• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /****************************************************************************/
3 /*
4  *  linux/fs/binfmt_flat.c
5  *
6  *	Copyright (C) 2000-2003 David McCullough <davidm@snapgear.com>
7  *	Copyright (C) 2002 Greg Ungerer <gerg@snapgear.com>
8  *	Copyright (C) 2002 SnapGear, by Paul Dale <pauli@snapgear.com>
9  *	Copyright (C) 2000, 2001 Lineo, by David McCullough <davidm@lineo.com>
10  *  based heavily on:
11  *
12  *  linux/fs/binfmt_aout.c:
13  *      Copyright (C) 1991, 1992, 1996  Linus Torvalds
14  *  linux/fs/binfmt_flat.c for 2.0 kernel
15  *	    Copyright (C) 1998  Kenneth Albanowski <kjahds@kjahds.com>
16  *	JAN/99 -- coded full program relocation (gerg@snapgear.com)
17  */
18 
19 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/mm.h>
25 #include <linux/mman.h>
26 #include <linux/errno.h>
27 #include <linux/signal.h>
28 #include <linux/string.h>
29 #include <linux/fs.h>
30 #include <linux/file.h>
31 #include <linux/ptrace.h>
32 #include <linux/user.h>
33 #include <linux/slab.h>
34 #include <linux/binfmts.h>
35 #include <linux/personality.h>
36 #include <linux/init.h>
37 #include <linux/flat.h>
38 #include <linux/uaccess.h>
39 #include <linux/vmalloc.h>
40 
41 #include <asm/byteorder.h>
42 #include <asm/unaligned.h>
43 #include <asm/cacheflush.h>
44 #include <asm/page.h>
45 #include <asm/flat.h>
46 
47 #ifndef flat_get_relocate_addr
48 #define flat_get_relocate_addr(rel)	(rel)
49 #endif
50 
51 /****************************************************************************/
52 
53 /*
54  * User data (data section and bss) needs to be aligned.
55  * We pick 0x20 here because it is the max value elf2flt has always
56  * used in producing FLAT files, and because it seems to be large
57  * enough to make all the gcc alignment related tests happy.
58  */
59 #define FLAT_DATA_ALIGN	(0x20)
60 
61 /*
62  * User data (stack) also needs to be aligned.
63  * Here we can be a bit looser than the data sections since this
64  * needs to only meet arch ABI requirements.
65  */
66 #define FLAT_STACK_ALIGN	max_t(unsigned long, sizeof(void *), ARCH_SLAB_MINALIGN)
67 
68 #define RELOC_FAILED 0xff00ff01		/* Relocation incorrect somewhere */
69 #define UNLOADED_LIB 0x7ff000ff		/* Placeholder for unused library */
70 
71 #ifdef CONFIG_BINFMT_SHARED_FLAT
72 #define	MAX_SHARED_LIBS			(4)
73 #else
74 #define	MAX_SHARED_LIBS			(1)
75 #endif
76 
77 struct lib_info {
78 	struct {
79 		unsigned long start_code;		/* Start of text segment */
80 		unsigned long start_data;		/* Start of data segment */
81 		unsigned long start_brk;		/* End of data segment */
82 		unsigned long text_len;			/* Length of text segment */
83 		unsigned long entry;			/* Start address for this module */
84 		unsigned long build_date;		/* When this one was compiled */
85 		bool loaded;				/* Has this library been loaded? */
86 	} lib_list[MAX_SHARED_LIBS];
87 };
88 
89 #ifdef CONFIG_BINFMT_SHARED_FLAT
90 static int load_flat_shared_library(int id, struct lib_info *p);
91 #endif
92 
93 static int load_flat_binary(struct linux_binprm *);
94 static int flat_core_dump(struct coredump_params *cprm);
95 
96 static struct linux_binfmt flat_format = {
97 	.module		= THIS_MODULE,
98 	.load_binary	= load_flat_binary,
99 	.core_dump	= flat_core_dump,
100 	.min_coredump	= PAGE_SIZE
101 };
102 
103 /****************************************************************************/
104 /*
105  * Routine writes a core dump image in the current directory.
106  * Currently only a stub-function.
107  */
108 
flat_core_dump(struct coredump_params * cprm)109 static int flat_core_dump(struct coredump_params *cprm)
110 {
111 	pr_warn("Process %s:%d received signr %d and should have core dumped\n",
112 		current->comm, current->pid, cprm->siginfo->si_signo);
113 	return 1;
114 }
115 
116 /****************************************************************************/
117 /*
118  * create_flat_tables() parses the env- and arg-strings in new user
119  * memory and creates the pointer tables from them, and puts their
120  * addresses on the "stack", recording the new stack pointer value.
121  */
122 
create_flat_tables(struct linux_binprm * bprm,unsigned long arg_start)123 static int create_flat_tables(struct linux_binprm *bprm, unsigned long arg_start)
124 {
125 	char __user *p;
126 	unsigned long __user *sp;
127 	long i, len;
128 
129 	p = (char __user *)arg_start;
130 	sp = (unsigned long __user *)current->mm->start_stack;
131 
132 	sp -= bprm->envc + 1;
133 	sp -= bprm->argc + 1;
134 	if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK))
135 		sp -= 2; /* argvp + envp */
136 	sp -= 1;  /* &argc */
137 
138 	current->mm->start_stack = (unsigned long)sp & -FLAT_STACK_ALIGN;
139 	sp = (unsigned long __user *)current->mm->start_stack;
140 
141 	__put_user(bprm->argc, sp++);
142 	if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK)) {
143 		unsigned long argv, envp;
144 		argv = (unsigned long)(sp + 2);
145 		envp = (unsigned long)(sp + 2 + bprm->argc + 1);
146 		__put_user(argv, sp++);
147 		__put_user(envp, sp++);
148 	}
149 
150 	current->mm->arg_start = (unsigned long)p;
151 	for (i = bprm->argc; i > 0; i--) {
152 		__put_user((unsigned long)p, sp++);
153 		len = strnlen_user(p, MAX_ARG_STRLEN);
154 		if (!len || len > MAX_ARG_STRLEN)
155 			return -EINVAL;
156 		p += len;
157 	}
158 	__put_user(0, sp++);
159 	current->mm->arg_end = (unsigned long)p;
160 
161 	current->mm->env_start = (unsigned long) p;
162 	for (i = bprm->envc; i > 0; i--) {
163 		__put_user((unsigned long)p, sp++);
164 		len = strnlen_user(p, MAX_ARG_STRLEN);
165 		if (!len || len > MAX_ARG_STRLEN)
166 			return -EINVAL;
167 		p += len;
168 	}
169 	__put_user(0, sp++);
170 	current->mm->env_end = (unsigned long)p;
171 
172 	return 0;
173 }
174 
175 /****************************************************************************/
176 
177 #ifdef CONFIG_BINFMT_ZFLAT
178 
179 #include <linux/zlib.h>
180 
181 #define LBUFSIZE	4000
182 
183 /* gzip flag byte */
184 #define ASCII_FLAG   0x01 /* bit 0 set: file probably ASCII text */
185 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
186 #define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */
187 #define ORIG_NAME    0x08 /* bit 3 set: original file name present */
188 #define COMMENT      0x10 /* bit 4 set: file comment present */
189 #define ENCRYPTED    0x20 /* bit 5 set: file is encrypted */
190 #define RESERVED     0xC0 /* bit 6,7:   reserved */
191 
decompress_exec(struct linux_binprm * bprm,loff_t fpos,char * dst,long len,int fd)192 static int decompress_exec(struct linux_binprm *bprm, loff_t fpos, char *dst,
193 		long len, int fd)
194 {
195 	unsigned char *buf;
196 	z_stream strm;
197 	int ret, retval;
198 
199 	pr_debug("decompress_exec(offset=%llx,buf=%p,len=%lx)\n", fpos, dst, len);
200 
201 	memset(&strm, 0, sizeof(strm));
202 	strm.workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
203 	if (!strm.workspace)
204 		return -ENOMEM;
205 
206 	buf = kmalloc(LBUFSIZE, GFP_KERNEL);
207 	if (!buf) {
208 		retval = -ENOMEM;
209 		goto out_free;
210 	}
211 
212 	/* Read in first chunk of data and parse gzip header. */
213 	ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);
214 
215 	strm.next_in = buf;
216 	strm.avail_in = ret;
217 	strm.total_in = 0;
218 
219 	retval = -ENOEXEC;
220 
221 	/* Check minimum size -- gzip header */
222 	if (ret < 10) {
223 		pr_debug("file too small?\n");
224 		goto out_free_buf;
225 	}
226 
227 	/* Check gzip magic number */
228 	if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
229 		pr_debug("unknown compression magic?\n");
230 		goto out_free_buf;
231 	}
232 
233 	/* Check gzip method */
234 	if (buf[2] != 8) {
235 		pr_debug("unknown compression method?\n");
236 		goto out_free_buf;
237 	}
238 	/* Check gzip flags */
239 	if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
240 	    (buf[3] & RESERVED)) {
241 		pr_debug("unknown flags?\n");
242 		goto out_free_buf;
243 	}
244 
245 	ret = 10;
246 	if (buf[3] & EXTRA_FIELD) {
247 		ret += 2 + buf[10] + (buf[11] << 8);
248 		if (unlikely(ret >= LBUFSIZE)) {
249 			pr_debug("buffer overflow (EXTRA)?\n");
250 			goto out_free_buf;
251 		}
252 	}
253 	if (buf[3] & ORIG_NAME) {
254 		while (ret < LBUFSIZE && buf[ret++] != 0)
255 			;
256 		if (unlikely(ret == LBUFSIZE)) {
257 			pr_debug("buffer overflow (ORIG_NAME)?\n");
258 			goto out_free_buf;
259 		}
260 	}
261 	if (buf[3] & COMMENT) {
262 		while (ret < LBUFSIZE && buf[ret++] != 0)
263 			;
264 		if (unlikely(ret == LBUFSIZE)) {
265 			pr_debug("buffer overflow (COMMENT)?\n");
266 			goto out_free_buf;
267 		}
268 	}
269 
270 	strm.next_in += ret;
271 	strm.avail_in -= ret;
272 
273 	strm.next_out = dst;
274 	strm.avail_out = len;
275 	strm.total_out = 0;
276 
277 	if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
278 		pr_debug("zlib init failed?\n");
279 		goto out_free_buf;
280 	}
281 
282 	while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
283 		ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);
284 		if (ret <= 0)
285 			break;
286 		len -= ret;
287 
288 		strm.next_in = buf;
289 		strm.avail_in = ret;
290 		strm.total_in = 0;
291 	}
292 
293 	if (ret < 0) {
294 		pr_debug("decompression failed (%d), %s\n",
295 			ret, strm.msg);
296 		goto out_zlib;
297 	}
298 
299 	retval = 0;
300 out_zlib:
301 	zlib_inflateEnd(&strm);
302 out_free_buf:
303 	kfree(buf);
304 out_free:
305 	kfree(strm.workspace);
306 	return retval;
307 }
308 
309 #endif /* CONFIG_BINFMT_ZFLAT */
310 
311 /****************************************************************************/
312 
313 static unsigned long
calc_reloc(unsigned long r,struct lib_info * p,int curid,int internalp)314 calc_reloc(unsigned long r, struct lib_info *p, int curid, int internalp)
315 {
316 	unsigned long addr;
317 	int id;
318 	unsigned long start_brk;
319 	unsigned long start_data;
320 	unsigned long text_len;
321 	unsigned long start_code;
322 
323 #ifdef CONFIG_BINFMT_SHARED_FLAT
324 	if (r == 0)
325 		id = curid;	/* Relocs of 0 are always self referring */
326 	else {
327 		id = (r >> 24) & 0xff;	/* Find ID for this reloc */
328 		r &= 0x00ffffff;	/* Trim ID off here */
329 	}
330 	if (id >= MAX_SHARED_LIBS) {
331 		pr_err("reference 0x%lx to shared library %d", r, id);
332 		goto failed;
333 	}
334 	if (curid != id) {
335 		if (internalp) {
336 			pr_err("reloc address 0x%lx not in same module "
337 			       "(%d != %d)", r, curid, id);
338 			goto failed;
339 		} else if (!p->lib_list[id].loaded &&
340 			   load_flat_shared_library(id, p) < 0) {
341 			pr_err("failed to load library %d", id);
342 			goto failed;
343 		}
344 		/* Check versioning information (i.e. time stamps) */
345 		if (p->lib_list[id].build_date && p->lib_list[curid].build_date &&
346 				p->lib_list[curid].build_date < p->lib_list[id].build_date) {
347 			pr_err("library %d is younger than %d", id, curid);
348 			goto failed;
349 		}
350 	}
351 #else
352 	id = 0;
353 #endif
354 
355 	start_brk = p->lib_list[id].start_brk;
356 	start_data = p->lib_list[id].start_data;
357 	start_code = p->lib_list[id].start_code;
358 	text_len = p->lib_list[id].text_len;
359 
360 	if (r > start_brk - start_data + text_len) {
361 		pr_err("reloc outside program 0x%lx (0 - 0x%lx/0x%lx)",
362 		       r, start_brk-start_data+text_len, text_len);
363 		goto failed;
364 	}
365 
366 	if (r < text_len)			/* In text segment */
367 		addr = r + start_code;
368 	else					/* In data segment */
369 		addr = r - text_len + start_data;
370 
371 	/* Range checked already above so doing the range tests is redundant...*/
372 	return addr;
373 
374 failed:
375 	pr_cont(", killing %s!\n", current->comm);
376 	send_sig(SIGSEGV, current, 0);
377 
378 	return RELOC_FAILED;
379 }
380 
381 /****************************************************************************/
382 
383 #ifdef CONFIG_BINFMT_FLAT_OLD
old_reloc(unsigned long rl)384 static void old_reloc(unsigned long rl)
385 {
386 	static const char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
387 	flat_v2_reloc_t	r;
388 	unsigned long __user *ptr;
389 	unsigned long val;
390 
391 	r.value = rl;
392 #if defined(CONFIG_COLDFIRE)
393 	ptr = (unsigned long __user *)(current->mm->start_code + r.reloc.offset);
394 #else
395 	ptr = (unsigned long __user *)(current->mm->start_data + r.reloc.offset);
396 #endif
397 	get_user(val, ptr);
398 
399 	pr_debug("Relocation of variable at DATASEG+%x "
400 		 "(address %p, currently %lx) into segment %s\n",
401 		 r.reloc.offset, ptr, val, segment[r.reloc.type]);
402 
403 	switch (r.reloc.type) {
404 	case OLD_FLAT_RELOC_TYPE_TEXT:
405 		val += current->mm->start_code;
406 		break;
407 	case OLD_FLAT_RELOC_TYPE_DATA:
408 		val += current->mm->start_data;
409 		break;
410 	case OLD_FLAT_RELOC_TYPE_BSS:
411 		val += current->mm->end_data;
412 		break;
413 	default:
414 		pr_err("Unknown relocation type=%x\n", r.reloc.type);
415 		break;
416 	}
417 	put_user(val, ptr);
418 
419 	pr_debug("Relocation became %lx\n", val);
420 }
421 #endif /* CONFIG_BINFMT_FLAT_OLD */
422 
423 /****************************************************************************/
424 
skip_got_header(u32 __user * rp)425 static inline u32 __user *skip_got_header(u32 __user *rp)
426 {
427 	if (IS_ENABLED(CONFIG_RISCV)) {
428 		/*
429 		 * RISC-V has a 16 byte GOT PLT header for elf64-riscv
430 		 * and 8 byte GOT PLT header for elf32-riscv.
431 		 * Skip the whole GOT PLT header, since it is reserved
432 		 * for the dynamic linker (ld.so).
433 		 */
434 		u32 rp_val0, rp_val1;
435 
436 		if (get_user(rp_val0, rp))
437 			return rp;
438 		if (get_user(rp_val1, rp + 1))
439 			return rp;
440 
441 		if (rp_val0 == 0xffffffff && rp_val1 == 0xffffffff)
442 			rp += 4;
443 		else if (rp_val0 == 0xffffffff)
444 			rp += 2;
445 	}
446 	return rp;
447 }
448 
load_flat_file(struct linux_binprm * bprm,struct lib_info * libinfo,int id,unsigned long * extra_stack)449 static int load_flat_file(struct linux_binprm *bprm,
450 		struct lib_info *libinfo, int id, unsigned long *extra_stack)
451 {
452 	struct flat_hdr *hdr;
453 	unsigned long textpos, datapos, realdatastart;
454 	u32 text_len, data_len, bss_len, stack_len, full_data, flags;
455 	unsigned long len, memp, memp_size, extra, rlim;
456 	__be32 __user *reloc;
457 	u32 __user *rp;
458 	int i, rev, relocs;
459 	loff_t fpos;
460 	unsigned long start_code, end_code;
461 	ssize_t result;
462 	int ret;
463 
464 	hdr = ((struct flat_hdr *) bprm->buf);		/* exec-header */
465 
466 	text_len  = ntohl(hdr->data_start);
467 	data_len  = ntohl(hdr->data_end) - ntohl(hdr->data_start);
468 	bss_len   = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
469 	stack_len = ntohl(hdr->stack_size);
470 	if (extra_stack) {
471 		stack_len += *extra_stack;
472 		*extra_stack = stack_len;
473 	}
474 	relocs    = ntohl(hdr->reloc_count);
475 	flags     = ntohl(hdr->flags);
476 	rev       = ntohl(hdr->rev);
477 	full_data = data_len + relocs * sizeof(unsigned long);
478 
479 	if (strncmp(hdr->magic, "bFLT", 4)) {
480 		/*
481 		 * Previously, here was a printk to tell people
482 		 *   "BINFMT_FLAT: bad header magic".
483 		 * But for the kernel which also use ELF FD-PIC format, this
484 		 * error message is confusing.
485 		 * because a lot of people do not manage to produce good
486 		 */
487 		ret = -ENOEXEC;
488 		goto err;
489 	}
490 
491 	if (flags & FLAT_FLAG_KTRACE)
492 		pr_info("Loading file: %s\n", bprm->filename);
493 
494 #ifdef CONFIG_BINFMT_FLAT_OLD
495 	if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
496 		pr_err("bad flat file version 0x%x (supported 0x%lx and 0x%lx)\n",
497 		       rev, FLAT_VERSION, OLD_FLAT_VERSION);
498 		ret = -ENOEXEC;
499 		goto err;
500 	}
501 
502 	/* Don't allow old format executables to use shared libraries */
503 	if (rev == OLD_FLAT_VERSION && id != 0) {
504 		pr_err("shared libraries are not available before rev 0x%lx\n",
505 		       FLAT_VERSION);
506 		ret = -ENOEXEC;
507 		goto err;
508 	}
509 
510 	/*
511 	 * fix up the flags for the older format,  there were all kinds
512 	 * of endian hacks,  this only works for the simple cases
513 	 */
514 	if (rev == OLD_FLAT_VERSION &&
515 	   (flags || IS_ENABLED(CONFIG_BINFMT_FLAT_OLD_ALWAYS_RAM)))
516 		flags = FLAT_FLAG_RAM;
517 
518 #else /* CONFIG_BINFMT_FLAT_OLD */
519 	if (rev != FLAT_VERSION) {
520 		pr_err("bad flat file version 0x%x (supported 0x%lx)\n",
521 		       rev, FLAT_VERSION);
522 		ret = -ENOEXEC;
523 		goto err;
524 	}
525 #endif /* !CONFIG_BINFMT_FLAT_OLD */
526 
527 	/*
528 	 * Make sure the header params are sane.
529 	 * 28 bits (256 MB) is way more than reasonable in this case.
530 	 * If some top bits are set we have probable binary corruption.
531 	*/
532 	if ((text_len | data_len | bss_len | stack_len | full_data) >> 28) {
533 		pr_err("bad header\n");
534 		ret = -ENOEXEC;
535 		goto err;
536 	}
537 
538 #ifndef CONFIG_BINFMT_ZFLAT
539 	if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
540 		pr_err("Support for ZFLAT executables is not enabled.\n");
541 		ret = -ENOEXEC;
542 		goto err;
543 	}
544 #endif
545 
546 	/*
547 	 * Check initial limits. This avoids letting people circumvent
548 	 * size limits imposed on them by creating programs with large
549 	 * arrays in the data or bss.
550 	 */
551 	rlim = rlimit(RLIMIT_DATA);
552 	if (rlim >= RLIM_INFINITY)
553 		rlim = ~0;
554 	if (data_len + bss_len > rlim) {
555 		ret = -ENOMEM;
556 		goto err;
557 	}
558 
559 	/* Flush all traces of the currently running executable */
560 	if (id == 0) {
561 		ret = flush_old_exec(bprm);
562 		if (ret)
563 			goto err;
564 
565 		/* OK, This is the point of no return */
566 		set_personality(PER_LINUX_32BIT);
567 		setup_new_exec(bprm);
568 		install_exec_creds(bprm);
569 	}
570 
571 	/*
572 	 * calculate the extra space we need to map in
573 	 */
574 	extra = max_t(unsigned long, bss_len + stack_len,
575 			relocs * sizeof(unsigned long));
576 
577 	/*
578 	 * there are a couple of cases here,  the separate code/data
579 	 * case,  and then the fully copied to RAM case which lumps
580 	 * it all together.
581 	 */
582 	if (!IS_ENABLED(CONFIG_MMU) && !(flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP))) {
583 		/*
584 		 * this should give us a ROM ptr,  but if it doesn't we don't
585 		 * really care
586 		 */
587 		pr_debug("ROM mapping of file (we hope)\n");
588 
589 		textpos = vm_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC,
590 				  MAP_PRIVATE|MAP_EXECUTABLE, 0);
591 		if (!textpos || IS_ERR_VALUE(textpos)) {
592 			ret = textpos;
593 			if (!textpos)
594 				ret = -ENOMEM;
595 			pr_err("Unable to mmap process text, errno %d\n", ret);
596 			goto err;
597 		}
598 
599 		len = data_len + extra + MAX_SHARED_LIBS * sizeof(unsigned long);
600 		len = PAGE_ALIGN(len);
601 		realdatastart = vm_mmap(NULL, 0, len,
602 			PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 0);
603 
604 		if (realdatastart == 0 || IS_ERR_VALUE(realdatastart)) {
605 			ret = realdatastart;
606 			if (!realdatastart)
607 				ret = -ENOMEM;
608 			pr_err("Unable to allocate RAM for process data, "
609 			       "errno %d\n", ret);
610 			vm_munmap(textpos, text_len);
611 			goto err;
612 		}
613 		datapos = ALIGN(realdatastart +
614 				MAX_SHARED_LIBS * sizeof(unsigned long),
615 				FLAT_DATA_ALIGN);
616 
617 		pr_debug("Allocated data+bss+stack (%u bytes): %lx\n",
618 			 data_len + bss_len + stack_len, datapos);
619 
620 		fpos = ntohl(hdr->data_start);
621 #ifdef CONFIG_BINFMT_ZFLAT
622 		if (flags & FLAT_FLAG_GZDATA) {
623 			result = decompress_exec(bprm, fpos, (char *)datapos,
624 						 full_data, 0);
625 		} else
626 #endif
627 		{
628 			result = read_code(bprm->file, datapos, fpos,
629 					full_data);
630 		}
631 		if (IS_ERR_VALUE(result)) {
632 			ret = result;
633 			pr_err("Unable to read data+bss, errno %d\n", ret);
634 			vm_munmap(textpos, text_len);
635 			vm_munmap(realdatastart, len);
636 			goto err;
637 		}
638 
639 		reloc = (__be32 __user *)
640 			(datapos + (ntohl(hdr->reloc_start) - text_len));
641 		memp = realdatastart;
642 		memp_size = len;
643 	} else {
644 
645 		len = text_len + data_len + extra + MAX_SHARED_LIBS * sizeof(u32);
646 		len = PAGE_ALIGN(len);
647 		textpos = vm_mmap(NULL, 0, len,
648 			PROT_READ | PROT_EXEC | PROT_WRITE, MAP_PRIVATE, 0);
649 
650 		if (!textpos || IS_ERR_VALUE(textpos)) {
651 			ret = textpos;
652 			if (!textpos)
653 				ret = -ENOMEM;
654 			pr_err("Unable to allocate RAM for process text/data, "
655 			       "errno %d\n", ret);
656 			goto err;
657 		}
658 
659 		realdatastart = textpos + ntohl(hdr->data_start);
660 		datapos = ALIGN(realdatastart +
661 				MAX_SHARED_LIBS * sizeof(u32),
662 				FLAT_DATA_ALIGN);
663 
664 		reloc = (__be32 __user *)
665 			(datapos + (ntohl(hdr->reloc_start) - text_len));
666 		memp = textpos;
667 		memp_size = len;
668 #ifdef CONFIG_BINFMT_ZFLAT
669 		/*
670 		 * load it all in and treat it like a RAM load from now on
671 		 */
672 		if (flags & FLAT_FLAG_GZIP) {
673 #ifndef CONFIG_MMU
674 			result = decompress_exec(bprm, sizeof(struct flat_hdr),
675 					 (((char *)textpos) + sizeof(struct flat_hdr)),
676 					 (text_len + full_data
677 						  - sizeof(struct flat_hdr)),
678 					 0);
679 			memmove((void *) datapos, (void *) realdatastart,
680 					full_data);
681 #else
682 			/*
683 			 * This is used on MMU systems mainly for testing.
684 			 * Let's use a kernel buffer to simplify things.
685 			 */
686 			long unz_text_len = text_len - sizeof(struct flat_hdr);
687 			long unz_len = unz_text_len + full_data;
688 			char *unz_data = vmalloc(unz_len);
689 			if (!unz_data) {
690 				result = -ENOMEM;
691 			} else {
692 				result = decompress_exec(bprm, sizeof(struct flat_hdr),
693 							 unz_data, unz_len, 0);
694 				if (result == 0 &&
695 				    (copy_to_user((void __user *)textpos + sizeof(struct flat_hdr),
696 						  unz_data, unz_text_len) ||
697 				     copy_to_user((void __user *)datapos,
698 						  unz_data + unz_text_len, full_data)))
699 					result = -EFAULT;
700 				vfree(unz_data);
701 			}
702 #endif
703 		} else if (flags & FLAT_FLAG_GZDATA) {
704 			result = read_code(bprm->file, textpos, 0, text_len);
705 			if (!IS_ERR_VALUE(result)) {
706 #ifndef CONFIG_MMU
707 				result = decompress_exec(bprm, text_len, (char *) datapos,
708 						 full_data, 0);
709 #else
710 				char *unz_data = vmalloc(full_data);
711 				if (!unz_data) {
712 					result = -ENOMEM;
713 				} else {
714 					result = decompress_exec(bprm, text_len,
715 						       unz_data, full_data, 0);
716 					if (result == 0 &&
717 					    copy_to_user((void __user *)datapos,
718 							 unz_data, full_data))
719 						result = -EFAULT;
720 					vfree(unz_data);
721 				}
722 #endif
723 			}
724 		} else
725 #endif /* CONFIG_BINFMT_ZFLAT */
726 		{
727 			result = read_code(bprm->file, textpos, 0, text_len);
728 			if (!IS_ERR_VALUE(result))
729 				result = read_code(bprm->file, datapos,
730 						   ntohl(hdr->data_start),
731 						   full_data);
732 		}
733 		if (IS_ERR_VALUE(result)) {
734 			ret = result;
735 			pr_err("Unable to read code+data+bss, errno %d\n", ret);
736 			vm_munmap(textpos, text_len + data_len + extra +
737 				MAX_SHARED_LIBS * sizeof(u32));
738 			goto err;
739 		}
740 	}
741 
742 	start_code = textpos + sizeof(struct flat_hdr);
743 	end_code = textpos + text_len;
744 	text_len -= sizeof(struct flat_hdr); /* the real code len */
745 
746 	/* The main program needs a little extra setup in the task structure */
747 	if (id == 0) {
748 		current->mm->start_code = start_code;
749 		current->mm->end_code = end_code;
750 		current->mm->start_data = datapos;
751 		current->mm->end_data = datapos + data_len;
752 		/*
753 		 * set up the brk stuff, uses any slack left in data/bss/stack
754 		 * allocation.  We put the brk after the bss (between the bss
755 		 * and stack) like other platforms.
756 		 * Userspace code relies on the stack pointer starting out at
757 		 * an address right at the end of a page.
758 		 */
759 		current->mm->start_brk = datapos + data_len + bss_len;
760 		current->mm->brk = (current->mm->start_brk + 3) & ~3;
761 #ifndef CONFIG_MMU
762 		current->mm->context.end_brk = memp + memp_size - stack_len;
763 #endif
764 	}
765 
766 	if (flags & FLAT_FLAG_KTRACE) {
767 		pr_info("Mapping is %lx, Entry point is %x, data_start is %x\n",
768 			textpos, 0x00ffffff&ntohl(hdr->entry), ntohl(hdr->data_start));
769 		pr_info("%s %s: TEXT=%lx-%lx DATA=%lx-%lx BSS=%lx-%lx\n",
770 			id ? "Lib" : "Load", bprm->filename,
771 			start_code, end_code, datapos, datapos + data_len,
772 			datapos + data_len, (datapos + data_len + bss_len + 3) & ~3);
773 	}
774 
775 	/* Store the current module values into the global library structure */
776 	libinfo->lib_list[id].start_code = start_code;
777 	libinfo->lib_list[id].start_data = datapos;
778 	libinfo->lib_list[id].start_brk = datapos + data_len + bss_len;
779 	libinfo->lib_list[id].text_len = text_len;
780 	libinfo->lib_list[id].loaded = 1;
781 	libinfo->lib_list[id].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
782 	libinfo->lib_list[id].build_date = ntohl(hdr->build_date);
783 
784 	/*
785 	 * We just load the allocations into some temporary memory to
786 	 * help simplify all this mumbo jumbo
787 	 *
788 	 * We've got two different sections of relocation entries.
789 	 * The first is the GOT which resides at the beginning of the data segment
790 	 * and is terminated with a -1.  This one can be relocated in place.
791 	 * The second is the extra relocation entries tacked after the image's
792 	 * data segment. These require a little more processing as the entry is
793 	 * really an offset into the image which contains an offset into the
794 	 * image.
795 	 */
796 	if (flags & FLAT_FLAG_GOTPIC) {
797 		rp = skip_got_header((u32 __user *) datapos);
798 		for (; ; rp++) {
799 			u32 addr, rp_val;
800 			if (get_user(rp_val, rp))
801 				return -EFAULT;
802 			if (rp_val == 0xffffffff)
803 				break;
804 			if (rp_val) {
805 				addr = calc_reloc(rp_val, libinfo, id, 0);
806 				if (addr == RELOC_FAILED) {
807 					ret = -ENOEXEC;
808 					goto err;
809 				}
810 				if (put_user(addr, rp))
811 					return -EFAULT;
812 			}
813 		}
814 	}
815 
816 	/*
817 	 * Now run through the relocation entries.
818 	 * We've got to be careful here as C++ produces relocatable zero
819 	 * entries in the constructor and destructor tables which are then
820 	 * tested for being not zero (which will always occur unless we're
821 	 * based from address zero).  This causes an endless loop as __start
822 	 * is at zero.  The solution used is to not relocate zero addresses.
823 	 * This has the negative side effect of not allowing a global data
824 	 * reference to be statically initialised to _stext (I've moved
825 	 * __start to address 4 so that is okay).
826 	 */
827 	if (rev > OLD_FLAT_VERSION) {
828 		for (i = 0; i < relocs; i++) {
829 			u32 addr, relval;
830 			__be32 tmp;
831 
832 			/*
833 			 * Get the address of the pointer to be
834 			 * relocated (of course, the address has to be
835 			 * relocated first).
836 			 */
837 			if (get_user(tmp, reloc + i))
838 				return -EFAULT;
839 			relval = ntohl(tmp);
840 			addr = flat_get_relocate_addr(relval);
841 			rp = (u32 __user *)calc_reloc(addr, libinfo, id, 1);
842 			if (rp == (u32 __user *)RELOC_FAILED) {
843 				ret = -ENOEXEC;
844 				goto err;
845 			}
846 
847 			/* Get the pointer's value.  */
848 			ret = flat_get_addr_from_rp(rp, relval, flags, &addr);
849 			if (unlikely(ret))
850 				goto err;
851 
852 			if (addr != 0) {
853 				/*
854 				 * Do the relocation.  PIC relocs in the data section are
855 				 * already in target order
856 				 */
857 				if ((flags & FLAT_FLAG_GOTPIC) == 0) {
858 					/*
859 					 * Meh, the same value can have a different
860 					 * byte order based on a flag..
861 					 */
862 					addr = ntohl((__force __be32)addr);
863 				}
864 				addr = calc_reloc(addr, libinfo, id, 0);
865 				if (addr == RELOC_FAILED) {
866 					ret = -ENOEXEC;
867 					goto err;
868 				}
869 
870 				/* Write back the relocated pointer.  */
871 				ret = flat_put_addr_at_rp(rp, addr, relval);
872 				if (unlikely(ret))
873 					goto err;
874 			}
875 		}
876 #ifdef CONFIG_BINFMT_FLAT_OLD
877 	} else {
878 		for (i = 0; i < relocs; i++) {
879 			__be32 relval;
880 			if (get_user(relval, reloc + i))
881 				return -EFAULT;
882 			old_reloc(ntohl(relval));
883 		}
884 #endif /* CONFIG_BINFMT_FLAT_OLD */
885 	}
886 
887 	flush_icache_range(start_code, end_code);
888 
889 	/* zero the BSS,  BRK and stack areas */
890 	if (clear_user((void __user *)(datapos + data_len), bss_len +
891 		       (memp + memp_size - stack_len -		/* end brk */
892 		       libinfo->lib_list[id].start_brk) +	/* start brk */
893 		       stack_len))
894 		return -EFAULT;
895 
896 	return 0;
897 err:
898 	return ret;
899 }
900 
901 
902 /****************************************************************************/
903 #ifdef CONFIG_BINFMT_SHARED_FLAT
904 
905 /*
906  * Load a shared library into memory.  The library gets its own data
907  * segment (including bss) but not argv/argc/environ.
908  */
909 
load_flat_shared_library(int id,struct lib_info * libs)910 static int load_flat_shared_library(int id, struct lib_info *libs)
911 {
912 	/*
913 	 * This is a fake bprm struct; only the members "buf", "file" and
914 	 * "filename" are actually used.
915 	 */
916 	struct linux_binprm bprm;
917 	int res;
918 	char buf[16];
919 	loff_t pos = 0;
920 
921 	memset(&bprm, 0, sizeof(bprm));
922 
923 	/* Create the file name */
924 	sprintf(buf, "/lib/lib%d.so", id);
925 
926 	/* Open the file up */
927 	bprm.filename = buf;
928 	bprm.file = open_exec(bprm.filename);
929 	res = PTR_ERR(bprm.file);
930 	if (IS_ERR(bprm.file))
931 		return res;
932 
933 	res = kernel_read(bprm.file, bprm.buf, BINPRM_BUF_SIZE, &pos);
934 
935 	if (res >= 0)
936 		res = load_flat_file(&bprm, libs, id, NULL);
937 
938 	allow_write_access(bprm.file);
939 	fput(bprm.file);
940 
941 	return res;
942 }
943 
944 #endif /* CONFIG_BINFMT_SHARED_FLAT */
945 /****************************************************************************/
946 
947 /*
948  * These are the functions used to load flat style executables and shared
949  * libraries.  There is no binary dependent code anywhere else.
950  */
951 
load_flat_binary(struct linux_binprm * bprm)952 static int load_flat_binary(struct linux_binprm *bprm)
953 {
954 	struct lib_info libinfo;
955 	struct pt_regs *regs = current_pt_regs();
956 	unsigned long stack_len = 0;
957 	unsigned long start_addr;
958 	int res;
959 	int i, j;
960 
961 	memset(&libinfo, 0, sizeof(libinfo));
962 
963 	/*
964 	 * We have to add the size of our arguments to our stack size
965 	 * otherwise it's too easy for users to create stack overflows
966 	 * by passing in a huge argument list.  And yes,  we have to be
967 	 * pedantic and include space for the argv/envp array as it may have
968 	 * a lot of entries.
969 	 */
970 #ifndef CONFIG_MMU
971 	stack_len += PAGE_SIZE * MAX_ARG_PAGES - bprm->p; /* the strings */
972 #endif
973 	stack_len += (bprm->argc + 1) * sizeof(char *);   /* the argv array */
974 	stack_len += (bprm->envc + 1) * sizeof(char *);   /* the envp array */
975 	stack_len = ALIGN(stack_len, FLAT_STACK_ALIGN);
976 
977 	res = load_flat_file(bprm, &libinfo, 0, &stack_len);
978 	if (res < 0)
979 		return res;
980 
981 	/* Update data segment pointers for all libraries */
982 	for (i = 0; i < MAX_SHARED_LIBS; i++) {
983 		if (!libinfo.lib_list[i].loaded)
984 			continue;
985 		for (j = 0; j < MAX_SHARED_LIBS; j++) {
986 			unsigned long val = libinfo.lib_list[j].loaded ?
987 				libinfo.lib_list[j].start_data : UNLOADED_LIB;
988 			unsigned long __user *p = (unsigned long __user *)
989 				libinfo.lib_list[i].start_data;
990 			p -= j + 1;
991 			if (put_user(val, p))
992 				return -EFAULT;
993 		}
994 	}
995 
996 	set_binfmt(&flat_format);
997 
998 #ifdef CONFIG_MMU
999 	res = setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT);
1000 	if (!res)
1001 		res = create_flat_tables(bprm, bprm->p);
1002 #else
1003 	/* Stash our initial stack pointer into the mm structure */
1004 	current->mm->start_stack =
1005 		((current->mm->context.end_brk + stack_len + 3) & ~3) - 4;
1006 	pr_debug("sp=%lx\n", current->mm->start_stack);
1007 
1008 	/* copy the arg pages onto the stack */
1009 	res = transfer_args_to_stack(bprm, &current->mm->start_stack);
1010 	if (!res)
1011 		res = create_flat_tables(bprm, current->mm->start_stack);
1012 #endif
1013 	if (res)
1014 		return res;
1015 
1016 	/* Fake some return addresses to ensure the call chain will
1017 	 * initialise library in order for us.  We are required to call
1018 	 * lib 1 first, then 2, ... and finally the main program (id 0).
1019 	 */
1020 	start_addr = libinfo.lib_list[0].entry;
1021 
1022 #ifdef CONFIG_BINFMT_SHARED_FLAT
1023 	for (i = MAX_SHARED_LIBS-1; i > 0; i--) {
1024 		if (libinfo.lib_list[i].loaded) {
1025 			/* Push previos first to call address */
1026 			unsigned long __user *sp;
1027 			current->mm->start_stack -= sizeof(unsigned long);
1028 			sp = (unsigned long __user *)current->mm->start_stack;
1029 			__put_user(start_addr, sp);
1030 			start_addr = libinfo.lib_list[i].entry;
1031 		}
1032 	}
1033 #endif
1034 
1035 #ifdef FLAT_PLAT_INIT
1036 	FLAT_PLAT_INIT(regs);
1037 #endif
1038 
1039 	finalize_exec(bprm);
1040 	pr_debug("start_thread(regs=0x%p, entry=0x%lx, start_stack=0x%lx)\n",
1041 		 regs, start_addr, current->mm->start_stack);
1042 	start_thread(regs, start_addr, current->mm->start_stack);
1043 
1044 	return 0;
1045 }
1046 
1047 /****************************************************************************/
1048 
init_flat_binfmt(void)1049 static int __init init_flat_binfmt(void)
1050 {
1051 	register_binfmt(&flat_format);
1052 	return 0;
1053 }
1054 core_initcall(init_flat_binfmt);
1055 
1056 /****************************************************************************/
1057