• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * An RTC driver for Allwinner A31/A23
4  *
5  * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
6  *
7  * based on rtc-sunxi.c
8  *
9  * An RTC driver for Allwinner A10/A20
10  *
11  * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/fs.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/rtc.h>
29 #include <linux/slab.h>
30 #include <linux/types.h>
31 
32 /* Control register */
33 #define SUN6I_LOSC_CTRL				0x0000
34 #define SUN6I_LOSC_CTRL_KEY			(0x16aa << 16)
35 #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS		BIT(15)
36 #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC		BIT(9)
37 #define SUN6I_LOSC_CTRL_RTC_HMS_ACC		BIT(8)
38 #define SUN6I_LOSC_CTRL_RTC_YMD_ACC		BIT(7)
39 #define SUN6I_LOSC_CTRL_EXT_LOSC_EN		BIT(4)
40 #define SUN6I_LOSC_CTRL_EXT_OSC			BIT(0)
41 #define SUN6I_LOSC_CTRL_ACC_MASK		GENMASK(9, 7)
42 
43 #define SUN6I_LOSC_CLK_PRESCAL			0x0008
44 
45 /* RTC */
46 #define SUN6I_RTC_YMD				0x0010
47 #define SUN6I_RTC_HMS				0x0014
48 
49 /* Alarm 0 (counter) */
50 #define SUN6I_ALRM_COUNTER			0x0020
51 #define SUN6I_ALRM_CUR_VAL			0x0024
52 #define SUN6I_ALRM_EN				0x0028
53 #define SUN6I_ALRM_EN_CNT_EN			BIT(0)
54 #define SUN6I_ALRM_IRQ_EN			0x002c
55 #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN		BIT(0)
56 #define SUN6I_ALRM_IRQ_STA			0x0030
57 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND		BIT(0)
58 
59 /* Alarm 1 (wall clock) */
60 #define SUN6I_ALRM1_EN				0x0044
61 #define SUN6I_ALRM1_IRQ_EN			0x0048
62 #define SUN6I_ALRM1_IRQ_STA			0x004c
63 #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND	BIT(0)
64 
65 /* Alarm config */
66 #define SUN6I_ALARM_CONFIG			0x0050
67 #define SUN6I_ALARM_CONFIG_WAKEUP		BIT(0)
68 
69 #define SUN6I_LOSC_OUT_GATING			0x0060
70 #define SUN6I_LOSC_OUT_GATING_EN_OFFSET		0
71 
72 /*
73  * Get date values
74  */
75 #define SUN6I_DATE_GET_DAY_VALUE(x)		((x)  & 0x0000001f)
76 #define SUN6I_DATE_GET_MON_VALUE(x)		(((x) & 0x00000f00) >> 8)
77 #define SUN6I_DATE_GET_YEAR_VALUE(x)		(((x) & 0x003f0000) >> 16)
78 #define SUN6I_LEAP_GET_VALUE(x)			(((x) & 0x00400000) >> 22)
79 
80 /*
81  * Get time values
82  */
83 #define SUN6I_TIME_GET_SEC_VALUE(x)		((x)  & 0x0000003f)
84 #define SUN6I_TIME_GET_MIN_VALUE(x)		(((x) & 0x00003f00) >> 8)
85 #define SUN6I_TIME_GET_HOUR_VALUE(x)		(((x) & 0x001f0000) >> 16)
86 
87 /*
88  * Set date values
89  */
90 #define SUN6I_DATE_SET_DAY_VALUE(x)		((x)       & 0x0000001f)
91 #define SUN6I_DATE_SET_MON_VALUE(x)		((x) <<  8 & 0x00000f00)
92 #define SUN6I_DATE_SET_YEAR_VALUE(x)		((x) << 16 & 0x003f0000)
93 #define SUN6I_LEAP_SET_VALUE(x)			((x) << 22 & 0x00400000)
94 
95 /*
96  * Set time values
97  */
98 #define SUN6I_TIME_SET_SEC_VALUE(x)		((x)       & 0x0000003f)
99 #define SUN6I_TIME_SET_MIN_VALUE(x)		((x) <<  8 & 0x00003f00)
100 #define SUN6I_TIME_SET_HOUR_VALUE(x)		((x) << 16 & 0x001f0000)
101 
102 /*
103  * The year parameter passed to the driver is usually an offset relative to
104  * the year 1900. This macro is used to convert this offset to another one
105  * relative to the minimum year allowed by the hardware.
106  *
107  * The year range is 1970 - 2033. This range is selected to match Allwinner's
108  * driver, even though it is somewhat limited.
109  */
110 #define SUN6I_YEAR_MIN				1970
111 #define SUN6I_YEAR_MAX				2033
112 #define SUN6I_YEAR_OFF				(SUN6I_YEAR_MIN - 1900)
113 
114 /*
115  * There are other differences between models, including:
116  *
117  *   - number of GPIO pins that can be configured to hold a certain level
118  *   - crypto-key related registers (H5, H6)
119  *   - boot process related (super standby, secondary processor entry address)
120  *     registers (R40, H6)
121  *   - SYS power domain controls (R40)
122  *   - DCXO controls (H6)
123  *   - RC oscillator calibration (H6)
124  *
125  * These functions are not covered by this driver.
126  */
127 struct sun6i_rtc_clk_data {
128 	unsigned long rc_osc_rate;
129 	unsigned int fixed_prescaler : 16;
130 	unsigned int has_prescaler : 1;
131 	unsigned int has_out_clk : 1;
132 	unsigned int has_losc_en : 1;
133 	unsigned int has_auto_swt : 1;
134 };
135 
136 struct sun6i_rtc_dev {
137 	struct rtc_device *rtc;
138 	struct device *dev;
139 	const struct sun6i_rtc_clk_data *data;
140 	void __iomem *base;
141 	int irq;
142 	unsigned long alarm;
143 
144 	struct clk_hw hw;
145 	struct clk_hw *int_osc;
146 	struct clk *losc;
147 	struct clk *ext_losc;
148 
149 	spinlock_t lock;
150 };
151 
152 static struct sun6i_rtc_dev *sun6i_rtc;
153 
sun6i_rtc_osc_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)154 static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
155 					       unsigned long parent_rate)
156 {
157 	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
158 	u32 val = 0;
159 
160 	val = readl(rtc->base + SUN6I_LOSC_CTRL);
161 	if (val & SUN6I_LOSC_CTRL_EXT_OSC)
162 		return parent_rate;
163 
164 	if (rtc->data->fixed_prescaler)
165 		parent_rate /= rtc->data->fixed_prescaler;
166 
167 	if (rtc->data->has_prescaler) {
168 		val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
169 		val &= GENMASK(4, 0);
170 	}
171 
172 	return parent_rate / (val + 1);
173 }
174 
sun6i_rtc_osc_get_parent(struct clk_hw * hw)175 static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
176 {
177 	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
178 
179 	return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
180 }
181 
sun6i_rtc_osc_set_parent(struct clk_hw * hw,u8 index)182 static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
183 {
184 	struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
185 	unsigned long flags;
186 	u32 val;
187 
188 	if (index > 1)
189 		return -EINVAL;
190 
191 	spin_lock_irqsave(&rtc->lock, flags);
192 	val = readl(rtc->base + SUN6I_LOSC_CTRL);
193 	val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
194 	val |= SUN6I_LOSC_CTRL_KEY;
195 	val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
196 	if (rtc->data->has_losc_en) {
197 		val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
198 		val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
199 	}
200 	writel(val, rtc->base + SUN6I_LOSC_CTRL);
201 	spin_unlock_irqrestore(&rtc->lock, flags);
202 
203 	return 0;
204 }
205 
206 static const struct clk_ops sun6i_rtc_osc_ops = {
207 	.recalc_rate	= sun6i_rtc_osc_recalc_rate,
208 
209 	.get_parent	= sun6i_rtc_osc_get_parent,
210 	.set_parent	= sun6i_rtc_osc_set_parent,
211 };
212 
sun6i_rtc_clk_init(struct device_node * node,const struct sun6i_rtc_clk_data * data)213 static void __init sun6i_rtc_clk_init(struct device_node *node,
214 				      const struct sun6i_rtc_clk_data *data)
215 {
216 	struct clk_hw_onecell_data *clk_data;
217 	struct sun6i_rtc_dev *rtc;
218 	struct clk_init_data init = {
219 		.ops		= &sun6i_rtc_osc_ops,
220 		.name		= "losc",
221 	};
222 	const char *iosc_name = "rtc-int-osc";
223 	const char *clkout_name = "osc32k-out";
224 	const char *parents[2];
225 	u32 reg;
226 
227 	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
228 	if (!rtc)
229 		return;
230 
231 	rtc->data = data;
232 	clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
233 	if (!clk_data) {
234 		kfree(rtc);
235 		return;
236 	}
237 
238 	spin_lock_init(&rtc->lock);
239 
240 	rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
241 	if (IS_ERR(rtc->base)) {
242 		pr_crit("Can't map RTC registers");
243 		goto err;
244 	}
245 
246 	reg = SUN6I_LOSC_CTRL_KEY;
247 	if (rtc->data->has_auto_swt) {
248 		/* Bypass auto-switch to int osc, on ext losc failure */
249 		reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
250 		writel(reg, rtc->base + SUN6I_LOSC_CTRL);
251 	}
252 
253 	/* Switch to the external, more precise, oscillator, if present */
254 	if (of_get_property(node, "clocks", NULL)) {
255 		reg |= SUN6I_LOSC_CTRL_EXT_OSC;
256 		if (rtc->data->has_losc_en)
257 			reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
258 	}
259 	writel(reg, rtc->base + SUN6I_LOSC_CTRL);
260 
261 	/* Yes, I know, this is ugly. */
262 	sun6i_rtc = rtc;
263 
264 	of_property_read_string_index(node, "clock-output-names", 2,
265 				      &iosc_name);
266 
267 	rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
268 								iosc_name,
269 								NULL, 0,
270 								rtc->data->rc_osc_rate,
271 								300000000);
272 	if (IS_ERR(rtc->int_osc)) {
273 		pr_crit("Couldn't register the internal oscillator\n");
274 		goto err;
275 	}
276 
277 	parents[0] = clk_hw_get_name(rtc->int_osc);
278 	/* If there is no external oscillator, this will be NULL and ... */
279 	parents[1] = of_clk_get_parent_name(node, 0);
280 
281 	rtc->hw.init = &init;
282 
283 	init.parent_names = parents;
284 	/* ... number of clock parents will be 1. */
285 	init.num_parents = of_clk_get_parent_count(node) + 1;
286 	of_property_read_string_index(node, "clock-output-names", 0,
287 				      &init.name);
288 
289 	rtc->losc = clk_register(NULL, &rtc->hw);
290 	if (IS_ERR(rtc->losc)) {
291 		pr_crit("Couldn't register the LOSC clock\n");
292 		goto err_register;
293 	}
294 
295 	of_property_read_string_index(node, "clock-output-names", 1,
296 				      &clkout_name);
297 	rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
298 					  0, rtc->base + SUN6I_LOSC_OUT_GATING,
299 					  SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
300 					  &rtc->lock);
301 	if (IS_ERR(rtc->ext_losc)) {
302 		pr_crit("Couldn't register the LOSC external gate\n");
303 		goto err_register;
304 	}
305 
306 	clk_data->num = 3;
307 	clk_data->hws[0] = &rtc->hw;
308 	clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
309 	clk_data->hws[2] = rtc->int_osc;
310 	of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
311 	return;
312 
313 err_register:
314 	clk_hw_unregister_fixed_rate(rtc->int_osc);
315 err:
316 	kfree(clk_data);
317 }
318 
319 static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
320 	.rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
321 	.has_prescaler = 1,
322 };
323 
sun6i_a31_rtc_clk_init(struct device_node * node)324 static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
325 {
326 	sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
327 }
328 CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
329 		      sun6i_a31_rtc_clk_init);
330 
331 static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
332 	.rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
333 	.has_prescaler = 1,
334 	.has_out_clk = 1,
335 };
336 
sun8i_a23_rtc_clk_init(struct device_node * node)337 static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
338 {
339 	sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
340 }
341 CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
342 		      sun8i_a23_rtc_clk_init);
343 
344 static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
345 	.rc_osc_rate = 16000000,
346 	.fixed_prescaler = 32,
347 	.has_prescaler = 1,
348 	.has_out_clk = 1,
349 };
350 
sun8i_h3_rtc_clk_init(struct device_node * node)351 static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
352 {
353 	sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
354 }
355 CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
356 		      sun8i_h3_rtc_clk_init);
357 /* As far as we are concerned, clocks for H5 are the same as H3 */
358 CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
359 		      sun8i_h3_rtc_clk_init);
360 
361 static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
362 	.rc_osc_rate = 16000000,
363 	.fixed_prescaler = 32,
364 	.has_prescaler = 1,
365 	.has_out_clk = 1,
366 	.has_losc_en = 1,
367 	.has_auto_swt = 1,
368 };
369 
sun50i_h6_rtc_clk_init(struct device_node * node)370 static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
371 {
372 	sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
373 }
374 CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
375 		      sun50i_h6_rtc_clk_init);
376 
377 /*
378  * The R40 user manual is self-conflicting on whether the prescaler is
379  * fixed or configurable. The clock diagram shows it as fixed, but there
380  * is also a configurable divider in the RTC block.
381  */
382 static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
383 	.rc_osc_rate = 16000000,
384 	.fixed_prescaler = 512,
385 };
sun8i_r40_rtc_clk_init(struct device_node * node)386 static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
387 {
388 	sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
389 }
390 CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
391 		      sun8i_r40_rtc_clk_init);
392 
393 static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
394 	.rc_osc_rate = 32000,
395 	.has_out_clk = 1,
396 };
397 
sun8i_v3_rtc_clk_init(struct device_node * node)398 static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
399 {
400 	sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
401 }
402 CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
403 		      sun8i_v3_rtc_clk_init);
404 
sun6i_rtc_alarmirq(int irq,void * id)405 static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
406 {
407 	struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
408 	irqreturn_t ret = IRQ_NONE;
409 	u32 val;
410 
411 	spin_lock(&chip->lock);
412 	val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
413 
414 	if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
415 		val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
416 		writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
417 
418 		rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
419 
420 		ret = IRQ_HANDLED;
421 	}
422 	spin_unlock(&chip->lock);
423 
424 	return ret;
425 }
426 
sun6i_rtc_setaie(int to,struct sun6i_rtc_dev * chip)427 static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
428 {
429 	u32 alrm_val = 0;
430 	u32 alrm_irq_val = 0;
431 	u32 alrm_wake_val = 0;
432 	unsigned long flags;
433 
434 	if (to) {
435 		alrm_val = SUN6I_ALRM_EN_CNT_EN;
436 		alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
437 		alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
438 	} else {
439 		writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
440 		       chip->base + SUN6I_ALRM_IRQ_STA);
441 	}
442 
443 	spin_lock_irqsave(&chip->lock, flags);
444 	writel(alrm_val, chip->base + SUN6I_ALRM_EN);
445 	writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
446 	writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
447 	spin_unlock_irqrestore(&chip->lock, flags);
448 }
449 
sun6i_rtc_gettime(struct device * dev,struct rtc_time * rtc_tm)450 static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
451 {
452 	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
453 	u32 date, time;
454 
455 	/*
456 	 * read again in case it changes
457 	 */
458 	do {
459 		date = readl(chip->base + SUN6I_RTC_YMD);
460 		time = readl(chip->base + SUN6I_RTC_HMS);
461 	} while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
462 		 (time != readl(chip->base + SUN6I_RTC_HMS)));
463 
464 	rtc_tm->tm_sec  = SUN6I_TIME_GET_SEC_VALUE(time);
465 	rtc_tm->tm_min  = SUN6I_TIME_GET_MIN_VALUE(time);
466 	rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
467 
468 	rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
469 	rtc_tm->tm_mon  = SUN6I_DATE_GET_MON_VALUE(date);
470 	rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
471 
472 	rtc_tm->tm_mon  -= 1;
473 
474 	/*
475 	 * switch from (data_year->min)-relative offset to
476 	 * a (1900)-relative one
477 	 */
478 	rtc_tm->tm_year += SUN6I_YEAR_OFF;
479 
480 	return 0;
481 }
482 
sun6i_rtc_getalarm(struct device * dev,struct rtc_wkalrm * wkalrm)483 static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
484 {
485 	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
486 	unsigned long flags;
487 	u32 alrm_st;
488 	u32 alrm_en;
489 
490 	spin_lock_irqsave(&chip->lock, flags);
491 	alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
492 	alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
493 	spin_unlock_irqrestore(&chip->lock, flags);
494 
495 	wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
496 	wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
497 	rtc_time_to_tm(chip->alarm, &wkalrm->time);
498 
499 	return 0;
500 }
501 
sun6i_rtc_setalarm(struct device * dev,struct rtc_wkalrm * wkalrm)502 static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
503 {
504 	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
505 	struct rtc_time *alrm_tm = &wkalrm->time;
506 	struct rtc_time tm_now;
507 	unsigned long time_now = 0;
508 	unsigned long time_set = 0;
509 	unsigned long time_gap = 0;
510 	int ret = 0;
511 
512 	ret = sun6i_rtc_gettime(dev, &tm_now);
513 	if (ret < 0) {
514 		dev_err(dev, "Error in getting time\n");
515 		return -EINVAL;
516 	}
517 
518 	rtc_tm_to_time(alrm_tm, &time_set);
519 	rtc_tm_to_time(&tm_now, &time_now);
520 	if (time_set <= time_now) {
521 		dev_err(dev, "Date to set in the past\n");
522 		return -EINVAL;
523 	}
524 
525 	time_gap = time_set - time_now;
526 
527 	if (time_gap > U32_MAX) {
528 		dev_err(dev, "Date too far in the future\n");
529 		return -EINVAL;
530 	}
531 
532 	sun6i_rtc_setaie(0, chip);
533 	writel(0, chip->base + SUN6I_ALRM_COUNTER);
534 	usleep_range(100, 300);
535 
536 	writel(time_gap, chip->base + SUN6I_ALRM_COUNTER);
537 	chip->alarm = time_set;
538 
539 	sun6i_rtc_setaie(wkalrm->enabled, chip);
540 
541 	return 0;
542 }
543 
sun6i_rtc_wait(struct sun6i_rtc_dev * chip,int offset,unsigned int mask,unsigned int ms_timeout)544 static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
545 			  unsigned int mask, unsigned int ms_timeout)
546 {
547 	const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
548 	u32 reg;
549 
550 	do {
551 		reg = readl(chip->base + offset);
552 		reg &= mask;
553 
554 		if (!reg)
555 			return 0;
556 
557 	} while (time_before(jiffies, timeout));
558 
559 	return -ETIMEDOUT;
560 }
561 
sun6i_rtc_settime(struct device * dev,struct rtc_time * rtc_tm)562 static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
563 {
564 	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
565 	u32 date = 0;
566 	u32 time = 0;
567 	int year;
568 
569 	year = rtc_tm->tm_year + 1900;
570 	if (year < SUN6I_YEAR_MIN || year > SUN6I_YEAR_MAX) {
571 		dev_err(dev, "rtc only supports year in range %d - %d\n",
572 			SUN6I_YEAR_MIN, SUN6I_YEAR_MAX);
573 		return -EINVAL;
574 	}
575 
576 	rtc_tm->tm_year -= SUN6I_YEAR_OFF;
577 	rtc_tm->tm_mon += 1;
578 
579 	date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
580 		SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon)  |
581 		SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
582 
583 	if (is_leap_year(year))
584 		date |= SUN6I_LEAP_SET_VALUE(1);
585 
586 	time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec)  |
587 		SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min)  |
588 		SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
589 
590 	/* Check whether registers are writable */
591 	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
592 			   SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
593 		dev_err(dev, "rtc is still busy.\n");
594 		return -EBUSY;
595 	}
596 
597 	writel(time, chip->base + SUN6I_RTC_HMS);
598 
599 	/*
600 	 * After writing the RTC HH-MM-SS register, the
601 	 * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
602 	 * be cleared until the real writing operation is finished
603 	 */
604 
605 	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
606 			   SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
607 		dev_err(dev, "Failed to set rtc time.\n");
608 		return -ETIMEDOUT;
609 	}
610 
611 	writel(date, chip->base + SUN6I_RTC_YMD);
612 
613 	/*
614 	 * After writing the RTC YY-MM-DD register, the
615 	 * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
616 	 * be cleared until the real writing operation is finished
617 	 */
618 
619 	if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
620 			   SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
621 		dev_err(dev, "Failed to set rtc time.\n");
622 		return -ETIMEDOUT;
623 	}
624 
625 	return 0;
626 }
627 
sun6i_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)628 static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
629 {
630 	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
631 
632 	if (!enabled)
633 		sun6i_rtc_setaie(enabled, chip);
634 
635 	return 0;
636 }
637 
638 static const struct rtc_class_ops sun6i_rtc_ops = {
639 	.read_time		= sun6i_rtc_gettime,
640 	.set_time		= sun6i_rtc_settime,
641 	.read_alarm		= sun6i_rtc_getalarm,
642 	.set_alarm		= sun6i_rtc_setalarm,
643 	.alarm_irq_enable	= sun6i_rtc_alarm_irq_enable
644 };
645 
646 #ifdef CONFIG_PM_SLEEP
647 /* Enable IRQ wake on suspend, to wake up from RTC. */
sun6i_rtc_suspend(struct device * dev)648 static int sun6i_rtc_suspend(struct device *dev)
649 {
650 	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
651 
652 	if (device_may_wakeup(dev))
653 		enable_irq_wake(chip->irq);
654 
655 	return 0;
656 }
657 
658 /* Disable IRQ wake on resume. */
sun6i_rtc_resume(struct device * dev)659 static int sun6i_rtc_resume(struct device *dev)
660 {
661 	struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
662 
663 	if (device_may_wakeup(dev))
664 		disable_irq_wake(chip->irq);
665 
666 	return 0;
667 }
668 #endif
669 
670 static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
671 	sun6i_rtc_suspend, sun6i_rtc_resume);
672 
sun6i_rtc_probe(struct platform_device * pdev)673 static int sun6i_rtc_probe(struct platform_device *pdev)
674 {
675 	struct sun6i_rtc_dev *chip = sun6i_rtc;
676 	int ret;
677 
678 	if (!chip)
679 		return -ENODEV;
680 
681 	platform_set_drvdata(pdev, chip);
682 	chip->dev = &pdev->dev;
683 
684 	chip->irq = platform_get_irq(pdev, 0);
685 	if (chip->irq < 0)
686 		return chip->irq;
687 
688 	ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
689 			       0, dev_name(&pdev->dev), chip);
690 	if (ret) {
691 		dev_err(&pdev->dev, "Could not request IRQ\n");
692 		return ret;
693 	}
694 
695 	/* clear the alarm counter value */
696 	writel(0, chip->base + SUN6I_ALRM_COUNTER);
697 
698 	/* disable counter alarm */
699 	writel(0, chip->base + SUN6I_ALRM_EN);
700 
701 	/* disable counter alarm interrupt */
702 	writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
703 
704 	/* disable week alarm */
705 	writel(0, chip->base + SUN6I_ALRM1_EN);
706 
707 	/* disable week alarm interrupt */
708 	writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
709 
710 	/* clear counter alarm pending interrupts */
711 	writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
712 	       chip->base + SUN6I_ALRM_IRQ_STA);
713 
714 	/* clear week alarm pending interrupts */
715 	writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
716 	       chip->base + SUN6I_ALRM1_IRQ_STA);
717 
718 	/* disable alarm wakeup */
719 	writel(0, chip->base + SUN6I_ALARM_CONFIG);
720 
721 	clk_prepare_enable(chip->losc);
722 
723 	device_init_wakeup(&pdev->dev, 1);
724 
725 	chip->rtc = devm_rtc_device_register(&pdev->dev, "rtc-sun6i",
726 					     &sun6i_rtc_ops, THIS_MODULE);
727 	if (IS_ERR(chip->rtc)) {
728 		dev_err(&pdev->dev, "unable to register device\n");
729 		return PTR_ERR(chip->rtc);
730 	}
731 
732 	dev_info(&pdev->dev, "RTC enabled\n");
733 
734 	return 0;
735 }
736 
737 /*
738  * As far as RTC functionality goes, all models are the same. The
739  * datasheets claim that different models have different number of
740  * registers available for non-volatile storage, but experiments show
741  * that all SoCs have 16 registers available for this purpose.
742  */
743 static const struct of_device_id sun6i_rtc_dt_ids[] = {
744 	{ .compatible = "allwinner,sun6i-a31-rtc" },
745 	{ .compatible = "allwinner,sun8i-a23-rtc" },
746 	{ .compatible = "allwinner,sun8i-h3-rtc" },
747 	{ .compatible = "allwinner,sun8i-r40-rtc" },
748 	{ .compatible = "allwinner,sun8i-v3-rtc" },
749 	{ .compatible = "allwinner,sun50i-h5-rtc" },
750 	{ .compatible = "allwinner,sun50i-h6-rtc" },
751 	{ /* sentinel */ },
752 };
753 MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
754 
755 static struct platform_driver sun6i_rtc_driver = {
756 	.probe		= sun6i_rtc_probe,
757 	.driver		= {
758 		.name		= "sun6i-rtc",
759 		.of_match_table = sun6i_rtc_dt_ids,
760 		.pm = &sun6i_rtc_pm_ops,
761 	},
762 };
763 builtin_platform_driver(sun6i_rtc_driver);
764