• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Written for linux by Johan Myreen as a translation from
4  * the assembly version by Linus (with diacriticals added)
5  *
6  * Some additional features added by Christoph Niemann (ChN), March 1993
7  *
8  * Loadable keymaps by Risto Kankkunen, May 1993
9  *
10  * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11  * Added decr/incr_console, dynamic keymaps, Unicode support,
12  * dynamic function/string keys, led setting,  Sept 1994
13  * `Sticky' modifier keys, 951006.
14  *
15  * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16  *
17  * Modified to provide 'generic' keyboard support by Hamish Macdonald
18  * Merge with the m68k keyboard driver and split-off of the PC low-level
19  * parts by Geert Uytterhoeven, May 1997
20  *
21  * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22  * 30-07-98: Dead keys redone, aeb@cwi.nl.
23  * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/consolemap.h>
29 #include <linux/module.h>
30 #include <linux/sched/signal.h>
31 #include <linux/sched/debug.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/mm.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/leds.h>
39 
40 #include <linux/kbd_kern.h>
41 #include <linux/kbd_diacr.h>
42 #include <linux/vt_kern.h>
43 #include <linux/input.h>
44 #include <linux/reboot.h>
45 #include <linux/notifier.h>
46 #include <linux/jiffies.h>
47 #include <linux/uaccess.h>
48 
49 #include <asm/irq_regs.h>
50 
51 extern void ctrl_alt_del(void);
52 
53 /*
54  * Exported functions/variables
55  */
56 
57 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
58 
59 #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
60 #include <asm/kbdleds.h>
61 #else
kbd_defleds(void)62 static inline int kbd_defleds(void)
63 {
64 	return 0;
65 }
66 #endif
67 
68 #define KBD_DEFLOCK 0
69 
70 /*
71  * Handler Tables.
72  */
73 
74 #define K_HANDLERS\
75 	k_self,		k_fn,		k_spec,		k_pad,\
76 	k_dead,		k_cons,		k_cur,		k_shift,\
77 	k_meta,		k_ascii,	k_lock,		k_lowercase,\
78 	k_slock,	k_dead2,	k_brl,		k_ignore
79 
80 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
81 			    char up_flag);
82 static k_handler_fn K_HANDLERS;
83 static k_handler_fn *k_handler[16] = { K_HANDLERS };
84 
85 #define FN_HANDLERS\
86 	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
87 	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
88 	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
89 	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
90 	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
91 
92 typedef void (fn_handler_fn)(struct vc_data *vc);
93 static fn_handler_fn FN_HANDLERS;
94 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
95 
96 /*
97  * Variables exported for vt_ioctl.c
98  */
99 
100 struct vt_spawn_console vt_spawn_con = {
101 	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
102 	.pid  = NULL,
103 	.sig  = 0,
104 };
105 
106 
107 /*
108  * Internal Data.
109  */
110 
111 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
112 static struct kbd_struct *kbd = kbd_table;
113 
114 /* maximum values each key_handler can handle */
115 static const int max_vals[] = {
116 	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
117 	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
118 	255, NR_LOCK - 1, 255, NR_BRL - 1
119 };
120 
121 static const int NR_TYPES = ARRAY_SIZE(max_vals);
122 
123 static struct input_handler kbd_handler;
124 static DEFINE_SPINLOCK(kbd_event_lock);
125 static DEFINE_SPINLOCK(led_lock);
126 static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf'  and friends */
127 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
128 static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
129 static bool dead_key_next;
130 
131 /* Handles a number being assembled on the number pad */
132 static bool npadch_active;
133 static unsigned int npadch_value;
134 
135 static unsigned int diacr;
136 static char rep;					/* flag telling character repeat */
137 
138 static int shift_state = 0;
139 
140 static unsigned int ledstate = -1U;			/* undefined */
141 static unsigned char ledioctl;
142 
143 /*
144  * Notifier list for console keyboard events
145  */
146 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
147 
register_keyboard_notifier(struct notifier_block * nb)148 int register_keyboard_notifier(struct notifier_block *nb)
149 {
150 	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
151 }
152 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
153 
unregister_keyboard_notifier(struct notifier_block * nb)154 int unregister_keyboard_notifier(struct notifier_block *nb)
155 {
156 	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
157 }
158 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
159 
160 /*
161  * Translation of scancodes to keycodes. We set them on only the first
162  * keyboard in the list that accepts the scancode and keycode.
163  * Explanation for not choosing the first attached keyboard anymore:
164  *  USB keyboards for example have two event devices: one for all "normal"
165  *  keys and one for extra function keys (like "volume up", "make coffee",
166  *  etc.). So this means that scancodes for the extra function keys won't
167  *  be valid for the first event device, but will be for the second.
168  */
169 
170 struct getset_keycode_data {
171 	struct input_keymap_entry ke;
172 	int error;
173 };
174 
getkeycode_helper(struct input_handle * handle,void * data)175 static int getkeycode_helper(struct input_handle *handle, void *data)
176 {
177 	struct getset_keycode_data *d = data;
178 
179 	d->error = input_get_keycode(handle->dev, &d->ke);
180 
181 	return d->error == 0; /* stop as soon as we successfully get one */
182 }
183 
getkeycode(unsigned int scancode)184 static int getkeycode(unsigned int scancode)
185 {
186 	struct getset_keycode_data d = {
187 		.ke	= {
188 			.flags		= 0,
189 			.len		= sizeof(scancode),
190 			.keycode	= 0,
191 		},
192 		.error	= -ENODEV,
193 	};
194 
195 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
196 
197 	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
198 
199 	return d.error ?: d.ke.keycode;
200 }
201 
setkeycode_helper(struct input_handle * handle,void * data)202 static int setkeycode_helper(struct input_handle *handle, void *data)
203 {
204 	struct getset_keycode_data *d = data;
205 
206 	d->error = input_set_keycode(handle->dev, &d->ke);
207 
208 	return d->error == 0; /* stop as soon as we successfully set one */
209 }
210 
setkeycode(unsigned int scancode,unsigned int keycode)211 static int setkeycode(unsigned int scancode, unsigned int keycode)
212 {
213 	struct getset_keycode_data d = {
214 		.ke	= {
215 			.flags		= 0,
216 			.len		= sizeof(scancode),
217 			.keycode	= keycode,
218 		},
219 		.error	= -ENODEV,
220 	};
221 
222 	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
223 
224 	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
225 
226 	return d.error;
227 }
228 
229 /*
230  * Making beeps and bells. Note that we prefer beeps to bells, but when
231  * shutting the sound off we do both.
232  */
233 
kd_sound_helper(struct input_handle * handle,void * data)234 static int kd_sound_helper(struct input_handle *handle, void *data)
235 {
236 	unsigned int *hz = data;
237 	struct input_dev *dev = handle->dev;
238 
239 	if (test_bit(EV_SND, dev->evbit)) {
240 		if (test_bit(SND_TONE, dev->sndbit)) {
241 			input_inject_event(handle, EV_SND, SND_TONE, *hz);
242 			if (*hz)
243 				return 0;
244 		}
245 		if (test_bit(SND_BELL, dev->sndbit))
246 			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
247 	}
248 
249 	return 0;
250 }
251 
kd_nosound(struct timer_list * unused)252 static void kd_nosound(struct timer_list *unused)
253 {
254 	static unsigned int zero;
255 
256 	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
257 }
258 
259 static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
260 
kd_mksound(unsigned int hz,unsigned int ticks)261 void kd_mksound(unsigned int hz, unsigned int ticks)
262 {
263 	del_timer_sync(&kd_mksound_timer);
264 
265 	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
266 
267 	if (hz && ticks)
268 		mod_timer(&kd_mksound_timer, jiffies + ticks);
269 }
270 EXPORT_SYMBOL(kd_mksound);
271 
272 /*
273  * Setting the keyboard rate.
274  */
275 
kbd_rate_helper(struct input_handle * handle,void * data)276 static int kbd_rate_helper(struct input_handle *handle, void *data)
277 {
278 	struct input_dev *dev = handle->dev;
279 	struct kbd_repeat *rpt = data;
280 
281 	if (test_bit(EV_REP, dev->evbit)) {
282 
283 		if (rpt[0].delay > 0)
284 			input_inject_event(handle,
285 					   EV_REP, REP_DELAY, rpt[0].delay);
286 		if (rpt[0].period > 0)
287 			input_inject_event(handle,
288 					   EV_REP, REP_PERIOD, rpt[0].period);
289 
290 		rpt[1].delay = dev->rep[REP_DELAY];
291 		rpt[1].period = dev->rep[REP_PERIOD];
292 	}
293 
294 	return 0;
295 }
296 
kbd_rate(struct kbd_repeat * rpt)297 int kbd_rate(struct kbd_repeat *rpt)
298 {
299 	struct kbd_repeat data[2] = { *rpt };
300 
301 	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
302 	*rpt = data[1];	/* Copy currently used settings */
303 
304 	return 0;
305 }
306 
307 /*
308  * Helper Functions.
309  */
put_queue(struct vc_data * vc,int ch)310 static void put_queue(struct vc_data *vc, int ch)
311 {
312 	tty_insert_flip_char(&vc->port, ch, 0);
313 	tty_flip_buffer_push(&vc->port);
314 }
315 
puts_queue(struct vc_data * vc,char * cp)316 static void puts_queue(struct vc_data *vc, char *cp)
317 {
318 	while (*cp) {
319 		tty_insert_flip_char(&vc->port, *cp, 0);
320 		cp++;
321 	}
322 	tty_flip_buffer_push(&vc->port);
323 }
324 
applkey(struct vc_data * vc,int key,char mode)325 static void applkey(struct vc_data *vc, int key, char mode)
326 {
327 	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
328 
329 	buf[1] = (mode ? 'O' : '[');
330 	buf[2] = key;
331 	puts_queue(vc, buf);
332 }
333 
334 /*
335  * Many other routines do put_queue, but I think either
336  * they produce ASCII, or they produce some user-assigned
337  * string, and in both cases we might assume that it is
338  * in utf-8 already.
339  */
to_utf8(struct vc_data * vc,uint c)340 static void to_utf8(struct vc_data *vc, uint c)
341 {
342 	if (c < 0x80)
343 		/*  0******* */
344 		put_queue(vc, c);
345 	else if (c < 0x800) {
346 		/* 110***** 10****** */
347 		put_queue(vc, 0xc0 | (c >> 6));
348 		put_queue(vc, 0x80 | (c & 0x3f));
349 	} else if (c < 0x10000) {
350 		if (c >= 0xD800 && c < 0xE000)
351 			return;
352 		if (c == 0xFFFF)
353 			return;
354 		/* 1110**** 10****** 10****** */
355 		put_queue(vc, 0xe0 | (c >> 12));
356 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
357 		put_queue(vc, 0x80 | (c & 0x3f));
358 	} else if (c < 0x110000) {
359 		/* 11110*** 10****** 10****** 10****** */
360 		put_queue(vc, 0xf0 | (c >> 18));
361 		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
362 		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
363 		put_queue(vc, 0x80 | (c & 0x3f));
364 	}
365 }
366 
367 /*
368  * Called after returning from RAW mode or when changing consoles - recompute
369  * shift_down[] and shift_state from key_down[] maybe called when keymap is
370  * undefined, so that shiftkey release is seen. The caller must hold the
371  * kbd_event_lock.
372  */
373 
do_compute_shiftstate(void)374 static void do_compute_shiftstate(void)
375 {
376 	unsigned int k, sym, val;
377 
378 	shift_state = 0;
379 	memset(shift_down, 0, sizeof(shift_down));
380 
381 	for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
382 		sym = U(key_maps[0][k]);
383 		if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
384 			continue;
385 
386 		val = KVAL(sym);
387 		if (val == KVAL(K_CAPSSHIFT))
388 			val = KVAL(K_SHIFT);
389 
390 		shift_down[val]++;
391 		shift_state |= BIT(val);
392 	}
393 }
394 
395 /* We still have to export this method to vt.c */
compute_shiftstate(void)396 void compute_shiftstate(void)
397 {
398 	unsigned long flags;
399 	spin_lock_irqsave(&kbd_event_lock, flags);
400 	do_compute_shiftstate();
401 	spin_unlock_irqrestore(&kbd_event_lock, flags);
402 }
403 
404 /*
405  * We have a combining character DIACR here, followed by the character CH.
406  * If the combination occurs in the table, return the corresponding value.
407  * Otherwise, if CH is a space or equals DIACR, return DIACR.
408  * Otherwise, conclude that DIACR was not combining after all,
409  * queue it and return CH.
410  */
handle_diacr(struct vc_data * vc,unsigned int ch)411 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
412 {
413 	unsigned int d = diacr;
414 	unsigned int i;
415 
416 	diacr = 0;
417 
418 	if ((d & ~0xff) == BRL_UC_ROW) {
419 		if ((ch & ~0xff) == BRL_UC_ROW)
420 			return d | ch;
421 	} else {
422 		for (i = 0; i < accent_table_size; i++)
423 			if (accent_table[i].diacr == d && accent_table[i].base == ch)
424 				return accent_table[i].result;
425 	}
426 
427 	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
428 		return d;
429 
430 	if (kbd->kbdmode == VC_UNICODE)
431 		to_utf8(vc, d);
432 	else {
433 		int c = conv_uni_to_8bit(d);
434 		if (c != -1)
435 			put_queue(vc, c);
436 	}
437 
438 	return ch;
439 }
440 
441 /*
442  * Special function handlers
443  */
fn_enter(struct vc_data * vc)444 static void fn_enter(struct vc_data *vc)
445 {
446 	if (diacr) {
447 		if (kbd->kbdmode == VC_UNICODE)
448 			to_utf8(vc, diacr);
449 		else {
450 			int c = conv_uni_to_8bit(diacr);
451 			if (c != -1)
452 				put_queue(vc, c);
453 		}
454 		diacr = 0;
455 	}
456 
457 	put_queue(vc, 13);
458 	if (vc_kbd_mode(kbd, VC_CRLF))
459 		put_queue(vc, 10);
460 }
461 
fn_caps_toggle(struct vc_data * vc)462 static void fn_caps_toggle(struct vc_data *vc)
463 {
464 	if (rep)
465 		return;
466 
467 	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
468 }
469 
fn_caps_on(struct vc_data * vc)470 static void fn_caps_on(struct vc_data *vc)
471 {
472 	if (rep)
473 		return;
474 
475 	set_vc_kbd_led(kbd, VC_CAPSLOCK);
476 }
477 
fn_show_ptregs(struct vc_data * vc)478 static void fn_show_ptregs(struct vc_data *vc)
479 {
480 	struct pt_regs *regs = get_irq_regs();
481 
482 	if (regs)
483 		show_regs(regs);
484 }
485 
fn_hold(struct vc_data * vc)486 static void fn_hold(struct vc_data *vc)
487 {
488 	struct tty_struct *tty = vc->port.tty;
489 
490 	if (rep || !tty)
491 		return;
492 
493 	/*
494 	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
495 	 * these routines are also activated by ^S/^Q.
496 	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
497 	 */
498 	if (tty->stopped)
499 		start_tty(tty);
500 	else
501 		stop_tty(tty);
502 }
503 
fn_num(struct vc_data * vc)504 static void fn_num(struct vc_data *vc)
505 {
506 	if (vc_kbd_mode(kbd, VC_APPLIC))
507 		applkey(vc, 'P', 1);
508 	else
509 		fn_bare_num(vc);
510 }
511 
512 /*
513  * Bind this to Shift-NumLock if you work in application keypad mode
514  * but want to be able to change the NumLock flag.
515  * Bind this to NumLock if you prefer that the NumLock key always
516  * changes the NumLock flag.
517  */
fn_bare_num(struct vc_data * vc)518 static void fn_bare_num(struct vc_data *vc)
519 {
520 	if (!rep)
521 		chg_vc_kbd_led(kbd, VC_NUMLOCK);
522 }
523 
fn_lastcons(struct vc_data * vc)524 static void fn_lastcons(struct vc_data *vc)
525 {
526 	/* switch to the last used console, ChN */
527 	set_console(last_console);
528 }
529 
fn_dec_console(struct vc_data * vc)530 static void fn_dec_console(struct vc_data *vc)
531 {
532 	int i, cur = fg_console;
533 
534 	/* Currently switching?  Queue this next switch relative to that. */
535 	if (want_console != -1)
536 		cur = want_console;
537 
538 	for (i = cur - 1; i != cur; i--) {
539 		if (i == -1)
540 			i = MAX_NR_CONSOLES - 1;
541 		if (vc_cons_allocated(i))
542 			break;
543 	}
544 	set_console(i);
545 }
546 
fn_inc_console(struct vc_data * vc)547 static void fn_inc_console(struct vc_data *vc)
548 {
549 	int i, cur = fg_console;
550 
551 	/* Currently switching?  Queue this next switch relative to that. */
552 	if (want_console != -1)
553 		cur = want_console;
554 
555 	for (i = cur+1; i != cur; i++) {
556 		if (i == MAX_NR_CONSOLES)
557 			i = 0;
558 		if (vc_cons_allocated(i))
559 			break;
560 	}
561 	set_console(i);
562 }
563 
fn_send_intr(struct vc_data * vc)564 static void fn_send_intr(struct vc_data *vc)
565 {
566 	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
567 	tty_flip_buffer_push(&vc->port);
568 }
569 
fn_scroll_forw(struct vc_data * vc)570 static void fn_scroll_forw(struct vc_data *vc)
571 {
572 	scrollfront(vc, 0);
573 }
574 
fn_scroll_back(struct vc_data * vc)575 static void fn_scroll_back(struct vc_data *vc)
576 {
577 	scrollback(vc);
578 }
579 
fn_show_mem(struct vc_data * vc)580 static void fn_show_mem(struct vc_data *vc)
581 {
582 	show_mem(0, NULL);
583 }
584 
fn_show_state(struct vc_data * vc)585 static void fn_show_state(struct vc_data *vc)
586 {
587 	show_state();
588 }
589 
fn_boot_it(struct vc_data * vc)590 static void fn_boot_it(struct vc_data *vc)
591 {
592 	ctrl_alt_del();
593 }
594 
fn_compose(struct vc_data * vc)595 static void fn_compose(struct vc_data *vc)
596 {
597 	dead_key_next = true;
598 }
599 
fn_spawn_con(struct vc_data * vc)600 static void fn_spawn_con(struct vc_data *vc)
601 {
602 	spin_lock(&vt_spawn_con.lock);
603 	if (vt_spawn_con.pid)
604 		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
605 			put_pid(vt_spawn_con.pid);
606 			vt_spawn_con.pid = NULL;
607 		}
608 	spin_unlock(&vt_spawn_con.lock);
609 }
610 
fn_SAK(struct vc_data * vc)611 static void fn_SAK(struct vc_data *vc)
612 {
613 	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
614 	schedule_work(SAK_work);
615 }
616 
fn_null(struct vc_data * vc)617 static void fn_null(struct vc_data *vc)
618 {
619 	do_compute_shiftstate();
620 }
621 
622 /*
623  * Special key handlers
624  */
k_ignore(struct vc_data * vc,unsigned char value,char up_flag)625 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
626 {
627 }
628 
k_spec(struct vc_data * vc,unsigned char value,char up_flag)629 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
630 {
631 	if (up_flag)
632 		return;
633 	if (value >= ARRAY_SIZE(fn_handler))
634 		return;
635 	if ((kbd->kbdmode == VC_RAW ||
636 	     kbd->kbdmode == VC_MEDIUMRAW ||
637 	     kbd->kbdmode == VC_OFF) &&
638 	     value != KVAL(K_SAK))
639 		return;		/* SAK is allowed even in raw mode */
640 	fn_handler[value](vc);
641 }
642 
k_lowercase(struct vc_data * vc,unsigned char value,char up_flag)643 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
644 {
645 	pr_err("k_lowercase was called - impossible\n");
646 }
647 
k_unicode(struct vc_data * vc,unsigned int value,char up_flag)648 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
649 {
650 	if (up_flag)
651 		return;		/* no action, if this is a key release */
652 
653 	if (diacr)
654 		value = handle_diacr(vc, value);
655 
656 	if (dead_key_next) {
657 		dead_key_next = false;
658 		diacr = value;
659 		return;
660 	}
661 	if (kbd->kbdmode == VC_UNICODE)
662 		to_utf8(vc, value);
663 	else {
664 		int c = conv_uni_to_8bit(value);
665 		if (c != -1)
666 			put_queue(vc, c);
667 	}
668 }
669 
670 /*
671  * Handle dead key. Note that we now may have several
672  * dead keys modifying the same character. Very useful
673  * for Vietnamese.
674  */
k_deadunicode(struct vc_data * vc,unsigned int value,char up_flag)675 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
676 {
677 	if (up_flag)
678 		return;
679 
680 	diacr = (diacr ? handle_diacr(vc, value) : value);
681 }
682 
k_self(struct vc_data * vc,unsigned char value,char up_flag)683 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
684 {
685 	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
686 }
687 
k_dead2(struct vc_data * vc,unsigned char value,char up_flag)688 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
689 {
690 	k_deadunicode(vc, value, up_flag);
691 }
692 
693 /*
694  * Obsolete - for backwards compatibility only
695  */
k_dead(struct vc_data * vc,unsigned char value,char up_flag)696 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
697 {
698 	static const unsigned char ret_diacr[NR_DEAD] = {
699 		'`',	/* dead_grave */
700 		'\'',	/* dead_acute */
701 		'^',	/* dead_circumflex */
702 		'~',	/* dead_tilda */
703 		'"',	/* dead_diaeresis */
704 		',',	/* dead_cedilla */
705 		'_',	/* dead_macron */
706 		'U',	/* dead_breve */
707 		'.',	/* dead_abovedot */
708 		'*',	/* dead_abovering */
709 		'=',	/* dead_doubleacute */
710 		'c',	/* dead_caron */
711 		'k',	/* dead_ogonek */
712 		'i',	/* dead_iota */
713 		'#',	/* dead_voiced_sound */
714 		'o',	/* dead_semivoiced_sound */
715 		'!',	/* dead_belowdot */
716 		'?',	/* dead_hook */
717 		'+',	/* dead_horn */
718 		'-',	/* dead_stroke */
719 		')',	/* dead_abovecomma */
720 		'(',	/* dead_abovereversedcomma */
721 		':',	/* dead_doublegrave */
722 		'n',	/* dead_invertedbreve */
723 		';',	/* dead_belowcomma */
724 		'$',	/* dead_currency */
725 		'@',	/* dead_greek */
726 	};
727 
728 	k_deadunicode(vc, ret_diacr[value], up_flag);
729 }
730 
k_cons(struct vc_data * vc,unsigned char value,char up_flag)731 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
732 {
733 	if (up_flag)
734 		return;
735 
736 	set_console(value);
737 }
738 
k_fn(struct vc_data * vc,unsigned char value,char up_flag)739 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
740 {
741 	if (up_flag)
742 		return;
743 
744 	if ((unsigned)value < ARRAY_SIZE(func_table)) {
745 		unsigned long flags;
746 
747 		spin_lock_irqsave(&func_buf_lock, flags);
748 		if (func_table[value])
749 			puts_queue(vc, func_table[value]);
750 		spin_unlock_irqrestore(&func_buf_lock, flags);
751 
752 	} else
753 		pr_err("k_fn called with value=%d\n", value);
754 }
755 
k_cur(struct vc_data * vc,unsigned char value,char up_flag)756 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
757 {
758 	static const char cur_chars[] = "BDCA";
759 
760 	if (up_flag)
761 		return;
762 
763 	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
764 }
765 
k_pad(struct vc_data * vc,unsigned char value,char up_flag)766 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
767 {
768 	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
769 	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
770 
771 	if (up_flag)
772 		return;		/* no action, if this is a key release */
773 
774 	/* kludge... shift forces cursor/number keys */
775 	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
776 		applkey(vc, app_map[value], 1);
777 		return;
778 	}
779 
780 	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
781 
782 		switch (value) {
783 		case KVAL(K_PCOMMA):
784 		case KVAL(K_PDOT):
785 			k_fn(vc, KVAL(K_REMOVE), 0);
786 			return;
787 		case KVAL(K_P0):
788 			k_fn(vc, KVAL(K_INSERT), 0);
789 			return;
790 		case KVAL(K_P1):
791 			k_fn(vc, KVAL(K_SELECT), 0);
792 			return;
793 		case KVAL(K_P2):
794 			k_cur(vc, KVAL(K_DOWN), 0);
795 			return;
796 		case KVAL(K_P3):
797 			k_fn(vc, KVAL(K_PGDN), 0);
798 			return;
799 		case KVAL(K_P4):
800 			k_cur(vc, KVAL(K_LEFT), 0);
801 			return;
802 		case KVAL(K_P6):
803 			k_cur(vc, KVAL(K_RIGHT), 0);
804 			return;
805 		case KVAL(K_P7):
806 			k_fn(vc, KVAL(K_FIND), 0);
807 			return;
808 		case KVAL(K_P8):
809 			k_cur(vc, KVAL(K_UP), 0);
810 			return;
811 		case KVAL(K_P9):
812 			k_fn(vc, KVAL(K_PGUP), 0);
813 			return;
814 		case KVAL(K_P5):
815 			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
816 			return;
817 		}
818 	}
819 
820 	put_queue(vc, pad_chars[value]);
821 	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
822 		put_queue(vc, 10);
823 }
824 
k_shift(struct vc_data * vc,unsigned char value,char up_flag)825 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
826 {
827 	int old_state = shift_state;
828 
829 	if (rep)
830 		return;
831 	/*
832 	 * Mimic typewriter:
833 	 * a CapsShift key acts like Shift but undoes CapsLock
834 	 */
835 	if (value == KVAL(K_CAPSSHIFT)) {
836 		value = KVAL(K_SHIFT);
837 		if (!up_flag)
838 			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
839 	}
840 
841 	if (up_flag) {
842 		/*
843 		 * handle the case that two shift or control
844 		 * keys are depressed simultaneously
845 		 */
846 		if (shift_down[value])
847 			shift_down[value]--;
848 	} else
849 		shift_down[value]++;
850 
851 	if (shift_down[value])
852 		shift_state |= (1 << value);
853 	else
854 		shift_state &= ~(1 << value);
855 
856 	/* kludge */
857 	if (up_flag && shift_state != old_state && npadch_active) {
858 		if (kbd->kbdmode == VC_UNICODE)
859 			to_utf8(vc, npadch_value);
860 		else
861 			put_queue(vc, npadch_value & 0xff);
862 		npadch_active = false;
863 	}
864 }
865 
k_meta(struct vc_data * vc,unsigned char value,char up_flag)866 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
867 {
868 	if (up_flag)
869 		return;
870 
871 	if (vc_kbd_mode(kbd, VC_META)) {
872 		put_queue(vc, '\033');
873 		put_queue(vc, value);
874 	} else
875 		put_queue(vc, value | 0x80);
876 }
877 
k_ascii(struct vc_data * vc,unsigned char value,char up_flag)878 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
879 {
880 	unsigned int base;
881 
882 	if (up_flag)
883 		return;
884 
885 	if (value < 10) {
886 		/* decimal input of code, while Alt depressed */
887 		base = 10;
888 	} else {
889 		/* hexadecimal input of code, while AltGr depressed */
890 		value -= 10;
891 		base = 16;
892 	}
893 
894 	if (!npadch_active) {
895 		npadch_value = 0;
896 		npadch_active = true;
897 	}
898 
899 	npadch_value = npadch_value * base + value;
900 }
901 
k_lock(struct vc_data * vc,unsigned char value,char up_flag)902 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
903 {
904 	if (up_flag || rep)
905 		return;
906 
907 	chg_vc_kbd_lock(kbd, value);
908 }
909 
k_slock(struct vc_data * vc,unsigned char value,char up_flag)910 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
911 {
912 	k_shift(vc, value, up_flag);
913 	if (up_flag || rep)
914 		return;
915 
916 	chg_vc_kbd_slock(kbd, value);
917 	/* try to make Alt, oops, AltGr and such work */
918 	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
919 		kbd->slockstate = 0;
920 		chg_vc_kbd_slock(kbd, value);
921 	}
922 }
923 
924 /* by default, 300ms interval for combination release */
925 static unsigned brl_timeout = 300;
926 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
927 module_param(brl_timeout, uint, 0644);
928 
929 static unsigned brl_nbchords = 1;
930 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
931 module_param(brl_nbchords, uint, 0644);
932 
k_brlcommit(struct vc_data * vc,unsigned int pattern,char up_flag)933 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
934 {
935 	static unsigned long chords;
936 	static unsigned committed;
937 
938 	if (!brl_nbchords)
939 		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
940 	else {
941 		committed |= pattern;
942 		chords++;
943 		if (chords == brl_nbchords) {
944 			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
945 			chords = 0;
946 			committed = 0;
947 		}
948 	}
949 }
950 
k_brl(struct vc_data * vc,unsigned char value,char up_flag)951 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
952 {
953 	static unsigned pressed, committing;
954 	static unsigned long releasestart;
955 
956 	if (kbd->kbdmode != VC_UNICODE) {
957 		if (!up_flag)
958 			pr_warn("keyboard mode must be unicode for braille patterns\n");
959 		return;
960 	}
961 
962 	if (!value) {
963 		k_unicode(vc, BRL_UC_ROW, up_flag);
964 		return;
965 	}
966 
967 	if (value > 8)
968 		return;
969 
970 	if (!up_flag) {
971 		pressed |= 1 << (value - 1);
972 		if (!brl_timeout)
973 			committing = pressed;
974 	} else if (brl_timeout) {
975 		if (!committing ||
976 		    time_after(jiffies,
977 			       releasestart + msecs_to_jiffies(brl_timeout))) {
978 			committing = pressed;
979 			releasestart = jiffies;
980 		}
981 		pressed &= ~(1 << (value - 1));
982 		if (!pressed && committing) {
983 			k_brlcommit(vc, committing, 0);
984 			committing = 0;
985 		}
986 	} else {
987 		if (committing) {
988 			k_brlcommit(vc, committing, 0);
989 			committing = 0;
990 		}
991 		pressed &= ~(1 << (value - 1));
992 	}
993 }
994 
995 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
996 
997 struct kbd_led_trigger {
998 	struct led_trigger trigger;
999 	unsigned int mask;
1000 };
1001 
kbd_led_trigger_activate(struct led_classdev * cdev)1002 static int kbd_led_trigger_activate(struct led_classdev *cdev)
1003 {
1004 	struct kbd_led_trigger *trigger =
1005 		container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1006 
1007 	tasklet_disable(&keyboard_tasklet);
1008 	if (ledstate != -1U)
1009 		led_trigger_event(&trigger->trigger,
1010 				  ledstate & trigger->mask ?
1011 					LED_FULL : LED_OFF);
1012 	tasklet_enable(&keyboard_tasklet);
1013 
1014 	return 0;
1015 }
1016 
1017 #define KBD_LED_TRIGGER(_led_bit, _name) {			\
1018 		.trigger = {					\
1019 			.name = _name,				\
1020 			.activate = kbd_led_trigger_activate,	\
1021 		},						\
1022 		.mask	= BIT(_led_bit),			\
1023 	}
1024 
1025 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name)		\
1026 	KBD_LED_TRIGGER((_led_bit) + 8, _name)
1027 
1028 static struct kbd_led_trigger kbd_led_triggers[] = {
1029 	KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1030 	KBD_LED_TRIGGER(VC_NUMLOCK,   "kbd-numlock"),
1031 	KBD_LED_TRIGGER(VC_CAPSLOCK,  "kbd-capslock"),
1032 	KBD_LED_TRIGGER(VC_KANALOCK,  "kbd-kanalock"),
1033 
1034 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK,  "kbd-shiftlock"),
1035 	KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK,  "kbd-altgrlock"),
1036 	KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK,   "kbd-ctrllock"),
1037 	KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK,    "kbd-altlock"),
1038 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1039 	KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1040 	KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK,  "kbd-ctrlllock"),
1041 	KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK,  "kbd-ctrlrlock"),
1042 };
1043 
kbd_propagate_led_state(unsigned int old_state,unsigned int new_state)1044 static void kbd_propagate_led_state(unsigned int old_state,
1045 				    unsigned int new_state)
1046 {
1047 	struct kbd_led_trigger *trigger;
1048 	unsigned int changed = old_state ^ new_state;
1049 	int i;
1050 
1051 	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1052 		trigger = &kbd_led_triggers[i];
1053 
1054 		if (changed & trigger->mask)
1055 			led_trigger_event(&trigger->trigger,
1056 					  new_state & trigger->mask ?
1057 						LED_FULL : LED_OFF);
1058 	}
1059 }
1060 
kbd_update_leds_helper(struct input_handle * handle,void * data)1061 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1062 {
1063 	unsigned int led_state = *(unsigned int *)data;
1064 
1065 	if (test_bit(EV_LED, handle->dev->evbit))
1066 		kbd_propagate_led_state(~led_state, led_state);
1067 
1068 	return 0;
1069 }
1070 
kbd_init_leds(void)1071 static void kbd_init_leds(void)
1072 {
1073 	int error;
1074 	int i;
1075 
1076 	for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1077 		error = led_trigger_register(&kbd_led_triggers[i].trigger);
1078 		if (error)
1079 			pr_err("error %d while registering trigger %s\n",
1080 			       error, kbd_led_triggers[i].trigger.name);
1081 	}
1082 }
1083 
1084 #else
1085 
kbd_update_leds_helper(struct input_handle * handle,void * data)1086 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1087 {
1088 	unsigned int leds = *(unsigned int *)data;
1089 
1090 	if (test_bit(EV_LED, handle->dev->evbit)) {
1091 		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1092 		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1093 		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1094 		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1095 	}
1096 
1097 	return 0;
1098 }
1099 
kbd_propagate_led_state(unsigned int old_state,unsigned int new_state)1100 static void kbd_propagate_led_state(unsigned int old_state,
1101 				    unsigned int new_state)
1102 {
1103 	input_handler_for_each_handle(&kbd_handler, &new_state,
1104 				      kbd_update_leds_helper);
1105 }
1106 
kbd_init_leds(void)1107 static void kbd_init_leds(void)
1108 {
1109 }
1110 
1111 #endif
1112 
1113 /*
1114  * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1115  * or (ii) whatever pattern of lights people want to show using KDSETLED,
1116  * or (iii) specified bits of specified words in kernel memory.
1117  */
getledstate(void)1118 static unsigned char getledstate(void)
1119 {
1120 	return ledstate & 0xff;
1121 }
1122 
setledstate(struct kbd_struct * kb,unsigned int led)1123 void setledstate(struct kbd_struct *kb, unsigned int led)
1124 {
1125         unsigned long flags;
1126         spin_lock_irqsave(&led_lock, flags);
1127 	if (!(led & ~7)) {
1128 		ledioctl = led;
1129 		kb->ledmode = LED_SHOW_IOCTL;
1130 	} else
1131 		kb->ledmode = LED_SHOW_FLAGS;
1132 
1133 	set_leds();
1134 	spin_unlock_irqrestore(&led_lock, flags);
1135 }
1136 
getleds(void)1137 static inline unsigned char getleds(void)
1138 {
1139 	struct kbd_struct *kb = kbd_table + fg_console;
1140 
1141 	if (kb->ledmode == LED_SHOW_IOCTL)
1142 		return ledioctl;
1143 
1144 	return kb->ledflagstate;
1145 }
1146 
1147 /**
1148  *	vt_get_leds	-	helper for braille console
1149  *	@console: console to read
1150  *	@flag: flag we want to check
1151  *
1152  *	Check the status of a keyboard led flag and report it back
1153  */
vt_get_leds(int console,int flag)1154 int vt_get_leds(int console, int flag)
1155 {
1156 	struct kbd_struct *kb = kbd_table + console;
1157 	int ret;
1158 	unsigned long flags;
1159 
1160 	spin_lock_irqsave(&led_lock, flags);
1161 	ret = vc_kbd_led(kb, flag);
1162 	spin_unlock_irqrestore(&led_lock, flags);
1163 
1164 	return ret;
1165 }
1166 EXPORT_SYMBOL_GPL(vt_get_leds);
1167 
1168 /**
1169  *	vt_set_led_state	-	set LED state of a console
1170  *	@console: console to set
1171  *	@leds: LED bits
1172  *
1173  *	Set the LEDs on a console. This is a wrapper for the VT layer
1174  *	so that we can keep kbd knowledge internal
1175  */
vt_set_led_state(int console,int leds)1176 void vt_set_led_state(int console, int leds)
1177 {
1178 	struct kbd_struct *kb = kbd_table + console;
1179 	setledstate(kb, leds);
1180 }
1181 
1182 /**
1183  *	vt_kbd_con_start	-	Keyboard side of console start
1184  *	@console: console
1185  *
1186  *	Handle console start. This is a wrapper for the VT layer
1187  *	so that we can keep kbd knowledge internal
1188  *
1189  *	FIXME: We eventually need to hold the kbd lock here to protect
1190  *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1191  *	and start_tty under the kbd_event_lock, while normal tty paths
1192  *	don't hold the lock. We probably need to split out an LED lock
1193  *	but not during an -rc release!
1194  */
vt_kbd_con_start(int console)1195 void vt_kbd_con_start(int console)
1196 {
1197 	struct kbd_struct *kb = kbd_table + console;
1198 	unsigned long flags;
1199 	spin_lock_irqsave(&led_lock, flags);
1200 	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1201 	set_leds();
1202 	spin_unlock_irqrestore(&led_lock, flags);
1203 }
1204 
1205 /**
1206  *	vt_kbd_con_stop		-	Keyboard side of console stop
1207  *	@console: console
1208  *
1209  *	Handle console stop. This is a wrapper for the VT layer
1210  *	so that we can keep kbd knowledge internal
1211  */
vt_kbd_con_stop(int console)1212 void vt_kbd_con_stop(int console)
1213 {
1214 	struct kbd_struct *kb = kbd_table + console;
1215 	unsigned long flags;
1216 	spin_lock_irqsave(&led_lock, flags);
1217 	set_vc_kbd_led(kb, VC_SCROLLOCK);
1218 	set_leds();
1219 	spin_unlock_irqrestore(&led_lock, flags);
1220 }
1221 
1222 /*
1223  * This is the tasklet that updates LED state of LEDs using standard
1224  * keyboard triggers. The reason we use tasklet is that we need to
1225  * handle the scenario when keyboard handler is not registered yet
1226  * but we already getting updates from the VT to update led state.
1227  */
kbd_bh(unsigned long dummy)1228 static void kbd_bh(unsigned long dummy)
1229 {
1230 	unsigned int leds;
1231 	unsigned long flags;
1232 
1233 	spin_lock_irqsave(&led_lock, flags);
1234 	leds = getleds();
1235 	leds |= (unsigned int)kbd->lockstate << 8;
1236 	spin_unlock_irqrestore(&led_lock, flags);
1237 
1238 	if (leds != ledstate) {
1239 		kbd_propagate_led_state(ledstate, leds);
1240 		ledstate = leds;
1241 	}
1242 }
1243 
1244 DECLARE_TASKLET_DISABLED_OLD(keyboard_tasklet, kbd_bh);
1245 
1246 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1247     defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1248     defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1249     (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1250 
1251 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1252 			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1253 
1254 static const unsigned short x86_keycodes[256] =
1255 	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1256 	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1257 	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1258 	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1259 	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1260 	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1261 	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1262 	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1263 	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1264 	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1265 	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1266 	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1267 	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1268 	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1269 	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1270 
1271 #ifdef CONFIG_SPARC
1272 static int sparc_l1_a_state;
1273 extern void sun_do_break(void);
1274 #endif
1275 
emulate_raw(struct vc_data * vc,unsigned int keycode,unsigned char up_flag)1276 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1277 		       unsigned char up_flag)
1278 {
1279 	int code;
1280 
1281 	switch (keycode) {
1282 
1283 	case KEY_PAUSE:
1284 		put_queue(vc, 0xe1);
1285 		put_queue(vc, 0x1d | up_flag);
1286 		put_queue(vc, 0x45 | up_flag);
1287 		break;
1288 
1289 	case KEY_HANGEUL:
1290 		if (!up_flag)
1291 			put_queue(vc, 0xf2);
1292 		break;
1293 
1294 	case KEY_HANJA:
1295 		if (!up_flag)
1296 			put_queue(vc, 0xf1);
1297 		break;
1298 
1299 	case KEY_SYSRQ:
1300 		/*
1301 		 * Real AT keyboards (that's what we're trying
1302 		 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1303 		 * pressing PrtSc/SysRq alone, but simply 0x54
1304 		 * when pressing Alt+PrtSc/SysRq.
1305 		 */
1306 		if (test_bit(KEY_LEFTALT, key_down) ||
1307 		    test_bit(KEY_RIGHTALT, key_down)) {
1308 			put_queue(vc, 0x54 | up_flag);
1309 		} else {
1310 			put_queue(vc, 0xe0);
1311 			put_queue(vc, 0x2a | up_flag);
1312 			put_queue(vc, 0xe0);
1313 			put_queue(vc, 0x37 | up_flag);
1314 		}
1315 		break;
1316 
1317 	default:
1318 		if (keycode > 255)
1319 			return -1;
1320 
1321 		code = x86_keycodes[keycode];
1322 		if (!code)
1323 			return -1;
1324 
1325 		if (code & 0x100)
1326 			put_queue(vc, 0xe0);
1327 		put_queue(vc, (code & 0x7f) | up_flag);
1328 
1329 		break;
1330 	}
1331 
1332 	return 0;
1333 }
1334 
1335 #else
1336 
1337 #define HW_RAW(dev)	0
1338 
emulate_raw(struct vc_data * vc,unsigned int keycode,unsigned char up_flag)1339 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1340 {
1341 	if (keycode > 127)
1342 		return -1;
1343 
1344 	put_queue(vc, keycode | up_flag);
1345 	return 0;
1346 }
1347 #endif
1348 
kbd_rawcode(unsigned char data)1349 static void kbd_rawcode(unsigned char data)
1350 {
1351 	struct vc_data *vc = vc_cons[fg_console].d;
1352 
1353 	kbd = kbd_table + vc->vc_num;
1354 	if (kbd->kbdmode == VC_RAW)
1355 		put_queue(vc, data);
1356 }
1357 
kbd_keycode(unsigned int keycode,int down,int hw_raw)1358 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1359 {
1360 	struct vc_data *vc = vc_cons[fg_console].d;
1361 	unsigned short keysym, *key_map;
1362 	unsigned char type;
1363 	bool raw_mode;
1364 	struct tty_struct *tty;
1365 	int shift_final;
1366 	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1367 	int rc;
1368 
1369 	tty = vc->port.tty;
1370 
1371 	if (tty && (!tty->driver_data)) {
1372 		/* No driver data? Strange. Okay we fix it then. */
1373 		tty->driver_data = vc;
1374 	}
1375 
1376 	kbd = kbd_table + vc->vc_num;
1377 
1378 #ifdef CONFIG_SPARC
1379 	if (keycode == KEY_STOP)
1380 		sparc_l1_a_state = down;
1381 #endif
1382 
1383 	rep = (down == 2);
1384 
1385 	raw_mode = (kbd->kbdmode == VC_RAW);
1386 	if (raw_mode && !hw_raw)
1387 		if (emulate_raw(vc, keycode, !down << 7))
1388 			if (keycode < BTN_MISC && printk_ratelimit())
1389 				pr_warn("can't emulate rawmode for keycode %d\n",
1390 					keycode);
1391 
1392 #ifdef CONFIG_SPARC
1393 	if (keycode == KEY_A && sparc_l1_a_state) {
1394 		sparc_l1_a_state = false;
1395 		sun_do_break();
1396 	}
1397 #endif
1398 
1399 	if (kbd->kbdmode == VC_MEDIUMRAW) {
1400 		/*
1401 		 * This is extended medium raw mode, with keys above 127
1402 		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1403 		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1404 		 * interfere with anything else. The two bytes after 0 will
1405 		 * always have the up flag set not to interfere with older
1406 		 * applications. This allows for 16384 different keycodes,
1407 		 * which should be enough.
1408 		 */
1409 		if (keycode < 128) {
1410 			put_queue(vc, keycode | (!down << 7));
1411 		} else {
1412 			put_queue(vc, !down << 7);
1413 			put_queue(vc, (keycode >> 7) | 0x80);
1414 			put_queue(vc, keycode | 0x80);
1415 		}
1416 		raw_mode = true;
1417 	}
1418 
1419 	if (down)
1420 		set_bit(keycode, key_down);
1421 	else
1422 		clear_bit(keycode, key_down);
1423 
1424 	if (rep &&
1425 	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1426 	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1427 		/*
1428 		 * Don't repeat a key if the input buffers are not empty and the
1429 		 * characters get aren't echoed locally. This makes key repeat
1430 		 * usable with slow applications and under heavy loads.
1431 		 */
1432 		return;
1433 	}
1434 
1435 	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1436 	param.ledstate = kbd->ledflagstate;
1437 	key_map = key_maps[shift_final];
1438 
1439 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1440 					KBD_KEYCODE, &param);
1441 	if (rc == NOTIFY_STOP || !key_map) {
1442 		atomic_notifier_call_chain(&keyboard_notifier_list,
1443 					   KBD_UNBOUND_KEYCODE, &param);
1444 		do_compute_shiftstate();
1445 		kbd->slockstate = 0;
1446 		return;
1447 	}
1448 
1449 	if (keycode < NR_KEYS)
1450 		keysym = key_map[keycode];
1451 	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1452 		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1453 	else
1454 		return;
1455 
1456 	type = KTYP(keysym);
1457 
1458 	if (type < 0xf0) {
1459 		param.value = keysym;
1460 		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1461 						KBD_UNICODE, &param);
1462 		if (rc != NOTIFY_STOP)
1463 			if (down && !raw_mode)
1464 				k_unicode(vc, keysym, !down);
1465 		return;
1466 	}
1467 
1468 	type -= 0xf0;
1469 
1470 	if (type == KT_LETTER) {
1471 		type = KT_LATIN;
1472 		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1473 			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1474 			if (key_map)
1475 				keysym = key_map[keycode];
1476 		}
1477 	}
1478 
1479 	param.value = keysym;
1480 	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1481 					KBD_KEYSYM, &param);
1482 	if (rc == NOTIFY_STOP)
1483 		return;
1484 
1485 	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1486 		return;
1487 
1488 	(*k_handler[type])(vc, keysym & 0xff, !down);
1489 
1490 	param.ledstate = kbd->ledflagstate;
1491 	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1492 
1493 	if (type != KT_SLOCK)
1494 		kbd->slockstate = 0;
1495 }
1496 
kbd_event(struct input_handle * handle,unsigned int event_type,unsigned int event_code,int value)1497 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1498 		      unsigned int event_code, int value)
1499 {
1500 	/* We are called with interrupts disabled, just take the lock */
1501 	spin_lock(&kbd_event_lock);
1502 
1503 	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1504 		kbd_rawcode(value);
1505 	if (event_type == EV_KEY && event_code <= KEY_MAX)
1506 		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1507 
1508 	spin_unlock(&kbd_event_lock);
1509 
1510 	tasklet_schedule(&keyboard_tasklet);
1511 	do_poke_blanked_console = 1;
1512 	schedule_console_callback();
1513 }
1514 
kbd_match(struct input_handler * handler,struct input_dev * dev)1515 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1516 {
1517 	int i;
1518 
1519 	if (test_bit(EV_SND, dev->evbit))
1520 		return true;
1521 
1522 	if (test_bit(EV_KEY, dev->evbit)) {
1523 		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1524 			if (test_bit(i, dev->keybit))
1525 				return true;
1526 		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1527 			if (test_bit(i, dev->keybit))
1528 				return true;
1529 	}
1530 
1531 	return false;
1532 }
1533 
1534 /*
1535  * When a keyboard (or other input device) is found, the kbd_connect
1536  * function is called. The function then looks at the device, and if it
1537  * likes it, it can open it and get events from it. In this (kbd_connect)
1538  * function, we should decide which VT to bind that keyboard to initially.
1539  */
kbd_connect(struct input_handler * handler,struct input_dev * dev,const struct input_device_id * id)1540 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1541 			const struct input_device_id *id)
1542 {
1543 	struct input_handle *handle;
1544 	int error;
1545 
1546 	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1547 	if (!handle)
1548 		return -ENOMEM;
1549 
1550 	handle->dev = dev;
1551 	handle->handler = handler;
1552 	handle->name = "kbd";
1553 
1554 	error = input_register_handle(handle);
1555 	if (error)
1556 		goto err_free_handle;
1557 
1558 	error = input_open_device(handle);
1559 	if (error)
1560 		goto err_unregister_handle;
1561 
1562 	return 0;
1563 
1564  err_unregister_handle:
1565 	input_unregister_handle(handle);
1566  err_free_handle:
1567 	kfree(handle);
1568 	return error;
1569 }
1570 
kbd_disconnect(struct input_handle * handle)1571 static void kbd_disconnect(struct input_handle *handle)
1572 {
1573 	input_close_device(handle);
1574 	input_unregister_handle(handle);
1575 	kfree(handle);
1576 }
1577 
1578 /*
1579  * Start keyboard handler on the new keyboard by refreshing LED state to
1580  * match the rest of the system.
1581  */
kbd_start(struct input_handle * handle)1582 static void kbd_start(struct input_handle *handle)
1583 {
1584 	tasklet_disable(&keyboard_tasklet);
1585 
1586 	if (ledstate != -1U)
1587 		kbd_update_leds_helper(handle, &ledstate);
1588 
1589 	tasklet_enable(&keyboard_tasklet);
1590 }
1591 
1592 static const struct input_device_id kbd_ids[] = {
1593 	{
1594 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1595 		.evbit = { BIT_MASK(EV_KEY) },
1596 	},
1597 
1598 	{
1599 		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1600 		.evbit = { BIT_MASK(EV_SND) },
1601 	},
1602 
1603 	{ },    /* Terminating entry */
1604 };
1605 
1606 MODULE_DEVICE_TABLE(input, kbd_ids);
1607 
1608 static struct input_handler kbd_handler = {
1609 	.event		= kbd_event,
1610 	.match		= kbd_match,
1611 	.connect	= kbd_connect,
1612 	.disconnect	= kbd_disconnect,
1613 	.start		= kbd_start,
1614 	.name		= "kbd",
1615 	.id_table	= kbd_ids,
1616 };
1617 
kbd_init(void)1618 int __init kbd_init(void)
1619 {
1620 	int i;
1621 	int error;
1622 
1623 	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1624 		kbd_table[i].ledflagstate = kbd_defleds();
1625 		kbd_table[i].default_ledflagstate = kbd_defleds();
1626 		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1627 		kbd_table[i].lockstate = KBD_DEFLOCK;
1628 		kbd_table[i].slockstate = 0;
1629 		kbd_table[i].modeflags = KBD_DEFMODE;
1630 		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1631 	}
1632 
1633 	kbd_init_leds();
1634 
1635 	error = input_register_handler(&kbd_handler);
1636 	if (error)
1637 		return error;
1638 
1639 	tasklet_enable(&keyboard_tasklet);
1640 	tasklet_schedule(&keyboard_tasklet);
1641 
1642 	return 0;
1643 }
1644 
1645 /* Ioctl support code */
1646 
1647 /**
1648  *	vt_do_diacrit		-	diacritical table updates
1649  *	@cmd: ioctl request
1650  *	@udp: pointer to user data for ioctl
1651  *	@perm: permissions check computed by caller
1652  *
1653  *	Update the diacritical tables atomically and safely. Lock them
1654  *	against simultaneous keypresses
1655  */
vt_do_diacrit(unsigned int cmd,void __user * udp,int perm)1656 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1657 {
1658 	unsigned long flags;
1659 	int asize;
1660 	int ret = 0;
1661 
1662 	switch (cmd) {
1663 	case KDGKBDIACR:
1664 	{
1665 		struct kbdiacrs __user *a = udp;
1666 		struct kbdiacr *dia;
1667 		int i;
1668 
1669 		dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1670 								GFP_KERNEL);
1671 		if (!dia)
1672 			return -ENOMEM;
1673 
1674 		/* Lock the diacriticals table, make a copy and then
1675 		   copy it after we unlock */
1676 		spin_lock_irqsave(&kbd_event_lock, flags);
1677 
1678 		asize = accent_table_size;
1679 		for (i = 0; i < asize; i++) {
1680 			dia[i].diacr = conv_uni_to_8bit(
1681 						accent_table[i].diacr);
1682 			dia[i].base = conv_uni_to_8bit(
1683 						accent_table[i].base);
1684 			dia[i].result = conv_uni_to_8bit(
1685 						accent_table[i].result);
1686 		}
1687 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1688 
1689 		if (put_user(asize, &a->kb_cnt))
1690 			ret = -EFAULT;
1691 		else  if (copy_to_user(a->kbdiacr, dia,
1692 				asize * sizeof(struct kbdiacr)))
1693 			ret = -EFAULT;
1694 		kfree(dia);
1695 		return ret;
1696 	}
1697 	case KDGKBDIACRUC:
1698 	{
1699 		struct kbdiacrsuc __user *a = udp;
1700 		void *buf;
1701 
1702 		buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1703 								GFP_KERNEL);
1704 		if (buf == NULL)
1705 			return -ENOMEM;
1706 
1707 		/* Lock the diacriticals table, make a copy and then
1708 		   copy it after we unlock */
1709 		spin_lock_irqsave(&kbd_event_lock, flags);
1710 
1711 		asize = accent_table_size;
1712 		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1713 
1714 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1715 
1716 		if (put_user(asize, &a->kb_cnt))
1717 			ret = -EFAULT;
1718 		else if (copy_to_user(a->kbdiacruc, buf,
1719 				asize*sizeof(struct kbdiacruc)))
1720 			ret = -EFAULT;
1721 		kfree(buf);
1722 		return ret;
1723 	}
1724 
1725 	case KDSKBDIACR:
1726 	{
1727 		struct kbdiacrs __user *a = udp;
1728 		struct kbdiacr *dia = NULL;
1729 		unsigned int ct;
1730 		int i;
1731 
1732 		if (!perm)
1733 			return -EPERM;
1734 		if (get_user(ct, &a->kb_cnt))
1735 			return -EFAULT;
1736 		if (ct >= MAX_DIACR)
1737 			return -EINVAL;
1738 
1739 		if (ct) {
1740 
1741 			dia = memdup_user(a->kbdiacr,
1742 					sizeof(struct kbdiacr) * ct);
1743 			if (IS_ERR(dia))
1744 				return PTR_ERR(dia);
1745 
1746 		}
1747 
1748 		spin_lock_irqsave(&kbd_event_lock, flags);
1749 		accent_table_size = ct;
1750 		for (i = 0; i < ct; i++) {
1751 			accent_table[i].diacr =
1752 					conv_8bit_to_uni(dia[i].diacr);
1753 			accent_table[i].base =
1754 					conv_8bit_to_uni(dia[i].base);
1755 			accent_table[i].result =
1756 					conv_8bit_to_uni(dia[i].result);
1757 		}
1758 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1759 		kfree(dia);
1760 		return 0;
1761 	}
1762 
1763 	case KDSKBDIACRUC:
1764 	{
1765 		struct kbdiacrsuc __user *a = udp;
1766 		unsigned int ct;
1767 		void *buf = NULL;
1768 
1769 		if (!perm)
1770 			return -EPERM;
1771 
1772 		if (get_user(ct, &a->kb_cnt))
1773 			return -EFAULT;
1774 
1775 		if (ct >= MAX_DIACR)
1776 			return -EINVAL;
1777 
1778 		if (ct) {
1779 			buf = memdup_user(a->kbdiacruc,
1780 					  ct * sizeof(struct kbdiacruc));
1781 			if (IS_ERR(buf))
1782 				return PTR_ERR(buf);
1783 		}
1784 		spin_lock_irqsave(&kbd_event_lock, flags);
1785 		if (ct)
1786 			memcpy(accent_table, buf,
1787 					ct * sizeof(struct kbdiacruc));
1788 		accent_table_size = ct;
1789 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1790 		kfree(buf);
1791 		return 0;
1792 	}
1793 	}
1794 	return ret;
1795 }
1796 
1797 /**
1798  *	vt_do_kdskbmode		-	set keyboard mode ioctl
1799  *	@console: the console to use
1800  *	@arg: the requested mode
1801  *
1802  *	Update the keyboard mode bits while holding the correct locks.
1803  *	Return 0 for success or an error code.
1804  */
vt_do_kdskbmode(int console,unsigned int arg)1805 int vt_do_kdskbmode(int console, unsigned int arg)
1806 {
1807 	struct kbd_struct *kb = kbd_table + console;
1808 	int ret = 0;
1809 	unsigned long flags;
1810 
1811 	spin_lock_irqsave(&kbd_event_lock, flags);
1812 	switch(arg) {
1813 	case K_RAW:
1814 		kb->kbdmode = VC_RAW;
1815 		break;
1816 	case K_MEDIUMRAW:
1817 		kb->kbdmode = VC_MEDIUMRAW;
1818 		break;
1819 	case K_XLATE:
1820 		kb->kbdmode = VC_XLATE;
1821 		do_compute_shiftstate();
1822 		break;
1823 	case K_UNICODE:
1824 		kb->kbdmode = VC_UNICODE;
1825 		do_compute_shiftstate();
1826 		break;
1827 	case K_OFF:
1828 		kb->kbdmode = VC_OFF;
1829 		break;
1830 	default:
1831 		ret = -EINVAL;
1832 	}
1833 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1834 	return ret;
1835 }
1836 
1837 /**
1838  *	vt_do_kdskbmeta		-	set keyboard meta state
1839  *	@console: the console to use
1840  *	@arg: the requested meta state
1841  *
1842  *	Update the keyboard meta bits while holding the correct locks.
1843  *	Return 0 for success or an error code.
1844  */
vt_do_kdskbmeta(int console,unsigned int arg)1845 int vt_do_kdskbmeta(int console, unsigned int arg)
1846 {
1847 	struct kbd_struct *kb = kbd_table + console;
1848 	int ret = 0;
1849 	unsigned long flags;
1850 
1851 	spin_lock_irqsave(&kbd_event_lock, flags);
1852 	switch(arg) {
1853 	case K_METABIT:
1854 		clr_vc_kbd_mode(kb, VC_META);
1855 		break;
1856 	case K_ESCPREFIX:
1857 		set_vc_kbd_mode(kb, VC_META);
1858 		break;
1859 	default:
1860 		ret = -EINVAL;
1861 	}
1862 	spin_unlock_irqrestore(&kbd_event_lock, flags);
1863 	return ret;
1864 }
1865 
vt_do_kbkeycode_ioctl(int cmd,struct kbkeycode __user * user_kbkc,int perm)1866 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1867 								int perm)
1868 {
1869 	struct kbkeycode tmp;
1870 	int kc = 0;
1871 
1872 	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1873 		return -EFAULT;
1874 	switch (cmd) {
1875 	case KDGETKEYCODE:
1876 		kc = getkeycode(tmp.scancode);
1877 		if (kc >= 0)
1878 			kc = put_user(kc, &user_kbkc->keycode);
1879 		break;
1880 	case KDSETKEYCODE:
1881 		if (!perm)
1882 			return -EPERM;
1883 		kc = setkeycode(tmp.scancode, tmp.keycode);
1884 		break;
1885 	}
1886 	return kc;
1887 }
1888 
1889 #define i (tmp.kb_index)
1890 #define s (tmp.kb_table)
1891 #define v (tmp.kb_value)
1892 
vt_do_kdsk_ioctl(int cmd,struct kbentry __user * user_kbe,int perm,int console)1893 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1894 						int console)
1895 {
1896 	struct kbd_struct *kb = kbd_table + console;
1897 	struct kbentry tmp;
1898 	ushort *key_map, *new_map, val, ov;
1899 	unsigned long flags;
1900 
1901 	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1902 		return -EFAULT;
1903 
1904 	if (!capable(CAP_SYS_TTY_CONFIG))
1905 		perm = 0;
1906 
1907 	switch (cmd) {
1908 	case KDGKBENT:
1909 		/* Ensure another thread doesn't free it under us */
1910 		spin_lock_irqsave(&kbd_event_lock, flags);
1911 		key_map = key_maps[s];
1912 		if (key_map) {
1913 		    val = U(key_map[i]);
1914 		    if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1915 			val = K_HOLE;
1916 		} else
1917 		    val = (i ? K_HOLE : K_NOSUCHMAP);
1918 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1919 		return put_user(val, &user_kbe->kb_value);
1920 	case KDSKBENT:
1921 		if (!perm)
1922 			return -EPERM;
1923 		if (!i && v == K_NOSUCHMAP) {
1924 			spin_lock_irqsave(&kbd_event_lock, flags);
1925 			/* deallocate map */
1926 			key_map = key_maps[s];
1927 			if (s && key_map) {
1928 			    key_maps[s] = NULL;
1929 			    if (key_map[0] == U(K_ALLOCATED)) {
1930 					kfree(key_map);
1931 					keymap_count--;
1932 			    }
1933 			}
1934 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1935 			break;
1936 		}
1937 
1938 		if (KTYP(v) < NR_TYPES) {
1939 		    if (KVAL(v) > max_vals[KTYP(v)])
1940 				return -EINVAL;
1941 		} else
1942 		    if (kb->kbdmode != VC_UNICODE)
1943 				return -EINVAL;
1944 
1945 		/* ++Geert: non-PC keyboards may generate keycode zero */
1946 #if !defined(__mc68000__) && !defined(__powerpc__)
1947 		/* assignment to entry 0 only tests validity of args */
1948 		if (!i)
1949 			break;
1950 #endif
1951 
1952 		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1953 		if (!new_map)
1954 			return -ENOMEM;
1955 		spin_lock_irqsave(&kbd_event_lock, flags);
1956 		key_map = key_maps[s];
1957 		if (key_map == NULL) {
1958 			int j;
1959 
1960 			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1961 			    !capable(CAP_SYS_RESOURCE)) {
1962 				spin_unlock_irqrestore(&kbd_event_lock, flags);
1963 				kfree(new_map);
1964 				return -EPERM;
1965 			}
1966 			key_maps[s] = new_map;
1967 			key_map = new_map;
1968 			key_map[0] = U(K_ALLOCATED);
1969 			for (j = 1; j < NR_KEYS; j++)
1970 				key_map[j] = U(K_HOLE);
1971 			keymap_count++;
1972 		} else
1973 			kfree(new_map);
1974 
1975 		ov = U(key_map[i]);
1976 		if (v == ov)
1977 			goto out;
1978 		/*
1979 		 * Attention Key.
1980 		 */
1981 		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1982 			spin_unlock_irqrestore(&kbd_event_lock, flags);
1983 			return -EPERM;
1984 		}
1985 		key_map[i] = U(v);
1986 		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1987 			do_compute_shiftstate();
1988 out:
1989 		spin_unlock_irqrestore(&kbd_event_lock, flags);
1990 		break;
1991 	}
1992 	return 0;
1993 }
1994 #undef i
1995 #undef s
1996 #undef v
1997 
1998 /* FIXME: This one needs untangling */
vt_do_kdgkb_ioctl(int cmd,struct kbsentry __user * user_kdgkb,int perm)1999 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2000 {
2001 	struct kbsentry *kbs;
2002 	u_char *q;
2003 	int sz, fnw_sz;
2004 	int delta;
2005 	char *first_free, *fj, *fnw;
2006 	int i, j, k;
2007 	int ret;
2008 	unsigned long flags;
2009 
2010 	if (!capable(CAP_SYS_TTY_CONFIG))
2011 		perm = 0;
2012 
2013 	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
2014 	if (!kbs) {
2015 		ret = -ENOMEM;
2016 		goto reterr;
2017 	}
2018 
2019 	/* we mostly copy too much here (512bytes), but who cares ;) */
2020 	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
2021 		ret = -EFAULT;
2022 		goto reterr;
2023 	}
2024 	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
2025 	i = kbs->kb_func;
2026 
2027 	switch (cmd) {
2028 	case KDGKBSENT: {
2029 		/* size should have been a struct member */
2030 		ssize_t len = sizeof(user_kdgkb->kb_string);
2031 
2032 		spin_lock_irqsave(&func_buf_lock, flags);
2033 		len = strlcpy(kbs->kb_string, func_table[i] ? : "", len);
2034 		spin_unlock_irqrestore(&func_buf_lock, flags);
2035 
2036 		ret = copy_to_user(user_kdgkb->kb_string, kbs->kb_string,
2037 				len + 1) ? -EFAULT : 0;
2038 
2039 		goto reterr;
2040 	}
2041 	case KDSKBSENT:
2042 		if (!perm) {
2043 			ret = -EPERM;
2044 			goto reterr;
2045 		}
2046 
2047 		fnw = NULL;
2048 		fnw_sz = 0;
2049 		/* race aginst other writers */
2050 		again:
2051 		spin_lock_irqsave(&func_buf_lock, flags);
2052 		q = func_table[i];
2053 
2054 		/* fj pointer to next entry after 'q' */
2055 		first_free = funcbufptr + (funcbufsize - funcbufleft);
2056 		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2057 			;
2058 		if (j < MAX_NR_FUNC)
2059 			fj = func_table[j];
2060 		else
2061 			fj = first_free;
2062 		/* buffer usage increase by new entry */
2063 		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2064 
2065 		if (delta <= funcbufleft) { 	/* it fits in current buf */
2066 		    if (j < MAX_NR_FUNC) {
2067 			/* make enough space for new entry at 'fj' */
2068 			memmove(fj + delta, fj, first_free - fj);
2069 			for (k = j; k < MAX_NR_FUNC; k++)
2070 			    if (func_table[k])
2071 				func_table[k] += delta;
2072 		    }
2073 		    if (!q)
2074 		      func_table[i] = fj;
2075 		    funcbufleft -= delta;
2076 		} else {			/* allocate a larger buffer */
2077 		    sz = 256;
2078 		    while (sz < funcbufsize - funcbufleft + delta)
2079 		      sz <<= 1;
2080 		    if (fnw_sz != sz) {
2081 		      spin_unlock_irqrestore(&func_buf_lock, flags);
2082 		      kfree(fnw);
2083 		      fnw = kmalloc(sz, GFP_KERNEL);
2084 		      fnw_sz = sz;
2085 		      if (!fnw) {
2086 			ret = -ENOMEM;
2087 			goto reterr;
2088 		      }
2089 		      goto again;
2090 		    }
2091 
2092 		    if (!q)
2093 		      func_table[i] = fj;
2094 		    /* copy data before insertion point to new location */
2095 		    if (fj > funcbufptr)
2096 			memmove(fnw, funcbufptr, fj - funcbufptr);
2097 		    for (k = 0; k < j; k++)
2098 		      if (func_table[k])
2099 			func_table[k] = fnw + (func_table[k] - funcbufptr);
2100 
2101 		    /* copy data after insertion point to new location */
2102 		    if (first_free > fj) {
2103 			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2104 			for (k = j; k < MAX_NR_FUNC; k++)
2105 			  if (func_table[k])
2106 			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2107 		    }
2108 		    if (funcbufptr != func_buf)
2109 		      kfree(funcbufptr);
2110 		    funcbufptr = fnw;
2111 		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
2112 		    funcbufsize = sz;
2113 		}
2114 		/* finally insert item itself */
2115 		strcpy(func_table[i], kbs->kb_string);
2116 		spin_unlock_irqrestore(&func_buf_lock, flags);
2117 		break;
2118 	}
2119 	ret = 0;
2120 reterr:
2121 	kfree(kbs);
2122 	return ret;
2123 }
2124 
vt_do_kdskled(int console,int cmd,unsigned long arg,int perm)2125 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2126 {
2127 	struct kbd_struct *kb = kbd_table + console;
2128         unsigned long flags;
2129 	unsigned char ucval;
2130 
2131         switch(cmd) {
2132 	/* the ioctls below read/set the flags usually shown in the leds */
2133 	/* don't use them - they will go away without warning */
2134 	case KDGKBLED:
2135                 spin_lock_irqsave(&kbd_event_lock, flags);
2136 		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2137                 spin_unlock_irqrestore(&kbd_event_lock, flags);
2138 		return put_user(ucval, (char __user *)arg);
2139 
2140 	case KDSKBLED:
2141 		if (!perm)
2142 			return -EPERM;
2143 		if (arg & ~0x77)
2144 			return -EINVAL;
2145                 spin_lock_irqsave(&led_lock, flags);
2146 		kb->ledflagstate = (arg & 7);
2147 		kb->default_ledflagstate = ((arg >> 4) & 7);
2148 		set_leds();
2149                 spin_unlock_irqrestore(&led_lock, flags);
2150 		return 0;
2151 
2152 	/* the ioctls below only set the lights, not the functions */
2153 	/* for those, see KDGKBLED and KDSKBLED above */
2154 	case KDGETLED:
2155 		ucval = getledstate();
2156 		return put_user(ucval, (char __user *)arg);
2157 
2158 	case KDSETLED:
2159 		if (!perm)
2160 			return -EPERM;
2161 		setledstate(kb, arg);
2162 		return 0;
2163         }
2164         return -ENOIOCTLCMD;
2165 }
2166 
vt_do_kdgkbmode(int console)2167 int vt_do_kdgkbmode(int console)
2168 {
2169 	struct kbd_struct *kb = kbd_table + console;
2170 	/* This is a spot read so needs no locking */
2171 	switch (kb->kbdmode) {
2172 	case VC_RAW:
2173 		return K_RAW;
2174 	case VC_MEDIUMRAW:
2175 		return K_MEDIUMRAW;
2176 	case VC_UNICODE:
2177 		return K_UNICODE;
2178 	case VC_OFF:
2179 		return K_OFF;
2180 	default:
2181 		return K_XLATE;
2182 	}
2183 }
2184 
2185 /**
2186  *	vt_do_kdgkbmeta		-	report meta status
2187  *	@console: console to report
2188  *
2189  *	Report the meta flag status of this console
2190  */
vt_do_kdgkbmeta(int console)2191 int vt_do_kdgkbmeta(int console)
2192 {
2193 	struct kbd_struct *kb = kbd_table + console;
2194         /* Again a spot read so no locking */
2195 	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2196 }
2197 
2198 /**
2199  *	vt_reset_unicode	-	reset the unicode status
2200  *	@console: console being reset
2201  *
2202  *	Restore the unicode console state to its default
2203  */
vt_reset_unicode(int console)2204 void vt_reset_unicode(int console)
2205 {
2206 	unsigned long flags;
2207 
2208 	spin_lock_irqsave(&kbd_event_lock, flags);
2209 	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2210 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2211 }
2212 
2213 /**
2214  *	vt_get_shiftstate	-	shift bit state
2215  *
2216  *	Report the shift bits from the keyboard state. We have to export
2217  *	this to support some oddities in the vt layer.
2218  */
vt_get_shift_state(void)2219 int vt_get_shift_state(void)
2220 {
2221         /* Don't lock as this is a transient report */
2222         return shift_state;
2223 }
2224 
2225 /**
2226  *	vt_reset_keyboard	-	reset keyboard state
2227  *	@console: console to reset
2228  *
2229  *	Reset the keyboard bits for a console as part of a general console
2230  *	reset event
2231  */
vt_reset_keyboard(int console)2232 void vt_reset_keyboard(int console)
2233 {
2234 	struct kbd_struct *kb = kbd_table + console;
2235 	unsigned long flags;
2236 
2237 	spin_lock_irqsave(&kbd_event_lock, flags);
2238 	set_vc_kbd_mode(kb, VC_REPEAT);
2239 	clr_vc_kbd_mode(kb, VC_CKMODE);
2240 	clr_vc_kbd_mode(kb, VC_APPLIC);
2241 	clr_vc_kbd_mode(kb, VC_CRLF);
2242 	kb->lockstate = 0;
2243 	kb->slockstate = 0;
2244 	spin_lock(&led_lock);
2245 	kb->ledmode = LED_SHOW_FLAGS;
2246 	kb->ledflagstate = kb->default_ledflagstate;
2247 	spin_unlock(&led_lock);
2248 	/* do not do set_leds here because this causes an endless tasklet loop
2249 	   when the keyboard hasn't been initialized yet */
2250 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2251 }
2252 
2253 /**
2254  *	vt_get_kbd_mode_bit	-	read keyboard status bits
2255  *	@console: console to read from
2256  *	@bit: mode bit to read
2257  *
2258  *	Report back a vt mode bit. We do this without locking so the
2259  *	caller must be sure that there are no synchronization needs
2260  */
2261 
vt_get_kbd_mode_bit(int console,int bit)2262 int vt_get_kbd_mode_bit(int console, int bit)
2263 {
2264 	struct kbd_struct *kb = kbd_table + console;
2265 	return vc_kbd_mode(kb, bit);
2266 }
2267 
2268 /**
2269  *	vt_set_kbd_mode_bit	-	read keyboard status bits
2270  *	@console: console to read from
2271  *	@bit: mode bit to read
2272  *
2273  *	Set a vt mode bit. We do this without locking so the
2274  *	caller must be sure that there are no synchronization needs
2275  */
2276 
vt_set_kbd_mode_bit(int console,int bit)2277 void vt_set_kbd_mode_bit(int console, int bit)
2278 {
2279 	struct kbd_struct *kb = kbd_table + console;
2280 	unsigned long flags;
2281 
2282 	spin_lock_irqsave(&kbd_event_lock, flags);
2283 	set_vc_kbd_mode(kb, bit);
2284 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2285 }
2286 
2287 /**
2288  *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2289  *	@console: console to read from
2290  *	@bit: mode bit to read
2291  *
2292  *	Report back a vt mode bit. We do this without locking so the
2293  *	caller must be sure that there are no synchronization needs
2294  */
2295 
vt_clr_kbd_mode_bit(int console,int bit)2296 void vt_clr_kbd_mode_bit(int console, int bit)
2297 {
2298 	struct kbd_struct *kb = kbd_table + console;
2299 	unsigned long flags;
2300 
2301 	spin_lock_irqsave(&kbd_event_lock, flags);
2302 	clr_vc_kbd_mode(kb, bit);
2303 	spin_unlock_irqrestore(&kbd_event_lock, flags);
2304 }
2305