• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 MediaTek Inc.
4  * Author: Hanyi Wu <hanyi.wu@mediatek.com>
5  *         Sascha Hauer <s.hauer@pengutronix.de>
6  *         Dawei Chien <dawei.chien@mediatek.com>
7  *         Louis Yu <louis.yu@mediatek.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/io.h>
22 #include <linux/thermal.h>
23 #include <linux/reset.h>
24 #include <linux/types.h>
25 
26 /* AUXADC Registers */
27 #define AUXADC_CON1_SET_V	0x008
28 #define AUXADC_CON1_CLR_V	0x00c
29 #define AUXADC_CON2_V		0x010
30 #define AUXADC_DATA(channel)	(0x14 + (channel) * 4)
31 
32 #define APMIXED_SYS_TS_CON1	0x604
33 
34 /* Thermal Controller Registers */
35 #define TEMP_MONCTL0		0x000
36 #define TEMP_MONCTL1		0x004
37 #define TEMP_MONCTL2		0x008
38 #define TEMP_MONIDET0		0x014
39 #define TEMP_MONIDET1		0x018
40 #define TEMP_MSRCTL0		0x038
41 #define TEMP_AHBPOLL		0x040
42 #define TEMP_AHBTO		0x044
43 #define TEMP_ADCPNP0		0x048
44 #define TEMP_ADCPNP1		0x04c
45 #define TEMP_ADCPNP2		0x050
46 #define TEMP_ADCPNP3		0x0b4
47 
48 #define TEMP_ADCMUX		0x054
49 #define TEMP_ADCEN		0x060
50 #define TEMP_PNPMUXADDR		0x064
51 #define TEMP_ADCMUXADDR		0x068
52 #define TEMP_ADCENADDR		0x074
53 #define TEMP_ADCVALIDADDR	0x078
54 #define TEMP_ADCVOLTADDR	0x07c
55 #define TEMP_RDCTRL		0x080
56 #define TEMP_ADCVALIDMASK	0x084
57 #define TEMP_ADCVOLTAGESHIFT	0x088
58 #define TEMP_ADCWRITECTRL	0x08c
59 #define TEMP_MSR0		0x090
60 #define TEMP_MSR1		0x094
61 #define TEMP_MSR2		0x098
62 #define TEMP_MSR3		0x0B8
63 
64 #define TEMP_SPARE0		0x0f0
65 
66 #define TEMP_ADCPNP0_1          0x148
67 #define TEMP_ADCPNP1_1          0x14c
68 #define TEMP_ADCPNP2_1          0x150
69 #define TEMP_MSR0_1             0x190
70 #define TEMP_MSR1_1             0x194
71 #define TEMP_MSR2_1             0x198
72 #define TEMP_ADCPNP3_1          0x1b4
73 #define TEMP_MSR3_1             0x1B8
74 
75 #define PTPCORESEL		0x400
76 
77 #define TEMP_MONCTL1_PERIOD_UNIT(x)	((x) & 0x3ff)
78 
79 #define TEMP_MONCTL2_FILTER_INTERVAL(x)	(((x) & 0x3ff) << 16)
80 #define TEMP_MONCTL2_SENSOR_INTERVAL(x)	((x) & 0x3ff)
81 
82 #define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x)	(x)
83 
84 #define TEMP_ADCWRITECTRL_ADC_PNP_WRITE		BIT(0)
85 #define TEMP_ADCWRITECTRL_ADC_MUX_WRITE		BIT(1)
86 
87 #define TEMP_ADCVALIDMASK_VALID_HIGH		BIT(5)
88 #define TEMP_ADCVALIDMASK_VALID_POS(bit)	(bit)
89 
90 /* MT8173 thermal sensors */
91 #define MT8173_TS1	0
92 #define MT8173_TS2	1
93 #define MT8173_TS3	2
94 #define MT8173_TS4	3
95 #define MT8173_TSABB	4
96 
97 /* AUXADC channel 11 is used for the temperature sensors */
98 #define MT8173_TEMP_AUXADC_CHANNEL	11
99 
100 /* The total number of temperature sensors in the MT8173 */
101 #define MT8173_NUM_SENSORS		5
102 
103 /* The number of banks in the MT8173 */
104 #define MT8173_NUM_ZONES		4
105 
106 /* The number of sensing points per bank */
107 #define MT8173_NUM_SENSORS_PER_ZONE	4
108 
109 /* The number of controller in the MT8173 */
110 #define MT8173_NUM_CONTROLLER		1
111 
112 /* The calibration coefficient of sensor  */
113 #define MT8173_CALIBRATION	165
114 
115 /*
116  * Layout of the fuses providing the calibration data
117  * These macros could be used for MT8183, MT8173, MT2701, and MT2712.
118  * MT8183 has 6 sensors and needs 6 VTS calibration data.
119  * MT8173 has 5 sensors and needs 5 VTS calibration data.
120  * MT2701 has 3 sensors and needs 3 VTS calibration data.
121  * MT2712 has 4 sensors and needs 4 VTS calibration data.
122  */
123 #define CALIB_BUF0_VALID		BIT(0)
124 #define CALIB_BUF1_ADC_GE(x)		(((x) >> 22) & 0x3ff)
125 #define CALIB_BUF0_VTS_TS1(x)		(((x) >> 17) & 0x1ff)
126 #define CALIB_BUF0_VTS_TS2(x)		(((x) >> 8) & 0x1ff)
127 #define CALIB_BUF1_VTS_TS3(x)		(((x) >> 0) & 0x1ff)
128 #define CALIB_BUF2_VTS_TS4(x)		(((x) >> 23) & 0x1ff)
129 #define CALIB_BUF2_VTS_TS5(x)		(((x) >> 5) & 0x1ff)
130 #define CALIB_BUF2_VTS_TSABB(x)		(((x) >> 14) & 0x1ff)
131 #define CALIB_BUF0_DEGC_CALI(x)		(((x) >> 1) & 0x3f)
132 #define CALIB_BUF0_O_SLOPE(x)		(((x) >> 26) & 0x3f)
133 #define CALIB_BUF0_O_SLOPE_SIGN(x)	(((x) >> 7) & 0x1)
134 #define CALIB_BUF1_ID(x)		(((x) >> 9) & 0x1)
135 
136 enum {
137 	VTS1,
138 	VTS2,
139 	VTS3,
140 	VTS4,
141 	VTS5,
142 	VTSABB,
143 	MAX_NUM_VTS,
144 };
145 
146 /* MT2701 thermal sensors */
147 #define MT2701_TS1	0
148 #define MT2701_TS2	1
149 #define MT2701_TSABB	2
150 
151 /* AUXADC channel 11 is used for the temperature sensors */
152 #define MT2701_TEMP_AUXADC_CHANNEL	11
153 
154 /* The total number of temperature sensors in the MT2701 */
155 #define MT2701_NUM_SENSORS	3
156 
157 /* The number of sensing points per bank */
158 #define MT2701_NUM_SENSORS_PER_ZONE	3
159 
160 /* The number of controller in the MT2701 */
161 #define MT2701_NUM_CONTROLLER		1
162 
163 /* The calibration coefficient of sensor  */
164 #define MT2701_CALIBRATION	165
165 
166 /* MT2712 thermal sensors */
167 #define MT2712_TS1	0
168 #define MT2712_TS2	1
169 #define MT2712_TS3	2
170 #define MT2712_TS4	3
171 
172 /* AUXADC channel 11 is used for the temperature sensors */
173 #define MT2712_TEMP_AUXADC_CHANNEL	11
174 
175 /* The total number of temperature sensors in the MT2712 */
176 #define MT2712_NUM_SENSORS	4
177 
178 /* The number of sensing points per bank */
179 #define MT2712_NUM_SENSORS_PER_ZONE	4
180 
181 /* The number of controller in the MT2712 */
182 #define MT2712_NUM_CONTROLLER		1
183 
184 /* The calibration coefficient of sensor  */
185 #define MT2712_CALIBRATION	165
186 
187 #define MT7622_TEMP_AUXADC_CHANNEL	11
188 #define MT7622_NUM_SENSORS		1
189 #define MT7622_NUM_ZONES		1
190 #define MT7622_NUM_SENSORS_PER_ZONE	1
191 #define MT7622_TS1	0
192 #define MT7622_NUM_CONTROLLER		1
193 
194 /* The maximum number of banks */
195 #define MAX_NUM_ZONES		8
196 
197 /* The calibration coefficient of sensor  */
198 #define MT7622_CALIBRATION	165
199 
200 /* MT8183 thermal sensors */
201 #define MT8183_TS1	0
202 #define MT8183_TS2	1
203 #define MT8183_TS3	2
204 #define MT8183_TS4	3
205 #define MT8183_TS5	4
206 #define MT8183_TSABB	5
207 
208 /* AUXADC channel  is used for the temperature sensors */
209 #define MT8183_TEMP_AUXADC_CHANNEL	11
210 
211 /* The total number of temperature sensors in the MT8183 */
212 #define MT8183_NUM_SENSORS	6
213 
214 /* The number of banks in the MT8183 */
215 #define MT8183_NUM_ZONES               1
216 
217 /* The number of sensing points per bank */
218 #define MT8183_NUM_SENSORS_PER_ZONE	 6
219 
220 /* The number of controller in the MT8183 */
221 #define MT8183_NUM_CONTROLLER		2
222 
223 /* The calibration coefficient of sensor  */
224 #define MT8183_CALIBRATION	153
225 
226 struct mtk_thermal;
227 
228 struct thermal_bank_cfg {
229 	unsigned int num_sensors;
230 	const int *sensors;
231 };
232 
233 struct mtk_thermal_bank {
234 	struct mtk_thermal *mt;
235 	int id;
236 };
237 
238 struct mtk_thermal_data {
239 	s32 num_banks;
240 	s32 num_sensors;
241 	s32 auxadc_channel;
242 	const int *vts_index;
243 	const int *sensor_mux_values;
244 	const int *msr;
245 	const int *adcpnp;
246 	const int cali_val;
247 	const int num_controller;
248 	const int *controller_offset;
249 	bool need_switch_bank;
250 	struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
251 };
252 
253 struct mtk_thermal {
254 	struct device *dev;
255 	void __iomem *thermal_base;
256 
257 	struct clk *clk_peri_therm;
258 	struct clk *clk_auxadc;
259 	/* lock: for getting and putting banks */
260 	struct mutex lock;
261 
262 	/* Calibration values */
263 	s32 adc_ge;
264 	s32 degc_cali;
265 	s32 o_slope;
266 	s32 vts[MAX_NUM_VTS];
267 
268 	const struct mtk_thermal_data *conf;
269 	struct mtk_thermal_bank banks[MAX_NUM_ZONES];
270 };
271 
272 /* MT8183 thermal sensor data */
273 static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
274 	MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
275 };
276 
277 static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
278 	TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
279 };
280 
281 static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
282 	TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
283 	TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
284 };
285 
286 static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
287 static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};
288 
289 static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
290 	VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
291 };
292 
293 /* MT8173 thermal sensor data */
294 static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
295 	{ MT8173_TS2, MT8173_TS3 },
296 	{ MT8173_TS2, MT8173_TS4 },
297 	{ MT8173_TS1, MT8173_TS2, MT8173_TSABB },
298 	{ MT8173_TS2 },
299 };
300 
301 static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
302 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
303 };
304 
305 static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
306 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
307 };
308 
309 static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
310 static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };
311 
312 static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
313 	VTS1, VTS2, VTS3, VTS4, VTSABB
314 };
315 
316 /* MT2701 thermal sensor data */
317 static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
318 	MT2701_TS1, MT2701_TS2, MT2701_TSABB
319 };
320 
321 static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
322 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
323 };
324 
325 static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
326 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
327 };
328 
329 static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
330 static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };
331 
332 static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
333 	VTS1, VTS2, VTS3
334 };
335 
336 /* MT2712 thermal sensor data */
337 static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
338 	MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
339 };
340 
341 static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
342 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
343 };
344 
345 static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
346 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
347 };
348 
349 static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
350 static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };
351 
352 static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
353 	VTS1, VTS2, VTS3, VTS4
354 };
355 
356 /* MT7622 thermal sensor data */
357 static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
358 static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
359 static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
360 static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
361 static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
362 static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
363 
364 /**
365  * The MT8173 thermal controller has four banks. Each bank can read up to
366  * four temperature sensors simultaneously. The MT8173 has a total of 5
367  * temperature sensors. We use each bank to measure a certain area of the
368  * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
369  * areas, hence is used in different banks.
370  *
371  * The thermal core only gets the maximum temperature of all banks, so
372  * the bank concept wouldn't be necessary here. However, the SVS (Smart
373  * Voltage Scaling) unit makes its decisions based on the same bank
374  * data, and this indeed needs the temperatures of the individual banks
375  * for making better decisions.
376  */
377 static const struct mtk_thermal_data mt8173_thermal_data = {
378 	.auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
379 	.num_banks = MT8173_NUM_ZONES,
380 	.num_sensors = MT8173_NUM_SENSORS,
381 	.vts_index = mt8173_vts_index,
382 	.cali_val = MT8173_CALIBRATION,
383 	.num_controller = MT8173_NUM_CONTROLLER,
384 	.controller_offset = mt8173_tc_offset,
385 	.need_switch_bank = true,
386 	.bank_data = {
387 		{
388 			.num_sensors = 2,
389 			.sensors = mt8173_bank_data[0],
390 		}, {
391 			.num_sensors = 2,
392 			.sensors = mt8173_bank_data[1],
393 		}, {
394 			.num_sensors = 3,
395 			.sensors = mt8173_bank_data[2],
396 		}, {
397 			.num_sensors = 1,
398 			.sensors = mt8173_bank_data[3],
399 		},
400 	},
401 	.msr = mt8173_msr,
402 	.adcpnp = mt8173_adcpnp,
403 	.sensor_mux_values = mt8173_mux_values,
404 };
405 
406 /**
407  * The MT2701 thermal controller has one bank, which can read up to
408  * three temperature sensors simultaneously. The MT2701 has a total of 3
409  * temperature sensors.
410  *
411  * The thermal core only gets the maximum temperature of this one bank,
412  * so the bank concept wouldn't be necessary here. However, the SVS (Smart
413  * Voltage Scaling) unit makes its decisions based on the same bank
414  * data.
415  */
416 static const struct mtk_thermal_data mt2701_thermal_data = {
417 	.auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
418 	.num_banks = 1,
419 	.num_sensors = MT2701_NUM_SENSORS,
420 	.vts_index = mt2701_vts_index,
421 	.cali_val = MT2701_CALIBRATION,
422 	.num_controller = MT2701_NUM_CONTROLLER,
423 	.controller_offset = mt2701_tc_offset,
424 	.need_switch_bank = true,
425 	.bank_data = {
426 		{
427 			.num_sensors = 3,
428 			.sensors = mt2701_bank_data,
429 		},
430 	},
431 	.msr = mt2701_msr,
432 	.adcpnp = mt2701_adcpnp,
433 	.sensor_mux_values = mt2701_mux_values,
434 };
435 
436 /**
437  * The MT2712 thermal controller has one bank, which can read up to
438  * four temperature sensors simultaneously. The MT2712 has a total of 4
439  * temperature sensors.
440  *
441  * The thermal core only gets the maximum temperature of this one bank,
442  * so the bank concept wouldn't be necessary here. However, the SVS (Smart
443  * Voltage Scaling) unit makes its decisions based on the same bank
444  * data.
445  */
446 static const struct mtk_thermal_data mt2712_thermal_data = {
447 	.auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
448 	.num_banks = 1,
449 	.num_sensors = MT2712_NUM_SENSORS,
450 	.vts_index = mt2712_vts_index,
451 	.cali_val = MT2712_CALIBRATION,
452 	.num_controller = MT2712_NUM_CONTROLLER,
453 	.controller_offset = mt2712_tc_offset,
454 	.need_switch_bank = true,
455 	.bank_data = {
456 		{
457 			.num_sensors = 4,
458 			.sensors = mt2712_bank_data,
459 		},
460 	},
461 	.msr = mt2712_msr,
462 	.adcpnp = mt2712_adcpnp,
463 	.sensor_mux_values = mt2712_mux_values,
464 };
465 
466 /*
467  * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
468  * access.
469  */
470 static const struct mtk_thermal_data mt7622_thermal_data = {
471 	.auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
472 	.num_banks = MT7622_NUM_ZONES,
473 	.num_sensors = MT7622_NUM_SENSORS,
474 	.vts_index = mt7622_vts_index,
475 	.cali_val = MT7622_CALIBRATION,
476 	.num_controller = MT7622_NUM_CONTROLLER,
477 	.controller_offset = mt7622_tc_offset,
478 	.need_switch_bank = true,
479 	.bank_data = {
480 		{
481 			.num_sensors = 1,
482 			.sensors = mt7622_bank_data,
483 		},
484 	},
485 	.msr = mt7622_msr,
486 	.adcpnp = mt7622_adcpnp,
487 	.sensor_mux_values = mt7622_mux_values,
488 };
489 
490 /**
491  * The MT8183 thermal controller has one bank for the current SW framework.
492  * The MT8183 has a total of 6 temperature sensors.
493  * There are two thermal controller to control the six sensor.
494  * The first one bind 2 sensor, and the other bind 4 sensors.
495  * The thermal core only gets the maximum temperature of all sensor, so
496  * the bank concept wouldn't be necessary here. However, the SVS (Smart
497  * Voltage Scaling) unit makes its decisions based on the same bank
498  * data, and this indeed needs the temperatures of the individual banks
499  * for making better decisions.
500  */
501 
502 static const struct mtk_thermal_data mt8183_thermal_data = {
503 	.auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
504 	.num_banks = MT8183_NUM_ZONES,
505 	.num_sensors = MT8183_NUM_SENSORS,
506 	.vts_index = mt8183_vts_index,
507 	.cali_val = MT8183_CALIBRATION,
508 	.num_controller = MT8183_NUM_CONTROLLER,
509 	.controller_offset = mt8183_tc_offset,
510 	.need_switch_bank = false,
511 	.bank_data = {
512 		{
513 			.num_sensors = 6,
514 			.sensors = mt8183_bank_data,
515 		},
516 	},
517 
518 	.msr = mt8183_msr,
519 	.adcpnp = mt8183_adcpnp,
520 	.sensor_mux_values = mt8183_mux_values,
521 };
522 
523 /**
524  * raw_to_mcelsius - convert a raw ADC value to mcelsius
525  * @mt:		The thermal controller
526  * @raw:	raw ADC value
527  *
528  * This converts the raw ADC value to mcelsius using the SoC specific
529  * calibration constants
530  */
raw_to_mcelsius(struct mtk_thermal * mt,int sensno,s32 raw)531 static int raw_to_mcelsius(struct mtk_thermal *mt, int sensno, s32 raw)
532 {
533 	s32 tmp;
534 
535 	raw &= 0xfff;
536 
537 	tmp = 203450520 << 3;
538 	tmp /= mt->conf->cali_val + mt->o_slope;
539 	tmp /= 10000 + mt->adc_ge;
540 	tmp *= raw - mt->vts[sensno] - 3350;
541 	tmp >>= 3;
542 
543 	return mt->degc_cali * 500 - tmp;
544 }
545 
546 /**
547  * mtk_thermal_get_bank - get bank
548  * @bank:	The bank
549  *
550  * The bank registers are banked, we have to select a bank in the
551  * PTPCORESEL register to access it.
552  */
mtk_thermal_get_bank(struct mtk_thermal_bank * bank)553 static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
554 {
555 	struct mtk_thermal *mt = bank->mt;
556 	u32 val;
557 
558 	if (mt->conf->need_switch_bank) {
559 		mutex_lock(&mt->lock);
560 
561 		val = readl(mt->thermal_base + PTPCORESEL);
562 		val &= ~0xf;
563 		val |= bank->id;
564 		writel(val, mt->thermal_base + PTPCORESEL);
565 	}
566 }
567 
568 /**
569  * mtk_thermal_put_bank - release bank
570  * @bank:	The bank
571  *
572  * release a bank previously taken with mtk_thermal_get_bank,
573  */
mtk_thermal_put_bank(struct mtk_thermal_bank * bank)574 static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
575 {
576 	struct mtk_thermal *mt = bank->mt;
577 
578 	if (mt->conf->need_switch_bank)
579 		mutex_unlock(&mt->lock);
580 }
581 
582 /**
583  * mtk_thermal_bank_temperature - get the temperature of a bank
584  * @bank:	The bank
585  *
586  * The temperature of a bank is considered the maximum temperature of
587  * the sensors associated to the bank.
588  */
mtk_thermal_bank_temperature(struct mtk_thermal_bank * bank)589 static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
590 {
591 	struct mtk_thermal *mt = bank->mt;
592 	const struct mtk_thermal_data *conf = mt->conf;
593 	int i, temp = INT_MIN, max = INT_MIN;
594 	u32 raw;
595 
596 	for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
597 		raw = readl(mt->thermal_base + conf->msr[i]);
598 
599 		temp = raw_to_mcelsius(mt,
600 				       conf->bank_data[bank->id].sensors[i],
601 				       raw);
602 
603 		/*
604 		 * The first read of a sensor often contains very high bogus
605 		 * temperature value. Filter these out so that the system does
606 		 * not immediately shut down.
607 		 */
608 		if (temp > 200000)
609 			temp = 0;
610 
611 		if (temp > max)
612 			max = temp;
613 	}
614 
615 	return max;
616 }
617 
mtk_read_temp(void * data,int * temperature)618 static int mtk_read_temp(void *data, int *temperature)
619 {
620 	struct mtk_thermal *mt = data;
621 	int i;
622 	int tempmax = INT_MIN;
623 
624 	for (i = 0; i < mt->conf->num_banks; i++) {
625 		struct mtk_thermal_bank *bank = &mt->banks[i];
626 
627 		mtk_thermal_get_bank(bank);
628 
629 		tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
630 
631 		mtk_thermal_put_bank(bank);
632 	}
633 
634 	*temperature = tempmax;
635 
636 	return 0;
637 }
638 
639 static const struct thermal_zone_of_device_ops mtk_thermal_ops = {
640 	.get_temp = mtk_read_temp,
641 };
642 
mtk_thermal_init_bank(struct mtk_thermal * mt,int num,u32 apmixed_phys_base,u32 auxadc_phys_base,int ctrl_id)643 static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
644 				  u32 apmixed_phys_base, u32 auxadc_phys_base,
645 				  int ctrl_id)
646 {
647 	struct mtk_thermal_bank *bank = &mt->banks[num];
648 	const struct mtk_thermal_data *conf = mt->conf;
649 	int i;
650 
651 	int offset = mt->conf->controller_offset[ctrl_id];
652 	void __iomem *controller_base = mt->thermal_base + offset;
653 
654 	bank->id = num;
655 	bank->mt = mt;
656 
657 	mtk_thermal_get_bank(bank);
658 
659 	/* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
660 	writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);
661 
662 	/*
663 	 * filt interval is 1 * 46.540us = 46.54us,
664 	 * sen interval is 429 * 46.540us = 19.96ms
665 	 */
666 	writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
667 			TEMP_MONCTL2_SENSOR_INTERVAL(429),
668 			controller_base + TEMP_MONCTL2);
669 
670 	/* poll is set to 10u */
671 	writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
672 	       controller_base + TEMP_AHBPOLL);
673 
674 	/* temperature sampling control, 1 sample */
675 	writel(0x0, controller_base + TEMP_MSRCTL0);
676 
677 	/* exceed this polling time, IRQ would be inserted */
678 	writel(0xffffffff, controller_base + TEMP_AHBTO);
679 
680 	/* number of interrupts per event, 1 is enough */
681 	writel(0x0, controller_base + TEMP_MONIDET0);
682 	writel(0x0, controller_base + TEMP_MONIDET1);
683 
684 	/*
685 	 * The MT8173 thermal controller does not have its own ADC. Instead it
686 	 * uses AHB bus accesses to control the AUXADC. To do this the thermal
687 	 * controller has to be programmed with the physical addresses of the
688 	 * AUXADC registers and with the various bit positions in the AUXADC.
689 	 * Also the thermal controller controls a mux in the APMIXEDSYS register
690 	 * space.
691 	 */
692 
693 	/*
694 	 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
695 	 * automatically by hw
696 	 */
697 	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);
698 
699 	/* AHB address for auxadc mux selection */
700 	writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
701 	       controller_base + TEMP_ADCMUXADDR);
702 
703 	/* AHB address for pnp sensor mux selection */
704 	writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
705 	       controller_base + TEMP_PNPMUXADDR);
706 
707 	/* AHB value for auxadc enable */
708 	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);
709 
710 	/* AHB address for auxadc enable (channel 0 immediate mode selected) */
711 	writel(auxadc_phys_base + AUXADC_CON1_SET_V,
712 	       controller_base + TEMP_ADCENADDR);
713 
714 	/* AHB address for auxadc valid bit */
715 	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
716 	       controller_base + TEMP_ADCVALIDADDR);
717 
718 	/* AHB address for auxadc voltage output */
719 	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
720 	       controller_base + TEMP_ADCVOLTADDR);
721 
722 	/* read valid & voltage are at the same register */
723 	writel(0x0, controller_base + TEMP_RDCTRL);
724 
725 	/* indicate where the valid bit is */
726 	writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
727 	       controller_base + TEMP_ADCVALIDMASK);
728 
729 	/* no shift */
730 	writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);
731 
732 	/* enable auxadc mux write transaction */
733 	writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
734 		controller_base + TEMP_ADCWRITECTRL);
735 
736 	for (i = 0; i < conf->bank_data[num].num_sensors; i++)
737 		writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
738 		       mt->thermal_base + conf->adcpnp[i]);
739 
740 	writel((1 << conf->bank_data[num].num_sensors) - 1,
741 	       controller_base + TEMP_MONCTL0);
742 
743 	writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
744 	       TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
745 	       controller_base + TEMP_ADCWRITECTRL);
746 
747 	mtk_thermal_put_bank(bank);
748 }
749 
of_get_phys_base(struct device_node * np)750 static u64 of_get_phys_base(struct device_node *np)
751 {
752 	u64 size64;
753 	const __be32 *regaddr_p;
754 
755 	regaddr_p = of_get_address(np, 0, &size64, NULL);
756 	if (!regaddr_p)
757 		return OF_BAD_ADDR;
758 
759 	return of_translate_address(np, regaddr_p);
760 }
761 
mtk_thermal_get_calibration_data(struct device * dev,struct mtk_thermal * mt)762 static int mtk_thermal_get_calibration_data(struct device *dev,
763 					    struct mtk_thermal *mt)
764 {
765 	struct nvmem_cell *cell;
766 	u32 *buf;
767 	size_t len;
768 	int i, ret = 0;
769 
770 	/* Start with default values */
771 	mt->adc_ge = 512;
772 	for (i = 0; i < mt->conf->num_sensors; i++)
773 		mt->vts[i] = 260;
774 	mt->degc_cali = 40;
775 	mt->o_slope = 0;
776 
777 	cell = nvmem_cell_get(dev, "calibration-data");
778 	if (IS_ERR(cell)) {
779 		if (PTR_ERR(cell) == -EPROBE_DEFER)
780 			return PTR_ERR(cell);
781 		return 0;
782 	}
783 
784 	buf = (u32 *)nvmem_cell_read(cell, &len);
785 
786 	nvmem_cell_put(cell);
787 
788 	if (IS_ERR(buf))
789 		return PTR_ERR(buf);
790 
791 	if (len < 3 * sizeof(u32)) {
792 		dev_warn(dev, "invalid calibration data\n");
793 		ret = -EINVAL;
794 		goto out;
795 	}
796 
797 	if (buf[0] & CALIB_BUF0_VALID) {
798 		mt->adc_ge = CALIB_BUF1_ADC_GE(buf[1]);
799 
800 		for (i = 0; i < mt->conf->num_sensors; i++) {
801 			switch (mt->conf->vts_index[i]) {
802 			case VTS1:
803 				mt->vts[VTS1] = CALIB_BUF0_VTS_TS1(buf[0]);
804 				break;
805 			case VTS2:
806 				mt->vts[VTS2] = CALIB_BUF0_VTS_TS2(buf[0]);
807 				break;
808 			case VTS3:
809 				mt->vts[VTS3] = CALIB_BUF1_VTS_TS3(buf[1]);
810 				break;
811 			case VTS4:
812 				mt->vts[VTS4] = CALIB_BUF2_VTS_TS4(buf[2]);
813 				break;
814 			case VTS5:
815 				mt->vts[VTS5] = CALIB_BUF2_VTS_TS5(buf[2]);
816 				break;
817 			case VTSABB:
818 				mt->vts[VTSABB] = CALIB_BUF2_VTS_TSABB(buf[2]);
819 				break;
820 			default:
821 				break;
822 			}
823 		}
824 
825 		mt->degc_cali = CALIB_BUF0_DEGC_CALI(buf[0]);
826 		if (CALIB_BUF1_ID(buf[1]) &
827 		    CALIB_BUF0_O_SLOPE_SIGN(buf[0]))
828 			mt->o_slope = -CALIB_BUF0_O_SLOPE(buf[0]);
829 		else
830 			mt->o_slope = CALIB_BUF0_O_SLOPE(buf[0]);
831 	} else {
832 		dev_info(dev, "Device not calibrated, using default calibration values\n");
833 	}
834 
835 out:
836 	kfree(buf);
837 
838 	return ret;
839 }
840 
841 static const struct of_device_id mtk_thermal_of_match[] = {
842 	{
843 		.compatible = "mediatek,mt8173-thermal",
844 		.data = (void *)&mt8173_thermal_data,
845 	},
846 	{
847 		.compatible = "mediatek,mt2701-thermal",
848 		.data = (void *)&mt2701_thermal_data,
849 	},
850 	{
851 		.compatible = "mediatek,mt2712-thermal",
852 		.data = (void *)&mt2712_thermal_data,
853 	},
854 	{
855 		.compatible = "mediatek,mt7622-thermal",
856 		.data = (void *)&mt7622_thermal_data,
857 	},
858 	{
859 		.compatible = "mediatek,mt8183-thermal",
860 		.data = (void *)&mt8183_thermal_data,
861 	}, {
862 	},
863 };
864 MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
865 
mtk_thermal_probe(struct platform_device * pdev)866 static int mtk_thermal_probe(struct platform_device *pdev)
867 {
868 	int ret, i, ctrl_id;
869 	struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
870 	struct mtk_thermal *mt;
871 	struct resource *res;
872 	u64 auxadc_phys_base, apmixed_phys_base;
873 	struct thermal_zone_device *tzdev;
874 
875 	mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
876 	if (!mt)
877 		return -ENOMEM;
878 
879 	mt->conf = of_device_get_match_data(&pdev->dev);
880 
881 	mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm");
882 	if (IS_ERR(mt->clk_peri_therm))
883 		return PTR_ERR(mt->clk_peri_therm);
884 
885 	mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc");
886 	if (IS_ERR(mt->clk_auxadc))
887 		return PTR_ERR(mt->clk_auxadc);
888 
889 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
890 	mt->thermal_base = devm_ioremap_resource(&pdev->dev, res);
891 	if (IS_ERR(mt->thermal_base))
892 		return PTR_ERR(mt->thermal_base);
893 
894 	ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
895 	if (ret)
896 		return ret;
897 
898 	mutex_init(&mt->lock);
899 
900 	mt->dev = &pdev->dev;
901 
902 	auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
903 	if (!auxadc) {
904 		dev_err(&pdev->dev, "missing auxadc node\n");
905 		return -ENODEV;
906 	}
907 
908 	auxadc_phys_base = of_get_phys_base(auxadc);
909 
910 	of_node_put(auxadc);
911 
912 	if (auxadc_phys_base == OF_BAD_ADDR) {
913 		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
914 		return -EINVAL;
915 	}
916 
917 	apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
918 	if (!apmixedsys) {
919 		dev_err(&pdev->dev, "missing apmixedsys node\n");
920 		return -ENODEV;
921 	}
922 
923 	apmixed_phys_base = of_get_phys_base(apmixedsys);
924 
925 	of_node_put(apmixedsys);
926 
927 	if (apmixed_phys_base == OF_BAD_ADDR) {
928 		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
929 		return -EINVAL;
930 	}
931 
932 	ret = device_reset(&pdev->dev);
933 	if (ret)
934 		return ret;
935 
936 	ret = clk_prepare_enable(mt->clk_auxadc);
937 	if (ret) {
938 		dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
939 		return ret;
940 	}
941 
942 	ret = clk_prepare_enable(mt->clk_peri_therm);
943 	if (ret) {
944 		dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
945 		goto err_disable_clk_auxadc;
946 	}
947 
948 	for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
949 		for (i = 0; i < mt->conf->num_banks; i++)
950 			mtk_thermal_init_bank(mt, i, apmixed_phys_base,
951 					      auxadc_phys_base, ctrl_id);
952 
953 	platform_set_drvdata(pdev, mt);
954 
955 	tzdev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt,
956 						     &mtk_thermal_ops);
957 	if (IS_ERR(tzdev)) {
958 		ret = PTR_ERR(tzdev);
959 		goto err_disable_clk_peri_therm;
960 	}
961 
962 	return 0;
963 
964 err_disable_clk_peri_therm:
965 	clk_disable_unprepare(mt->clk_peri_therm);
966 err_disable_clk_auxadc:
967 	clk_disable_unprepare(mt->clk_auxadc);
968 
969 	return ret;
970 }
971 
mtk_thermal_remove(struct platform_device * pdev)972 static int mtk_thermal_remove(struct platform_device *pdev)
973 {
974 	struct mtk_thermal *mt = platform_get_drvdata(pdev);
975 
976 	clk_disable_unprepare(mt->clk_peri_therm);
977 	clk_disable_unprepare(mt->clk_auxadc);
978 
979 	return 0;
980 }
981 
982 static struct platform_driver mtk_thermal_driver = {
983 	.probe = mtk_thermal_probe,
984 	.remove = mtk_thermal_remove,
985 	.driver = {
986 		.name = "mtk-thermal",
987 		.of_match_table = mtk_thermal_of_match,
988 	},
989 };
990 
991 module_platform_driver(mtk_thermal_driver);
992 
993 MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
994 MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
995 MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
996 MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
997 MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
998 MODULE_DESCRIPTION("Mediatek thermal driver");
999 MODULE_LICENSE("GPL v2");
1000