• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for creating, accessing and interpreting the device tree.
4  *
5  * Paul Mackerras	August 1996.
6  * Copyright (C) 1996-2005 Paul Mackerras.
7  *
8  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9  *    {engebret|bergner}@us.ibm.com
10  *
11  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12  *
13  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14  *  Grant Likely.
15  */
16 
17 #define pr_fmt(fmt)	"OF: " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31 
32 #include "of_private.h"
33 
34 LIST_HEAD(aliases_lookup);
35 
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 struct device_node *of_aliases;
40 struct device_node *of_stdout;
41 static const char *of_stdout_options;
42 
43 struct kset *of_kset;
44 
45 /*
46  * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47  * This mutex must be held whenever modifications are being made to the
48  * device tree. The of_{attach,detach}_node() and
49  * of_{add,remove,update}_property() helpers make sure this happens.
50  */
51 DEFINE_MUTEX(of_mutex);
52 
53 /* use when traversing tree through the child, sibling,
54  * or parent members of struct device_node.
55  */
56 DEFINE_RAW_SPINLOCK(devtree_lock);
57 
of_node_name_eq(const struct device_node * np,const char * name)58 bool of_node_name_eq(const struct device_node *np, const char *name)
59 {
60 	const char *node_name;
61 	size_t len;
62 
63 	if (!np)
64 		return false;
65 
66 	node_name = kbasename(np->full_name);
67 	len = strchrnul(node_name, '@') - node_name;
68 
69 	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70 }
71 EXPORT_SYMBOL(of_node_name_eq);
72 
of_node_name_prefix(const struct device_node * np,const char * prefix)73 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74 {
75 	if (!np)
76 		return false;
77 
78 	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79 }
80 EXPORT_SYMBOL(of_node_name_prefix);
81 
__of_node_is_type(const struct device_node * np,const char * type)82 static bool __of_node_is_type(const struct device_node *np, const char *type)
83 {
84 	const char *match = __of_get_property(np, "device_type", NULL);
85 
86 	return np && match && type && !strcmp(match, type);
87 }
88 
of_bus_n_addr_cells(struct device_node * np)89 int of_bus_n_addr_cells(struct device_node *np)
90 {
91 	u32 cells;
92 
93 	for (; np; np = np->parent)
94 		if (!of_property_read_u32(np, "#address-cells", &cells))
95 			return cells;
96 
97 	/* No #address-cells property for the root node */
98 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99 }
100 
of_n_addr_cells(struct device_node * np)101 int of_n_addr_cells(struct device_node *np)
102 {
103 	if (np->parent)
104 		np = np->parent;
105 
106 	return of_bus_n_addr_cells(np);
107 }
108 EXPORT_SYMBOL(of_n_addr_cells);
109 
of_bus_n_size_cells(struct device_node * np)110 int of_bus_n_size_cells(struct device_node *np)
111 {
112 	u32 cells;
113 
114 	for (; np; np = np->parent)
115 		if (!of_property_read_u32(np, "#size-cells", &cells))
116 			return cells;
117 
118 	/* No #size-cells property for the root node */
119 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120 }
121 
of_n_size_cells(struct device_node * np)122 int of_n_size_cells(struct device_node *np)
123 {
124 	if (np->parent)
125 		np = np->parent;
126 
127 	return of_bus_n_size_cells(np);
128 }
129 EXPORT_SYMBOL(of_n_size_cells);
130 
131 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)132 int __weak of_node_to_nid(struct device_node *np)
133 {
134 	return NUMA_NO_NODE;
135 }
136 #endif
137 
138 /*
139  * Assumptions behind phandle_cache implementation:
140  *   - phandle property values are in a contiguous range of 1..n
141  *
142  * If the assumptions do not hold, then
143  *   - the phandle lookup overhead reduction provided by the cache
144  *     will likely be less
145  */
146 
147 static struct device_node **phandle_cache;
148 static u32 phandle_cache_mask;
149 
150 /*
151  * Caller must hold devtree_lock.
152  */
__of_free_phandle_cache(void)153 static void __of_free_phandle_cache(void)
154 {
155 	u32 cache_entries = phandle_cache_mask + 1;
156 	u32 k;
157 
158 	if (!phandle_cache)
159 		return;
160 
161 	for (k = 0; k < cache_entries; k++)
162 		of_node_put(phandle_cache[k]);
163 
164 	kfree(phandle_cache);
165 	phandle_cache = NULL;
166 }
167 
of_free_phandle_cache(void)168 int of_free_phandle_cache(void)
169 {
170 	unsigned long flags;
171 
172 	raw_spin_lock_irqsave(&devtree_lock, flags);
173 
174 	__of_free_phandle_cache();
175 
176 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
177 
178 	return 0;
179 }
180 #if !defined(CONFIG_MODULES)
181 late_initcall_sync(of_free_phandle_cache);
182 #endif
183 
184 /*
185  * Caller must hold devtree_lock.
186  */
__of_free_phandle_cache_entry(phandle handle)187 void __of_free_phandle_cache_entry(phandle handle)
188 {
189 	phandle masked_handle;
190 	struct device_node *np;
191 
192 	if (!handle)
193 		return;
194 
195 	masked_handle = handle & phandle_cache_mask;
196 
197 	if (phandle_cache) {
198 		np = phandle_cache[masked_handle];
199 		if (np && handle == np->phandle) {
200 			of_node_put(np);
201 			phandle_cache[masked_handle] = NULL;
202 		}
203 	}
204 }
205 
of_populate_phandle_cache(void)206 void of_populate_phandle_cache(void)
207 {
208 	unsigned long flags;
209 	u32 cache_entries;
210 	struct device_node *np;
211 	u32 phandles = 0;
212 
213 	raw_spin_lock_irqsave(&devtree_lock, flags);
214 
215 	__of_free_phandle_cache();
216 
217 	for_each_of_allnodes(np)
218 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
219 			phandles++;
220 
221 	if (!phandles)
222 		goto out;
223 
224 	cache_entries = roundup_pow_of_two(phandles);
225 	phandle_cache_mask = cache_entries - 1;
226 
227 	phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
228 				GFP_ATOMIC);
229 	if (!phandle_cache)
230 		goto out;
231 
232 	for_each_of_allnodes(np)
233 		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL) {
234 			of_node_get(np);
235 			phandle_cache[np->phandle & phandle_cache_mask] = np;
236 		}
237 
238 out:
239 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
240 }
241 
of_core_init(void)242 void __init of_core_init(void)
243 {
244 	struct device_node *np;
245 
246 	of_populate_phandle_cache();
247 
248 	/* Create the kset, and register existing nodes */
249 	mutex_lock(&of_mutex);
250 	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
251 	if (!of_kset) {
252 		mutex_unlock(&of_mutex);
253 		pr_err("failed to register existing nodes\n");
254 		return;
255 	}
256 	for_each_of_allnodes(np)
257 		__of_attach_node_sysfs(np);
258 	mutex_unlock(&of_mutex);
259 
260 	/* Symlink in /proc as required by userspace ABI */
261 	if (of_root)
262 		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
263 }
264 
__of_find_property(const struct device_node * np,const char * name,int * lenp)265 static struct property *__of_find_property(const struct device_node *np,
266 					   const char *name, int *lenp)
267 {
268 	struct property *pp;
269 
270 	if (!np)
271 		return NULL;
272 
273 	for (pp = np->properties; pp; pp = pp->next) {
274 		if (of_prop_cmp(pp->name, name) == 0) {
275 			if (lenp)
276 				*lenp = pp->length;
277 			break;
278 		}
279 	}
280 
281 	return pp;
282 }
283 
of_find_property(const struct device_node * np,const char * name,int * lenp)284 struct property *of_find_property(const struct device_node *np,
285 				  const char *name,
286 				  int *lenp)
287 {
288 	struct property *pp;
289 	unsigned long flags;
290 
291 	raw_spin_lock_irqsave(&devtree_lock, flags);
292 	pp = __of_find_property(np, name, lenp);
293 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
294 
295 	return pp;
296 }
297 EXPORT_SYMBOL(of_find_property);
298 
__of_find_all_nodes(struct device_node * prev)299 struct device_node *__of_find_all_nodes(struct device_node *prev)
300 {
301 	struct device_node *np;
302 	if (!prev) {
303 		np = of_root;
304 	} else if (prev->child) {
305 		np = prev->child;
306 	} else {
307 		/* Walk back up looking for a sibling, or the end of the structure */
308 		np = prev;
309 		while (np->parent && !np->sibling)
310 			np = np->parent;
311 		np = np->sibling; /* Might be null at the end of the tree */
312 	}
313 	return np;
314 }
315 
316 /**
317  * of_find_all_nodes - Get next node in global list
318  * @prev:	Previous node or NULL to start iteration
319  *		of_node_put() will be called on it
320  *
321  * Return: A node pointer with refcount incremented, use
322  * of_node_put() on it when done.
323  */
of_find_all_nodes(struct device_node * prev)324 struct device_node *of_find_all_nodes(struct device_node *prev)
325 {
326 	struct device_node *np;
327 	unsigned long flags;
328 
329 	raw_spin_lock_irqsave(&devtree_lock, flags);
330 	np = __of_find_all_nodes(prev);
331 	of_node_get(np);
332 	of_node_put(prev);
333 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
334 	return np;
335 }
336 EXPORT_SYMBOL(of_find_all_nodes);
337 
338 /*
339  * Find a property with a given name for a given node
340  * and return the value.
341  */
__of_get_property(const struct device_node * np,const char * name,int * lenp)342 const void *__of_get_property(const struct device_node *np,
343 			      const char *name, int *lenp)
344 {
345 	struct property *pp = __of_find_property(np, name, lenp);
346 
347 	return pp ? pp->value : NULL;
348 }
349 
350 /*
351  * Find a property with a given name for a given node
352  * and return the value.
353  */
of_get_property(const struct device_node * np,const char * name,int * lenp)354 const void *of_get_property(const struct device_node *np, const char *name,
355 			    int *lenp)
356 {
357 	struct property *pp = of_find_property(np, name, lenp);
358 
359 	return pp ? pp->value : NULL;
360 }
361 EXPORT_SYMBOL(of_get_property);
362 
363 /*
364  * arch_match_cpu_phys_id - Match the given logical CPU and physical id
365  *
366  * @cpu: logical cpu index of a core/thread
367  * @phys_id: physical identifier of a core/thread
368  *
369  * CPU logical to physical index mapping is architecture specific.
370  * However this __weak function provides a default match of physical
371  * id to logical cpu index. phys_id provided here is usually values read
372  * from the device tree which must match the hardware internal registers.
373  *
374  * Returns true if the physical identifier and the logical cpu index
375  * correspond to the same core/thread, false otherwise.
376  */
arch_match_cpu_phys_id(int cpu,u64 phys_id)377 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
378 {
379 	return (u32)phys_id == cpu;
380 }
381 
382 /*
383  * Checks if the given "prop_name" property holds the physical id of the
384  * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
385  * NULL, local thread number within the core is returned in it.
386  */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)387 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
388 			const char *prop_name, int cpu, unsigned int *thread)
389 {
390 	const __be32 *cell;
391 	int ac, prop_len, tid;
392 	u64 hwid;
393 
394 	ac = of_n_addr_cells(cpun);
395 	cell = of_get_property(cpun, prop_name, &prop_len);
396 	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
397 		return true;
398 	if (!cell || !ac)
399 		return false;
400 	prop_len /= sizeof(*cell) * ac;
401 	for (tid = 0; tid < prop_len; tid++) {
402 		hwid = of_read_number(cell, ac);
403 		if (arch_match_cpu_phys_id(cpu, hwid)) {
404 			if (thread)
405 				*thread = tid;
406 			return true;
407 		}
408 		cell += ac;
409 	}
410 	return false;
411 }
412 
413 /*
414  * arch_find_n_match_cpu_physical_id - See if the given device node is
415  * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
416  * else false.  If 'thread' is non-NULL, the local thread number within the
417  * core is returned in it.
418  */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)419 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
420 					      int cpu, unsigned int *thread)
421 {
422 	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
423 	 * for thread ids on PowerPC. If it doesn't exist fallback to
424 	 * standard "reg" property.
425 	 */
426 	if (IS_ENABLED(CONFIG_PPC) &&
427 	    __of_find_n_match_cpu_property(cpun,
428 					   "ibm,ppc-interrupt-server#s",
429 					   cpu, thread))
430 		return true;
431 
432 	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
433 }
434 
435 /**
436  * of_get_cpu_node - Get device node associated with the given logical CPU
437  *
438  * @cpu: CPU number(logical index) for which device node is required
439  * @thread: if not NULL, local thread number within the physical core is
440  *          returned
441  *
442  * The main purpose of this function is to retrieve the device node for the
443  * given logical CPU index. It should be used to initialize the of_node in
444  * cpu device. Once of_node in cpu device is populated, all the further
445  * references can use that instead.
446  *
447  * CPU logical to physical index mapping is architecture specific and is built
448  * before booting secondary cores. This function uses arch_match_cpu_phys_id
449  * which can be overridden by architecture specific implementation.
450  *
451  * Return: A node pointer for the logical cpu with refcount incremented, use
452  * of_node_put() on it when done. Returns NULL if not found.
453  */
of_get_cpu_node(int cpu,unsigned int * thread)454 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
455 {
456 	struct device_node *cpun;
457 
458 	for_each_of_cpu_node(cpun) {
459 		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
460 			return cpun;
461 	}
462 	return NULL;
463 }
464 EXPORT_SYMBOL(of_get_cpu_node);
465 
466 /**
467  * of_cpu_node_to_id: Get the logical CPU number for a given device_node
468  *
469  * @cpu_node: Pointer to the device_node for CPU.
470  *
471  * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
472  * CPU is not found.
473  */
of_cpu_node_to_id(struct device_node * cpu_node)474 int of_cpu_node_to_id(struct device_node *cpu_node)
475 {
476 	int cpu;
477 	bool found = false;
478 	struct device_node *np;
479 
480 	for_each_possible_cpu(cpu) {
481 		np = of_cpu_device_node_get(cpu);
482 		found = (cpu_node == np);
483 		of_node_put(np);
484 		if (found)
485 			return cpu;
486 	}
487 
488 	return -ENODEV;
489 }
490 EXPORT_SYMBOL(of_cpu_node_to_id);
491 
492 /**
493  * of_get_cpu_state_node - Get CPU's idle state node at the given index
494  *
495  * @cpu_node: The device node for the CPU
496  * @index: The index in the list of the idle states
497  *
498  * Two generic methods can be used to describe a CPU's idle states, either via
499  * a flattened description through the "cpu-idle-states" binding or via the
500  * hierarchical layout, using the "power-domains" and the "domain-idle-states"
501  * bindings. This function check for both and returns the idle state node for
502  * the requested index.
503  *
504  * Return: An idle state node if found at @index. The refcount is incremented
505  * for it, so call of_node_put() on it when done. Returns NULL if not found.
506  */
of_get_cpu_state_node(struct device_node * cpu_node,int index)507 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
508 					  int index)
509 {
510 	struct of_phandle_args args;
511 	int err;
512 
513 	err = of_parse_phandle_with_args(cpu_node, "power-domains",
514 					"#power-domain-cells", 0, &args);
515 	if (!err) {
516 		struct device_node *state_node =
517 			of_parse_phandle(args.np, "domain-idle-states", index);
518 
519 		of_node_put(args.np);
520 		if (state_node)
521 			return state_node;
522 	}
523 
524 	return of_parse_phandle(cpu_node, "cpu-idle-states", index);
525 }
526 EXPORT_SYMBOL(of_get_cpu_state_node);
527 
528 /**
529  * __of_device_is_compatible() - Check if the node matches given constraints
530  * @device: pointer to node
531  * @compat: required compatible string, NULL or "" for any match
532  * @type: required device_type value, NULL or "" for any match
533  * @name: required node name, NULL or "" for any match
534  *
535  * Checks if the given @compat, @type and @name strings match the
536  * properties of the given @device. A constraints can be skipped by
537  * passing NULL or an empty string as the constraint.
538  *
539  * Returns 0 for no match, and a positive integer on match. The return
540  * value is a relative score with larger values indicating better
541  * matches. The score is weighted for the most specific compatible value
542  * to get the highest score. Matching type is next, followed by matching
543  * name. Practically speaking, this results in the following priority
544  * order for matches:
545  *
546  * 1. specific compatible && type && name
547  * 2. specific compatible && type
548  * 3. specific compatible && name
549  * 4. specific compatible
550  * 5. general compatible && type && name
551  * 6. general compatible && type
552  * 7. general compatible && name
553  * 8. general compatible
554  * 9. type && name
555  * 10. type
556  * 11. name
557  */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)558 static int __of_device_is_compatible(const struct device_node *device,
559 				     const char *compat, const char *type, const char *name)
560 {
561 	struct property *prop;
562 	const char *cp;
563 	int index = 0, score = 0;
564 
565 	/* Compatible match has highest priority */
566 	if (compat && compat[0]) {
567 		prop = __of_find_property(device, "compatible", NULL);
568 		for (cp = of_prop_next_string(prop, NULL); cp;
569 		     cp = of_prop_next_string(prop, cp), index++) {
570 			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
571 				score = INT_MAX/2 - (index << 2);
572 				break;
573 			}
574 		}
575 		if (!score)
576 			return 0;
577 	}
578 
579 	/* Matching type is better than matching name */
580 	if (type && type[0]) {
581 		if (!__of_node_is_type(device, type))
582 			return 0;
583 		score += 2;
584 	}
585 
586 	/* Matching name is a bit better than not */
587 	if (name && name[0]) {
588 		if (!of_node_name_eq(device, name))
589 			return 0;
590 		score++;
591 	}
592 
593 	return score;
594 }
595 
596 /** Checks if the given "compat" string matches one of the strings in
597  * the device's "compatible" property
598  */
of_device_is_compatible(const struct device_node * device,const char * compat)599 int of_device_is_compatible(const struct device_node *device,
600 		const char *compat)
601 {
602 	unsigned long flags;
603 	int res;
604 
605 	raw_spin_lock_irqsave(&devtree_lock, flags);
606 	res = __of_device_is_compatible(device, compat, NULL, NULL);
607 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
608 	return res;
609 }
610 EXPORT_SYMBOL(of_device_is_compatible);
611 
612 /** Checks if the device is compatible with any of the entries in
613  *  a NULL terminated array of strings. Returns the best match
614  *  score or 0.
615  */
of_device_compatible_match(struct device_node * device,const char * const * compat)616 int of_device_compatible_match(struct device_node *device,
617 			       const char *const *compat)
618 {
619 	unsigned int tmp, score = 0;
620 
621 	if (!compat)
622 		return 0;
623 
624 	while (*compat) {
625 		tmp = of_device_is_compatible(device, *compat);
626 		if (tmp > score)
627 			score = tmp;
628 		compat++;
629 	}
630 
631 	return score;
632 }
633 
634 /**
635  * of_machine_is_compatible - Test root of device tree for a given compatible value
636  * @compat: compatible string to look for in root node's compatible property.
637  *
638  * Return: A positive integer if the root node has the given value in its
639  * compatible property.
640  */
of_machine_is_compatible(const char * compat)641 int of_machine_is_compatible(const char *compat)
642 {
643 	struct device_node *root;
644 	int rc = 0;
645 
646 	root = of_find_node_by_path("/");
647 	if (root) {
648 		rc = of_device_is_compatible(root, compat);
649 		of_node_put(root);
650 	}
651 	return rc;
652 }
653 EXPORT_SYMBOL(of_machine_is_compatible);
654 
655 /**
656  *  __of_device_is_available - check if a device is available for use
657  *
658  *  @device: Node to check for availability, with locks already held
659  *
660  *  Return: True if the status property is absent or set to "okay" or "ok",
661  *  false otherwise
662  */
__of_device_is_available(const struct device_node * device)663 static bool __of_device_is_available(const struct device_node *device)
664 {
665 	const char *status;
666 	int statlen;
667 
668 	if (!device)
669 		return false;
670 
671 	status = __of_get_property(device, "status", &statlen);
672 	if (status == NULL)
673 		return true;
674 
675 	if (statlen > 0) {
676 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
677 			return true;
678 	}
679 
680 	return false;
681 }
682 
683 /**
684  *  of_device_is_available - check if a device is available for use
685  *
686  *  @device: Node to check for availability
687  *
688  *  Return: True if the status property is absent or set to "okay" or "ok",
689  *  false otherwise
690  */
of_device_is_available(const struct device_node * device)691 bool of_device_is_available(const struct device_node *device)
692 {
693 	unsigned long flags;
694 	bool res;
695 
696 	raw_spin_lock_irqsave(&devtree_lock, flags);
697 	res = __of_device_is_available(device);
698 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
699 	return res;
700 
701 }
702 EXPORT_SYMBOL(of_device_is_available);
703 
704 /**
705  *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
706  *
707  *  @device: Node to check status for, with locks already held
708  *
709  *  Return: True if the status property is set to "fail" or "fail-..." (for any
710  *  error code suffix), false otherwise
711  */
__of_device_is_fail(const struct device_node * device)712 static bool __of_device_is_fail(const struct device_node *device)
713 {
714 	const char *status;
715 
716 	if (!device)
717 		return false;
718 
719 	status = __of_get_property(device, "status", NULL);
720 	if (status == NULL)
721 		return false;
722 
723 	return !strcmp(status, "fail") || !strncmp(status, "fail-", 5);
724 }
725 
726 /**
727  *  of_device_is_big_endian - check if a device has BE registers
728  *
729  *  @device: Node to check for endianness
730  *
731  *  Return: True if the device has a "big-endian" property, or if the kernel
732  *  was compiled for BE *and* the device has a "native-endian" property.
733  *  Returns false otherwise.
734  *
735  *  Callers would nominally use ioread32be/iowrite32be if
736  *  of_device_is_big_endian() == true, or readl/writel otherwise.
737  */
of_device_is_big_endian(const struct device_node * device)738 bool of_device_is_big_endian(const struct device_node *device)
739 {
740 	if (of_property_read_bool(device, "big-endian"))
741 		return true;
742 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
743 	    of_property_read_bool(device, "native-endian"))
744 		return true;
745 	return false;
746 }
747 EXPORT_SYMBOL(of_device_is_big_endian);
748 
749 /**
750  * of_get_parent - Get a node's parent if any
751  * @node:	Node to get parent
752  *
753  * Return: A node pointer with refcount incremented, use
754  * of_node_put() on it when done.
755  */
of_get_parent(const struct device_node * node)756 struct device_node *of_get_parent(const struct device_node *node)
757 {
758 	struct device_node *np;
759 	unsigned long flags;
760 
761 	if (!node)
762 		return NULL;
763 
764 	raw_spin_lock_irqsave(&devtree_lock, flags);
765 	np = of_node_get(node->parent);
766 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
767 	return np;
768 }
769 EXPORT_SYMBOL(of_get_parent);
770 
771 /**
772  * of_get_next_parent - Iterate to a node's parent
773  * @node:	Node to get parent of
774  *
775  * This is like of_get_parent() except that it drops the
776  * refcount on the passed node, making it suitable for iterating
777  * through a node's parents.
778  *
779  * Return: A node pointer with refcount incremented, use
780  * of_node_put() on it when done.
781  */
of_get_next_parent(struct device_node * node)782 struct device_node *of_get_next_parent(struct device_node *node)
783 {
784 	struct device_node *parent;
785 	unsigned long flags;
786 
787 	if (!node)
788 		return NULL;
789 
790 	raw_spin_lock_irqsave(&devtree_lock, flags);
791 	parent = of_node_get(node->parent);
792 	of_node_put(node);
793 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
794 	return parent;
795 }
796 EXPORT_SYMBOL(of_get_next_parent);
797 
__of_get_next_child(const struct device_node * node,struct device_node * prev)798 static struct device_node *__of_get_next_child(const struct device_node *node,
799 						struct device_node *prev)
800 {
801 	struct device_node *next;
802 
803 	if (!node)
804 		return NULL;
805 
806 	next = prev ? prev->sibling : node->child;
807 	for (; next; next = next->sibling)
808 		if (of_node_get(next))
809 			break;
810 	of_node_put(prev);
811 	return next;
812 }
813 #define __for_each_child_of_node(parent, child) \
814 	for (child = __of_get_next_child(parent, NULL); child != NULL; \
815 	     child = __of_get_next_child(parent, child))
816 
817 /**
818  * of_get_next_child - Iterate a node childs
819  * @node:	parent node
820  * @prev:	previous child of the parent node, or NULL to get first
821  *
822  * Return: A node pointer with refcount incremented, use of_node_put() on
823  * it when done. Returns NULL when prev is the last child. Decrements the
824  * refcount of prev.
825  */
of_get_next_child(const struct device_node * node,struct device_node * prev)826 struct device_node *of_get_next_child(const struct device_node *node,
827 	struct device_node *prev)
828 {
829 	struct device_node *next;
830 	unsigned long flags;
831 
832 	raw_spin_lock_irqsave(&devtree_lock, flags);
833 	next = __of_get_next_child(node, prev);
834 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
835 	return next;
836 }
837 EXPORT_SYMBOL(of_get_next_child);
838 
839 /**
840  * of_get_next_available_child - Find the next available child node
841  * @node:	parent node
842  * @prev:	previous child of the parent node, or NULL to get first
843  *
844  * This function is like of_get_next_child(), except that it
845  * automatically skips any disabled nodes (i.e. status = "disabled").
846  */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)847 struct device_node *of_get_next_available_child(const struct device_node *node,
848 	struct device_node *prev)
849 {
850 	struct device_node *next;
851 	unsigned long flags;
852 
853 	if (!node)
854 		return NULL;
855 
856 	raw_spin_lock_irqsave(&devtree_lock, flags);
857 	next = prev ? prev->sibling : node->child;
858 	for (; next; next = next->sibling) {
859 		if (!__of_device_is_available(next))
860 			continue;
861 		if (of_node_get(next))
862 			break;
863 	}
864 	of_node_put(prev);
865 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
866 	return next;
867 }
868 EXPORT_SYMBOL(of_get_next_available_child);
869 
870 /**
871  * of_get_next_cpu_node - Iterate on cpu nodes
872  * @prev:	previous child of the /cpus node, or NULL to get first
873  *
874  * Unusable CPUs (those with the status property set to "fail" or "fail-...")
875  * will be skipped.
876  *
877  * Return: A cpu node pointer with refcount incremented, use of_node_put()
878  * on it when done. Returns NULL when prev is the last child. Decrements
879  * the refcount of prev.
880  */
of_get_next_cpu_node(struct device_node * prev)881 struct device_node *of_get_next_cpu_node(struct device_node *prev)
882 {
883 	struct device_node *next = NULL;
884 	unsigned long flags;
885 	struct device_node *node;
886 
887 	if (!prev)
888 		node = of_find_node_by_path("/cpus");
889 
890 	raw_spin_lock_irqsave(&devtree_lock, flags);
891 	if (prev)
892 		next = prev->sibling;
893 	else if (node) {
894 		next = node->child;
895 		of_node_put(node);
896 	}
897 	for (; next; next = next->sibling) {
898 		if (__of_device_is_fail(next))
899 			continue;
900 		if (!(of_node_name_eq(next, "cpu") ||
901 		      __of_node_is_type(next, "cpu")))
902 			continue;
903 		if (of_node_get(next))
904 			break;
905 	}
906 	of_node_put(prev);
907 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
908 	return next;
909 }
910 EXPORT_SYMBOL(of_get_next_cpu_node);
911 
912 /**
913  * of_get_compatible_child - Find compatible child node
914  * @parent:	parent node
915  * @compatible:	compatible string
916  *
917  * Lookup child node whose compatible property contains the given compatible
918  * string.
919  *
920  * Return: a node pointer with refcount incremented, use of_node_put() on it
921  * when done; or NULL if not found.
922  */
of_get_compatible_child(const struct device_node * parent,const char * compatible)923 struct device_node *of_get_compatible_child(const struct device_node *parent,
924 				const char *compatible)
925 {
926 	struct device_node *child;
927 
928 	for_each_child_of_node(parent, child) {
929 		if (of_device_is_compatible(child, compatible))
930 			break;
931 	}
932 
933 	return child;
934 }
935 EXPORT_SYMBOL(of_get_compatible_child);
936 
937 /**
938  * of_get_child_by_name - Find the child node by name for a given parent
939  * @node:	parent node
940  * @name:	child name to look for.
941  *
942  * This function looks for child node for given matching name
943  *
944  * Return: A node pointer if found, with refcount incremented, use
945  * of_node_put() on it when done.
946  * Returns NULL if node is not found.
947  */
of_get_child_by_name(const struct device_node * node,const char * name)948 struct device_node *of_get_child_by_name(const struct device_node *node,
949 				const char *name)
950 {
951 	struct device_node *child;
952 
953 	for_each_child_of_node(node, child)
954 		if (of_node_name_eq(child, name))
955 			break;
956 	return child;
957 }
958 EXPORT_SYMBOL(of_get_child_by_name);
959 
__of_find_node_by_path(struct device_node * parent,const char * path)960 struct device_node *__of_find_node_by_path(struct device_node *parent,
961 						const char *path)
962 {
963 	struct device_node *child;
964 	int len;
965 
966 	len = strcspn(path, "/:");
967 	if (!len)
968 		return NULL;
969 
970 	__for_each_child_of_node(parent, child) {
971 		const char *name = kbasename(child->full_name);
972 		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
973 			return child;
974 	}
975 	return NULL;
976 }
977 
__of_find_node_by_full_path(struct device_node * node,const char * path)978 struct device_node *__of_find_node_by_full_path(struct device_node *node,
979 						const char *path)
980 {
981 	const char *separator = strchr(path, ':');
982 
983 	while (node && *path == '/') {
984 		struct device_node *tmp = node;
985 
986 		path++; /* Increment past '/' delimiter */
987 		node = __of_find_node_by_path(node, path);
988 		of_node_put(tmp);
989 		path = strchrnul(path, '/');
990 		if (separator && separator < path)
991 			break;
992 	}
993 	return node;
994 }
995 
996 /**
997  * of_find_node_opts_by_path - Find a node matching a full OF path
998  * @path: Either the full path to match, or if the path does not
999  *       start with '/', the name of a property of the /aliases
1000  *       node (an alias).  In the case of an alias, the node
1001  *       matching the alias' value will be returned.
1002  * @opts: Address of a pointer into which to store the start of
1003  *       an options string appended to the end of the path with
1004  *       a ':' separator.
1005  *
1006  * Valid paths:
1007  *  * /foo/bar	Full path
1008  *  * foo	Valid alias
1009  *  * foo/bar	Valid alias + relative path
1010  *
1011  * Return: A node pointer with refcount incremented, use
1012  * of_node_put() on it when done.
1013  */
of_find_node_opts_by_path(const char * path,const char ** opts)1014 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
1015 {
1016 	struct device_node *np = NULL;
1017 	struct property *pp;
1018 	unsigned long flags;
1019 	const char *separator = strchr(path, ':');
1020 
1021 	if (opts)
1022 		*opts = separator ? separator + 1 : NULL;
1023 
1024 	if (strcmp(path, "/") == 0)
1025 		return of_node_get(of_root);
1026 
1027 	/* The path could begin with an alias */
1028 	if (*path != '/') {
1029 		int len;
1030 		const char *p = separator;
1031 
1032 		if (!p)
1033 			p = strchrnul(path, '/');
1034 		len = p - path;
1035 
1036 		/* of_aliases must not be NULL */
1037 		if (!of_aliases)
1038 			return NULL;
1039 
1040 		for_each_property_of_node(of_aliases, pp) {
1041 			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
1042 				np = of_find_node_by_path(pp->value);
1043 				break;
1044 			}
1045 		}
1046 		if (!np)
1047 			return NULL;
1048 		path = p;
1049 	}
1050 
1051 	/* Step down the tree matching path components */
1052 	raw_spin_lock_irqsave(&devtree_lock, flags);
1053 	if (!np)
1054 		np = of_node_get(of_root);
1055 	np = __of_find_node_by_full_path(np, path);
1056 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1057 	return np;
1058 }
1059 EXPORT_SYMBOL(of_find_node_opts_by_path);
1060 
1061 /**
1062  * of_find_node_by_name - Find a node by its "name" property
1063  * @from:	The node to start searching from or NULL; the node
1064  *		you pass will not be searched, only the next one
1065  *		will. Typically, you pass what the previous call
1066  *		returned. of_node_put() will be called on @from.
1067  * @name:	The name string to match against
1068  *
1069  * Return: A node pointer with refcount incremented, use
1070  * of_node_put() on it when done.
1071  */
of_find_node_by_name(struct device_node * from,const char * name)1072 struct device_node *of_find_node_by_name(struct device_node *from,
1073 	const char *name)
1074 {
1075 	struct device_node *np;
1076 	unsigned long flags;
1077 
1078 	raw_spin_lock_irqsave(&devtree_lock, flags);
1079 	for_each_of_allnodes_from(from, np)
1080 		if (of_node_name_eq(np, name) && of_node_get(np))
1081 			break;
1082 	of_node_put(from);
1083 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1084 	return np;
1085 }
1086 EXPORT_SYMBOL(of_find_node_by_name);
1087 
1088 /**
1089  * of_find_node_by_type - Find a node by its "device_type" property
1090  * @from:	The node to start searching from, or NULL to start searching
1091  *		the entire device tree. The node you pass will not be
1092  *		searched, only the next one will; typically, you pass
1093  *		what the previous call returned. of_node_put() will be
1094  *		called on from for you.
1095  * @type:	The type string to match against
1096  *
1097  * Return: A node pointer with refcount incremented, use
1098  * of_node_put() on it when done.
1099  */
of_find_node_by_type(struct device_node * from,const char * type)1100 struct device_node *of_find_node_by_type(struct device_node *from,
1101 	const char *type)
1102 {
1103 	struct device_node *np;
1104 	unsigned long flags;
1105 
1106 	raw_spin_lock_irqsave(&devtree_lock, flags);
1107 	for_each_of_allnodes_from(from, np)
1108 		if (__of_node_is_type(np, type) && of_node_get(np))
1109 			break;
1110 	of_node_put(from);
1111 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1112 	return np;
1113 }
1114 EXPORT_SYMBOL(of_find_node_by_type);
1115 
1116 /**
1117  * of_find_compatible_node - Find a node based on type and one of the
1118  *                                tokens in its "compatible" property
1119  * @from:	The node to start searching from or NULL, the node
1120  *		you pass will not be searched, only the next one
1121  *		will; typically, you pass what the previous call
1122  *		returned. of_node_put() will be called on it
1123  * @type:	The type string to match "device_type" or NULL to ignore
1124  * @compatible:	The string to match to one of the tokens in the device
1125  *		"compatible" list.
1126  *
1127  * Return: A node pointer with refcount incremented, use
1128  * of_node_put() on it when done.
1129  */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)1130 struct device_node *of_find_compatible_node(struct device_node *from,
1131 	const char *type, const char *compatible)
1132 {
1133 	struct device_node *np;
1134 	unsigned long flags;
1135 
1136 	raw_spin_lock_irqsave(&devtree_lock, flags);
1137 	for_each_of_allnodes_from(from, np)
1138 		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1139 		    of_node_get(np))
1140 			break;
1141 	of_node_put(from);
1142 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1143 	return np;
1144 }
1145 EXPORT_SYMBOL(of_find_compatible_node);
1146 
1147 /**
1148  * of_find_node_with_property - Find a node which has a property with
1149  *                              the given name.
1150  * @from:	The node to start searching from or NULL, the node
1151  *		you pass will not be searched, only the next one
1152  *		will; typically, you pass what the previous call
1153  *		returned. of_node_put() will be called on it
1154  * @prop_name:	The name of the property to look for.
1155  *
1156  * Return: A node pointer with refcount incremented, use
1157  * of_node_put() on it when done.
1158  */
of_find_node_with_property(struct device_node * from,const char * prop_name)1159 struct device_node *of_find_node_with_property(struct device_node *from,
1160 	const char *prop_name)
1161 {
1162 	struct device_node *np;
1163 	struct property *pp;
1164 	unsigned long flags;
1165 
1166 	raw_spin_lock_irqsave(&devtree_lock, flags);
1167 	for_each_of_allnodes_from(from, np) {
1168 		for (pp = np->properties; pp; pp = pp->next) {
1169 			if (of_prop_cmp(pp->name, prop_name) == 0) {
1170 				of_node_get(np);
1171 				goto out;
1172 			}
1173 		}
1174 	}
1175 out:
1176 	of_node_put(from);
1177 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1178 	return np;
1179 }
1180 EXPORT_SYMBOL(of_find_node_with_property);
1181 
1182 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)1183 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1184 					   const struct device_node *node)
1185 {
1186 	const struct of_device_id *best_match = NULL;
1187 	int score, best_score = 0;
1188 
1189 	if (!matches)
1190 		return NULL;
1191 
1192 	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1193 		score = __of_device_is_compatible(node, matches->compatible,
1194 						  matches->type, matches->name);
1195 		if (score > best_score) {
1196 			best_match = matches;
1197 			best_score = score;
1198 		}
1199 	}
1200 
1201 	return best_match;
1202 }
1203 
1204 /**
1205  * of_match_node - Tell if a device_node has a matching of_match structure
1206  * @matches:	array of of device match structures to search in
1207  * @node:	the of device structure to match against
1208  *
1209  * Low level utility function used by device matching.
1210  */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1211 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1212 					 const struct device_node *node)
1213 {
1214 	const struct of_device_id *match;
1215 	unsigned long flags;
1216 
1217 	raw_spin_lock_irqsave(&devtree_lock, flags);
1218 	match = __of_match_node(matches, node);
1219 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1220 	return match;
1221 }
1222 EXPORT_SYMBOL(of_match_node);
1223 
1224 /**
1225  * of_find_matching_node_and_match - Find a node based on an of_device_id
1226  *				     match table.
1227  * @from:	The node to start searching from or NULL, the node
1228  *		you pass will not be searched, only the next one
1229  *		will; typically, you pass what the previous call
1230  *		returned. of_node_put() will be called on it
1231  * @matches:	array of of device match structures to search in
1232  * @match:	Updated to point at the matches entry which matched
1233  *
1234  * Return: A node pointer with refcount incremented, use
1235  * of_node_put() on it when done.
1236  */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1237 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1238 					const struct of_device_id *matches,
1239 					const struct of_device_id **match)
1240 {
1241 	struct device_node *np;
1242 	const struct of_device_id *m;
1243 	unsigned long flags;
1244 
1245 	if (match)
1246 		*match = NULL;
1247 
1248 	raw_spin_lock_irqsave(&devtree_lock, flags);
1249 	for_each_of_allnodes_from(from, np) {
1250 		m = __of_match_node(matches, np);
1251 		if (m && of_node_get(np)) {
1252 			if (match)
1253 				*match = m;
1254 			break;
1255 		}
1256 	}
1257 	of_node_put(from);
1258 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1259 	return np;
1260 }
1261 EXPORT_SYMBOL(of_find_matching_node_and_match);
1262 
1263 /**
1264  * of_modalias_node - Lookup appropriate modalias for a device node
1265  * @node:	pointer to a device tree node
1266  * @modalias:	Pointer to buffer that modalias value will be copied into
1267  * @len:	Length of modalias value
1268  *
1269  * Based on the value of the compatible property, this routine will attempt
1270  * to choose an appropriate modalias value for a particular device tree node.
1271  * It does this by stripping the manufacturer prefix (as delimited by a ',')
1272  * from the first entry in the compatible list property.
1273  *
1274  * Return: This routine returns 0 on success, <0 on failure.
1275  */
of_modalias_node(struct device_node * node,char * modalias,int len)1276 int of_modalias_node(struct device_node *node, char *modalias, int len)
1277 {
1278 	const char *compatible, *p;
1279 	int cplen;
1280 
1281 	compatible = of_get_property(node, "compatible", &cplen);
1282 	if (!compatible || strlen(compatible) > cplen)
1283 		return -ENODEV;
1284 	p = strchr(compatible, ',');
1285 	strlcpy(modalias, p ? p + 1 : compatible, len);
1286 	return 0;
1287 }
1288 EXPORT_SYMBOL_GPL(of_modalias_node);
1289 
1290 /**
1291  * of_find_node_by_phandle - Find a node given a phandle
1292  * @handle:	phandle of the node to find
1293  *
1294  * Return: A node pointer with refcount incremented, use
1295  * of_node_put() on it when done.
1296  */
of_find_node_by_phandle(phandle handle)1297 struct device_node *of_find_node_by_phandle(phandle handle)
1298 {
1299 	struct device_node *np = NULL;
1300 	unsigned long flags;
1301 	phandle masked_handle;
1302 
1303 	if (!handle)
1304 		return NULL;
1305 
1306 	raw_spin_lock_irqsave(&devtree_lock, flags);
1307 
1308 	masked_handle = handle & phandle_cache_mask;
1309 
1310 	if (phandle_cache) {
1311 		if (phandle_cache[masked_handle] &&
1312 		    handle == phandle_cache[masked_handle]->phandle)
1313 			np = phandle_cache[masked_handle];
1314 		if (np && of_node_check_flag(np, OF_DETACHED)) {
1315 			WARN_ON(1); /* did not uncache np on node removal */
1316 			of_node_put(np);
1317 			phandle_cache[masked_handle] = NULL;
1318 			np = NULL;
1319 		}
1320 	}
1321 
1322 	if (!np) {
1323 		for_each_of_allnodes(np)
1324 			if (np->phandle == handle &&
1325 			    !of_node_check_flag(np, OF_DETACHED)) {
1326 				if (phandle_cache) {
1327 					/* will put when removed from cache */
1328 					of_node_get(np);
1329 					phandle_cache[masked_handle] = np;
1330 				}
1331 				break;
1332 			}
1333 	}
1334 
1335 	of_node_get(np);
1336 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1337 	return np;
1338 }
1339 EXPORT_SYMBOL(of_find_node_by_phandle);
1340 
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1341 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1342 {
1343 	int i;
1344 	printk("%s %pOF", msg, args->np);
1345 	for (i = 0; i < args->args_count; i++) {
1346 		const char delim = i ? ',' : ':';
1347 
1348 		pr_cont("%c%08x", delim, args->args[i]);
1349 	}
1350 	pr_cont("\n");
1351 }
1352 
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1353 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1354 		const struct device_node *np,
1355 		const char *list_name,
1356 		const char *cells_name,
1357 		int cell_count)
1358 {
1359 	const __be32 *list;
1360 	int size;
1361 
1362 	memset(it, 0, sizeof(*it));
1363 
1364 	/*
1365 	 * one of cell_count or cells_name must be provided to determine the
1366 	 * argument length.
1367 	 */
1368 	if (cell_count < 0 && !cells_name)
1369 		return -EINVAL;
1370 
1371 	list = of_get_property(np, list_name, &size);
1372 	if (!list)
1373 		return -ENOENT;
1374 
1375 	it->cells_name = cells_name;
1376 	it->cell_count = cell_count;
1377 	it->parent = np;
1378 	it->list_end = list + size / sizeof(*list);
1379 	it->phandle_end = list;
1380 	it->cur = list;
1381 
1382 	return 0;
1383 }
1384 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1385 
of_phandle_iterator_next(struct of_phandle_iterator * it)1386 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1387 {
1388 	uint32_t count = 0;
1389 
1390 	if (it->node) {
1391 		of_node_put(it->node);
1392 		it->node = NULL;
1393 	}
1394 
1395 	if (!it->cur || it->phandle_end >= it->list_end)
1396 		return -ENOENT;
1397 
1398 	it->cur = it->phandle_end;
1399 
1400 	/* If phandle is 0, then it is an empty entry with no arguments. */
1401 	it->phandle = be32_to_cpup(it->cur++);
1402 
1403 	if (it->phandle) {
1404 
1405 		/*
1406 		 * Find the provider node and parse the #*-cells property to
1407 		 * determine the argument length.
1408 		 */
1409 		it->node = of_find_node_by_phandle(it->phandle);
1410 
1411 		if (it->cells_name) {
1412 			if (!it->node) {
1413 				pr_err("%pOF: could not find phandle\n",
1414 				       it->parent);
1415 				goto err;
1416 			}
1417 
1418 			if (of_property_read_u32(it->node, it->cells_name,
1419 						 &count)) {
1420 				/*
1421 				 * If both cell_count and cells_name is given,
1422 				 * fall back to cell_count in absence
1423 				 * of the cells_name property
1424 				 */
1425 				if (it->cell_count >= 0) {
1426 					count = it->cell_count;
1427 				} else {
1428 					pr_err("%pOF: could not get %s for %pOF\n",
1429 					       it->parent,
1430 					       it->cells_name,
1431 					       it->node);
1432 					goto err;
1433 				}
1434 			}
1435 		} else {
1436 			count = it->cell_count;
1437 		}
1438 
1439 		/*
1440 		 * Make sure that the arguments actually fit in the remaining
1441 		 * property data length
1442 		 */
1443 		if (it->cur + count > it->list_end) {
1444 			if (it->cells_name)
1445 				pr_err("%pOF: %s = %d found %td\n",
1446 					it->parent, it->cells_name,
1447 					count, it->list_end - it->cur);
1448 			else
1449 				pr_err("%pOF: phandle %s needs %d, found %td\n",
1450 					it->parent, of_node_full_name(it->node),
1451 					count, it->list_end - it->cur);
1452 			goto err;
1453 		}
1454 	}
1455 
1456 	it->phandle_end = it->cur + count;
1457 	it->cur_count = count;
1458 
1459 	return 0;
1460 
1461 err:
1462 	if (it->node) {
1463 		of_node_put(it->node);
1464 		it->node = NULL;
1465 	}
1466 
1467 	return -EINVAL;
1468 }
1469 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1470 
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1471 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1472 			     uint32_t *args,
1473 			     int size)
1474 {
1475 	int i, count;
1476 
1477 	count = it->cur_count;
1478 
1479 	if (WARN_ON(size < count))
1480 		count = size;
1481 
1482 	for (i = 0; i < count; i++)
1483 		args[i] = be32_to_cpup(it->cur++);
1484 
1485 	return count;
1486 }
1487 
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1488 static int __of_parse_phandle_with_args(const struct device_node *np,
1489 					const char *list_name,
1490 					const char *cells_name,
1491 					int cell_count, int index,
1492 					struct of_phandle_args *out_args)
1493 {
1494 	struct of_phandle_iterator it;
1495 	int rc, cur_index = 0;
1496 
1497 	/* Loop over the phandles until all the requested entry is found */
1498 	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1499 		/*
1500 		 * All of the error cases bail out of the loop, so at
1501 		 * this point, the parsing is successful. If the requested
1502 		 * index matches, then fill the out_args structure and return,
1503 		 * or return -ENOENT for an empty entry.
1504 		 */
1505 		rc = -ENOENT;
1506 		if (cur_index == index) {
1507 			if (!it.phandle)
1508 				goto err;
1509 
1510 			if (out_args) {
1511 				int c;
1512 
1513 				c = of_phandle_iterator_args(&it,
1514 							     out_args->args,
1515 							     MAX_PHANDLE_ARGS);
1516 				out_args->np = it.node;
1517 				out_args->args_count = c;
1518 			} else {
1519 				of_node_put(it.node);
1520 			}
1521 
1522 			/* Found it! return success */
1523 			return 0;
1524 		}
1525 
1526 		cur_index++;
1527 	}
1528 
1529 	/*
1530 	 * Unlock node before returning result; will be one of:
1531 	 * -ENOENT : index is for empty phandle
1532 	 * -EINVAL : parsing error on data
1533 	 */
1534 
1535  err:
1536 	of_node_put(it.node);
1537 	return rc;
1538 }
1539 
1540 /**
1541  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1542  * @np: Pointer to device node holding phandle property
1543  * @phandle_name: Name of property holding a phandle value
1544  * @index: For properties holding a table of phandles, this is the index into
1545  *         the table
1546  *
1547  * Return: The device_node pointer with refcount incremented.  Use
1548  * of_node_put() on it when done.
1549  */
of_parse_phandle(const struct device_node * np,const char * phandle_name,int index)1550 struct device_node *of_parse_phandle(const struct device_node *np,
1551 				     const char *phandle_name, int index)
1552 {
1553 	struct of_phandle_args args;
1554 
1555 	if (index < 0)
1556 		return NULL;
1557 
1558 	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1559 					 index, &args))
1560 		return NULL;
1561 
1562 	return args.np;
1563 }
1564 EXPORT_SYMBOL(of_parse_phandle);
1565 
1566 /**
1567  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1568  * @np:		pointer to a device tree node containing a list
1569  * @list_name:	property name that contains a list
1570  * @cells_name:	property name that specifies phandles' arguments count
1571  * @index:	index of a phandle to parse out
1572  * @out_args:	optional pointer to output arguments structure (will be filled)
1573  *
1574  * This function is useful to parse lists of phandles and their arguments.
1575  * Returns 0 on success and fills out_args, on error returns appropriate
1576  * errno value.
1577  *
1578  * Caller is responsible to call of_node_put() on the returned out_args->np
1579  * pointer.
1580  *
1581  * Example::
1582  *
1583  *  phandle1: node1 {
1584  *	#list-cells = <2>;
1585  *  };
1586  *
1587  *  phandle2: node2 {
1588  *	#list-cells = <1>;
1589  *  };
1590  *
1591  *  node3 {
1592  *	list = <&phandle1 1 2 &phandle2 3>;
1593  *  };
1594  *
1595  * To get a device_node of the ``node2`` node you may call this:
1596  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1597  */
of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int index,struct of_phandle_args * out_args)1598 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1599 				const char *cells_name, int index,
1600 				struct of_phandle_args *out_args)
1601 {
1602 	int cell_count = -1;
1603 
1604 	if (index < 0)
1605 		return -EINVAL;
1606 
1607 	/* If cells_name is NULL we assume a cell count of 0 */
1608 	if (!cells_name)
1609 		cell_count = 0;
1610 
1611 	return __of_parse_phandle_with_args(np, list_name, cells_name,
1612 					    cell_count, index, out_args);
1613 }
1614 EXPORT_SYMBOL(of_parse_phandle_with_args);
1615 
1616 /**
1617  * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1618  * @np:		pointer to a device tree node containing a list
1619  * @list_name:	property name that contains a list
1620  * @stem_name:	stem of property names that specify phandles' arguments count
1621  * @index:	index of a phandle to parse out
1622  * @out_args:	optional pointer to output arguments structure (will be filled)
1623  *
1624  * This function is useful to parse lists of phandles and their arguments.
1625  * Returns 0 on success and fills out_args, on error returns appropriate errno
1626  * value. The difference between this function and of_parse_phandle_with_args()
1627  * is that this API remaps a phandle if the node the phandle points to has
1628  * a <@stem_name>-map property.
1629  *
1630  * Caller is responsible to call of_node_put() on the returned out_args->np
1631  * pointer.
1632  *
1633  * Example::
1634  *
1635  *  phandle1: node1 {
1636  *  	#list-cells = <2>;
1637  *  };
1638  *
1639  *  phandle2: node2 {
1640  *  	#list-cells = <1>;
1641  *  };
1642  *
1643  *  phandle3: node3 {
1644  *  	#list-cells = <1>;
1645  *  	list-map = <0 &phandle2 3>,
1646  *  		   <1 &phandle2 2>,
1647  *  		   <2 &phandle1 5 1>;
1648  *  	list-map-mask = <0x3>;
1649  *  };
1650  *
1651  *  node4 {
1652  *  	list = <&phandle1 1 2 &phandle3 0>;
1653  *  };
1654  *
1655  * To get a device_node of the ``node2`` node you may call this:
1656  * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1657  */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1658 int of_parse_phandle_with_args_map(const struct device_node *np,
1659 				   const char *list_name,
1660 				   const char *stem_name,
1661 				   int index, struct of_phandle_args *out_args)
1662 {
1663 	char *cells_name, *map_name = NULL, *mask_name = NULL;
1664 	char *pass_name = NULL;
1665 	struct device_node *cur, *new = NULL;
1666 	const __be32 *map, *mask, *pass;
1667 	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1668 	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1669 	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1670 	const __be32 *match_array = initial_match_array;
1671 	int i, ret, map_len, match;
1672 	u32 list_size, new_size;
1673 
1674 	if (index < 0)
1675 		return -EINVAL;
1676 
1677 	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1678 	if (!cells_name)
1679 		return -ENOMEM;
1680 
1681 	ret = -ENOMEM;
1682 	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1683 	if (!map_name)
1684 		goto free;
1685 
1686 	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1687 	if (!mask_name)
1688 		goto free;
1689 
1690 	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1691 	if (!pass_name)
1692 		goto free;
1693 
1694 	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1695 					   out_args);
1696 	if (ret)
1697 		goto free;
1698 
1699 	/* Get the #<list>-cells property */
1700 	cur = out_args->np;
1701 	ret = of_property_read_u32(cur, cells_name, &list_size);
1702 	if (ret < 0)
1703 		goto put;
1704 
1705 	/* Precalculate the match array - this simplifies match loop */
1706 	for (i = 0; i < list_size; i++)
1707 		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1708 
1709 	ret = -EINVAL;
1710 	while (cur) {
1711 		/* Get the <list>-map property */
1712 		map = of_get_property(cur, map_name, &map_len);
1713 		if (!map) {
1714 			ret = 0;
1715 			goto free;
1716 		}
1717 		map_len /= sizeof(u32);
1718 
1719 		/* Get the <list>-map-mask property (optional) */
1720 		mask = of_get_property(cur, mask_name, NULL);
1721 		if (!mask)
1722 			mask = dummy_mask;
1723 		/* Iterate through <list>-map property */
1724 		match = 0;
1725 		while (map_len > (list_size + 1) && !match) {
1726 			/* Compare specifiers */
1727 			match = 1;
1728 			for (i = 0; i < list_size; i++, map_len--)
1729 				match &= !((match_array[i] ^ *map++) & mask[i]);
1730 
1731 			of_node_put(new);
1732 			new = of_find_node_by_phandle(be32_to_cpup(map));
1733 			map++;
1734 			map_len--;
1735 
1736 			/* Check if not found */
1737 			if (!new)
1738 				goto put;
1739 
1740 			if (!of_device_is_available(new))
1741 				match = 0;
1742 
1743 			ret = of_property_read_u32(new, cells_name, &new_size);
1744 			if (ret)
1745 				goto put;
1746 
1747 			/* Check for malformed properties */
1748 			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1749 				goto put;
1750 			if (map_len < new_size)
1751 				goto put;
1752 
1753 			/* Move forward by new node's #<list>-cells amount */
1754 			map += new_size;
1755 			map_len -= new_size;
1756 		}
1757 		if (!match)
1758 			goto put;
1759 
1760 		/* Get the <list>-map-pass-thru property (optional) */
1761 		pass = of_get_property(cur, pass_name, NULL);
1762 		if (!pass)
1763 			pass = dummy_pass;
1764 
1765 		/*
1766 		 * Successfully parsed a <list>-map translation; copy new
1767 		 * specifier into the out_args structure, keeping the
1768 		 * bits specified in <list>-map-pass-thru.
1769 		 */
1770 		match_array = map - new_size;
1771 		for (i = 0; i < new_size; i++) {
1772 			__be32 val = *(map - new_size + i);
1773 
1774 			if (i < list_size) {
1775 				val &= ~pass[i];
1776 				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1777 			}
1778 
1779 			out_args->args[i] = be32_to_cpu(val);
1780 		}
1781 		out_args->args_count = list_size = new_size;
1782 		/* Iterate again with new provider */
1783 		out_args->np = new;
1784 		of_node_put(cur);
1785 		cur = new;
1786 		new = NULL;
1787 	}
1788 put:
1789 	of_node_put(cur);
1790 	of_node_put(new);
1791 free:
1792 	kfree(mask_name);
1793 	kfree(map_name);
1794 	kfree(cells_name);
1795 	kfree(pass_name);
1796 
1797 	return ret;
1798 }
1799 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1800 
1801 /**
1802  * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1803  * @np:		pointer to a device tree node containing a list
1804  * @list_name:	property name that contains a list
1805  * @cell_count: number of argument cells following the phandle
1806  * @index:	index of a phandle to parse out
1807  * @out_args:	optional pointer to output arguments structure (will be filled)
1808  *
1809  * This function is useful to parse lists of phandles and their arguments.
1810  * Returns 0 on success and fills out_args, on error returns appropriate
1811  * errno value.
1812  *
1813  * Caller is responsible to call of_node_put() on the returned out_args->np
1814  * pointer.
1815  *
1816  * Example::
1817  *
1818  *  phandle1: node1 {
1819  *  };
1820  *
1821  *  phandle2: node2 {
1822  *  };
1823  *
1824  *  node3 {
1825  *  	list = <&phandle1 0 2 &phandle2 2 3>;
1826  *  };
1827  *
1828  * To get a device_node of the ``node2`` node you may call this:
1829  * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1830  */
of_parse_phandle_with_fixed_args(const struct device_node * np,const char * list_name,int cell_count,int index,struct of_phandle_args * out_args)1831 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1832 				const char *list_name, int cell_count,
1833 				int index, struct of_phandle_args *out_args)
1834 {
1835 	if (index < 0)
1836 		return -EINVAL;
1837 	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1838 					   index, out_args);
1839 }
1840 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1841 
1842 /**
1843  * of_count_phandle_with_args() - Find the number of phandles references in a property
1844  * @np:		pointer to a device tree node containing a list
1845  * @list_name:	property name that contains a list
1846  * @cells_name:	property name that specifies phandles' arguments count
1847  *
1848  * Return: The number of phandle + argument tuples within a property. It
1849  * is a typical pattern to encode a list of phandle and variable
1850  * arguments into a single property. The number of arguments is encoded
1851  * by a property in the phandle-target node. For example, a gpios
1852  * property would contain a list of GPIO specifies consisting of a
1853  * phandle and 1 or more arguments. The number of arguments are
1854  * determined by the #gpio-cells property in the node pointed to by the
1855  * phandle.
1856  */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1857 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1858 				const char *cells_name)
1859 {
1860 	struct of_phandle_iterator it;
1861 	int rc, cur_index = 0;
1862 
1863 	/*
1864 	 * If cells_name is NULL we assume a cell count of 0. This makes
1865 	 * counting the phandles trivial as each 32bit word in the list is a
1866 	 * phandle and no arguments are to consider. So we don't iterate through
1867 	 * the list but just use the length to determine the phandle count.
1868 	 */
1869 	if (!cells_name) {
1870 		const __be32 *list;
1871 		int size;
1872 
1873 		list = of_get_property(np, list_name, &size);
1874 		if (!list)
1875 			return -ENOENT;
1876 
1877 		return size / sizeof(*list);
1878 	}
1879 
1880 	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1881 	if (rc)
1882 		return rc;
1883 
1884 	while ((rc = of_phandle_iterator_next(&it)) == 0)
1885 		cur_index += 1;
1886 
1887 	if (rc != -ENOENT)
1888 		return rc;
1889 
1890 	return cur_index;
1891 }
1892 EXPORT_SYMBOL(of_count_phandle_with_args);
1893 
1894 /**
1895  * __of_add_property - Add a property to a node without lock operations
1896  * @np:		Caller's Device Node
1897  * @prob:	Property to add
1898  */
__of_add_property(struct device_node * np,struct property * prop)1899 int __of_add_property(struct device_node *np, struct property *prop)
1900 {
1901 	struct property **next;
1902 
1903 	prop->next = NULL;
1904 	next = &np->properties;
1905 	while (*next) {
1906 		if (strcmp(prop->name, (*next)->name) == 0)
1907 			/* duplicate ! don't insert it */
1908 			return -EEXIST;
1909 
1910 		next = &(*next)->next;
1911 	}
1912 	*next = prop;
1913 
1914 	return 0;
1915 }
1916 
1917 /**
1918  * of_add_property - Add a property to a node
1919  * @np:		Caller's Device Node
1920  * @prob:	Property to add
1921  */
of_add_property(struct device_node * np,struct property * prop)1922 int of_add_property(struct device_node *np, struct property *prop)
1923 {
1924 	unsigned long flags;
1925 	int rc;
1926 
1927 	mutex_lock(&of_mutex);
1928 
1929 	raw_spin_lock_irqsave(&devtree_lock, flags);
1930 	rc = __of_add_property(np, prop);
1931 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1932 
1933 	if (!rc)
1934 		__of_add_property_sysfs(np, prop);
1935 
1936 	mutex_unlock(&of_mutex);
1937 
1938 	if (!rc)
1939 		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1940 
1941 	return rc;
1942 }
1943 
__of_remove_property(struct device_node * np,struct property * prop)1944 int __of_remove_property(struct device_node *np, struct property *prop)
1945 {
1946 	struct property **next;
1947 
1948 	for (next = &np->properties; *next; next = &(*next)->next) {
1949 		if (*next == prop)
1950 			break;
1951 	}
1952 	if (*next == NULL)
1953 		return -ENODEV;
1954 
1955 	/* found the node */
1956 	*next = prop->next;
1957 	prop->next = np->deadprops;
1958 	np->deadprops = prop;
1959 
1960 	return 0;
1961 }
1962 
1963 /**
1964  * of_remove_property - Remove a property from a node.
1965  * @np:		Caller's Device Node
1966  * @prob:	Property to remove
1967  *
1968  * Note that we don't actually remove it, since we have given out
1969  * who-knows-how-many pointers to the data using get-property.
1970  * Instead we just move the property to the "dead properties"
1971  * list, so it won't be found any more.
1972  */
of_remove_property(struct device_node * np,struct property * prop)1973 int of_remove_property(struct device_node *np, struct property *prop)
1974 {
1975 	unsigned long flags;
1976 	int rc;
1977 
1978 	if (!prop)
1979 		return -ENODEV;
1980 
1981 	mutex_lock(&of_mutex);
1982 
1983 	raw_spin_lock_irqsave(&devtree_lock, flags);
1984 	rc = __of_remove_property(np, prop);
1985 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1986 
1987 	if (!rc)
1988 		__of_remove_property_sysfs(np, prop);
1989 
1990 	mutex_unlock(&of_mutex);
1991 
1992 	if (!rc)
1993 		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1994 
1995 	return rc;
1996 }
1997 
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1998 int __of_update_property(struct device_node *np, struct property *newprop,
1999 		struct property **oldpropp)
2000 {
2001 	struct property **next, *oldprop;
2002 
2003 	for (next = &np->properties; *next; next = &(*next)->next) {
2004 		if (of_prop_cmp((*next)->name, newprop->name) == 0)
2005 			break;
2006 	}
2007 	*oldpropp = oldprop = *next;
2008 
2009 	if (oldprop) {
2010 		/* replace the node */
2011 		newprop->next = oldprop->next;
2012 		*next = newprop;
2013 		oldprop->next = np->deadprops;
2014 		np->deadprops = oldprop;
2015 	} else {
2016 		/* new node */
2017 		newprop->next = NULL;
2018 		*next = newprop;
2019 	}
2020 
2021 	return 0;
2022 }
2023 
2024 /*
2025  * of_update_property - Update a property in a node, if the property does
2026  * not exist, add it.
2027  *
2028  * Note that we don't actually remove it, since we have given out
2029  * who-knows-how-many pointers to the data using get-property.
2030  * Instead we just move the property to the "dead properties" list,
2031  * and add the new property to the property list
2032  */
of_update_property(struct device_node * np,struct property * newprop)2033 int of_update_property(struct device_node *np, struct property *newprop)
2034 {
2035 	struct property *oldprop;
2036 	unsigned long flags;
2037 	int rc;
2038 
2039 	if (!newprop->name)
2040 		return -EINVAL;
2041 
2042 	mutex_lock(&of_mutex);
2043 
2044 	raw_spin_lock_irqsave(&devtree_lock, flags);
2045 	rc = __of_update_property(np, newprop, &oldprop);
2046 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
2047 
2048 	if (!rc)
2049 		__of_update_property_sysfs(np, newprop, oldprop);
2050 
2051 	mutex_unlock(&of_mutex);
2052 
2053 	if (!rc)
2054 		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
2055 
2056 	return rc;
2057 }
2058 
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)2059 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
2060 			 int id, const char *stem, int stem_len)
2061 {
2062 	ap->np = np;
2063 	ap->id = id;
2064 	strncpy(ap->stem, stem, stem_len);
2065 	ap->stem[stem_len] = 0;
2066 	list_add_tail(&ap->link, &aliases_lookup);
2067 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
2068 		 ap->alias, ap->stem, ap->id, np);
2069 }
2070 
2071 /**
2072  * of_alias_scan - Scan all properties of the 'aliases' node
2073  * @dt_alloc:	An allocator that provides a virtual address to memory
2074  *		for storing the resulting tree
2075  *
2076  * The function scans all the properties of the 'aliases' node and populates
2077  * the global lookup table with the properties.  It returns the
2078  * number of alias properties found, or an error code in case of failure.
2079  */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))2080 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
2081 {
2082 	struct property *pp;
2083 
2084 	of_aliases = of_find_node_by_path("/aliases");
2085 	of_chosen = of_find_node_by_path("/chosen");
2086 	if (of_chosen == NULL)
2087 		of_chosen = of_find_node_by_path("/chosen@0");
2088 
2089 	if (of_chosen) {
2090 		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
2091 		const char *name = NULL;
2092 
2093 		if (of_property_read_string(of_chosen, "stdout-path", &name))
2094 			of_property_read_string(of_chosen, "linux,stdout-path",
2095 						&name);
2096 		if (IS_ENABLED(CONFIG_PPC) && !name)
2097 			of_property_read_string(of_aliases, "stdout", &name);
2098 		if (name)
2099 			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2100 	}
2101 
2102 	if (!of_aliases)
2103 		return;
2104 
2105 	for_each_property_of_node(of_aliases, pp) {
2106 		const char *start = pp->name;
2107 		const char *end = start + strlen(start);
2108 		struct device_node *np;
2109 		struct alias_prop *ap;
2110 		int id, len;
2111 
2112 		/* Skip those we do not want to proceed */
2113 		if (!strcmp(pp->name, "name") ||
2114 		    !strcmp(pp->name, "phandle") ||
2115 		    !strcmp(pp->name, "linux,phandle"))
2116 			continue;
2117 
2118 		np = of_find_node_by_path(pp->value);
2119 		if (!np)
2120 			continue;
2121 
2122 		/* walk the alias backwards to extract the id and work out
2123 		 * the 'stem' string */
2124 		while (isdigit(*(end-1)) && end > start)
2125 			end--;
2126 		len = end - start;
2127 
2128 		if (kstrtoint(end, 10, &id) < 0)
2129 			continue;
2130 
2131 		/* Allocate an alias_prop with enough space for the stem */
2132 		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2133 		if (!ap)
2134 			continue;
2135 		memset(ap, 0, sizeof(*ap) + len + 1);
2136 		ap->alias = start;
2137 		of_alias_add(ap, np, id, start, len);
2138 	}
2139 }
2140 
2141 /**
2142  * of_alias_get_id - Get alias id for the given device_node
2143  * @np:		Pointer to the given device_node
2144  * @stem:	Alias stem of the given device_node
2145  *
2146  * The function travels the lookup table to get the alias id for the given
2147  * device_node and alias stem.
2148  *
2149  * Return: The alias id if found.
2150  */
of_alias_get_id(struct device_node * np,const char * stem)2151 int of_alias_get_id(struct device_node *np, const char *stem)
2152 {
2153 	struct alias_prop *app;
2154 	int id = -ENODEV;
2155 
2156 	mutex_lock(&of_mutex);
2157 	list_for_each_entry(app, &aliases_lookup, link) {
2158 		if (strcmp(app->stem, stem) != 0)
2159 			continue;
2160 
2161 		if (np == app->np) {
2162 			id = app->id;
2163 			break;
2164 		}
2165 	}
2166 	mutex_unlock(&of_mutex);
2167 
2168 	return id;
2169 }
2170 EXPORT_SYMBOL_GPL(of_alias_get_id);
2171 
2172 /**
2173  * of_alias_get_alias_list - Get alias list for the given device driver
2174  * @matches:	Array of OF device match structures to search in
2175  * @stem:	Alias stem of the given device_node
2176  * @bitmap:	Bitmap field pointer
2177  * @nbits:	Maximum number of alias IDs which can be recorded in bitmap
2178  *
2179  * The function travels the lookup table to record alias ids for the given
2180  * device match structures and alias stem.
2181  *
2182  * Return:	0 or -ENOSYS when !CONFIG_OF or
2183  *		-EOVERFLOW if alias ID is greater then allocated nbits
2184  */
of_alias_get_alias_list(const struct of_device_id * matches,const char * stem,unsigned long * bitmap,unsigned int nbits)2185 int of_alias_get_alias_list(const struct of_device_id *matches,
2186 			     const char *stem, unsigned long *bitmap,
2187 			     unsigned int nbits)
2188 {
2189 	struct alias_prop *app;
2190 	int ret = 0;
2191 
2192 	/* Zero bitmap field to make sure that all the time it is clean */
2193 	bitmap_zero(bitmap, nbits);
2194 
2195 	mutex_lock(&of_mutex);
2196 	pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2197 	list_for_each_entry(app, &aliases_lookup, link) {
2198 		pr_debug("%s: stem: %s, id: %d\n",
2199 			 __func__, app->stem, app->id);
2200 
2201 		if (strcmp(app->stem, stem) != 0) {
2202 			pr_debug("%s: stem comparison didn't pass %s\n",
2203 				 __func__, app->stem);
2204 			continue;
2205 		}
2206 
2207 		if (of_match_node(matches, app->np)) {
2208 			pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2209 
2210 			if (app->id >= nbits) {
2211 				pr_warn("%s: ID %d >= than bitmap field %d\n",
2212 					__func__, app->id, nbits);
2213 				ret = -EOVERFLOW;
2214 			} else {
2215 				set_bit(app->id, bitmap);
2216 			}
2217 		}
2218 	}
2219 	mutex_unlock(&of_mutex);
2220 
2221 	return ret;
2222 }
2223 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2224 
2225 /**
2226  * of_alias_get_highest_id - Get highest alias id for the given stem
2227  * @stem:	Alias stem to be examined
2228  *
2229  * The function travels the lookup table to get the highest alias id for the
2230  * given alias stem.  It returns the alias id if found.
2231  */
of_alias_get_highest_id(const char * stem)2232 int of_alias_get_highest_id(const char *stem)
2233 {
2234 	struct alias_prop *app;
2235 	int id = -ENODEV;
2236 
2237 	mutex_lock(&of_mutex);
2238 	list_for_each_entry(app, &aliases_lookup, link) {
2239 		if (strcmp(app->stem, stem) != 0)
2240 			continue;
2241 
2242 		if (app->id > id)
2243 			id = app->id;
2244 	}
2245 	mutex_unlock(&of_mutex);
2246 
2247 	return id;
2248 }
2249 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2250 
2251 /**
2252  * of_console_check() - Test and setup console for DT setup
2253  * @dn: Pointer to device node
2254  * @name: Name to use for preferred console without index. ex. "ttyS"
2255  * @index: Index to use for preferred console.
2256  *
2257  * Check if the given device node matches the stdout-path property in the
2258  * /chosen node. If it does then register it as the preferred console.
2259  *
2260  * Return: TRUE if console successfully setup. Otherwise return FALSE.
2261  */
of_console_check(struct device_node * dn,char * name,int index)2262 bool of_console_check(struct device_node *dn, char *name, int index)
2263 {
2264 	if (!dn || dn != of_stdout || console_set_on_cmdline)
2265 		return false;
2266 
2267 	/*
2268 	 * XXX: cast `options' to char pointer to suppress complication
2269 	 * warnings: printk, UART and console drivers expect char pointer.
2270 	 */
2271 	return !add_preferred_console(name, index, (char *)of_stdout_options);
2272 }
2273 EXPORT_SYMBOL_GPL(of_console_check);
2274 
2275 /**
2276  * of_find_next_cache_node - Find a node's subsidiary cache
2277  * @np:	node of type "cpu" or "cache"
2278  *
2279  * Return: A node pointer with refcount incremented, use
2280  * of_node_put() on it when done.  Caller should hold a reference
2281  * to np.
2282  */
of_find_next_cache_node(const struct device_node * np)2283 struct device_node *of_find_next_cache_node(const struct device_node *np)
2284 {
2285 	struct device_node *child, *cache_node;
2286 
2287 	cache_node = of_parse_phandle(np, "l2-cache", 0);
2288 	if (!cache_node)
2289 		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2290 
2291 	if (cache_node)
2292 		return cache_node;
2293 
2294 	/* OF on pmac has nodes instead of properties named "l2-cache"
2295 	 * beneath CPU nodes.
2296 	 */
2297 	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2298 		for_each_child_of_node(np, child)
2299 			if (of_node_is_type(child, "cache"))
2300 				return child;
2301 
2302 	return NULL;
2303 }
2304 
2305 /**
2306  * of_find_last_cache_level - Find the level at which the last cache is
2307  * 		present for the given logical cpu
2308  *
2309  * @cpu: cpu number(logical index) for which the last cache level is needed
2310  *
2311  * Return: The the level at which the last cache is present. It is exactly
2312  * same as  the total number of cache levels for the given logical cpu.
2313  */
of_find_last_cache_level(unsigned int cpu)2314 int of_find_last_cache_level(unsigned int cpu)
2315 {
2316 	u32 cache_level = 0;
2317 	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2318 
2319 	while (np) {
2320 		prev = np;
2321 		of_node_put(np);
2322 		np = of_find_next_cache_node(np);
2323 	}
2324 
2325 	of_property_read_u32(prev, "cache-level", &cache_level);
2326 
2327 	return cache_level;
2328 }
2329 
2330 /**
2331  * of_map_id - Translate an ID through a downstream mapping.
2332  * @np: root complex device node.
2333  * @id: device ID to map.
2334  * @map_name: property name of the map to use.
2335  * @map_mask_name: optional property name of the mask to use.
2336  * @target: optional pointer to a target device node.
2337  * @id_out: optional pointer to receive the translated ID.
2338  *
2339  * Given a device ID, look up the appropriate implementation-defined
2340  * platform ID and/or the target device which receives transactions on that
2341  * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2342  * @id_out may be NULL if only the other is required. If @target points to
2343  * a non-NULL device node pointer, only entries targeting that node will be
2344  * matched; if it points to a NULL value, it will receive the device node of
2345  * the first matching target phandle, with a reference held.
2346  *
2347  * Return: 0 on success or a standard error code on failure.
2348  */
of_map_id(struct device_node * np,u32 id,const char * map_name,const char * map_mask_name,struct device_node ** target,u32 * id_out)2349 int of_map_id(struct device_node *np, u32 id,
2350 	       const char *map_name, const char *map_mask_name,
2351 	       struct device_node **target, u32 *id_out)
2352 {
2353 	u32 map_mask, masked_id;
2354 	int map_len;
2355 	const __be32 *map = NULL;
2356 
2357 	if (!np || !map_name || (!target && !id_out))
2358 		return -EINVAL;
2359 
2360 	map = of_get_property(np, map_name, &map_len);
2361 	if (!map) {
2362 		if (target)
2363 			return -ENODEV;
2364 		/* Otherwise, no map implies no translation */
2365 		*id_out = id;
2366 		return 0;
2367 	}
2368 
2369 	if (!map_len || map_len % (4 * sizeof(*map))) {
2370 		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2371 			map_name, map_len);
2372 		return -EINVAL;
2373 	}
2374 
2375 	/* The default is to select all bits. */
2376 	map_mask = 0xffffffff;
2377 
2378 	/*
2379 	 * Can be overridden by "{iommu,msi}-map-mask" property.
2380 	 * If of_property_read_u32() fails, the default is used.
2381 	 */
2382 	if (map_mask_name)
2383 		of_property_read_u32(np, map_mask_name, &map_mask);
2384 
2385 	masked_id = map_mask & id;
2386 	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2387 		struct device_node *phandle_node;
2388 		u32 id_base = be32_to_cpup(map + 0);
2389 		u32 phandle = be32_to_cpup(map + 1);
2390 		u32 out_base = be32_to_cpup(map + 2);
2391 		u32 id_len = be32_to_cpup(map + 3);
2392 
2393 		if (id_base & ~map_mask) {
2394 			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2395 				np, map_name, map_name,
2396 				map_mask, id_base);
2397 			return -EFAULT;
2398 		}
2399 
2400 		if (masked_id < id_base || masked_id >= id_base + id_len)
2401 			continue;
2402 
2403 		phandle_node = of_find_node_by_phandle(phandle);
2404 		if (!phandle_node)
2405 			return -ENODEV;
2406 
2407 		if (target) {
2408 			if (*target)
2409 				of_node_put(phandle_node);
2410 			else
2411 				*target = phandle_node;
2412 
2413 			if (*target != phandle_node)
2414 				continue;
2415 		}
2416 
2417 		if (id_out)
2418 			*id_out = masked_id - id_base + out_base;
2419 
2420 		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2421 			np, map_name, map_mask, id_base, out_base,
2422 			id_len, id, masked_id - id_base + out_base);
2423 		return 0;
2424 	}
2425 
2426 	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2427 		id, target && *target ? *target : NULL);
2428 
2429 	/* Bypasses translation */
2430 	if (id_out)
2431 		*id_out = id;
2432 	return 0;
2433 }
2434 EXPORT_SYMBOL_GPL(of_map_id);
2435