, flags, name, r);
851 }
852 EXPORT_SYMBOL_GPL(of_address_to_resource);
853
of_find_matching_node_by_address(struct device_node * from,const struct of_device_id * matches,u64 base_address)854 struct device_node *of_find_matching_node_by_address(struct device_node *from,
855 const struct of_device_id *matches,
856 u64 base_address)
857 {
858 struct device_node *dn = of_find_matching_node(from, matches);
859 struct resource res;
860
861 while (dn) {
862 if (!of_address_to_resource(dn, 0, &res) &&
863 res.start == base_address)
864 return dn;
865
866 dn = of_find_matching_node(dn, matches);
867 }
868
869 return NULL;
870 }
871
872
873 /**
874 * of_iomap - Maps the memory mapped IO for a given device_node
875 * @device: the device whose io range will be mapped
876 * @index: index of the io range
877 *
878 * Returns a pointer to the mapped memory
879 */
of_iomap(struct device_node * np,int index)880 void __iomem *of_iomap(struct device_node *np, int index)
881 {
882 struct resource res;
883
884 if (of_address_to_resource(np, index, &res))
885 return NULL;
886
887 return ioremap(res.start, resource_size(&res));
888 }
889 EXPORT_SYMBOL(of_iomap);
890
891 /*
892 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
893 * for a given device_node
894 * @device: the device whose io range will be mapped
895 * @index: index of the io range
896 * @name: name "override" for the memory region request or NULL
897 *
898 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
899 * error code on failure. Usage example:
900 *
901 * base = of_io_request_and_map(node, 0, "foo");
902 * if (IS_ERR(base))
903 * return PTR_ERR(base);
904 */
of_io_request_and_map(struct device_node * np,int index,const char * name)905 void __iomem *of_io_request_and_map(struct device_node *np, int index,
906 const char *name)
907 {
908 struct resource res;
909 void __iomem *mem;
910
911 if (of_address_to_resource(np, index, &res))
912 return IOMEM_ERR_PTR(-EINVAL);
913
914 if (!name)
915 name = res.name;
916 if (!request_mem_region(res.start, resource_size(&res), name))
917 return IOMEM_ERR_PTR(-EBUSY);
918
919 mem = ioremap(res.start, resource_size(&res));
920 if (!mem) {
921 release_mem_region(res.start, resource_size(&res));
922 return IOMEM_ERR_PTR(-ENOMEM);
923 }
924
925 return mem;
926 }
927 EXPORT_SYMBOL(of_io_request_and_map);
928
929 /**
930 * of_dma_get_range - Get DMA range info
931 * @np: device node to get DMA range info
932 * @dma_addr: pointer to store initial DMA address of DMA range
933 * @paddr: pointer to store initial CPU address of DMA range
934 * @size: pointer to store size of DMA range
935 *
936 * Look in bottom up direction for the first "dma-ranges" property
937 * and parse it.
938 * dma-ranges format:
939 * DMA addr (dma_addr) : naddr cells
940 * CPU addr (phys_addr_t) : pna cells
941 * size : nsize cells
942 *
943 * It returns -ENODEV if "dma-ranges" property was not found
944 * for this device in DT.
945 */
of_dma_get_range(struct device_node * np,u64 * dma_addr,u64 * paddr,u64 * size)946 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
947 {
948 struct device_node *node = of_node_get(np);
949 const __be32 *ranges = NULL;
950 int len, naddr, nsize, pna;
951 int ret = 0;
952 bool found_dma_ranges = false;
953 u64 dmaaddr;
954
955 while (node) {
956 ranges = of_get_property(node, "dma-ranges", &len);
957
958 /* Ignore empty ranges, they imply no translation required */
959 if (ranges && len > 0)
960 break;
961
962 /* Once we find 'dma-ranges', then a missing one is an error */
963 if (found_dma_ranges && !ranges) {
964 ret = -ENODEV;
965 goto out;
966 }
967 found_dma_ranges = true;
968
969 node = of_get_next_dma_parent(node);
970 }
971
972 if (!node || !ranges) {
973 pr_debug("no dma-ranges found for node(%pOF)\n", np);
974 ret = -ENODEV;
975 goto out;
976 }
977
978 naddr = of_bus_n_addr_cells(node);
979 nsize = of_bus_n_size_cells(node);
980 pna = of_n_addr_cells(node);
981 if ((len / sizeof(__be32)) % (pna + naddr + nsize)) {
982 ret = -EINVAL;
983 goto out;
984 }
985
986 /* dma-ranges format:
987 * DMA addr : naddr cells
988 * CPU addr : pna cells
989 * size : nsize cells
990 */
991 dmaaddr = of_read_number(ranges, naddr);
992 *paddr = of_translate_dma_address(node, ranges + naddr);
993 if (*paddr == OF_BAD_ADDR) {
994 pr_err("translation of DMA address(%pad) to CPU address failed node(%pOF)\n",
995 dma_addr, np);
996 ret = -EINVAL;
997 goto out;
998 }
999 *dma_addr = dmaaddr;
1000
1001 *size = of_read_number(ranges + naddr + pna, nsize);
1002
1003 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
1004 *dma_addr, *paddr, *size);
1005
1006 out:
1007 of_node_put(node);
1008
1009 return ret;
1010 }
1011
1012 /**
1013 * of_dma_is_coherent - Check if device is coherent
1014 * @np: device node
1015 *
1016 * It returns true if "dma-coherent" property was found
1017 * for this device in the DT, or if DMA is coherent by
1018 * default for OF devices on the current platform.
1019 */
of_dma_is_coherent(struct device_node * np)1020 bool of_dma_is_coherent(struct device_node *np)
1021 {
1022 struct device_node *node;
1023
1024 if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT))
1025 return true;
1026
1027 node = of_node_get(np);
1028
1029 while (node) {
1030 if (of_property_read_bool(node, "dma-coherent")) {
1031 of_node_put(node);
1032 return true;
1033 }
1034 node = of_get_next_dma_parent(node);
1035 }
1036 of_node_put(node);
1037 return false;
1038 }
1039 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1040