• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
19 
20 #include "ptp_private.h"
21 
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
26 
27 /* private globals */
28 
29 static dev_t ptp_devt;
30 static struct class *ptp_class;
31 
32 static DEFINE_IDA(ptp_clocks_map);
33 
34 /* time stamp event queue operations */
35 
queue_free(struct timestamp_event_queue * q)36 static inline int queue_free(struct timestamp_event_queue *q)
37 {
38 	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
39 }
40 
enqueue_external_timestamp(struct timestamp_event_queue * queue,struct ptp_clock_event * src)41 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
42 				       struct ptp_clock_event *src)
43 {
44 	struct ptp_extts_event *dst;
45 	unsigned long flags;
46 	s64 seconds;
47 	u32 remainder;
48 
49 	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
50 
51 	spin_lock_irqsave(&queue->lock, flags);
52 
53 	dst = &queue->buf[queue->tail];
54 	dst->index = src->index;
55 	dst->t.sec = seconds;
56 	dst->t.nsec = remainder;
57 
58 	/* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */
59 	if (!queue_free(queue))
60 		WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS);
61 
62 	WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS);
63 
64 	spin_unlock_irqrestore(&queue->lock, flags);
65 }
66 
scaled_ppm_to_ppb(long ppm)67 long scaled_ppm_to_ppb(long ppm)
68 {
69 	/*
70 	 * The 'freq' field in the 'struct timex' is in parts per
71 	 * million, but with a 16 bit binary fractional field.
72 	 *
73 	 * We want to calculate
74 	 *
75 	 *    ppb = scaled_ppm * 1000 / 2^16
76 	 *
77 	 * which simplifies to
78 	 *
79 	 *    ppb = scaled_ppm * 125 / 2^13
80 	 */
81 	s64 ppb = 1 + ppm;
82 	ppb *= 125;
83 	ppb >>= 13;
84 	return (long) ppb;
85 }
86 EXPORT_SYMBOL(scaled_ppm_to_ppb);
87 
88 /* posix clock implementation */
89 
ptp_clock_getres(struct posix_clock * pc,struct timespec64 * tp)90 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
91 {
92 	tp->tv_sec = 0;
93 	tp->tv_nsec = 1;
94 	return 0;
95 }
96 
ptp_clock_settime(struct posix_clock * pc,const struct timespec64 * tp)97 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
98 {
99 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
100 
101 	return  ptp->info->settime64(ptp->info, tp);
102 }
103 
ptp_clock_gettime(struct posix_clock * pc,struct timespec64 * tp)104 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
105 {
106 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
107 	int err;
108 
109 	if (ptp->info->gettimex64)
110 		err = ptp->info->gettimex64(ptp->info, tp, NULL);
111 	else
112 		err = ptp->info->gettime64(ptp->info, tp);
113 	return err;
114 }
115 
ptp_clock_adjtime(struct posix_clock * pc,struct __kernel_timex * tx)116 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
117 {
118 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
119 	struct ptp_clock_info *ops;
120 	int err = -EOPNOTSUPP;
121 
122 	ops = ptp->info;
123 
124 	if (tx->modes & ADJ_SETOFFSET) {
125 		struct timespec64 ts;
126 		ktime_t kt;
127 		s64 delta;
128 
129 		ts.tv_sec  = tx->time.tv_sec;
130 		ts.tv_nsec = tx->time.tv_usec;
131 
132 		if (!(tx->modes & ADJ_NANO))
133 			ts.tv_nsec *= 1000;
134 
135 		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
136 			return -EINVAL;
137 
138 		kt = timespec64_to_ktime(ts);
139 		delta = ktime_to_ns(kt);
140 		err = ops->adjtime(ops, delta);
141 	} else if (tx->modes & ADJ_FREQUENCY) {
142 		long ppb = scaled_ppm_to_ppb(tx->freq);
143 		if (ppb > ops->max_adj || ppb < -ops->max_adj)
144 			return -ERANGE;
145 		if (ops->adjfine)
146 			err = ops->adjfine(ops, tx->freq);
147 		else
148 			err = ops->adjfreq(ops, ppb);
149 		ptp->dialed_frequency = tx->freq;
150 	} else if (tx->modes == 0) {
151 		tx->freq = ptp->dialed_frequency;
152 		err = 0;
153 	}
154 
155 	return err;
156 }
157 
158 static struct posix_clock_operations ptp_clock_ops = {
159 	.owner		= THIS_MODULE,
160 	.clock_adjtime	= ptp_clock_adjtime,
161 	.clock_gettime	= ptp_clock_gettime,
162 	.clock_getres	= ptp_clock_getres,
163 	.clock_settime	= ptp_clock_settime,
164 	.ioctl		= ptp_ioctl,
165 	.open		= ptp_open,
166 	.poll		= ptp_poll,
167 	.read		= ptp_read,
168 };
169 
ptp_clock_release(struct device * dev)170 static void ptp_clock_release(struct device *dev)
171 {
172 	struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
173 
174 	ptp_cleanup_pin_groups(ptp);
175 	mutex_destroy(&ptp->tsevq_mux);
176 	mutex_destroy(&ptp->pincfg_mux);
177 	ida_simple_remove(&ptp_clocks_map, ptp->index);
178 	kfree(ptp);
179 }
180 
ptp_aux_kworker(struct kthread_work * work)181 static void ptp_aux_kworker(struct kthread_work *work)
182 {
183 	struct ptp_clock *ptp = container_of(work, struct ptp_clock,
184 					     aux_work.work);
185 	struct ptp_clock_info *info = ptp->info;
186 	long delay;
187 
188 	delay = info->do_aux_work(info);
189 
190 	if (delay >= 0)
191 		kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
192 }
193 
194 /* public interface */
195 
ptp_clock_register(struct ptp_clock_info * info,struct device * parent)196 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
197 				     struct device *parent)
198 {
199 	struct ptp_clock *ptp;
200 	int err = 0, index, major = MAJOR(ptp_devt);
201 
202 	if (info->n_alarm > PTP_MAX_ALARMS)
203 		return ERR_PTR(-EINVAL);
204 
205 	/* Initialize a clock structure. */
206 	err = -ENOMEM;
207 	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
208 	if (ptp == NULL)
209 		goto no_memory;
210 
211 	index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
212 	if (index < 0) {
213 		err = index;
214 		goto no_slot;
215 	}
216 
217 	ptp->clock.ops = ptp_clock_ops;
218 	ptp->info = info;
219 	ptp->devid = MKDEV(major, index);
220 	ptp->index = index;
221 	spin_lock_init(&ptp->tsevq.lock);
222 	mutex_init(&ptp->tsevq_mux);
223 	mutex_init(&ptp->pincfg_mux);
224 	init_waitqueue_head(&ptp->tsev_wq);
225 
226 	if (ptp->info->do_aux_work) {
227 		kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
228 		ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
229 		if (IS_ERR(ptp->kworker)) {
230 			err = PTR_ERR(ptp->kworker);
231 			pr_err("failed to create ptp aux_worker %d\n", err);
232 			goto kworker_err;
233 		}
234 	}
235 
236 	err = ptp_populate_pin_groups(ptp);
237 	if (err)
238 		goto no_pin_groups;
239 
240 	/* Register a new PPS source. */
241 	if (info->pps) {
242 		struct pps_source_info pps;
243 		memset(&pps, 0, sizeof(pps));
244 		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
245 		pps.mode = PTP_PPS_MODE;
246 		pps.owner = info->owner;
247 		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
248 		if (IS_ERR(ptp->pps_source)) {
249 			err = PTR_ERR(ptp->pps_source);
250 			pr_err("failed to register pps source\n");
251 			goto no_pps;
252 		}
253 	}
254 
255 	/* Initialize a new device of our class in our clock structure. */
256 	device_initialize(&ptp->dev);
257 	ptp->dev.devt = ptp->devid;
258 	ptp->dev.class = ptp_class;
259 	ptp->dev.parent = parent;
260 	ptp->dev.groups = ptp->pin_attr_groups;
261 	ptp->dev.release = ptp_clock_release;
262 	dev_set_drvdata(&ptp->dev, ptp);
263 	dev_set_name(&ptp->dev, "ptp%d", ptp->index);
264 
265 	/* Create a posix clock and link it to the device. */
266 	err = posix_clock_register(&ptp->clock, &ptp->dev);
267 	if (err) {
268 		pr_err("failed to create posix clock\n");
269 		goto no_clock;
270 	}
271 
272 	return ptp;
273 
274 no_clock:
275 	if (ptp->pps_source)
276 		pps_unregister_source(ptp->pps_source);
277 no_pps:
278 	ptp_cleanup_pin_groups(ptp);
279 no_pin_groups:
280 	if (ptp->kworker)
281 		kthread_destroy_worker(ptp->kworker);
282 kworker_err:
283 	mutex_destroy(&ptp->tsevq_mux);
284 	mutex_destroy(&ptp->pincfg_mux);
285 	ida_simple_remove(&ptp_clocks_map, index);
286 no_slot:
287 	kfree(ptp);
288 no_memory:
289 	return ERR_PTR(err);
290 }
291 EXPORT_SYMBOL(ptp_clock_register);
292 
ptp_clock_unregister(struct ptp_clock * ptp)293 int ptp_clock_unregister(struct ptp_clock *ptp)
294 {
295 	ptp->defunct = 1;
296 	wake_up_interruptible(&ptp->tsev_wq);
297 
298 	if (ptp->kworker) {
299 		kthread_cancel_delayed_work_sync(&ptp->aux_work);
300 		kthread_destroy_worker(ptp->kworker);
301 	}
302 
303 	/* Release the clock's resources. */
304 	if (ptp->pps_source)
305 		pps_unregister_source(ptp->pps_source);
306 
307 	posix_clock_unregister(&ptp->clock);
308 
309 	return 0;
310 }
311 EXPORT_SYMBOL(ptp_clock_unregister);
312 
ptp_clock_event(struct ptp_clock * ptp,struct ptp_clock_event * event)313 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
314 {
315 	struct pps_event_time evt;
316 
317 	switch (event->type) {
318 
319 	case PTP_CLOCK_ALARM:
320 		break;
321 
322 	case PTP_CLOCK_EXTTS:
323 		enqueue_external_timestamp(&ptp->tsevq, event);
324 		wake_up_interruptible(&ptp->tsev_wq);
325 		break;
326 
327 	case PTP_CLOCK_PPS:
328 		pps_get_ts(&evt);
329 		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
330 		break;
331 
332 	case PTP_CLOCK_PPSUSR:
333 		pps_event(ptp->pps_source, &event->pps_times,
334 			  PTP_PPS_EVENT, NULL);
335 		break;
336 	}
337 }
338 EXPORT_SYMBOL(ptp_clock_event);
339 
ptp_clock_index(struct ptp_clock * ptp)340 int ptp_clock_index(struct ptp_clock *ptp)
341 {
342 	return ptp->index;
343 }
344 EXPORT_SYMBOL(ptp_clock_index);
345 
ptp_find_pin(struct ptp_clock * ptp,enum ptp_pin_function func,unsigned int chan)346 int ptp_find_pin(struct ptp_clock *ptp,
347 		 enum ptp_pin_function func, unsigned int chan)
348 {
349 	struct ptp_pin_desc *pin = NULL;
350 	int i;
351 
352 	mutex_lock(&ptp->pincfg_mux);
353 	for (i = 0; i < ptp->info->n_pins; i++) {
354 		if (ptp->info->pin_config[i].func == func &&
355 		    ptp->info->pin_config[i].chan == chan) {
356 			pin = &ptp->info->pin_config[i];
357 			break;
358 		}
359 	}
360 	mutex_unlock(&ptp->pincfg_mux);
361 
362 	return pin ? i : -1;
363 }
364 EXPORT_SYMBOL(ptp_find_pin);
365 
ptp_schedule_worker(struct ptp_clock * ptp,unsigned long delay)366 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
367 {
368 	return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
369 }
370 EXPORT_SYMBOL(ptp_schedule_worker);
371 
372 /* module operations */
373 
ptp_exit(void)374 static void __exit ptp_exit(void)
375 {
376 	class_destroy(ptp_class);
377 	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
378 	ida_destroy(&ptp_clocks_map);
379 }
380 
ptp_init(void)381 static int __init ptp_init(void)
382 {
383 	int err;
384 
385 	ptp_class = class_create(THIS_MODULE, "ptp");
386 	if (IS_ERR(ptp_class)) {
387 		pr_err("ptp: failed to allocate class\n");
388 		return PTR_ERR(ptp_class);
389 	}
390 
391 	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
392 	if (err < 0) {
393 		pr_err("ptp: failed to allocate device region\n");
394 		goto no_region;
395 	}
396 
397 	ptp_class->dev_groups = ptp_groups;
398 	pr_info("PTP clock support registered\n");
399 	return 0;
400 
401 no_region:
402 	class_destroy(ptp_class);
403 	return err;
404 }
405 
406 subsys_initcall(ptp_init);
407 module_exit(ptp_exit);
408 
409 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
410 MODULE_DESCRIPTION("PTP clocks support");
411 MODULE_LICENSE("GPL");
412