• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "btrfs_inode.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "locking.h"
36 #include "inode-map.h"
37 #include "backref.h"
38 #include "rcu-string.h"
39 #include "send.h"
40 #include "dev-replace.h"
41 #include "props.h"
42 #include "sysfs.h"
43 #include "qgroup.h"
44 #include "tree-log.h"
45 #include "compression.h"
46 #include "space-info.h"
47 #include "delalloc-space.h"
48 #include "block-group.h"
49 
50 #ifdef CONFIG_64BIT
51 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
52  * structures are incorrect, as the timespec structure from userspace
53  * is 4 bytes too small. We define these alternatives here to teach
54  * the kernel about the 32-bit struct packing.
55  */
56 struct btrfs_ioctl_timespec_32 {
57 	__u64 sec;
58 	__u32 nsec;
59 } __attribute__ ((__packed__));
60 
61 struct btrfs_ioctl_received_subvol_args_32 {
62 	char	uuid[BTRFS_UUID_SIZE];	/* in */
63 	__u64	stransid;		/* in */
64 	__u64	rtransid;		/* out */
65 	struct btrfs_ioctl_timespec_32 stime; /* in */
66 	struct btrfs_ioctl_timespec_32 rtime; /* out */
67 	__u64	flags;			/* in */
68 	__u64	reserved[16];		/* in */
69 } __attribute__ ((__packed__));
70 
71 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
72 				struct btrfs_ioctl_received_subvol_args_32)
73 #endif
74 
75 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
76 struct btrfs_ioctl_send_args_32 {
77 	__s64 send_fd;			/* in */
78 	__u64 clone_sources_count;	/* in */
79 	compat_uptr_t clone_sources;	/* in */
80 	__u64 parent_root;		/* in */
81 	__u64 flags;			/* in */
82 	__u64 reserved[4];		/* in */
83 } __attribute__ ((__packed__));
84 
85 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
86 			       struct btrfs_ioctl_send_args_32)
87 #endif
88 
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
91 		       int no_time_update);
92 
93 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
95 		unsigned int flags)
96 {
97 	if (S_ISDIR(inode->i_mode))
98 		return flags;
99 	else if (S_ISREG(inode->i_mode))
100 		return flags & ~FS_DIRSYNC_FL;
101 	else
102 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104 
105 /*
106  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
107  * ioctl.
108  */
btrfs_inode_flags_to_fsflags(unsigned int flags)109 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
110 {
111 	unsigned int iflags = 0;
112 
113 	if (flags & BTRFS_INODE_SYNC)
114 		iflags |= FS_SYNC_FL;
115 	if (flags & BTRFS_INODE_IMMUTABLE)
116 		iflags |= FS_IMMUTABLE_FL;
117 	if (flags & BTRFS_INODE_APPEND)
118 		iflags |= FS_APPEND_FL;
119 	if (flags & BTRFS_INODE_NODUMP)
120 		iflags |= FS_NODUMP_FL;
121 	if (flags & BTRFS_INODE_NOATIME)
122 		iflags |= FS_NOATIME_FL;
123 	if (flags & BTRFS_INODE_DIRSYNC)
124 		iflags |= FS_DIRSYNC_FL;
125 	if (flags & BTRFS_INODE_NODATACOW)
126 		iflags |= FS_NOCOW_FL;
127 
128 	if (flags & BTRFS_INODE_NOCOMPRESS)
129 		iflags |= FS_NOCOMP_FL;
130 	else if (flags & BTRFS_INODE_COMPRESS)
131 		iflags |= FS_COMPR_FL;
132 
133 	return iflags;
134 }
135 
136 /*
137  * Update inode->i_flags based on the btrfs internal flags.
138  */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)139 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
140 {
141 	struct btrfs_inode *binode = BTRFS_I(inode);
142 	unsigned int new_fl = 0;
143 
144 	if (binode->flags & BTRFS_INODE_SYNC)
145 		new_fl |= S_SYNC;
146 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
147 		new_fl |= S_IMMUTABLE;
148 	if (binode->flags & BTRFS_INODE_APPEND)
149 		new_fl |= S_APPEND;
150 	if (binode->flags & BTRFS_INODE_NOATIME)
151 		new_fl |= S_NOATIME;
152 	if (binode->flags & BTRFS_INODE_DIRSYNC)
153 		new_fl |= S_DIRSYNC;
154 
155 	set_mask_bits(&inode->i_flags,
156 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 		      new_fl);
158 }
159 
btrfs_ioctl_getflags(struct file * file,void __user * arg)160 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
161 {
162 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
163 	unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
164 
165 	if (copy_to_user(arg, &flags, sizeof(flags)))
166 		return -EFAULT;
167 	return 0;
168 }
169 
170 /*
171  * Check if @flags are a supported and valid set of FS_*_FL flags and that
172  * the old and new flags are not conflicting
173  */
check_fsflags(unsigned int old_flags,unsigned int flags)174 static int check_fsflags(unsigned int old_flags, unsigned int flags)
175 {
176 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
177 		      FS_NOATIME_FL | FS_NODUMP_FL | \
178 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
179 		      FS_NOCOMP_FL | FS_COMPR_FL |
180 		      FS_NOCOW_FL))
181 		return -EOPNOTSUPP;
182 
183 	/* COMPR and NOCOMP on new/old are valid */
184 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
185 		return -EINVAL;
186 
187 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
188 		return -EINVAL;
189 
190 	/* NOCOW and compression options are mutually exclusive */
191 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
192 		return -EINVAL;
193 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
194 		return -EINVAL;
195 
196 	return 0;
197 }
198 
btrfs_ioctl_setflags(struct file * file,void __user * arg)199 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
200 {
201 	struct inode *inode = file_inode(file);
202 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
203 	struct btrfs_inode *binode = BTRFS_I(inode);
204 	struct btrfs_root *root = binode->root;
205 	struct btrfs_trans_handle *trans;
206 	unsigned int fsflags, old_fsflags;
207 	int ret;
208 	const char *comp = NULL;
209 	u32 binode_flags;
210 
211 	if (!inode_owner_or_capable(inode))
212 		return -EPERM;
213 
214 	if (btrfs_root_readonly(root))
215 		return -EROFS;
216 
217 	if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
218 		return -EFAULT;
219 
220 	ret = mnt_want_write_file(file);
221 	if (ret)
222 		return ret;
223 
224 	inode_lock(inode);
225 	fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
226 	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
227 
228 	ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
229 	if (ret)
230 		goto out_unlock;
231 
232 	ret = check_fsflags(old_fsflags, fsflags);
233 	if (ret)
234 		goto out_unlock;
235 
236 	binode_flags = binode->flags;
237 	if (fsflags & FS_SYNC_FL)
238 		binode_flags |= BTRFS_INODE_SYNC;
239 	else
240 		binode_flags &= ~BTRFS_INODE_SYNC;
241 	if (fsflags & FS_IMMUTABLE_FL)
242 		binode_flags |= BTRFS_INODE_IMMUTABLE;
243 	else
244 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
245 	if (fsflags & FS_APPEND_FL)
246 		binode_flags |= BTRFS_INODE_APPEND;
247 	else
248 		binode_flags &= ~BTRFS_INODE_APPEND;
249 	if (fsflags & FS_NODUMP_FL)
250 		binode_flags |= BTRFS_INODE_NODUMP;
251 	else
252 		binode_flags &= ~BTRFS_INODE_NODUMP;
253 	if (fsflags & FS_NOATIME_FL)
254 		binode_flags |= BTRFS_INODE_NOATIME;
255 	else
256 		binode_flags &= ~BTRFS_INODE_NOATIME;
257 	if (fsflags & FS_DIRSYNC_FL)
258 		binode_flags |= BTRFS_INODE_DIRSYNC;
259 	else
260 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
261 	if (fsflags & FS_NOCOW_FL) {
262 		if (S_ISREG(inode->i_mode)) {
263 			/*
264 			 * It's safe to turn csums off here, no extents exist.
265 			 * Otherwise we want the flag to reflect the real COW
266 			 * status of the file and will not set it.
267 			 */
268 			if (inode->i_size == 0)
269 				binode_flags |= BTRFS_INODE_NODATACOW |
270 						BTRFS_INODE_NODATASUM;
271 		} else {
272 			binode_flags |= BTRFS_INODE_NODATACOW;
273 		}
274 	} else {
275 		/*
276 		 * Revert back under same assumptions as above
277 		 */
278 		if (S_ISREG(inode->i_mode)) {
279 			if (inode->i_size == 0)
280 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
281 						  BTRFS_INODE_NODATASUM);
282 		} else {
283 			binode_flags &= ~BTRFS_INODE_NODATACOW;
284 		}
285 	}
286 
287 	/*
288 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
289 	 * flag may be changed automatically if compression code won't make
290 	 * things smaller.
291 	 */
292 	if (fsflags & FS_NOCOMP_FL) {
293 		binode_flags &= ~BTRFS_INODE_COMPRESS;
294 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
295 	} else if (fsflags & FS_COMPR_FL) {
296 
297 		if (IS_SWAPFILE(inode)) {
298 			ret = -ETXTBSY;
299 			goto out_unlock;
300 		}
301 
302 		binode_flags |= BTRFS_INODE_COMPRESS;
303 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
304 
305 		comp = btrfs_compress_type2str(fs_info->compress_type);
306 		if (!comp || comp[0] == 0)
307 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
308 	} else {
309 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
310 	}
311 
312 	/*
313 	 * 1 for inode item
314 	 * 2 for properties
315 	 */
316 	trans = btrfs_start_transaction(root, 3);
317 	if (IS_ERR(trans)) {
318 		ret = PTR_ERR(trans);
319 		goto out_unlock;
320 	}
321 
322 	if (comp) {
323 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
324 				     strlen(comp), 0);
325 		if (ret) {
326 			btrfs_abort_transaction(trans, ret);
327 			goto out_end_trans;
328 		}
329 	} else {
330 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
331 				     0, 0);
332 		if (ret && ret != -ENODATA) {
333 			btrfs_abort_transaction(trans, ret);
334 			goto out_end_trans;
335 		}
336 	}
337 
338 	binode->flags = binode_flags;
339 	btrfs_sync_inode_flags_to_i_flags(inode);
340 	inode_inc_iversion(inode);
341 	inode->i_ctime = current_time(inode);
342 	ret = btrfs_update_inode(trans, root, inode);
343 
344  out_end_trans:
345 	btrfs_end_transaction(trans);
346  out_unlock:
347 	inode_unlock(inode);
348 	mnt_drop_write_file(file);
349 	return ret;
350 }
351 
352 /*
353  * Translate btrfs internal inode flags to xflags as expected by the
354  * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
355  * silently dropped.
356  */
btrfs_inode_flags_to_xflags(unsigned int flags)357 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
358 {
359 	unsigned int xflags = 0;
360 
361 	if (flags & BTRFS_INODE_APPEND)
362 		xflags |= FS_XFLAG_APPEND;
363 	if (flags & BTRFS_INODE_IMMUTABLE)
364 		xflags |= FS_XFLAG_IMMUTABLE;
365 	if (flags & BTRFS_INODE_NOATIME)
366 		xflags |= FS_XFLAG_NOATIME;
367 	if (flags & BTRFS_INODE_NODUMP)
368 		xflags |= FS_XFLAG_NODUMP;
369 	if (flags & BTRFS_INODE_SYNC)
370 		xflags |= FS_XFLAG_SYNC;
371 
372 	return xflags;
373 }
374 
375 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
check_xflags(unsigned int flags)376 static int check_xflags(unsigned int flags)
377 {
378 	if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
379 		      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
380 		return -EOPNOTSUPP;
381 	return 0;
382 }
383 
384 /*
385  * Set the xflags from the internal inode flags. The remaining items of fsxattr
386  * are zeroed.
387  */
btrfs_ioctl_fsgetxattr(struct file * file,void __user * arg)388 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
389 {
390 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
391 	struct fsxattr fa;
392 
393 	simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
394 	if (copy_to_user(arg, &fa, sizeof(fa)))
395 		return -EFAULT;
396 
397 	return 0;
398 }
399 
btrfs_ioctl_fssetxattr(struct file * file,void __user * arg)400 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
401 {
402 	struct inode *inode = file_inode(file);
403 	struct btrfs_inode *binode = BTRFS_I(inode);
404 	struct btrfs_root *root = binode->root;
405 	struct btrfs_trans_handle *trans;
406 	struct fsxattr fa, old_fa;
407 	unsigned old_flags;
408 	unsigned old_i_flags;
409 	int ret = 0;
410 
411 	if (!inode_owner_or_capable(inode))
412 		return -EPERM;
413 
414 	if (btrfs_root_readonly(root))
415 		return -EROFS;
416 
417 	if (copy_from_user(&fa, arg, sizeof(fa)))
418 		return -EFAULT;
419 
420 	ret = check_xflags(fa.fsx_xflags);
421 	if (ret)
422 		return ret;
423 
424 	if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
425 		return -EOPNOTSUPP;
426 
427 	ret = mnt_want_write_file(file);
428 	if (ret)
429 		return ret;
430 
431 	inode_lock(inode);
432 
433 	old_flags = binode->flags;
434 	old_i_flags = inode->i_flags;
435 
436 	simple_fill_fsxattr(&old_fa,
437 			    btrfs_inode_flags_to_xflags(binode->flags));
438 	ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
439 	if (ret)
440 		goto out_unlock;
441 
442 	if (fa.fsx_xflags & FS_XFLAG_SYNC)
443 		binode->flags |= BTRFS_INODE_SYNC;
444 	else
445 		binode->flags &= ~BTRFS_INODE_SYNC;
446 	if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
447 		binode->flags |= BTRFS_INODE_IMMUTABLE;
448 	else
449 		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
450 	if (fa.fsx_xflags & FS_XFLAG_APPEND)
451 		binode->flags |= BTRFS_INODE_APPEND;
452 	else
453 		binode->flags &= ~BTRFS_INODE_APPEND;
454 	if (fa.fsx_xflags & FS_XFLAG_NODUMP)
455 		binode->flags |= BTRFS_INODE_NODUMP;
456 	else
457 		binode->flags &= ~BTRFS_INODE_NODUMP;
458 	if (fa.fsx_xflags & FS_XFLAG_NOATIME)
459 		binode->flags |= BTRFS_INODE_NOATIME;
460 	else
461 		binode->flags &= ~BTRFS_INODE_NOATIME;
462 
463 	/* 1 item for the inode */
464 	trans = btrfs_start_transaction(root, 1);
465 	if (IS_ERR(trans)) {
466 		ret = PTR_ERR(trans);
467 		goto out_unlock;
468 	}
469 
470 	btrfs_sync_inode_flags_to_i_flags(inode);
471 	inode_inc_iversion(inode);
472 	inode->i_ctime = current_time(inode);
473 	ret = btrfs_update_inode(trans, root, inode);
474 
475 	btrfs_end_transaction(trans);
476 
477 out_unlock:
478 	if (ret) {
479 		binode->flags = old_flags;
480 		inode->i_flags = old_i_flags;
481 	}
482 
483 	inode_unlock(inode);
484 	mnt_drop_write_file(file);
485 
486 	return ret;
487 }
488 
btrfs_ioctl_getversion(struct file * file,int __user * arg)489 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
490 {
491 	struct inode *inode = file_inode(file);
492 
493 	return put_user(inode->i_generation, arg);
494 }
495 
btrfs_ioctl_fitrim(struct file * file,void __user * arg)496 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
497 {
498 	struct inode *inode = file_inode(file);
499 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
500 	struct btrfs_device *device;
501 	struct request_queue *q;
502 	struct fstrim_range range;
503 	u64 minlen = ULLONG_MAX;
504 	u64 num_devices = 0;
505 	int ret;
506 
507 	if (!capable(CAP_SYS_ADMIN))
508 		return -EPERM;
509 
510 	/*
511 	 * If the fs is mounted with nologreplay, which requires it to be
512 	 * mounted in RO mode as well, we can not allow discard on free space
513 	 * inside block groups, because log trees refer to extents that are not
514 	 * pinned in a block group's free space cache (pinning the extents is
515 	 * precisely the first phase of replaying a log tree).
516 	 */
517 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
518 		return -EROFS;
519 
520 	rcu_read_lock();
521 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
522 				dev_list) {
523 		if (!device->bdev)
524 			continue;
525 		q = bdev_get_queue(device->bdev);
526 		if (blk_queue_discard(q)) {
527 			num_devices++;
528 			minlen = min_t(u64, q->limits.discard_granularity,
529 				     minlen);
530 		}
531 	}
532 	rcu_read_unlock();
533 
534 	if (!num_devices)
535 		return -EOPNOTSUPP;
536 	if (copy_from_user(&range, arg, sizeof(range)))
537 		return -EFAULT;
538 
539 	/*
540 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
541 	 * block group is in the logical address space, which can be any
542 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
543 	 */
544 	if (range.len < fs_info->sb->s_blocksize)
545 		return -EINVAL;
546 
547 	range.minlen = max(range.minlen, minlen);
548 	ret = btrfs_trim_fs(fs_info, &range);
549 	if (ret < 0)
550 		return ret;
551 
552 	if (copy_to_user(arg, &range, sizeof(range)))
553 		return -EFAULT;
554 
555 	return 0;
556 }
557 
btrfs_is_empty_uuid(u8 * uuid)558 int btrfs_is_empty_uuid(u8 *uuid)
559 {
560 	int i;
561 
562 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
563 		if (uuid[i])
564 			return 0;
565 	}
566 	return 1;
567 }
568 
create_subvol(struct inode * dir,struct dentry * dentry,const char * name,int namelen,u64 * async_transid,struct btrfs_qgroup_inherit * inherit)569 static noinline int create_subvol(struct inode *dir,
570 				  struct dentry *dentry,
571 				  const char *name, int namelen,
572 				  u64 *async_transid,
573 				  struct btrfs_qgroup_inherit *inherit)
574 {
575 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
576 	struct btrfs_trans_handle *trans;
577 	struct btrfs_key key;
578 	struct btrfs_root_item *root_item;
579 	struct btrfs_inode_item *inode_item;
580 	struct extent_buffer *leaf;
581 	struct btrfs_root *root = BTRFS_I(dir)->root;
582 	struct btrfs_root *new_root;
583 	struct btrfs_block_rsv block_rsv;
584 	struct timespec64 cur_time = current_time(dir);
585 	struct inode *inode;
586 	int ret;
587 	int err;
588 	u64 objectid;
589 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
590 	u64 index = 0;
591 	uuid_le new_uuid;
592 
593 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
594 	if (!root_item)
595 		return -ENOMEM;
596 
597 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
598 	if (ret)
599 		goto fail_free;
600 
601 	/*
602 	 * Don't create subvolume whose level is not zero. Or qgroup will be
603 	 * screwed up since it assumes subvolume qgroup's level to be 0.
604 	 */
605 	if (btrfs_qgroup_level(objectid)) {
606 		ret = -ENOSPC;
607 		goto fail_free;
608 	}
609 
610 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
611 	/*
612 	 * The same as the snapshot creation, please see the comment
613 	 * of create_snapshot().
614 	 */
615 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
616 	if (ret)
617 		goto fail_free;
618 
619 	trans = btrfs_start_transaction(root, 0);
620 	if (IS_ERR(trans)) {
621 		ret = PTR_ERR(trans);
622 		btrfs_subvolume_release_metadata(fs_info, &block_rsv);
623 		goto fail_free;
624 	}
625 	trans->block_rsv = &block_rsv;
626 	trans->bytes_reserved = block_rsv.size;
627 
628 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
629 	if (ret)
630 		goto fail;
631 
632 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
633 	if (IS_ERR(leaf)) {
634 		ret = PTR_ERR(leaf);
635 		goto fail;
636 	}
637 
638 	btrfs_mark_buffer_dirty(leaf);
639 
640 	inode_item = &root_item->inode;
641 	btrfs_set_stack_inode_generation(inode_item, 1);
642 	btrfs_set_stack_inode_size(inode_item, 3);
643 	btrfs_set_stack_inode_nlink(inode_item, 1);
644 	btrfs_set_stack_inode_nbytes(inode_item,
645 				     fs_info->nodesize);
646 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
647 
648 	btrfs_set_root_flags(root_item, 0);
649 	btrfs_set_root_limit(root_item, 0);
650 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
651 
652 	btrfs_set_root_bytenr(root_item, leaf->start);
653 	btrfs_set_root_generation(root_item, trans->transid);
654 	btrfs_set_root_level(root_item, 0);
655 	btrfs_set_root_refs(root_item, 1);
656 	btrfs_set_root_used(root_item, leaf->len);
657 	btrfs_set_root_last_snapshot(root_item, 0);
658 
659 	btrfs_set_root_generation_v2(root_item,
660 			btrfs_root_generation(root_item));
661 	uuid_le_gen(&new_uuid);
662 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
663 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
664 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
665 	root_item->ctime = root_item->otime;
666 	btrfs_set_root_ctransid(root_item, trans->transid);
667 	btrfs_set_root_otransid(root_item, trans->transid);
668 
669 	btrfs_tree_unlock(leaf);
670 
671 	btrfs_set_root_dirid(root_item, new_dirid);
672 
673 	key.objectid = objectid;
674 	key.offset = 0;
675 	key.type = BTRFS_ROOT_ITEM_KEY;
676 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
677 				root_item);
678 	if (ret) {
679 		/*
680 		 * Since we don't abort the transaction in this case, free the
681 		 * tree block so that we don't leak space and leave the
682 		 * filesystem in an inconsistent state (an extent item in the
683 		 * extent tree without backreferences). Also no need to have
684 		 * the tree block locked since it is not in any tree at this
685 		 * point, so no other task can find it and use it.
686 		 */
687 		btrfs_free_tree_block(trans, root, leaf, 0, 1);
688 		free_extent_buffer(leaf);
689 		goto fail;
690 	}
691 
692 	free_extent_buffer(leaf);
693 	leaf = NULL;
694 
695 	key.offset = (u64)-1;
696 	new_root = btrfs_read_fs_root_no_name(fs_info, &key);
697 	if (IS_ERR(new_root)) {
698 		ret = PTR_ERR(new_root);
699 		btrfs_abort_transaction(trans, ret);
700 		goto fail;
701 	}
702 
703 	btrfs_record_root_in_trans(trans, new_root);
704 
705 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
706 	if (ret) {
707 		/* We potentially lose an unused inode item here */
708 		btrfs_abort_transaction(trans, ret);
709 		goto fail;
710 	}
711 
712 	mutex_lock(&new_root->objectid_mutex);
713 	new_root->highest_objectid = new_dirid;
714 	mutex_unlock(&new_root->objectid_mutex);
715 
716 	/*
717 	 * insert the directory item
718 	 */
719 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
720 	if (ret) {
721 		btrfs_abort_transaction(trans, ret);
722 		goto fail;
723 	}
724 
725 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
726 				    BTRFS_FT_DIR, index);
727 	if (ret) {
728 		btrfs_abort_transaction(trans, ret);
729 		goto fail;
730 	}
731 
732 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
733 	ret = btrfs_update_inode(trans, root, dir);
734 	if (ret) {
735 		btrfs_abort_transaction(trans, ret);
736 		goto fail;
737 	}
738 
739 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
740 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
741 	if (ret) {
742 		btrfs_abort_transaction(trans, ret);
743 		goto fail;
744 	}
745 
746 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
747 				  BTRFS_UUID_KEY_SUBVOL, objectid);
748 	if (ret)
749 		btrfs_abort_transaction(trans, ret);
750 
751 fail:
752 	kfree(root_item);
753 	trans->block_rsv = NULL;
754 	trans->bytes_reserved = 0;
755 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
756 
757 	if (async_transid) {
758 		*async_transid = trans->transid;
759 		err = btrfs_commit_transaction_async(trans, 1);
760 		if (err)
761 			err = btrfs_commit_transaction(trans);
762 	} else {
763 		err = btrfs_commit_transaction(trans);
764 	}
765 	if (err && !ret)
766 		ret = err;
767 
768 	if (!ret) {
769 		inode = btrfs_lookup_dentry(dir, dentry);
770 		if (IS_ERR(inode))
771 			return PTR_ERR(inode);
772 		d_instantiate(dentry, inode);
773 	}
774 	return ret;
775 
776 fail_free:
777 	kfree(root_item);
778 	return ret;
779 }
780 
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)781 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
782 			   struct dentry *dentry,
783 			   u64 *async_transid, bool readonly,
784 			   struct btrfs_qgroup_inherit *inherit)
785 {
786 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
787 	struct inode *inode;
788 	struct btrfs_pending_snapshot *pending_snapshot;
789 	struct btrfs_trans_handle *trans;
790 	int ret;
791 	bool snapshot_force_cow = false;
792 
793 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
794 		return -EINVAL;
795 
796 	if (atomic_read(&root->nr_swapfiles)) {
797 		btrfs_warn(fs_info,
798 			   "cannot snapshot subvolume with active swapfile");
799 		return -ETXTBSY;
800 	}
801 
802 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
803 	if (!pending_snapshot)
804 		return -ENOMEM;
805 
806 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
807 			GFP_KERNEL);
808 	pending_snapshot->path = btrfs_alloc_path();
809 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
810 		ret = -ENOMEM;
811 		goto free_pending;
812 	}
813 
814 	/*
815 	 * Force new buffered writes to reserve space even when NOCOW is
816 	 * possible. This is to avoid later writeback (running dealloc) to
817 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
818 	 */
819 	atomic_inc(&root->will_be_snapshotted);
820 	smp_mb__after_atomic();
821 	/* wait for no snapshot writes */
822 	wait_event(root->subv_writers->wait,
823 		   percpu_counter_sum(&root->subv_writers->counter) == 0);
824 
825 	ret = btrfs_start_delalloc_snapshot(root);
826 	if (ret)
827 		goto dec_and_free;
828 
829 	/*
830 	 * All previous writes have started writeback in NOCOW mode, so now
831 	 * we force future writes to fallback to COW mode during snapshot
832 	 * creation.
833 	 */
834 	atomic_inc(&root->snapshot_force_cow);
835 	snapshot_force_cow = true;
836 
837 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
838 
839 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
840 			     BTRFS_BLOCK_RSV_TEMP);
841 	/*
842 	 * 1 - parent dir inode
843 	 * 2 - dir entries
844 	 * 1 - root item
845 	 * 2 - root ref/backref
846 	 * 1 - root of snapshot
847 	 * 1 - UUID item
848 	 */
849 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
850 					&pending_snapshot->block_rsv, 8,
851 					false);
852 	if (ret)
853 		goto dec_and_free;
854 
855 	pending_snapshot->dentry = dentry;
856 	pending_snapshot->root = root;
857 	pending_snapshot->readonly = readonly;
858 	pending_snapshot->dir = dir;
859 	pending_snapshot->inherit = inherit;
860 
861 	trans = btrfs_start_transaction(root, 0);
862 	if (IS_ERR(trans)) {
863 		ret = PTR_ERR(trans);
864 		goto fail;
865 	}
866 
867 	spin_lock(&fs_info->trans_lock);
868 	list_add(&pending_snapshot->list,
869 		 &trans->transaction->pending_snapshots);
870 	spin_unlock(&fs_info->trans_lock);
871 	if (async_transid) {
872 		*async_transid = trans->transid;
873 		ret = btrfs_commit_transaction_async(trans, 1);
874 		if (ret)
875 			ret = btrfs_commit_transaction(trans);
876 	} else {
877 		ret = btrfs_commit_transaction(trans);
878 	}
879 	if (ret)
880 		goto fail;
881 
882 	ret = pending_snapshot->error;
883 	if (ret)
884 		goto fail;
885 
886 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
887 	if (ret)
888 		goto fail;
889 
890 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
891 	if (IS_ERR(inode)) {
892 		ret = PTR_ERR(inode);
893 		goto fail;
894 	}
895 
896 	d_instantiate(dentry, inode);
897 	ret = 0;
898 fail:
899 	btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
900 dec_and_free:
901 	if (snapshot_force_cow)
902 		atomic_dec(&root->snapshot_force_cow);
903 	if (atomic_dec_and_test(&root->will_be_snapshotted))
904 		wake_up_var(&root->will_be_snapshotted);
905 free_pending:
906 	kfree(pending_snapshot->root_item);
907 	btrfs_free_path(pending_snapshot->path);
908 	kfree(pending_snapshot);
909 
910 	return ret;
911 }
912 
913 /*  copy of may_delete in fs/namei.c()
914  *	Check whether we can remove a link victim from directory dir, check
915  *  whether the type of victim is right.
916  *  1. We can't do it if dir is read-only (done in permission())
917  *  2. We should have write and exec permissions on dir
918  *  3. We can't remove anything from append-only dir
919  *  4. We can't do anything with immutable dir (done in permission())
920  *  5. If the sticky bit on dir is set we should either
921  *	a. be owner of dir, or
922  *	b. be owner of victim, or
923  *	c. have CAP_FOWNER capability
924  *  6. If the victim is append-only or immutable we can't do anything with
925  *     links pointing to it.
926  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
927  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
928  *  9. We can't remove a root or mountpoint.
929  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
930  *     nfs_async_unlink().
931  */
932 
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)933 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
934 {
935 	int error;
936 
937 	if (d_really_is_negative(victim))
938 		return -ENOENT;
939 
940 	BUG_ON(d_inode(victim->d_parent) != dir);
941 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
942 
943 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
944 	if (error)
945 		return error;
946 	if (IS_APPEND(dir))
947 		return -EPERM;
948 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
949 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
950 		return -EPERM;
951 	if (isdir) {
952 		if (!d_is_dir(victim))
953 			return -ENOTDIR;
954 		if (IS_ROOT(victim))
955 			return -EBUSY;
956 	} else if (d_is_dir(victim))
957 		return -EISDIR;
958 	if (IS_DEADDIR(dir))
959 		return -ENOENT;
960 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
961 		return -EBUSY;
962 	return 0;
963 }
964 
965 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)966 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
967 {
968 	if (d_really_is_positive(child))
969 		return -EEXIST;
970 	if (IS_DEADDIR(dir))
971 		return -ENOENT;
972 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
973 }
974 
975 /*
976  * Create a new subvolume below @parent.  This is largely modeled after
977  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
978  * inside this filesystem so it's quite a bit simpler.
979  */
btrfs_mksubvol(const struct path * parent,const char * name,int namelen,struct btrfs_root * snap_src,u64 * async_transid,bool readonly,struct btrfs_qgroup_inherit * inherit)980 static noinline int btrfs_mksubvol(const struct path *parent,
981 				   const char *name, int namelen,
982 				   struct btrfs_root *snap_src,
983 				   u64 *async_transid, bool readonly,
984 				   struct btrfs_qgroup_inherit *inherit)
985 {
986 	struct inode *dir = d_inode(parent->dentry);
987 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
988 	struct dentry *dentry;
989 	int error;
990 
991 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
992 	if (error == -EINTR)
993 		return error;
994 
995 	dentry = lookup_one_len(name, parent->dentry, namelen);
996 	error = PTR_ERR(dentry);
997 	if (IS_ERR(dentry))
998 		goto out_unlock;
999 
1000 	error = btrfs_may_create(dir, dentry);
1001 	if (error)
1002 		goto out_dput;
1003 
1004 	/*
1005 	 * even if this name doesn't exist, we may get hash collisions.
1006 	 * check for them now when we can safely fail
1007 	 */
1008 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1009 					       dir->i_ino, name,
1010 					       namelen);
1011 	if (error)
1012 		goto out_dput;
1013 
1014 	down_read(&fs_info->subvol_sem);
1015 
1016 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1017 		goto out_up_read;
1018 
1019 	if (snap_src) {
1020 		error = create_snapshot(snap_src, dir, dentry,
1021 					async_transid, readonly, inherit);
1022 	} else {
1023 		error = create_subvol(dir, dentry, name, namelen,
1024 				      async_transid, inherit);
1025 	}
1026 	if (!error)
1027 		fsnotify_mkdir(dir, dentry);
1028 out_up_read:
1029 	up_read(&fs_info->subvol_sem);
1030 out_dput:
1031 	dput(dentry);
1032 out_unlock:
1033 	inode_unlock(dir);
1034 	return error;
1035 }
1036 
1037 /*
1038  * When we're defragging a range, we don't want to kick it off again
1039  * if it is really just waiting for delalloc to send it down.
1040  * If we find a nice big extent or delalloc range for the bytes in the
1041  * file you want to defrag, we return 0 to let you know to skip this
1042  * part of the file
1043  */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)1044 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1045 {
1046 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1047 	struct extent_map *em = NULL;
1048 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1049 	u64 end;
1050 
1051 	read_lock(&em_tree->lock);
1052 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1053 	read_unlock(&em_tree->lock);
1054 
1055 	if (em) {
1056 		end = extent_map_end(em);
1057 		free_extent_map(em);
1058 		if (end - offset > thresh)
1059 			return 0;
1060 	}
1061 	/* if we already have a nice delalloc here, just stop */
1062 	thresh /= 2;
1063 	end = count_range_bits(io_tree, &offset, offset + thresh,
1064 			       thresh, EXTENT_DELALLOC, 1);
1065 	if (end >= thresh)
1066 		return 0;
1067 	return 1;
1068 }
1069 
1070 /*
1071  * helper function to walk through a file and find extents
1072  * newer than a specific transid, and smaller than thresh.
1073  *
1074  * This is used by the defragging code to find new and small
1075  * extents
1076  */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)1077 static int find_new_extents(struct btrfs_root *root,
1078 			    struct inode *inode, u64 newer_than,
1079 			    u64 *off, u32 thresh)
1080 {
1081 	struct btrfs_path *path;
1082 	struct btrfs_key min_key;
1083 	struct extent_buffer *leaf;
1084 	struct btrfs_file_extent_item *extent;
1085 	int type;
1086 	int ret;
1087 	u64 ino = btrfs_ino(BTRFS_I(inode));
1088 
1089 	path = btrfs_alloc_path();
1090 	if (!path)
1091 		return -ENOMEM;
1092 
1093 	min_key.objectid = ino;
1094 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1095 	min_key.offset = *off;
1096 
1097 	while (1) {
1098 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1099 		if (ret != 0)
1100 			goto none;
1101 process_slot:
1102 		if (min_key.objectid != ino)
1103 			goto none;
1104 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1105 			goto none;
1106 
1107 		leaf = path->nodes[0];
1108 		extent = btrfs_item_ptr(leaf, path->slots[0],
1109 					struct btrfs_file_extent_item);
1110 
1111 		type = btrfs_file_extent_type(leaf, extent);
1112 		if (type == BTRFS_FILE_EXTENT_REG &&
1113 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1114 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1115 			*off = min_key.offset;
1116 			btrfs_free_path(path);
1117 			return 0;
1118 		}
1119 
1120 		path->slots[0]++;
1121 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1122 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1123 			goto process_slot;
1124 		}
1125 
1126 		if (min_key.offset == (u64)-1)
1127 			goto none;
1128 
1129 		min_key.offset++;
1130 		btrfs_release_path(path);
1131 	}
1132 none:
1133 	btrfs_free_path(path);
1134 	return -ENOENT;
1135 }
1136 
defrag_lookup_extent(struct inode * inode,u64 start)1137 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1138 {
1139 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1140 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1141 	struct extent_map *em;
1142 	u64 len = PAGE_SIZE;
1143 
1144 	/*
1145 	 * hopefully we have this extent in the tree already, try without
1146 	 * the full extent lock
1147 	 */
1148 	read_lock(&em_tree->lock);
1149 	em = lookup_extent_mapping(em_tree, start, len);
1150 	read_unlock(&em_tree->lock);
1151 
1152 	if (!em) {
1153 		struct extent_state *cached = NULL;
1154 		u64 end = start + len - 1;
1155 
1156 		/* get the big lock and read metadata off disk */
1157 		lock_extent_bits(io_tree, start, end, &cached);
1158 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1159 		unlock_extent_cached(io_tree, start, end, &cached);
1160 
1161 		if (IS_ERR(em))
1162 			return NULL;
1163 	}
1164 
1165 	return em;
1166 }
1167 
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1168 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1169 {
1170 	struct extent_map *next;
1171 	bool ret = true;
1172 
1173 	/* this is the last extent */
1174 	if (em->start + em->len >= i_size_read(inode))
1175 		return false;
1176 
1177 	next = defrag_lookup_extent(inode, em->start + em->len);
1178 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1179 		ret = false;
1180 	else if ((em->block_start + em->block_len == next->block_start) &&
1181 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1182 		ret = false;
1183 
1184 	free_extent_map(next);
1185 	return ret;
1186 }
1187 
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1188 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1189 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1190 			       int compress)
1191 {
1192 	struct extent_map *em;
1193 	int ret = 1;
1194 	bool next_mergeable = true;
1195 	bool prev_mergeable = true;
1196 
1197 	/*
1198 	 * make sure that once we start defragging an extent, we keep on
1199 	 * defragging it
1200 	 */
1201 	if (start < *defrag_end)
1202 		return 1;
1203 
1204 	*skip = 0;
1205 
1206 	em = defrag_lookup_extent(inode, start);
1207 	if (!em)
1208 		return 0;
1209 
1210 	/* this will cover holes, and inline extents */
1211 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1212 		ret = 0;
1213 		goto out;
1214 	}
1215 
1216 	if (!*defrag_end)
1217 		prev_mergeable = false;
1218 
1219 	next_mergeable = defrag_check_next_extent(inode, em);
1220 	/*
1221 	 * we hit a real extent, if it is big or the next extent is not a
1222 	 * real extent, don't bother defragging it
1223 	 */
1224 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1225 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1226 		ret = 0;
1227 out:
1228 	/*
1229 	 * last_len ends up being a counter of how many bytes we've defragged.
1230 	 * every time we choose not to defrag an extent, we reset *last_len
1231 	 * so that the next tiny extent will force a defrag.
1232 	 *
1233 	 * The end result of this is that tiny extents before a single big
1234 	 * extent will force at least part of that big extent to be defragged.
1235 	 */
1236 	if (ret) {
1237 		*defrag_end = extent_map_end(em);
1238 	} else {
1239 		*last_len = 0;
1240 		*skip = extent_map_end(em);
1241 		*defrag_end = 0;
1242 	}
1243 
1244 	free_extent_map(em);
1245 	return ret;
1246 }
1247 
1248 /*
1249  * it doesn't do much good to defrag one or two pages
1250  * at a time.  This pulls in a nice chunk of pages
1251  * to COW and defrag.
1252  *
1253  * It also makes sure the delalloc code has enough
1254  * dirty data to avoid making new small extents as part
1255  * of the defrag
1256  *
1257  * It's a good idea to start RA on this range
1258  * before calling this.
1259  */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1260 static int cluster_pages_for_defrag(struct inode *inode,
1261 				    struct page **pages,
1262 				    unsigned long start_index,
1263 				    unsigned long num_pages)
1264 {
1265 	unsigned long file_end;
1266 	u64 isize = i_size_read(inode);
1267 	u64 page_start;
1268 	u64 page_end;
1269 	u64 page_cnt;
1270 	u64 start = (u64)start_index << PAGE_SHIFT;
1271 	u64 search_start;
1272 	int ret;
1273 	int i;
1274 	int i_done;
1275 	struct btrfs_ordered_extent *ordered;
1276 	struct extent_state *cached_state = NULL;
1277 	struct extent_io_tree *tree;
1278 	struct extent_changeset *data_reserved = NULL;
1279 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1280 
1281 	file_end = (isize - 1) >> PAGE_SHIFT;
1282 	if (!isize || start_index > file_end)
1283 		return 0;
1284 
1285 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1286 
1287 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1288 			start, page_cnt << PAGE_SHIFT);
1289 	if (ret)
1290 		return ret;
1291 	i_done = 0;
1292 	tree = &BTRFS_I(inode)->io_tree;
1293 
1294 	/* step one, lock all the pages */
1295 	for (i = 0; i < page_cnt; i++) {
1296 		struct page *page;
1297 again:
1298 		page = find_or_create_page(inode->i_mapping,
1299 					   start_index + i, mask);
1300 		if (!page)
1301 			break;
1302 
1303 		page_start = page_offset(page);
1304 		page_end = page_start + PAGE_SIZE - 1;
1305 		while (1) {
1306 			lock_extent_bits(tree, page_start, page_end,
1307 					 &cached_state);
1308 			ordered = btrfs_lookup_ordered_extent(inode,
1309 							      page_start);
1310 			unlock_extent_cached(tree, page_start, page_end,
1311 					     &cached_state);
1312 			if (!ordered)
1313 				break;
1314 
1315 			unlock_page(page);
1316 			btrfs_start_ordered_extent(inode, ordered, 1);
1317 			btrfs_put_ordered_extent(ordered);
1318 			lock_page(page);
1319 			/*
1320 			 * we unlocked the page above, so we need check if
1321 			 * it was released or not.
1322 			 */
1323 			if (page->mapping != inode->i_mapping) {
1324 				unlock_page(page);
1325 				put_page(page);
1326 				goto again;
1327 			}
1328 		}
1329 
1330 		if (!PageUptodate(page)) {
1331 			btrfs_readpage(NULL, page);
1332 			lock_page(page);
1333 			if (!PageUptodate(page)) {
1334 				unlock_page(page);
1335 				put_page(page);
1336 				ret = -EIO;
1337 				break;
1338 			}
1339 		}
1340 
1341 		if (page->mapping != inode->i_mapping) {
1342 			unlock_page(page);
1343 			put_page(page);
1344 			goto again;
1345 		}
1346 
1347 		pages[i] = page;
1348 		i_done++;
1349 	}
1350 	if (!i_done || ret)
1351 		goto out;
1352 
1353 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1354 		goto out;
1355 
1356 	/*
1357 	 * so now we have a nice long stream of locked
1358 	 * and up to date pages, lets wait on them
1359 	 */
1360 	for (i = 0; i < i_done; i++)
1361 		wait_on_page_writeback(pages[i]);
1362 
1363 	page_start = page_offset(pages[0]);
1364 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1365 
1366 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1367 			 page_start, page_end - 1, &cached_state);
1368 
1369 	/*
1370 	 * When defragmenting we skip ranges that have holes or inline extents,
1371 	 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1372 	 * space. At btrfs_defrag_file(), we check if a range should be defragged
1373 	 * before locking the inode and then, if it should, we trigger a sync
1374 	 * page cache readahead - we lock the inode only after that to avoid
1375 	 * blocking for too long other tasks that possibly want to operate on
1376 	 * other file ranges. But before we were able to get the inode lock,
1377 	 * some other task may have punched a hole in the range, or we may have
1378 	 * now an inline extent, in which case we should not defrag. So check
1379 	 * for that here, where we have the inode and the range locked, and bail
1380 	 * out if that happened.
1381 	 */
1382 	search_start = page_start;
1383 	while (search_start < page_end) {
1384 		struct extent_map *em;
1385 
1386 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1387 				      page_end - search_start, 0);
1388 		if (IS_ERR(em)) {
1389 			ret = PTR_ERR(em);
1390 			goto out_unlock_range;
1391 		}
1392 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1393 			free_extent_map(em);
1394 			/* Ok, 0 means we did not defrag anything */
1395 			ret = 0;
1396 			goto out_unlock_range;
1397 		}
1398 		search_start = extent_map_end(em);
1399 		free_extent_map(em);
1400 	}
1401 
1402 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1403 			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1404 			  EXTENT_DEFRAG, 0, 0, &cached_state);
1405 
1406 	if (i_done != page_cnt) {
1407 		spin_lock(&BTRFS_I(inode)->lock);
1408 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1409 		spin_unlock(&BTRFS_I(inode)->lock);
1410 		btrfs_delalloc_release_space(inode, data_reserved,
1411 				start, (page_cnt - i_done) << PAGE_SHIFT, true);
1412 	}
1413 
1414 
1415 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1416 			  &cached_state);
1417 
1418 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1419 			     page_start, page_end - 1, &cached_state);
1420 
1421 	for (i = 0; i < i_done; i++) {
1422 		clear_page_dirty_for_io(pages[i]);
1423 		ClearPageChecked(pages[i]);
1424 		set_page_extent_mapped(pages[i]);
1425 		set_page_dirty(pages[i]);
1426 		unlock_page(pages[i]);
1427 		put_page(pages[i]);
1428 	}
1429 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1430 	extent_changeset_free(data_reserved);
1431 	return i_done;
1432 
1433 out_unlock_range:
1434 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1435 			     page_start, page_end - 1, &cached_state);
1436 out:
1437 	for (i = 0; i < i_done; i++) {
1438 		unlock_page(pages[i]);
1439 		put_page(pages[i]);
1440 	}
1441 	btrfs_delalloc_release_space(inode, data_reserved,
1442 			start, page_cnt << PAGE_SHIFT, true);
1443 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1444 	extent_changeset_free(data_reserved);
1445 	return ret;
1446 
1447 }
1448 
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1449 int btrfs_defrag_file(struct inode *inode, struct file *file,
1450 		      struct btrfs_ioctl_defrag_range_args *range,
1451 		      u64 newer_than, unsigned long max_to_defrag)
1452 {
1453 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1454 	struct btrfs_root *root = BTRFS_I(inode)->root;
1455 	struct file_ra_state *ra = NULL;
1456 	unsigned long last_index;
1457 	u64 isize = i_size_read(inode);
1458 	u64 last_len = 0;
1459 	u64 skip = 0;
1460 	u64 defrag_end = 0;
1461 	u64 newer_off = range->start;
1462 	unsigned long i;
1463 	unsigned long ra_index = 0;
1464 	int ret;
1465 	int defrag_count = 0;
1466 	int compress_type = BTRFS_COMPRESS_ZLIB;
1467 	u32 extent_thresh = range->extent_thresh;
1468 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1469 	unsigned long cluster = max_cluster;
1470 	u64 new_align = ~((u64)SZ_128K - 1);
1471 	struct page **pages = NULL;
1472 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1473 
1474 	if (isize == 0)
1475 		return 0;
1476 
1477 	if (range->start >= isize)
1478 		return -EINVAL;
1479 
1480 	if (do_compress) {
1481 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1482 			return -EINVAL;
1483 		if (range->compress_type)
1484 			compress_type = range->compress_type;
1485 	}
1486 
1487 	if (extent_thresh == 0)
1488 		extent_thresh = SZ_256K;
1489 
1490 	/*
1491 	 * If we were not given a file, allocate a readahead context. As
1492 	 * readahead is just an optimization, defrag will work without it so
1493 	 * we don't error out.
1494 	 */
1495 	if (!file) {
1496 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1497 		if (ra)
1498 			file_ra_state_init(ra, inode->i_mapping);
1499 	} else {
1500 		ra = &file->f_ra;
1501 	}
1502 
1503 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1504 	if (!pages) {
1505 		ret = -ENOMEM;
1506 		goto out_ra;
1507 	}
1508 
1509 	/* find the last page to defrag */
1510 	if (range->start + range->len > range->start) {
1511 		last_index = min_t(u64, isize - 1,
1512 			 range->start + range->len - 1) >> PAGE_SHIFT;
1513 	} else {
1514 		last_index = (isize - 1) >> PAGE_SHIFT;
1515 	}
1516 
1517 	if (newer_than) {
1518 		ret = find_new_extents(root, inode, newer_than,
1519 				       &newer_off, SZ_64K);
1520 		if (!ret) {
1521 			range->start = newer_off;
1522 			/*
1523 			 * we always align our defrag to help keep
1524 			 * the extents in the file evenly spaced
1525 			 */
1526 			i = (newer_off & new_align) >> PAGE_SHIFT;
1527 		} else
1528 			goto out_ra;
1529 	} else {
1530 		i = range->start >> PAGE_SHIFT;
1531 	}
1532 	if (!max_to_defrag)
1533 		max_to_defrag = last_index - i + 1;
1534 
1535 	/*
1536 	 * make writeback starts from i, so the defrag range can be
1537 	 * written sequentially.
1538 	 */
1539 	if (i < inode->i_mapping->writeback_index)
1540 		inode->i_mapping->writeback_index = i;
1541 
1542 	while (i <= last_index && defrag_count < max_to_defrag &&
1543 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1544 		/*
1545 		 * make sure we stop running if someone unmounts
1546 		 * the FS
1547 		 */
1548 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1549 			break;
1550 
1551 		if (btrfs_defrag_cancelled(fs_info)) {
1552 			btrfs_debug(fs_info, "defrag_file cancelled");
1553 			ret = -EAGAIN;
1554 			break;
1555 		}
1556 
1557 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1558 					 extent_thresh, &last_len, &skip,
1559 					 &defrag_end, do_compress)){
1560 			unsigned long next;
1561 			/*
1562 			 * the should_defrag function tells us how much to skip
1563 			 * bump our counter by the suggested amount
1564 			 */
1565 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1566 			i = max(i + 1, next);
1567 			continue;
1568 		}
1569 
1570 		if (!newer_than) {
1571 			cluster = (PAGE_ALIGN(defrag_end) >>
1572 				   PAGE_SHIFT) - i;
1573 			cluster = min(cluster, max_cluster);
1574 		} else {
1575 			cluster = max_cluster;
1576 		}
1577 
1578 		if (i + cluster > ra_index) {
1579 			ra_index = max(i, ra_index);
1580 			if (ra)
1581 				page_cache_sync_readahead(inode->i_mapping, ra,
1582 						file, ra_index, cluster);
1583 			ra_index += cluster;
1584 		}
1585 
1586 		inode_lock(inode);
1587 		if (IS_SWAPFILE(inode)) {
1588 			ret = -ETXTBSY;
1589 		} else {
1590 			if (do_compress)
1591 				BTRFS_I(inode)->defrag_compress = compress_type;
1592 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1593 		}
1594 		if (ret < 0) {
1595 			inode_unlock(inode);
1596 			goto out_ra;
1597 		}
1598 
1599 		defrag_count += ret;
1600 		balance_dirty_pages_ratelimited(inode->i_mapping);
1601 		inode_unlock(inode);
1602 
1603 		if (newer_than) {
1604 			if (newer_off == (u64)-1)
1605 				break;
1606 
1607 			if (ret > 0)
1608 				i += ret;
1609 
1610 			newer_off = max(newer_off + 1,
1611 					(u64)i << PAGE_SHIFT);
1612 
1613 			ret = find_new_extents(root, inode, newer_than,
1614 					       &newer_off, SZ_64K);
1615 			if (!ret) {
1616 				range->start = newer_off;
1617 				i = (newer_off & new_align) >> PAGE_SHIFT;
1618 			} else {
1619 				break;
1620 			}
1621 		} else {
1622 			if (ret > 0) {
1623 				i += ret;
1624 				last_len += ret << PAGE_SHIFT;
1625 			} else {
1626 				i++;
1627 				last_len = 0;
1628 			}
1629 		}
1630 	}
1631 
1632 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1633 		filemap_flush(inode->i_mapping);
1634 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1635 			     &BTRFS_I(inode)->runtime_flags))
1636 			filemap_flush(inode->i_mapping);
1637 	}
1638 
1639 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1640 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1641 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1642 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1643 	}
1644 
1645 	ret = defrag_count;
1646 
1647 out_ra:
1648 	if (do_compress) {
1649 		inode_lock(inode);
1650 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1651 		inode_unlock(inode);
1652 	}
1653 	if (!file)
1654 		kfree(ra);
1655 	kfree(pages);
1656 	return ret;
1657 }
1658 
btrfs_ioctl_resize(struct file * file,void __user * arg)1659 static noinline int btrfs_ioctl_resize(struct file *file,
1660 					void __user *arg)
1661 {
1662 	struct inode *inode = file_inode(file);
1663 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1664 	u64 new_size;
1665 	u64 old_size;
1666 	u64 devid = 1;
1667 	struct btrfs_root *root = BTRFS_I(inode)->root;
1668 	struct btrfs_ioctl_vol_args *vol_args;
1669 	struct btrfs_trans_handle *trans;
1670 	struct btrfs_device *device = NULL;
1671 	char *sizestr;
1672 	char *retptr;
1673 	char *devstr = NULL;
1674 	int ret = 0;
1675 	int mod = 0;
1676 
1677 	if (!capable(CAP_SYS_ADMIN))
1678 		return -EPERM;
1679 
1680 	ret = mnt_want_write_file(file);
1681 	if (ret)
1682 		return ret;
1683 
1684 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1685 		mnt_drop_write_file(file);
1686 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1687 	}
1688 
1689 	vol_args = memdup_user(arg, sizeof(*vol_args));
1690 	if (IS_ERR(vol_args)) {
1691 		ret = PTR_ERR(vol_args);
1692 		goto out;
1693 	}
1694 
1695 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1696 
1697 	sizestr = vol_args->name;
1698 	devstr = strchr(sizestr, ':');
1699 	if (devstr) {
1700 		sizestr = devstr + 1;
1701 		*devstr = '\0';
1702 		devstr = vol_args->name;
1703 		ret = kstrtoull(devstr, 10, &devid);
1704 		if (ret)
1705 			goto out_free;
1706 		if (!devid) {
1707 			ret = -EINVAL;
1708 			goto out_free;
1709 		}
1710 		btrfs_info(fs_info, "resizing devid %llu", devid);
1711 	}
1712 
1713 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1714 	if (!device) {
1715 		btrfs_info(fs_info, "resizer unable to find device %llu",
1716 			   devid);
1717 		ret = -ENODEV;
1718 		goto out_free;
1719 	}
1720 
1721 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1722 		btrfs_info(fs_info,
1723 			   "resizer unable to apply on readonly device %llu",
1724 		       devid);
1725 		ret = -EPERM;
1726 		goto out_free;
1727 	}
1728 
1729 	if (!strcmp(sizestr, "max"))
1730 		new_size = device->bdev->bd_inode->i_size;
1731 	else {
1732 		if (sizestr[0] == '-') {
1733 			mod = -1;
1734 			sizestr++;
1735 		} else if (sizestr[0] == '+') {
1736 			mod = 1;
1737 			sizestr++;
1738 		}
1739 		new_size = memparse(sizestr, &retptr);
1740 		if (*retptr != '\0' || new_size == 0) {
1741 			ret = -EINVAL;
1742 			goto out_free;
1743 		}
1744 	}
1745 
1746 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1747 		ret = -EPERM;
1748 		goto out_free;
1749 	}
1750 
1751 	old_size = btrfs_device_get_total_bytes(device);
1752 
1753 	if (mod < 0) {
1754 		if (new_size > old_size) {
1755 			ret = -EINVAL;
1756 			goto out_free;
1757 		}
1758 		new_size = old_size - new_size;
1759 	} else if (mod > 0) {
1760 		if (new_size > ULLONG_MAX - old_size) {
1761 			ret = -ERANGE;
1762 			goto out_free;
1763 		}
1764 		new_size = old_size + new_size;
1765 	}
1766 
1767 	if (new_size < SZ_256M) {
1768 		ret = -EINVAL;
1769 		goto out_free;
1770 	}
1771 	if (new_size > device->bdev->bd_inode->i_size) {
1772 		ret = -EFBIG;
1773 		goto out_free;
1774 	}
1775 
1776 	new_size = round_down(new_size, fs_info->sectorsize);
1777 
1778 	btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1779 			  rcu_str_deref(device->name), new_size);
1780 
1781 	if (new_size > old_size) {
1782 		trans = btrfs_start_transaction(root, 0);
1783 		if (IS_ERR(trans)) {
1784 			ret = PTR_ERR(trans);
1785 			goto out_free;
1786 		}
1787 		ret = btrfs_grow_device(trans, device, new_size);
1788 		btrfs_commit_transaction(trans);
1789 	} else if (new_size < old_size) {
1790 		ret = btrfs_shrink_device(device, new_size);
1791 	} /* equal, nothing need to do */
1792 
1793 out_free:
1794 	kfree(vol_args);
1795 out:
1796 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1797 	mnt_drop_write_file(file);
1798 	return ret;
1799 }
1800 
btrfs_ioctl_snap_create_transid(struct file * file,const char * name,unsigned long fd,int subvol,u64 * transid,bool readonly,struct btrfs_qgroup_inherit * inherit)1801 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1802 				const char *name, unsigned long fd, int subvol,
1803 				u64 *transid, bool readonly,
1804 				struct btrfs_qgroup_inherit *inherit)
1805 {
1806 	int namelen;
1807 	int ret = 0;
1808 
1809 	if (!S_ISDIR(file_inode(file)->i_mode))
1810 		return -ENOTDIR;
1811 
1812 	ret = mnt_want_write_file(file);
1813 	if (ret)
1814 		goto out;
1815 
1816 	namelen = strlen(name);
1817 	if (strchr(name, '/')) {
1818 		ret = -EINVAL;
1819 		goto out_drop_write;
1820 	}
1821 
1822 	if (name[0] == '.' &&
1823 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1824 		ret = -EEXIST;
1825 		goto out_drop_write;
1826 	}
1827 
1828 	if (subvol) {
1829 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1830 				     NULL, transid, readonly, inherit);
1831 	} else {
1832 		struct fd src = fdget(fd);
1833 		struct inode *src_inode;
1834 		if (!src.file) {
1835 			ret = -EINVAL;
1836 			goto out_drop_write;
1837 		}
1838 
1839 		src_inode = file_inode(src.file);
1840 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1841 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1842 				   "Snapshot src from another FS");
1843 			ret = -EXDEV;
1844 		} else if (!inode_owner_or_capable(src_inode)) {
1845 			/*
1846 			 * Subvolume creation is not restricted, but snapshots
1847 			 * are limited to own subvolumes only
1848 			 */
1849 			ret = -EPERM;
1850 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1851 			/*
1852 			 * Snapshots must be made with the src_inode referring
1853 			 * to the subvolume inode, otherwise the permission
1854 			 * checking above is useless because we may have
1855 			 * permission on a lower directory but not the subvol
1856 			 * itself.
1857 			 */
1858 			ret = -EINVAL;
1859 		} else {
1860 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1861 					     BTRFS_I(src_inode)->root,
1862 					     transid, readonly, inherit);
1863 		}
1864 		fdput(src);
1865 	}
1866 out_drop_write:
1867 	mnt_drop_write_file(file);
1868 out:
1869 	return ret;
1870 }
1871 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1872 static noinline int btrfs_ioctl_snap_create(struct file *file,
1873 					    void __user *arg, int subvol)
1874 {
1875 	struct btrfs_ioctl_vol_args *vol_args;
1876 	int ret;
1877 
1878 	if (!S_ISDIR(file_inode(file)->i_mode))
1879 		return -ENOTDIR;
1880 
1881 	vol_args = memdup_user(arg, sizeof(*vol_args));
1882 	if (IS_ERR(vol_args))
1883 		return PTR_ERR(vol_args);
1884 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1885 
1886 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1887 					      vol_args->fd, subvol,
1888 					      NULL, false, NULL);
1889 
1890 	kfree(vol_args);
1891 	return ret;
1892 }
1893 
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1894 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1895 					       void __user *arg, int subvol)
1896 {
1897 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1898 	int ret;
1899 	u64 transid = 0;
1900 	u64 *ptr = NULL;
1901 	bool readonly = false;
1902 	struct btrfs_qgroup_inherit *inherit = NULL;
1903 
1904 	if (!S_ISDIR(file_inode(file)->i_mode))
1905 		return -ENOTDIR;
1906 
1907 	vol_args = memdup_user(arg, sizeof(*vol_args));
1908 	if (IS_ERR(vol_args))
1909 		return PTR_ERR(vol_args);
1910 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1911 
1912 	if (vol_args->flags &
1913 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1914 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1915 		ret = -EOPNOTSUPP;
1916 		goto free_args;
1917 	}
1918 
1919 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1920 		struct inode *inode = file_inode(file);
1921 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1922 
1923 		btrfs_warn(fs_info,
1924 "SNAP_CREATE_V2 ioctl with CREATE_ASYNC is deprecated and will be removed in kernel 5.7");
1925 
1926 		ptr = &transid;
1927 	}
1928 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1929 		readonly = true;
1930 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1931 		u64 nums;
1932 
1933 		if (vol_args->size < sizeof(*inherit) ||
1934 		    vol_args->size > PAGE_SIZE) {
1935 			ret = -EINVAL;
1936 			goto free_args;
1937 		}
1938 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1939 		if (IS_ERR(inherit)) {
1940 			ret = PTR_ERR(inherit);
1941 			goto free_args;
1942 		}
1943 
1944 		if (inherit->num_qgroups > PAGE_SIZE ||
1945 		    inherit->num_ref_copies > PAGE_SIZE ||
1946 		    inherit->num_excl_copies > PAGE_SIZE) {
1947 			ret = -EINVAL;
1948 			goto free_inherit;
1949 		}
1950 
1951 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1952 		       2 * inherit->num_excl_copies;
1953 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1954 			ret = -EINVAL;
1955 			goto free_inherit;
1956 		}
1957 	}
1958 
1959 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1960 					      vol_args->fd, subvol, ptr,
1961 					      readonly, inherit);
1962 	if (ret)
1963 		goto free_inherit;
1964 
1965 	if (ptr && copy_to_user(arg +
1966 				offsetof(struct btrfs_ioctl_vol_args_v2,
1967 					transid),
1968 				ptr, sizeof(*ptr)))
1969 		ret = -EFAULT;
1970 
1971 free_inherit:
1972 	kfree(inherit);
1973 free_args:
1974 	kfree(vol_args);
1975 	return ret;
1976 }
1977 
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1978 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1979 						void __user *arg)
1980 {
1981 	struct inode *inode = file_inode(file);
1982 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1983 	struct btrfs_root *root = BTRFS_I(inode)->root;
1984 	int ret = 0;
1985 	u64 flags = 0;
1986 
1987 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1988 		return -EINVAL;
1989 
1990 	down_read(&fs_info->subvol_sem);
1991 	if (btrfs_root_readonly(root))
1992 		flags |= BTRFS_SUBVOL_RDONLY;
1993 	up_read(&fs_info->subvol_sem);
1994 
1995 	if (copy_to_user(arg, &flags, sizeof(flags)))
1996 		ret = -EFAULT;
1997 
1998 	return ret;
1999 }
2000 
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)2001 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2002 					      void __user *arg)
2003 {
2004 	struct inode *inode = file_inode(file);
2005 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2006 	struct btrfs_root *root = BTRFS_I(inode)->root;
2007 	struct btrfs_trans_handle *trans;
2008 	u64 root_flags;
2009 	u64 flags;
2010 	int ret = 0;
2011 
2012 	if (!inode_owner_or_capable(inode))
2013 		return -EPERM;
2014 
2015 	ret = mnt_want_write_file(file);
2016 	if (ret)
2017 		goto out;
2018 
2019 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2020 		ret = -EINVAL;
2021 		goto out_drop_write;
2022 	}
2023 
2024 	if (copy_from_user(&flags, arg, sizeof(flags))) {
2025 		ret = -EFAULT;
2026 		goto out_drop_write;
2027 	}
2028 
2029 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
2030 		ret = -EINVAL;
2031 		goto out_drop_write;
2032 	}
2033 
2034 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
2035 		ret = -EOPNOTSUPP;
2036 		goto out_drop_write;
2037 	}
2038 
2039 	down_write(&fs_info->subvol_sem);
2040 
2041 	/* nothing to do */
2042 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2043 		goto out_drop_sem;
2044 
2045 	root_flags = btrfs_root_flags(&root->root_item);
2046 	if (flags & BTRFS_SUBVOL_RDONLY) {
2047 		btrfs_set_root_flags(&root->root_item,
2048 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2049 	} else {
2050 		/*
2051 		 * Block RO -> RW transition if this subvolume is involved in
2052 		 * send
2053 		 */
2054 		spin_lock(&root->root_item_lock);
2055 		if (root->send_in_progress == 0) {
2056 			btrfs_set_root_flags(&root->root_item,
2057 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2058 			spin_unlock(&root->root_item_lock);
2059 		} else {
2060 			spin_unlock(&root->root_item_lock);
2061 			btrfs_warn(fs_info,
2062 				   "Attempt to set subvolume %llu read-write during send",
2063 				   root->root_key.objectid);
2064 			ret = -EPERM;
2065 			goto out_drop_sem;
2066 		}
2067 	}
2068 
2069 	trans = btrfs_start_transaction(root, 1);
2070 	if (IS_ERR(trans)) {
2071 		ret = PTR_ERR(trans);
2072 		goto out_reset;
2073 	}
2074 
2075 	ret = btrfs_update_root(trans, fs_info->tree_root,
2076 				&root->root_key, &root->root_item);
2077 	if (ret < 0) {
2078 		btrfs_end_transaction(trans);
2079 		goto out_reset;
2080 	}
2081 
2082 	ret = btrfs_commit_transaction(trans);
2083 
2084 out_reset:
2085 	if (ret)
2086 		btrfs_set_root_flags(&root->root_item, root_flags);
2087 out_drop_sem:
2088 	up_write(&fs_info->subvol_sem);
2089 out_drop_write:
2090 	mnt_drop_write_file(file);
2091 out:
2092 	return ret;
2093 }
2094 
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)2095 static noinline int key_in_sk(struct btrfs_key *key,
2096 			      struct btrfs_ioctl_search_key *sk)
2097 {
2098 	struct btrfs_key test;
2099 	int ret;
2100 
2101 	test.objectid = sk->min_objectid;
2102 	test.type = sk->min_type;
2103 	test.offset = sk->min_offset;
2104 
2105 	ret = btrfs_comp_cpu_keys(key, &test);
2106 	if (ret < 0)
2107 		return 0;
2108 
2109 	test.objectid = sk->max_objectid;
2110 	test.type = sk->max_type;
2111 	test.offset = sk->max_offset;
2112 
2113 	ret = btrfs_comp_cpu_keys(key, &test);
2114 	if (ret > 0)
2115 		return 0;
2116 	return 1;
2117 }
2118 
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)2119 static noinline int copy_to_sk(struct btrfs_path *path,
2120 			       struct btrfs_key *key,
2121 			       struct btrfs_ioctl_search_key *sk,
2122 			       u64 *buf_size,
2123 			       char __user *ubuf,
2124 			       unsigned long *sk_offset,
2125 			       int *num_found)
2126 {
2127 	u64 found_transid;
2128 	struct extent_buffer *leaf;
2129 	struct btrfs_ioctl_search_header sh;
2130 	struct btrfs_key test;
2131 	unsigned long item_off;
2132 	unsigned long item_len;
2133 	int nritems;
2134 	int i;
2135 	int slot;
2136 	int ret = 0;
2137 
2138 	leaf = path->nodes[0];
2139 	slot = path->slots[0];
2140 	nritems = btrfs_header_nritems(leaf);
2141 
2142 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2143 		i = nritems;
2144 		goto advance_key;
2145 	}
2146 	found_transid = btrfs_header_generation(leaf);
2147 
2148 	for (i = slot; i < nritems; i++) {
2149 		item_off = btrfs_item_ptr_offset(leaf, i);
2150 		item_len = btrfs_item_size_nr(leaf, i);
2151 
2152 		btrfs_item_key_to_cpu(leaf, key, i);
2153 		if (!key_in_sk(key, sk))
2154 			continue;
2155 
2156 		if (sizeof(sh) + item_len > *buf_size) {
2157 			if (*num_found) {
2158 				ret = 1;
2159 				goto out;
2160 			}
2161 
2162 			/*
2163 			 * return one empty item back for v1, which does not
2164 			 * handle -EOVERFLOW
2165 			 */
2166 
2167 			*buf_size = sizeof(sh) + item_len;
2168 			item_len = 0;
2169 			ret = -EOVERFLOW;
2170 		}
2171 
2172 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2173 			ret = 1;
2174 			goto out;
2175 		}
2176 
2177 		sh.objectid = key->objectid;
2178 		sh.offset = key->offset;
2179 		sh.type = key->type;
2180 		sh.len = item_len;
2181 		sh.transid = found_transid;
2182 
2183 		/*
2184 		 * Copy search result header. If we fault then loop again so we
2185 		 * can fault in the pages and -EFAULT there if there's a
2186 		 * problem. Otherwise we'll fault and then copy the buffer in
2187 		 * properly this next time through
2188 		 */
2189 		if (probe_user_write(ubuf + *sk_offset, &sh, sizeof(sh))) {
2190 			ret = 0;
2191 			goto out;
2192 		}
2193 
2194 		*sk_offset += sizeof(sh);
2195 
2196 		if (item_len) {
2197 			char __user *up = ubuf + *sk_offset;
2198 			/*
2199 			 * Copy the item, same behavior as above, but reset the
2200 			 * * sk_offset so we copy the full thing again.
2201 			 */
2202 			if (read_extent_buffer_to_user_nofault(leaf, up,
2203 						item_off, item_len)) {
2204 				ret = 0;
2205 				*sk_offset -= sizeof(sh);
2206 				goto out;
2207 			}
2208 
2209 			*sk_offset += item_len;
2210 		}
2211 		(*num_found)++;
2212 
2213 		if (ret) /* -EOVERFLOW from above */
2214 			goto out;
2215 
2216 		if (*num_found >= sk->nr_items) {
2217 			ret = 1;
2218 			goto out;
2219 		}
2220 	}
2221 advance_key:
2222 	ret = 0;
2223 	test.objectid = sk->max_objectid;
2224 	test.type = sk->max_type;
2225 	test.offset = sk->max_offset;
2226 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2227 		ret = 1;
2228 	else if (key->offset < (u64)-1)
2229 		key->offset++;
2230 	else if (key->type < (u8)-1) {
2231 		key->offset = 0;
2232 		key->type++;
2233 	} else if (key->objectid < (u64)-1) {
2234 		key->offset = 0;
2235 		key->type = 0;
2236 		key->objectid++;
2237 	} else
2238 		ret = 1;
2239 out:
2240 	/*
2241 	 *  0: all items from this leaf copied, continue with next
2242 	 *  1: * more items can be copied, but unused buffer is too small
2243 	 *     * all items were found
2244 	 *     Either way, it will stops the loop which iterates to the next
2245 	 *     leaf
2246 	 *  -EOVERFLOW: item was to large for buffer
2247 	 *  -EFAULT: could not copy extent buffer back to userspace
2248 	 */
2249 	return ret;
2250 }
2251 
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)2252 static noinline int search_ioctl(struct inode *inode,
2253 				 struct btrfs_ioctl_search_key *sk,
2254 				 u64 *buf_size,
2255 				 char __user *ubuf)
2256 {
2257 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2258 	struct btrfs_root *root;
2259 	struct btrfs_key key;
2260 	struct btrfs_path *path;
2261 	int ret;
2262 	int num_found = 0;
2263 	unsigned long sk_offset = 0;
2264 
2265 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2266 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2267 		return -EOVERFLOW;
2268 	}
2269 
2270 	path = btrfs_alloc_path();
2271 	if (!path)
2272 		return -ENOMEM;
2273 
2274 	if (sk->tree_id == 0) {
2275 		/* search the root of the inode that was passed */
2276 		root = BTRFS_I(inode)->root;
2277 	} else {
2278 		key.objectid = sk->tree_id;
2279 		key.type = BTRFS_ROOT_ITEM_KEY;
2280 		key.offset = (u64)-1;
2281 		root = btrfs_read_fs_root_no_name(info, &key);
2282 		if (IS_ERR(root)) {
2283 			btrfs_free_path(path);
2284 			return PTR_ERR(root);
2285 		}
2286 	}
2287 
2288 	key.objectid = sk->min_objectid;
2289 	key.type = sk->min_type;
2290 	key.offset = sk->min_offset;
2291 
2292 	while (1) {
2293 		ret = fault_in_pages_writeable(ubuf + sk_offset,
2294 					       *buf_size - sk_offset);
2295 		if (ret)
2296 			break;
2297 
2298 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2299 		if (ret != 0) {
2300 			if (ret > 0)
2301 				ret = 0;
2302 			goto err;
2303 		}
2304 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2305 				 &sk_offset, &num_found);
2306 		btrfs_release_path(path);
2307 		if (ret)
2308 			break;
2309 
2310 	}
2311 	if (ret > 0)
2312 		ret = 0;
2313 err:
2314 	sk->nr_items = num_found;
2315 	btrfs_free_path(path);
2316 	return ret;
2317 }
2318 
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2319 static noinline int btrfs_ioctl_tree_search(struct file *file,
2320 					   void __user *argp)
2321 {
2322 	struct btrfs_ioctl_search_args __user *uargs;
2323 	struct btrfs_ioctl_search_key sk;
2324 	struct inode *inode;
2325 	int ret;
2326 	u64 buf_size;
2327 
2328 	if (!capable(CAP_SYS_ADMIN))
2329 		return -EPERM;
2330 
2331 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2332 
2333 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2334 		return -EFAULT;
2335 
2336 	buf_size = sizeof(uargs->buf);
2337 
2338 	inode = file_inode(file);
2339 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2340 
2341 	/*
2342 	 * In the origin implementation an overflow is handled by returning a
2343 	 * search header with a len of zero, so reset ret.
2344 	 */
2345 	if (ret == -EOVERFLOW)
2346 		ret = 0;
2347 
2348 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2349 		ret = -EFAULT;
2350 	return ret;
2351 }
2352 
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2353 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2354 					       void __user *argp)
2355 {
2356 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2357 	struct btrfs_ioctl_search_args_v2 args;
2358 	struct inode *inode;
2359 	int ret;
2360 	u64 buf_size;
2361 	const u64 buf_limit = SZ_16M;
2362 
2363 	if (!capable(CAP_SYS_ADMIN))
2364 		return -EPERM;
2365 
2366 	/* copy search header and buffer size */
2367 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2368 	if (copy_from_user(&args, uarg, sizeof(args)))
2369 		return -EFAULT;
2370 
2371 	buf_size = args.buf_size;
2372 
2373 	/* limit result size to 16MB */
2374 	if (buf_size > buf_limit)
2375 		buf_size = buf_limit;
2376 
2377 	inode = file_inode(file);
2378 	ret = search_ioctl(inode, &args.key, &buf_size,
2379 			   (char __user *)(&uarg->buf[0]));
2380 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2381 		ret = -EFAULT;
2382 	else if (ret == -EOVERFLOW &&
2383 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2384 		ret = -EFAULT;
2385 
2386 	return ret;
2387 }
2388 
2389 /*
2390  * Search INODE_REFs to identify path name of 'dirid' directory
2391  * in a 'tree_id' tree. and sets path name to 'name'.
2392  */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2393 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2394 				u64 tree_id, u64 dirid, char *name)
2395 {
2396 	struct btrfs_root *root;
2397 	struct btrfs_key key;
2398 	char *ptr;
2399 	int ret = -1;
2400 	int slot;
2401 	int len;
2402 	int total_len = 0;
2403 	struct btrfs_inode_ref *iref;
2404 	struct extent_buffer *l;
2405 	struct btrfs_path *path;
2406 
2407 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2408 		name[0]='\0';
2409 		return 0;
2410 	}
2411 
2412 	path = btrfs_alloc_path();
2413 	if (!path)
2414 		return -ENOMEM;
2415 
2416 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2417 
2418 	key.objectid = tree_id;
2419 	key.type = BTRFS_ROOT_ITEM_KEY;
2420 	key.offset = (u64)-1;
2421 	root = btrfs_read_fs_root_no_name(info, &key);
2422 	if (IS_ERR(root)) {
2423 		ret = PTR_ERR(root);
2424 		goto out;
2425 	}
2426 
2427 	key.objectid = dirid;
2428 	key.type = BTRFS_INODE_REF_KEY;
2429 	key.offset = (u64)-1;
2430 
2431 	while (1) {
2432 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2433 		if (ret < 0)
2434 			goto out;
2435 		else if (ret > 0) {
2436 			ret = btrfs_previous_item(root, path, dirid,
2437 						  BTRFS_INODE_REF_KEY);
2438 			if (ret < 0)
2439 				goto out;
2440 			else if (ret > 0) {
2441 				ret = -ENOENT;
2442 				goto out;
2443 			}
2444 		}
2445 
2446 		l = path->nodes[0];
2447 		slot = path->slots[0];
2448 		btrfs_item_key_to_cpu(l, &key, slot);
2449 
2450 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2451 		len = btrfs_inode_ref_name_len(l, iref);
2452 		ptr -= len + 1;
2453 		total_len += len + 1;
2454 		if (ptr < name) {
2455 			ret = -ENAMETOOLONG;
2456 			goto out;
2457 		}
2458 
2459 		*(ptr + len) = '/';
2460 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2461 
2462 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2463 			break;
2464 
2465 		btrfs_release_path(path);
2466 		key.objectid = key.offset;
2467 		key.offset = (u64)-1;
2468 		dirid = key.objectid;
2469 	}
2470 	memmove(name, ptr, total_len);
2471 	name[total_len] = '\0';
2472 	ret = 0;
2473 out:
2474 	btrfs_free_path(path);
2475 	return ret;
2476 }
2477 
btrfs_search_path_in_tree_user(struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)2478 static int btrfs_search_path_in_tree_user(struct inode *inode,
2479 				struct btrfs_ioctl_ino_lookup_user_args *args)
2480 {
2481 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2482 	struct super_block *sb = inode->i_sb;
2483 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2484 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2485 	u64 dirid = args->dirid;
2486 	unsigned long item_off;
2487 	unsigned long item_len;
2488 	struct btrfs_inode_ref *iref;
2489 	struct btrfs_root_ref *rref;
2490 	struct btrfs_root *root;
2491 	struct btrfs_path *path;
2492 	struct btrfs_key key, key2;
2493 	struct extent_buffer *leaf;
2494 	struct inode *temp_inode;
2495 	char *ptr;
2496 	int slot;
2497 	int len;
2498 	int total_len = 0;
2499 	int ret;
2500 
2501 	path = btrfs_alloc_path();
2502 	if (!path)
2503 		return -ENOMEM;
2504 
2505 	/*
2506 	 * If the bottom subvolume does not exist directly under upper_limit,
2507 	 * construct the path in from the bottom up.
2508 	 */
2509 	if (dirid != upper_limit.objectid) {
2510 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2511 
2512 		key.objectid = treeid;
2513 		key.type = BTRFS_ROOT_ITEM_KEY;
2514 		key.offset = (u64)-1;
2515 		root = btrfs_read_fs_root_no_name(fs_info, &key);
2516 		if (IS_ERR(root)) {
2517 			ret = PTR_ERR(root);
2518 			goto out;
2519 		}
2520 
2521 		key.objectid = dirid;
2522 		key.type = BTRFS_INODE_REF_KEY;
2523 		key.offset = (u64)-1;
2524 		while (1) {
2525 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2526 			if (ret < 0) {
2527 				goto out;
2528 			} else if (ret > 0) {
2529 				ret = btrfs_previous_item(root, path, dirid,
2530 							  BTRFS_INODE_REF_KEY);
2531 				if (ret < 0) {
2532 					goto out;
2533 				} else if (ret > 0) {
2534 					ret = -ENOENT;
2535 					goto out;
2536 				}
2537 			}
2538 
2539 			leaf = path->nodes[0];
2540 			slot = path->slots[0];
2541 			btrfs_item_key_to_cpu(leaf, &key, slot);
2542 
2543 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2544 			len = btrfs_inode_ref_name_len(leaf, iref);
2545 			ptr -= len + 1;
2546 			total_len += len + 1;
2547 			if (ptr < args->path) {
2548 				ret = -ENAMETOOLONG;
2549 				goto out;
2550 			}
2551 
2552 			*(ptr + len) = '/';
2553 			read_extent_buffer(leaf, ptr,
2554 					(unsigned long)(iref + 1), len);
2555 
2556 			/* Check the read+exec permission of this directory */
2557 			ret = btrfs_previous_item(root, path, dirid,
2558 						  BTRFS_INODE_ITEM_KEY);
2559 			if (ret < 0) {
2560 				goto out;
2561 			} else if (ret > 0) {
2562 				ret = -ENOENT;
2563 				goto out;
2564 			}
2565 
2566 			leaf = path->nodes[0];
2567 			slot = path->slots[0];
2568 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2569 			if (key2.objectid != dirid) {
2570 				ret = -ENOENT;
2571 				goto out;
2572 			}
2573 
2574 			temp_inode = btrfs_iget(sb, &key2, root, NULL);
2575 			if (IS_ERR(temp_inode)) {
2576 				ret = PTR_ERR(temp_inode);
2577 				goto out;
2578 			}
2579 			ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2580 			iput(temp_inode);
2581 			if (ret) {
2582 				ret = -EACCES;
2583 				goto out;
2584 			}
2585 
2586 			if (key.offset == upper_limit.objectid)
2587 				break;
2588 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2589 				ret = -EACCES;
2590 				goto out;
2591 			}
2592 
2593 			btrfs_release_path(path);
2594 			key.objectid = key.offset;
2595 			key.offset = (u64)-1;
2596 			dirid = key.objectid;
2597 		}
2598 
2599 		memmove(args->path, ptr, total_len);
2600 		args->path[total_len] = '\0';
2601 		btrfs_release_path(path);
2602 	}
2603 
2604 	/* Get the bottom subvolume's name from ROOT_REF */
2605 	root = fs_info->tree_root;
2606 	key.objectid = treeid;
2607 	key.type = BTRFS_ROOT_REF_KEY;
2608 	key.offset = args->treeid;
2609 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2610 	if (ret < 0) {
2611 		goto out;
2612 	} else if (ret > 0) {
2613 		ret = -ENOENT;
2614 		goto out;
2615 	}
2616 
2617 	leaf = path->nodes[0];
2618 	slot = path->slots[0];
2619 	btrfs_item_key_to_cpu(leaf, &key, slot);
2620 
2621 	item_off = btrfs_item_ptr_offset(leaf, slot);
2622 	item_len = btrfs_item_size_nr(leaf, slot);
2623 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2624 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2625 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2626 		ret = -EINVAL;
2627 		goto out;
2628 	}
2629 
2630 	/* Copy subvolume's name */
2631 	item_off += sizeof(struct btrfs_root_ref);
2632 	item_len -= sizeof(struct btrfs_root_ref);
2633 	read_extent_buffer(leaf, args->name, item_off, item_len);
2634 	args->name[item_len] = 0;
2635 
2636 out:
2637 	btrfs_free_path(path);
2638 	return ret;
2639 }
2640 
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2641 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2642 					   void __user *argp)
2643 {
2644 	struct btrfs_ioctl_ino_lookup_args *args;
2645 	struct inode *inode;
2646 	int ret = 0;
2647 
2648 	args = memdup_user(argp, sizeof(*args));
2649 	if (IS_ERR(args))
2650 		return PTR_ERR(args);
2651 
2652 	inode = file_inode(file);
2653 
2654 	/*
2655 	 * Unprivileged query to obtain the containing subvolume root id. The
2656 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2657 	 */
2658 	if (args->treeid == 0)
2659 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2660 
2661 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2662 		args->name[0] = 0;
2663 		goto out;
2664 	}
2665 
2666 	if (!capable(CAP_SYS_ADMIN)) {
2667 		ret = -EPERM;
2668 		goto out;
2669 	}
2670 
2671 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2672 					args->treeid, args->objectid,
2673 					args->name);
2674 
2675 out:
2676 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2677 		ret = -EFAULT;
2678 
2679 	kfree(args);
2680 	return ret;
2681 }
2682 
2683 /*
2684  * Version of ino_lookup ioctl (unprivileged)
2685  *
2686  * The main differences from ino_lookup ioctl are:
2687  *
2688  *   1. Read + Exec permission will be checked using inode_permission() during
2689  *      path construction. -EACCES will be returned in case of failure.
2690  *   2. Path construction will be stopped at the inode number which corresponds
2691  *      to the fd with which this ioctl is called. If constructed path does not
2692  *      exist under fd's inode, -EACCES will be returned.
2693  *   3. The name of bottom subvolume is also searched and filled.
2694  */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2695 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2696 {
2697 	struct btrfs_ioctl_ino_lookup_user_args *args;
2698 	struct inode *inode;
2699 	int ret;
2700 
2701 	args = memdup_user(argp, sizeof(*args));
2702 	if (IS_ERR(args))
2703 		return PTR_ERR(args);
2704 
2705 	inode = file_inode(file);
2706 
2707 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2708 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2709 		/*
2710 		 * The subvolume does not exist under fd with which this is
2711 		 * called
2712 		 */
2713 		kfree(args);
2714 		return -EACCES;
2715 	}
2716 
2717 	ret = btrfs_search_path_in_tree_user(inode, args);
2718 
2719 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2720 		ret = -EFAULT;
2721 
2722 	kfree(args);
2723 	return ret;
2724 }
2725 
2726 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct file * file,void __user * argp)2727 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2728 {
2729 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2730 	struct btrfs_fs_info *fs_info;
2731 	struct btrfs_root *root;
2732 	struct btrfs_path *path;
2733 	struct btrfs_key key;
2734 	struct btrfs_root_item *root_item;
2735 	struct btrfs_root_ref *rref;
2736 	struct extent_buffer *leaf;
2737 	unsigned long item_off;
2738 	unsigned long item_len;
2739 	struct inode *inode;
2740 	int slot;
2741 	int ret = 0;
2742 
2743 	path = btrfs_alloc_path();
2744 	if (!path)
2745 		return -ENOMEM;
2746 
2747 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2748 	if (!subvol_info) {
2749 		btrfs_free_path(path);
2750 		return -ENOMEM;
2751 	}
2752 
2753 	inode = file_inode(file);
2754 	fs_info = BTRFS_I(inode)->root->fs_info;
2755 
2756 	/* Get root_item of inode's subvolume */
2757 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2758 	key.type = BTRFS_ROOT_ITEM_KEY;
2759 	key.offset = (u64)-1;
2760 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2761 	if (IS_ERR(root)) {
2762 		ret = PTR_ERR(root);
2763 		goto out;
2764 	}
2765 	root_item = &root->root_item;
2766 
2767 	subvol_info->treeid = key.objectid;
2768 
2769 	subvol_info->generation = btrfs_root_generation(root_item);
2770 	subvol_info->flags = btrfs_root_flags(root_item);
2771 
2772 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2773 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2774 						    BTRFS_UUID_SIZE);
2775 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2776 						    BTRFS_UUID_SIZE);
2777 
2778 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2779 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2780 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2781 
2782 	subvol_info->otransid = btrfs_root_otransid(root_item);
2783 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2784 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2785 
2786 	subvol_info->stransid = btrfs_root_stransid(root_item);
2787 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2788 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2789 
2790 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2791 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2792 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2793 
2794 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2795 		/* Search root tree for ROOT_BACKREF of this subvolume */
2796 		root = fs_info->tree_root;
2797 
2798 		key.type = BTRFS_ROOT_BACKREF_KEY;
2799 		key.offset = 0;
2800 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2801 		if (ret < 0) {
2802 			goto out;
2803 		} else if (path->slots[0] >=
2804 			   btrfs_header_nritems(path->nodes[0])) {
2805 			ret = btrfs_next_leaf(root, path);
2806 			if (ret < 0) {
2807 				goto out;
2808 			} else if (ret > 0) {
2809 				ret = -EUCLEAN;
2810 				goto out;
2811 			}
2812 		}
2813 
2814 		leaf = path->nodes[0];
2815 		slot = path->slots[0];
2816 		btrfs_item_key_to_cpu(leaf, &key, slot);
2817 		if (key.objectid == subvol_info->treeid &&
2818 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2819 			subvol_info->parent_id = key.offset;
2820 
2821 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2822 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2823 
2824 			item_off = btrfs_item_ptr_offset(leaf, slot)
2825 					+ sizeof(struct btrfs_root_ref);
2826 			item_len = btrfs_item_size_nr(leaf, slot)
2827 					- sizeof(struct btrfs_root_ref);
2828 			read_extent_buffer(leaf, subvol_info->name,
2829 					   item_off, item_len);
2830 		} else {
2831 			ret = -ENOENT;
2832 			goto out;
2833 		}
2834 	}
2835 
2836 	btrfs_free_path(path);
2837 	path = NULL;
2838 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2839 		ret = -EFAULT;
2840 
2841 out:
2842 	btrfs_free_path(path);
2843 	kzfree(subvol_info);
2844 	return ret;
2845 }
2846 
2847 /*
2848  * Return ROOT_REF information of the subvolume containing this inode
2849  * except the subvolume name.
2850  */
btrfs_ioctl_get_subvol_rootref(struct file * file,void __user * argp)2851 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2852 {
2853 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2854 	struct btrfs_root_ref *rref;
2855 	struct btrfs_root *root;
2856 	struct btrfs_path *path;
2857 	struct btrfs_key key;
2858 	struct extent_buffer *leaf;
2859 	struct inode *inode;
2860 	u64 objectid;
2861 	int slot;
2862 	int ret;
2863 	u8 found;
2864 
2865 	path = btrfs_alloc_path();
2866 	if (!path)
2867 		return -ENOMEM;
2868 
2869 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2870 	if (IS_ERR(rootrefs)) {
2871 		btrfs_free_path(path);
2872 		return PTR_ERR(rootrefs);
2873 	}
2874 
2875 	inode = file_inode(file);
2876 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2877 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2878 
2879 	key.objectid = objectid;
2880 	key.type = BTRFS_ROOT_REF_KEY;
2881 	key.offset = rootrefs->min_treeid;
2882 	found = 0;
2883 
2884 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2885 	if (ret < 0) {
2886 		goto out;
2887 	} else if (path->slots[0] >=
2888 		   btrfs_header_nritems(path->nodes[0])) {
2889 		ret = btrfs_next_leaf(root, path);
2890 		if (ret < 0) {
2891 			goto out;
2892 		} else if (ret > 0) {
2893 			ret = -EUCLEAN;
2894 			goto out;
2895 		}
2896 	}
2897 	while (1) {
2898 		leaf = path->nodes[0];
2899 		slot = path->slots[0];
2900 
2901 		btrfs_item_key_to_cpu(leaf, &key, slot);
2902 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2903 			ret = 0;
2904 			goto out;
2905 		}
2906 
2907 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2908 			ret = -EOVERFLOW;
2909 			goto out;
2910 		}
2911 
2912 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2913 		rootrefs->rootref[found].treeid = key.offset;
2914 		rootrefs->rootref[found].dirid =
2915 				  btrfs_root_ref_dirid(leaf, rref);
2916 		found++;
2917 
2918 		ret = btrfs_next_item(root, path);
2919 		if (ret < 0) {
2920 			goto out;
2921 		} else if (ret > 0) {
2922 			ret = -EUCLEAN;
2923 			goto out;
2924 		}
2925 	}
2926 
2927 out:
2928 	btrfs_free_path(path);
2929 
2930 	if (!ret || ret == -EOVERFLOW) {
2931 		rootrefs->num_items = found;
2932 		/* update min_treeid for next search */
2933 		if (found)
2934 			rootrefs->min_treeid =
2935 				rootrefs->rootref[found - 1].treeid + 1;
2936 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2937 			ret = -EFAULT;
2938 	}
2939 
2940 	kfree(rootrefs);
2941 
2942 	return ret;
2943 }
2944 
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg)2945 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2946 					     void __user *arg)
2947 {
2948 	struct dentry *parent = file->f_path.dentry;
2949 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2950 	struct dentry *dentry;
2951 	struct inode *dir = d_inode(parent);
2952 	struct inode *inode;
2953 	struct btrfs_root *root = BTRFS_I(dir)->root;
2954 	struct btrfs_root *dest = NULL;
2955 	struct btrfs_ioctl_vol_args *vol_args;
2956 	int namelen;
2957 	int err = 0;
2958 
2959 	if (!S_ISDIR(dir->i_mode))
2960 		return -ENOTDIR;
2961 
2962 	vol_args = memdup_user(arg, sizeof(*vol_args));
2963 	if (IS_ERR(vol_args))
2964 		return PTR_ERR(vol_args);
2965 
2966 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2967 	namelen = strlen(vol_args->name);
2968 	if (strchr(vol_args->name, '/') ||
2969 	    strncmp(vol_args->name, "..", namelen) == 0) {
2970 		err = -EINVAL;
2971 		goto out;
2972 	}
2973 
2974 	err = mnt_want_write_file(file);
2975 	if (err)
2976 		goto out;
2977 
2978 
2979 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2980 	if (err == -EINTR)
2981 		goto out_drop_write;
2982 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2983 	if (IS_ERR(dentry)) {
2984 		err = PTR_ERR(dentry);
2985 		goto out_unlock_dir;
2986 	}
2987 
2988 	if (d_really_is_negative(dentry)) {
2989 		err = -ENOENT;
2990 		goto out_dput;
2991 	}
2992 
2993 	inode = d_inode(dentry);
2994 	dest = BTRFS_I(inode)->root;
2995 	if (!capable(CAP_SYS_ADMIN)) {
2996 		/*
2997 		 * Regular user.  Only allow this with a special mount
2998 		 * option, when the user has write+exec access to the
2999 		 * subvol root, and when rmdir(2) would have been
3000 		 * allowed.
3001 		 *
3002 		 * Note that this is _not_ check that the subvol is
3003 		 * empty or doesn't contain data that we wouldn't
3004 		 * otherwise be able to delete.
3005 		 *
3006 		 * Users who want to delete empty subvols should try
3007 		 * rmdir(2).
3008 		 */
3009 		err = -EPERM;
3010 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3011 			goto out_dput;
3012 
3013 		/*
3014 		 * Do not allow deletion if the parent dir is the same
3015 		 * as the dir to be deleted.  That means the ioctl
3016 		 * must be called on the dentry referencing the root
3017 		 * of the subvol, not a random directory contained
3018 		 * within it.
3019 		 */
3020 		err = -EINVAL;
3021 		if (root == dest)
3022 			goto out_dput;
3023 
3024 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
3025 		if (err)
3026 			goto out_dput;
3027 	}
3028 
3029 	/* check if subvolume may be deleted by a user */
3030 	err = btrfs_may_delete(dir, dentry, 1);
3031 	if (err)
3032 		goto out_dput;
3033 
3034 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3035 		err = -EINVAL;
3036 		goto out_dput;
3037 	}
3038 
3039 	inode_lock(inode);
3040 	err = btrfs_delete_subvolume(dir, dentry);
3041 	inode_unlock(inode);
3042 	if (!err)
3043 		d_delete_notify(dir, dentry);
3044 
3045 out_dput:
3046 	dput(dentry);
3047 out_unlock_dir:
3048 	inode_unlock(dir);
3049 out_drop_write:
3050 	mnt_drop_write_file(file);
3051 out:
3052 	kfree(vol_args);
3053 	return err;
3054 }
3055 
btrfs_ioctl_defrag(struct file * file,void __user * argp)3056 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3057 {
3058 	struct inode *inode = file_inode(file);
3059 	struct btrfs_root *root = BTRFS_I(inode)->root;
3060 	struct btrfs_ioctl_defrag_range_args range = {0};
3061 	int ret;
3062 
3063 	ret = mnt_want_write_file(file);
3064 	if (ret)
3065 		return ret;
3066 
3067 	if (btrfs_root_readonly(root)) {
3068 		ret = -EROFS;
3069 		goto out;
3070 	}
3071 
3072 	switch (inode->i_mode & S_IFMT) {
3073 	case S_IFDIR:
3074 		if (!capable(CAP_SYS_ADMIN)) {
3075 			ret = -EPERM;
3076 			goto out;
3077 		}
3078 		ret = btrfs_defrag_root(root);
3079 		break;
3080 	case S_IFREG:
3081 		/*
3082 		 * Note that this does not check the file descriptor for write
3083 		 * access. This prevents defragmenting executables that are
3084 		 * running and allows defrag on files open in read-only mode.
3085 		 */
3086 		if (!capable(CAP_SYS_ADMIN) &&
3087 		    inode_permission(inode, MAY_WRITE)) {
3088 			ret = -EPERM;
3089 			goto out;
3090 		}
3091 
3092 		if (argp) {
3093 			if (copy_from_user(&range, argp, sizeof(range))) {
3094 				ret = -EFAULT;
3095 				goto out;
3096 			}
3097 			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
3098 				ret = -EOPNOTSUPP;
3099 				goto out;
3100 			}
3101 			/* compression requires us to start the IO */
3102 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3103 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3104 				range.extent_thresh = (u32)-1;
3105 			}
3106 		} else {
3107 			/* the rest are all set to zero by kzalloc */
3108 			range.len = (u64)-1;
3109 		}
3110 		ret = btrfs_defrag_file(file_inode(file), file,
3111 					&range, BTRFS_OLDEST_GENERATION, 0);
3112 		if (ret > 0)
3113 			ret = 0;
3114 		break;
3115 	default:
3116 		ret = -EINVAL;
3117 	}
3118 out:
3119 	mnt_drop_write_file(file);
3120 	return ret;
3121 }
3122 
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)3123 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3124 {
3125 	struct btrfs_ioctl_vol_args *vol_args;
3126 	int ret;
3127 
3128 	if (!capable(CAP_SYS_ADMIN))
3129 		return -EPERM;
3130 
3131 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3132 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3133 
3134 	vol_args = memdup_user(arg, sizeof(*vol_args));
3135 	if (IS_ERR(vol_args)) {
3136 		ret = PTR_ERR(vol_args);
3137 		goto out;
3138 	}
3139 
3140 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3141 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3142 
3143 	if (!ret)
3144 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3145 
3146 	kfree(vol_args);
3147 out:
3148 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3149 	return ret;
3150 }
3151 
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)3152 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3153 {
3154 	struct inode *inode = file_inode(file);
3155 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3156 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3157 	int ret;
3158 
3159 	if (!capable(CAP_SYS_ADMIN))
3160 		return -EPERM;
3161 
3162 	ret = mnt_want_write_file(file);
3163 	if (ret)
3164 		return ret;
3165 
3166 	vol_args = memdup_user(arg, sizeof(*vol_args));
3167 	if (IS_ERR(vol_args)) {
3168 		ret = PTR_ERR(vol_args);
3169 		goto err_drop;
3170 	}
3171 
3172 	/* Check for compatibility reject unknown flags */
3173 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) {
3174 		ret = -EOPNOTSUPP;
3175 		goto out;
3176 	}
3177 
3178 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3179 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3180 		goto out;
3181 	}
3182 
3183 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3184 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3185 	} else {
3186 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3187 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3188 	}
3189 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3190 
3191 	if (!ret) {
3192 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3193 			btrfs_info(fs_info, "device deleted: id %llu",
3194 					vol_args->devid);
3195 		else
3196 			btrfs_info(fs_info, "device deleted: %s",
3197 					vol_args->name);
3198 	}
3199 out:
3200 	kfree(vol_args);
3201 err_drop:
3202 	mnt_drop_write_file(file);
3203 	return ret;
3204 }
3205 
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)3206 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3207 {
3208 	struct inode *inode = file_inode(file);
3209 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3210 	struct btrfs_ioctl_vol_args *vol_args;
3211 	int ret;
3212 
3213 	if (!capable(CAP_SYS_ADMIN))
3214 		return -EPERM;
3215 
3216 	ret = mnt_want_write_file(file);
3217 	if (ret)
3218 		return ret;
3219 
3220 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3221 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3222 		goto out_drop_write;
3223 	}
3224 
3225 	vol_args = memdup_user(arg, sizeof(*vol_args));
3226 	if (IS_ERR(vol_args)) {
3227 		ret = PTR_ERR(vol_args);
3228 		goto out;
3229 	}
3230 
3231 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3232 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3233 
3234 	if (!ret)
3235 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3236 	kfree(vol_args);
3237 out:
3238 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3239 out_drop_write:
3240 	mnt_drop_write_file(file);
3241 
3242 	return ret;
3243 }
3244 
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)3245 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3246 				void __user *arg)
3247 {
3248 	struct btrfs_ioctl_fs_info_args *fi_args;
3249 	struct btrfs_device *device;
3250 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3251 	int ret = 0;
3252 
3253 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
3254 	if (!fi_args)
3255 		return -ENOMEM;
3256 
3257 	rcu_read_lock();
3258 	fi_args->num_devices = fs_devices->num_devices;
3259 
3260 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3261 		if (device->devid > fi_args->max_id)
3262 			fi_args->max_id = device->devid;
3263 	}
3264 	rcu_read_unlock();
3265 
3266 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3267 	fi_args->nodesize = fs_info->nodesize;
3268 	fi_args->sectorsize = fs_info->sectorsize;
3269 	fi_args->clone_alignment = fs_info->sectorsize;
3270 
3271 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3272 		ret = -EFAULT;
3273 
3274 	kfree(fi_args);
3275 	return ret;
3276 }
3277 
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)3278 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3279 				 void __user *arg)
3280 {
3281 	struct btrfs_ioctl_dev_info_args *di_args;
3282 	struct btrfs_device *dev;
3283 	int ret = 0;
3284 	char *s_uuid = NULL;
3285 
3286 	di_args = memdup_user(arg, sizeof(*di_args));
3287 	if (IS_ERR(di_args))
3288 		return PTR_ERR(di_args);
3289 
3290 	if (!btrfs_is_empty_uuid(di_args->uuid))
3291 		s_uuid = di_args->uuid;
3292 
3293 	rcu_read_lock();
3294 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3295 				NULL, true);
3296 
3297 	if (!dev) {
3298 		ret = -ENODEV;
3299 		goto out;
3300 	}
3301 
3302 	di_args->devid = dev->devid;
3303 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3304 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3305 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3306 	if (dev->name)
3307 		strscpy(di_args->path, rcu_str_deref(dev->name), sizeof(di_args->path));
3308 	else
3309 		di_args->path[0] = '\0';
3310 
3311 out:
3312 	rcu_read_unlock();
3313 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3314 		ret = -EFAULT;
3315 
3316 	kfree(di_args);
3317 	return ret;
3318 }
3319 
btrfs_double_extent_unlock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)3320 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
3321 				       struct inode *inode2, u64 loff2, u64 len)
3322 {
3323 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3324 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3325 }
3326 
btrfs_double_extent_lock(struct inode * inode1,u64 loff1,struct inode * inode2,u64 loff2,u64 len)3327 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
3328 				     struct inode *inode2, u64 loff2, u64 len)
3329 {
3330 	if (inode1 < inode2) {
3331 		swap(inode1, inode2);
3332 		swap(loff1, loff2);
3333 	} else if (inode1 == inode2 && loff2 < loff1) {
3334 		swap(loff1, loff2);
3335 	}
3336 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3337 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3338 }
3339 
btrfs_extent_same_range(struct inode * src,u64 loff,u64 len,struct inode * dst,u64 dst_loff)3340 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
3341 				   struct inode *dst, u64 dst_loff)
3342 {
3343 	const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3344 	int ret;
3345 
3346 	/*
3347 	 * Lock destination range to serialize with concurrent readpages() and
3348 	 * source range to serialize with relocation.
3349 	 */
3350 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
3351 	ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1);
3352 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3353 
3354 	return ret;
3355 }
3356 
3357 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3358 
btrfs_extent_same(struct inode * src,u64 loff,u64 olen,struct inode * dst,u64 dst_loff)3359 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3360 			     struct inode *dst, u64 dst_loff)
3361 {
3362 	int ret;
3363 	u64 i, tail_len, chunk_count;
3364 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
3365 
3366 	spin_lock(&root_dst->root_item_lock);
3367 	if (root_dst->send_in_progress) {
3368 		btrfs_warn_rl(root_dst->fs_info,
3369 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
3370 			      root_dst->root_key.objectid,
3371 			      root_dst->send_in_progress);
3372 		spin_unlock(&root_dst->root_item_lock);
3373 		return -EAGAIN;
3374 	}
3375 	root_dst->dedupe_in_progress++;
3376 	spin_unlock(&root_dst->root_item_lock);
3377 
3378 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
3379 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
3380 
3381 	for (i = 0; i < chunk_count; i++) {
3382 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
3383 					      dst, dst_loff);
3384 		if (ret)
3385 			goto out;
3386 
3387 		loff += BTRFS_MAX_DEDUPE_LEN;
3388 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
3389 	}
3390 
3391 	if (tail_len > 0)
3392 		ret = btrfs_extent_same_range(src, loff, tail_len, dst,
3393 					      dst_loff);
3394 out:
3395 	spin_lock(&root_dst->root_item_lock);
3396 	root_dst->dedupe_in_progress--;
3397 	spin_unlock(&root_dst->root_item_lock);
3398 
3399 	return ret;
3400 }
3401 
clone_finish_inode_update(struct btrfs_trans_handle * trans,struct inode * inode,u64 endoff,const u64 destoff,const u64 olen,int no_time_update)3402 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3403 				     struct inode *inode,
3404 				     u64 endoff,
3405 				     const u64 destoff,
3406 				     const u64 olen,
3407 				     int no_time_update)
3408 {
3409 	struct btrfs_root *root = BTRFS_I(inode)->root;
3410 	int ret;
3411 
3412 	inode_inc_iversion(inode);
3413 	if (!no_time_update)
3414 		inode->i_mtime = inode->i_ctime = current_time(inode);
3415 	/*
3416 	 * We round up to the block size at eof when determining which
3417 	 * extents to clone above, but shouldn't round up the file size.
3418 	 */
3419 	if (endoff > destoff + olen)
3420 		endoff = destoff + olen;
3421 	if (endoff > inode->i_size)
3422 		btrfs_i_size_write(BTRFS_I(inode), endoff);
3423 
3424 	ret = btrfs_update_inode(trans, root, inode);
3425 	if (ret) {
3426 		btrfs_abort_transaction(trans, ret);
3427 		btrfs_end_transaction(trans);
3428 		goto out;
3429 	}
3430 	ret = btrfs_end_transaction(trans);
3431 out:
3432 	return ret;
3433 }
3434 
3435 /*
3436  * Make sure we do not end up inserting an inline extent into a file that has
3437  * already other (non-inline) extents. If a file has an inline extent it can
3438  * not have any other extents and the (single) inline extent must start at the
3439  * file offset 0. Failing to respect these rules will lead to file corruption,
3440  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3441  *
3442  * We can have extents that have been already written to disk or we can have
3443  * dirty ranges still in delalloc, in which case the extent maps and items are
3444  * created only when we run delalloc, and the delalloc ranges might fall outside
3445  * the range we are currently locking in the inode's io tree. So we check the
3446  * inode's i_size because of that (i_size updates are done while holding the
3447  * i_mutex, which we are holding here).
3448  * We also check to see if the inode has a size not greater than "datal" but has
3449  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3450  * protected against such concurrent fallocate calls by the i_mutex).
3451  *
3452  * If the file has no extents but a size greater than datal, do not allow the
3453  * copy because we would need turn the inline extent into a non-inline one (even
3454  * with NO_HOLES enabled). If we find our destination inode only has one inline
3455  * extent, just overwrite it with the source inline extent if its size is less
3456  * than the source extent's size, or we could copy the source inline extent's
3457  * data into the destination inode's inline extent if the later is greater then
3458  * the former.
3459  */
clone_copy_inline_extent(struct inode * dst,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_key * new_key,const u64 drop_start,const u64 datal,const u64 skip,const u64 size,char * inline_data)3460 static int clone_copy_inline_extent(struct inode *dst,
3461 				    struct btrfs_trans_handle *trans,
3462 				    struct btrfs_path *path,
3463 				    struct btrfs_key *new_key,
3464 				    const u64 drop_start,
3465 				    const u64 datal,
3466 				    const u64 skip,
3467 				    const u64 size,
3468 				    char *inline_data)
3469 {
3470 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3471 	struct btrfs_root *root = BTRFS_I(dst)->root;
3472 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3473 				      fs_info->sectorsize);
3474 	int ret;
3475 	struct btrfs_key key;
3476 
3477 	if (new_key->offset > 0)
3478 		return -EOPNOTSUPP;
3479 
3480 	key.objectid = btrfs_ino(BTRFS_I(dst));
3481 	key.type = BTRFS_EXTENT_DATA_KEY;
3482 	key.offset = 0;
3483 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3484 	if (ret < 0) {
3485 		return ret;
3486 	} else if (ret > 0) {
3487 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3488 			ret = btrfs_next_leaf(root, path);
3489 			if (ret < 0)
3490 				return ret;
3491 			else if (ret > 0)
3492 				goto copy_inline_extent;
3493 		}
3494 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3495 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3496 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3497 			ASSERT(key.offset > 0);
3498 			return -EOPNOTSUPP;
3499 		}
3500 	} else if (i_size_read(dst) <= datal) {
3501 		struct btrfs_file_extent_item *ei;
3502 		u64 ext_len;
3503 
3504 		/*
3505 		 * If the file size is <= datal, make sure there are no other
3506 		 * extents following (can happen do to an fallocate call with
3507 		 * the flag FALLOC_FL_KEEP_SIZE).
3508 		 */
3509 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3510 				    struct btrfs_file_extent_item);
3511 		/*
3512 		 * If it's an inline extent, it can not have other extents
3513 		 * following it.
3514 		 */
3515 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3516 		    BTRFS_FILE_EXTENT_INLINE)
3517 			goto copy_inline_extent;
3518 
3519 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3520 		if (ext_len > aligned_end)
3521 			return -EOPNOTSUPP;
3522 
3523 		ret = btrfs_next_item(root, path);
3524 		if (ret < 0) {
3525 			return ret;
3526 		} else if (ret == 0) {
3527 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3528 					      path->slots[0]);
3529 			if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3530 			    key.type == BTRFS_EXTENT_DATA_KEY)
3531 				return -EOPNOTSUPP;
3532 		}
3533 	}
3534 
3535 copy_inline_extent:
3536 	/*
3537 	 * We have no extent items, or we have an extent at offset 0 which may
3538 	 * or may not be inlined. All these cases are dealt the same way.
3539 	 */
3540 	if (i_size_read(dst) > datal) {
3541 		/*
3542 		 * If the destination inode has an inline extent...
3543 		 * This would require copying the data from the source inline
3544 		 * extent into the beginning of the destination's inline extent.
3545 		 * But this is really complex, both extents can be compressed
3546 		 * or just one of them, which would require decompressing and
3547 		 * re-compressing data (which could increase the new compressed
3548 		 * size, not allowing the compressed data to fit anymore in an
3549 		 * inline extent).
3550 		 * So just don't support this case for now (it should be rare,
3551 		 * we are not really saving space when cloning inline extents).
3552 		 */
3553 		return -EOPNOTSUPP;
3554 	}
3555 
3556 	btrfs_release_path(path);
3557 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3558 	if (ret)
3559 		return ret;
3560 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3561 	if (ret)
3562 		return ret;
3563 
3564 	if (skip) {
3565 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3566 
3567 		memmove(inline_data + start, inline_data + start + skip, datal);
3568 	}
3569 
3570 	write_extent_buffer(path->nodes[0], inline_data,
3571 			    btrfs_item_ptr_offset(path->nodes[0],
3572 						  path->slots[0]),
3573 			    size);
3574 	inode_add_bytes(dst, datal);
3575 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags);
3576 
3577 	return 0;
3578 }
3579 
3580 /**
3581  * btrfs_clone() - clone a range from inode file to another
3582  *
3583  * @src: Inode to clone from
3584  * @inode: Inode to clone to
3585  * @off: Offset within source to start clone from
3586  * @olen: Original length, passed by user, of range to clone
3587  * @olen_aligned: Block-aligned value of olen
3588  * @destoff: Offset within @inode to start clone
3589  * @no_time_update: Whether to update mtime/ctime on the target inode
3590  */
btrfs_clone(struct inode * src,struct inode * inode,const u64 off,const u64 olen,const u64 olen_aligned,const u64 destoff,int no_time_update)3591 static int btrfs_clone(struct inode *src, struct inode *inode,
3592 		       const u64 off, const u64 olen, const u64 olen_aligned,
3593 		       const u64 destoff, int no_time_update)
3594 {
3595 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3596 	struct btrfs_root *root = BTRFS_I(inode)->root;
3597 	struct btrfs_path *path = NULL;
3598 	struct extent_buffer *leaf;
3599 	struct btrfs_trans_handle *trans;
3600 	char *buf = NULL;
3601 	struct btrfs_key key;
3602 	u32 nritems;
3603 	int slot;
3604 	int ret;
3605 	const u64 len = olen_aligned;
3606 	u64 last_dest_end = destoff;
3607 
3608 	ret = -ENOMEM;
3609 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3610 	if (!buf)
3611 		return ret;
3612 
3613 	path = btrfs_alloc_path();
3614 	if (!path) {
3615 		kvfree(buf);
3616 		return ret;
3617 	}
3618 
3619 	path->reada = READA_FORWARD;
3620 	/* clone data */
3621 	key.objectid = btrfs_ino(BTRFS_I(src));
3622 	key.type = BTRFS_EXTENT_DATA_KEY;
3623 	key.offset = off;
3624 
3625 	while (1) {
3626 		u64 next_key_min_offset = key.offset + 1;
3627 		struct btrfs_file_extent_item *extent;
3628 		int type;
3629 		u32 size;
3630 		struct btrfs_key new_key;
3631 		u64 disko = 0, diskl = 0;
3632 		u64 datao = 0, datal = 0;
3633 		u8 comp;
3634 		u64 drop_start;
3635 
3636 		/*
3637 		 * note the key will change type as we walk through the
3638 		 * tree.
3639 		 */
3640 		path->leave_spinning = 1;
3641 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3642 				0, 0);
3643 		if (ret < 0)
3644 			goto out;
3645 		/*
3646 		 * First search, if no extent item that starts at offset off was
3647 		 * found but the previous item is an extent item, it's possible
3648 		 * it might overlap our target range, therefore process it.
3649 		 */
3650 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3651 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3652 					      path->slots[0] - 1);
3653 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3654 				path->slots[0]--;
3655 		}
3656 
3657 		nritems = btrfs_header_nritems(path->nodes[0]);
3658 process_slot:
3659 		if (path->slots[0] >= nritems) {
3660 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3661 			if (ret < 0)
3662 				goto out;
3663 			if (ret > 0)
3664 				break;
3665 			nritems = btrfs_header_nritems(path->nodes[0]);
3666 		}
3667 		leaf = path->nodes[0];
3668 		slot = path->slots[0];
3669 
3670 		btrfs_item_key_to_cpu(leaf, &key, slot);
3671 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3672 		    key.objectid != btrfs_ino(BTRFS_I(src)))
3673 			break;
3674 
3675 		ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
3676 
3677 		extent = btrfs_item_ptr(leaf, slot,
3678 					struct btrfs_file_extent_item);
3679 		comp = btrfs_file_extent_compression(leaf, extent);
3680 		type = btrfs_file_extent_type(leaf, extent);
3681 		if (type == BTRFS_FILE_EXTENT_REG ||
3682 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
3683 			disko = btrfs_file_extent_disk_bytenr(leaf, extent);
3684 			diskl = btrfs_file_extent_disk_num_bytes(leaf, extent);
3685 			datao = btrfs_file_extent_offset(leaf, extent);
3686 			datal = btrfs_file_extent_num_bytes(leaf, extent);
3687 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3688 			/* Take upper bound, may be compressed */
3689 			datal = btrfs_file_extent_ram_bytes(leaf, extent);
3690 		}
3691 
3692 		/*
3693 		 * The first search might have left us at an extent item that
3694 		 * ends before our target range's start, can happen if we have
3695 		 * holes and NO_HOLES feature enabled.
3696 		 */
3697 		if (key.offset + datal <= off) {
3698 			path->slots[0]++;
3699 			goto process_slot;
3700 		} else if (key.offset >= off + len) {
3701 			break;
3702 		}
3703 		next_key_min_offset = key.offset + datal;
3704 		size = btrfs_item_size_nr(leaf, slot);
3705 		read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot),
3706 				   size);
3707 
3708 		btrfs_release_path(path);
3709 		path->leave_spinning = 0;
3710 
3711 		memcpy(&new_key, &key, sizeof(new_key));
3712 		new_key.objectid = btrfs_ino(BTRFS_I(inode));
3713 		if (off <= key.offset)
3714 			new_key.offset = key.offset + destoff - off;
3715 		else
3716 			new_key.offset = destoff;
3717 
3718 		/*
3719 		 * Deal with a hole that doesn't have an extent item that
3720 		 * represents it (NO_HOLES feature enabled).
3721 		 * This hole is either in the middle of the cloning range or at
3722 		 * the beginning (fully overlaps it or partially overlaps it).
3723 		 */
3724 		if (new_key.offset != last_dest_end)
3725 			drop_start = last_dest_end;
3726 		else
3727 			drop_start = new_key.offset;
3728 
3729 		if (type == BTRFS_FILE_EXTENT_REG ||
3730 		    type == BTRFS_FILE_EXTENT_PREALLOC) {
3731 			struct btrfs_clone_extent_info clone_info;
3732 
3733 			/*
3734 			 *    a  | --- range to clone ---|  b
3735 			 * | ------------- extent ------------- |
3736 			 */
3737 
3738 			/* Subtract range b */
3739 			if (key.offset + datal > off + len)
3740 				datal = off + len - key.offset;
3741 
3742 			/* Subtract range a */
3743 			if (off > key.offset) {
3744 				datao += off - key.offset;
3745 				datal -= off - key.offset;
3746 			}
3747 
3748 			clone_info.disk_offset = disko;
3749 			clone_info.disk_len = diskl;
3750 			clone_info.data_offset = datao;
3751 			clone_info.data_len = datal;
3752 			clone_info.file_offset = new_key.offset;
3753 			clone_info.extent_buf = buf;
3754 			clone_info.item_size = size;
3755 			ret = btrfs_punch_hole_range(inode, path,
3756 						     drop_start,
3757 						     new_key.offset + datal - 1,
3758 						     &clone_info, &trans);
3759 			if (ret)
3760 				goto out;
3761 		} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3762 			u64 skip = 0;
3763 			u64 trim = 0;
3764 
3765 			if (off > key.offset) {
3766 				skip = off - key.offset;
3767 				new_key.offset += skip;
3768 			}
3769 
3770 			if (key.offset + datal > off + len)
3771 				trim = key.offset + datal - (off + len);
3772 
3773 			if (comp && (skip || trim)) {
3774 				ret = -EINVAL;
3775 				goto out;
3776 			}
3777 			size -= skip + trim;
3778 			datal -= skip + trim;
3779 
3780 			/*
3781 			 * If our extent is inline, we know we will drop or
3782 			 * adjust at most 1 extent item in the destination root.
3783 			 *
3784 			 * 1 - adjusting old extent (we may have to split it)
3785 			 * 1 - add new extent
3786 			 * 1 - inode update
3787 			 */
3788 			trans = btrfs_start_transaction(root, 3);
3789 			if (IS_ERR(trans)) {
3790 				ret = PTR_ERR(trans);
3791 				goto out;
3792 			}
3793 
3794 			ret = clone_copy_inline_extent(inode, trans, path,
3795 						       &new_key, drop_start,
3796 						       datal, skip, size, buf);
3797 			if (ret) {
3798 				if (ret != -EOPNOTSUPP)
3799 					btrfs_abort_transaction(trans, ret);
3800 				btrfs_end_transaction(trans);
3801 				goto out;
3802 			}
3803 		}
3804 
3805 		btrfs_release_path(path);
3806 
3807 		last_dest_end = ALIGN(new_key.offset + datal,
3808 				      fs_info->sectorsize);
3809 		ret = clone_finish_inode_update(trans, inode, last_dest_end,
3810 						destoff, olen, no_time_update);
3811 		if (ret)
3812 			goto out;
3813 		if (new_key.offset + datal >= destoff + len)
3814 			break;
3815 
3816 		btrfs_release_path(path);
3817 		key.offset = next_key_min_offset;
3818 
3819 		if (fatal_signal_pending(current)) {
3820 			ret = -EINTR;
3821 			goto out;
3822 		}
3823 
3824 		cond_resched();
3825 	}
3826 	ret = 0;
3827 
3828 	if (last_dest_end < destoff + len) {
3829 		/*
3830 		 * We have an implicit hole that fully or partially overlaps our
3831 		 * cloning range at its end. This means that we either have the
3832 		 * NO_HOLES feature enabled or the implicit hole happened due to
3833 		 * mixing buffered and direct IO writes against this file.
3834 		 */
3835 		btrfs_release_path(path);
3836 		path->leave_spinning = 0;
3837 
3838 		ret = btrfs_punch_hole_range(inode, path,
3839 					     last_dest_end, destoff + len - 1,
3840 					     NULL, &trans);
3841 		if (ret)
3842 			goto out;
3843 
3844 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3845 						destoff, olen, no_time_update);
3846 	}
3847 
3848 out:
3849 	btrfs_free_path(path);
3850 	kvfree(buf);
3851 	return ret;
3852 }
3853 
btrfs_clone_files(struct file * file,struct file * file_src,u64 off,u64 olen,u64 destoff)3854 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3855 					u64 off, u64 olen, u64 destoff)
3856 {
3857 	struct inode *inode = file_inode(file);
3858 	struct inode *src = file_inode(file_src);
3859 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3860 	int ret;
3861 	u64 len = olen;
3862 	u64 bs = fs_info->sb->s_blocksize;
3863 
3864 	/*
3865 	 * TODO:
3866 	 * - split compressed inline extents.  annoying: we need to
3867 	 *   decompress into destination's address_space (the file offset
3868 	 *   may change, so source mapping won't do), then recompress (or
3869 	 *   otherwise reinsert) a subrange.
3870 	 *
3871 	 * - split destination inode's inline extents.  The inline extents can
3872 	 *   be either compressed or non-compressed.
3873 	 */
3874 
3875 	/*
3876 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
3877 	 * eof block into the middle of a file, which would result in corruption
3878 	 * if the file size is not blocksize aligned. So we don't need to check
3879 	 * for that case here.
3880 	 */
3881 	if (off + len == src->i_size)
3882 		len = ALIGN(src->i_size, bs) - off;
3883 
3884 	if (destoff > inode->i_size) {
3885 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
3886 
3887 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3888 		if (ret)
3889 			return ret;
3890 		/*
3891 		 * We may have truncated the last block if the inode's size is
3892 		 * not sector size aligned, so we need to wait for writeback to
3893 		 * complete before proceeding further, otherwise we can race
3894 		 * with cloning and attempt to increment a reference to an
3895 		 * extent that no longer exists (writeback completed right after
3896 		 * we found the previous extent covering eof and before we
3897 		 * attempted to increment its reference count).
3898 		 */
3899 		ret = btrfs_wait_ordered_range(inode, wb_start,
3900 					       destoff - wb_start);
3901 		if (ret)
3902 			return ret;
3903 	}
3904 
3905 	/*
3906 	 * Lock destination range to serialize with concurrent readpages() and
3907 	 * source range to serialize with relocation.
3908 	 */
3909 	btrfs_double_extent_lock(src, off, inode, destoff, len);
3910 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3911 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
3912 	/*
3913 	 * Truncate page cache pages so that future reads will see the cloned
3914 	 * data immediately and not the previous data.
3915 	 */
3916 	truncate_inode_pages_range(&inode->i_data,
3917 				round_down(destoff, PAGE_SIZE),
3918 				round_up(destoff + len, PAGE_SIZE) - 1);
3919 
3920 	return ret;
3921 }
3922 
btrfs_remap_file_range_prep(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t * len,unsigned int remap_flags)3923 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
3924 				       struct file *file_out, loff_t pos_out,
3925 				       loff_t *len, unsigned int remap_flags)
3926 {
3927 	struct inode *inode_in = file_inode(file_in);
3928 	struct inode *inode_out = file_inode(file_out);
3929 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
3930 	bool same_inode = inode_out == inode_in;
3931 	u64 wb_len;
3932 	int ret;
3933 
3934 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
3935 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
3936 
3937 		if (btrfs_root_readonly(root_out))
3938 			return -EROFS;
3939 
3940 		if (file_in->f_path.mnt != file_out->f_path.mnt ||
3941 		    inode_in->i_sb != inode_out->i_sb)
3942 			return -EXDEV;
3943 	}
3944 
3945 	/* don't make the dst file partly checksummed */
3946 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
3947 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
3948 		return -EINVAL;
3949 	}
3950 
3951 	/*
3952 	 * Now that the inodes are locked, we need to start writeback ourselves
3953 	 * and can not rely on the writeback from the VFS's generic helper
3954 	 * generic_remap_file_range_prep() because:
3955 	 *
3956 	 * 1) For compression we must call filemap_fdatawrite_range() range
3957 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
3958 	 *    helper only calls it once;
3959 	 *
3960 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
3961 	 *    waits for the writeback to complete, i.e. for IO to be done, and
3962 	 *    not for the ordered extents to complete. We need to wait for them
3963 	 *    to complete so that new file extent items are in the fs tree.
3964 	 */
3965 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
3966 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
3967 	else
3968 		wb_len = ALIGN(*len, bs);
3969 
3970 	/*
3971 	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
3972 	 * any in progress could create its ordered extents after we wait for
3973 	 * existing ordered extents below).
3974 	 */
3975 	inode_dio_wait(inode_in);
3976 	if (!same_inode)
3977 		inode_dio_wait(inode_out);
3978 
3979 	/*
3980 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
3981 	 *
3982 	 * Btrfs' back references do not have a block level granularity, they
3983 	 * work at the whole extent level.
3984 	 * NOCOW buffered write without data space reserved may not be able
3985 	 * to fall back to CoW due to lack of data space, thus could cause
3986 	 * data loss.
3987 	 *
3988 	 * Here we take a shortcut by flushing the whole inode, so that all
3989 	 * nocow write should reach disk as nocow before we increase the
3990 	 * reference of the extent. We could do better by only flushing NOCOW
3991 	 * data, but that needs extra accounting.
3992 	 *
3993 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
3994 	 * CoWed anyway, not affecting nocow part.
3995 	 */
3996 	ret = filemap_flush(inode_in->i_mapping);
3997 	if (ret < 0)
3998 		return ret;
3999 
4000 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
4001 				       wb_len);
4002 	if (ret < 0)
4003 		return ret;
4004 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
4005 				       wb_len);
4006 	if (ret < 0)
4007 		return ret;
4008 
4009 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
4010 					    len, remap_flags);
4011 }
4012 
btrfs_remap_file_range(struct file * src_file,loff_t off,struct file * dst_file,loff_t destoff,loff_t len,unsigned int remap_flags)4013 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
4014 		struct file *dst_file, loff_t destoff, loff_t len,
4015 		unsigned int remap_flags)
4016 {
4017 	struct inode *src_inode = file_inode(src_file);
4018 	struct inode *dst_inode = file_inode(dst_file);
4019 	bool same_inode = dst_inode == src_inode;
4020 	int ret;
4021 
4022 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
4023 		return -EINVAL;
4024 
4025 	if (same_inode)
4026 		inode_lock(src_inode);
4027 	else
4028 		lock_two_nondirectories(src_inode, dst_inode);
4029 
4030 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
4031 					  &len, remap_flags);
4032 	if (ret < 0 || len == 0)
4033 		goto out_unlock;
4034 
4035 	if (remap_flags & REMAP_FILE_DEDUP)
4036 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
4037 	else
4038 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
4039 
4040 out_unlock:
4041 	if (same_inode)
4042 		inode_unlock(src_inode);
4043 	else
4044 		unlock_two_nondirectories(src_inode, dst_inode);
4045 
4046 	return ret < 0 ? ret : len;
4047 }
4048 
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)4049 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4050 {
4051 	struct inode *inode = file_inode(file);
4052 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4053 	struct btrfs_root *root = BTRFS_I(inode)->root;
4054 	struct btrfs_root *new_root;
4055 	struct btrfs_dir_item *di;
4056 	struct btrfs_trans_handle *trans;
4057 	struct btrfs_path *path;
4058 	struct btrfs_key location;
4059 	struct btrfs_disk_key disk_key;
4060 	u64 objectid = 0;
4061 	u64 dir_id;
4062 	int ret;
4063 
4064 	if (!capable(CAP_SYS_ADMIN))
4065 		return -EPERM;
4066 
4067 	ret = mnt_want_write_file(file);
4068 	if (ret)
4069 		return ret;
4070 
4071 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4072 		ret = -EFAULT;
4073 		goto out;
4074 	}
4075 
4076 	if (!objectid)
4077 		objectid = BTRFS_FS_TREE_OBJECTID;
4078 
4079 	location.objectid = objectid;
4080 	location.type = BTRFS_ROOT_ITEM_KEY;
4081 	location.offset = (u64)-1;
4082 
4083 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4084 	if (IS_ERR(new_root)) {
4085 		ret = PTR_ERR(new_root);
4086 		goto out;
4087 	}
4088 	if (!is_fstree(new_root->root_key.objectid)) {
4089 		ret = -ENOENT;
4090 		goto out;
4091 	}
4092 
4093 	path = btrfs_alloc_path();
4094 	if (!path) {
4095 		ret = -ENOMEM;
4096 		goto out;
4097 	}
4098 	path->leave_spinning = 1;
4099 
4100 	trans = btrfs_start_transaction(root, 1);
4101 	if (IS_ERR(trans)) {
4102 		btrfs_free_path(path);
4103 		ret = PTR_ERR(trans);
4104 		goto out;
4105 	}
4106 
4107 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4108 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4109 				   dir_id, "default", 7, 1);
4110 	if (IS_ERR_OR_NULL(di)) {
4111 		btrfs_free_path(path);
4112 		btrfs_end_transaction(trans);
4113 		btrfs_err(fs_info,
4114 			  "Umm, you don't have the default diritem, this isn't going to work");
4115 		ret = -ENOENT;
4116 		goto out;
4117 	}
4118 
4119 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4120 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4121 	btrfs_mark_buffer_dirty(path->nodes[0]);
4122 	btrfs_free_path(path);
4123 
4124 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4125 	btrfs_end_transaction(trans);
4126 out:
4127 	mnt_drop_write_file(file);
4128 	return ret;
4129 }
4130 
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)4131 static void get_block_group_info(struct list_head *groups_list,
4132 				 struct btrfs_ioctl_space_info *space)
4133 {
4134 	struct btrfs_block_group_cache *block_group;
4135 
4136 	space->total_bytes = 0;
4137 	space->used_bytes = 0;
4138 	space->flags = 0;
4139 	list_for_each_entry(block_group, groups_list, list) {
4140 		space->flags = block_group->flags;
4141 		space->total_bytes += block_group->key.offset;
4142 		space->used_bytes +=
4143 			btrfs_block_group_used(&block_group->item);
4144 	}
4145 }
4146 
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)4147 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4148 				   void __user *arg)
4149 {
4150 	struct btrfs_ioctl_space_args space_args = { 0 };
4151 	struct btrfs_ioctl_space_info space;
4152 	struct btrfs_ioctl_space_info *dest;
4153 	struct btrfs_ioctl_space_info *dest_orig;
4154 	struct btrfs_ioctl_space_info __user *user_dest;
4155 	struct btrfs_space_info *info;
4156 	static const u64 types[] = {
4157 		BTRFS_BLOCK_GROUP_DATA,
4158 		BTRFS_BLOCK_GROUP_SYSTEM,
4159 		BTRFS_BLOCK_GROUP_METADATA,
4160 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4161 	};
4162 	int num_types = 4;
4163 	int alloc_size;
4164 	int ret = 0;
4165 	u64 slot_count = 0;
4166 	int i, c;
4167 
4168 	if (copy_from_user(&space_args,
4169 			   (struct btrfs_ioctl_space_args __user *)arg,
4170 			   sizeof(space_args)))
4171 		return -EFAULT;
4172 
4173 	for (i = 0; i < num_types; i++) {
4174 		struct btrfs_space_info *tmp;
4175 
4176 		info = NULL;
4177 		rcu_read_lock();
4178 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4179 					list) {
4180 			if (tmp->flags == types[i]) {
4181 				info = tmp;
4182 				break;
4183 			}
4184 		}
4185 		rcu_read_unlock();
4186 
4187 		if (!info)
4188 			continue;
4189 
4190 		down_read(&info->groups_sem);
4191 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4192 			if (!list_empty(&info->block_groups[c]))
4193 				slot_count++;
4194 		}
4195 		up_read(&info->groups_sem);
4196 	}
4197 
4198 	/*
4199 	 * Global block reserve, exported as a space_info
4200 	 */
4201 	slot_count++;
4202 
4203 	/* space_slots == 0 means they are asking for a count */
4204 	if (space_args.space_slots == 0) {
4205 		space_args.total_spaces = slot_count;
4206 		goto out;
4207 	}
4208 
4209 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4210 
4211 	alloc_size = sizeof(*dest) * slot_count;
4212 
4213 	/* we generally have at most 6 or so space infos, one for each raid
4214 	 * level.  So, a whole page should be more than enough for everyone
4215 	 */
4216 	if (alloc_size > PAGE_SIZE)
4217 		return -ENOMEM;
4218 
4219 	space_args.total_spaces = 0;
4220 	dest = kmalloc(alloc_size, GFP_KERNEL);
4221 	if (!dest)
4222 		return -ENOMEM;
4223 	dest_orig = dest;
4224 
4225 	/* now we have a buffer to copy into */
4226 	for (i = 0; i < num_types; i++) {
4227 		struct btrfs_space_info *tmp;
4228 
4229 		if (!slot_count)
4230 			break;
4231 
4232 		info = NULL;
4233 		rcu_read_lock();
4234 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4235 					list) {
4236 			if (tmp->flags == types[i]) {
4237 				info = tmp;
4238 				break;
4239 			}
4240 		}
4241 		rcu_read_unlock();
4242 
4243 		if (!info)
4244 			continue;
4245 		down_read(&info->groups_sem);
4246 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4247 			if (!list_empty(&info->block_groups[c])) {
4248 				get_block_group_info(&info->block_groups[c],
4249 						     &space);
4250 				memcpy(dest, &space, sizeof(space));
4251 				dest++;
4252 				space_args.total_spaces++;
4253 				slot_count--;
4254 			}
4255 			if (!slot_count)
4256 				break;
4257 		}
4258 		up_read(&info->groups_sem);
4259 	}
4260 
4261 	/*
4262 	 * Add global block reserve
4263 	 */
4264 	if (slot_count) {
4265 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4266 
4267 		spin_lock(&block_rsv->lock);
4268 		space.total_bytes = block_rsv->size;
4269 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4270 		spin_unlock(&block_rsv->lock);
4271 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4272 		memcpy(dest, &space, sizeof(space));
4273 		space_args.total_spaces++;
4274 	}
4275 
4276 	user_dest = (struct btrfs_ioctl_space_info __user *)
4277 		(arg + sizeof(struct btrfs_ioctl_space_args));
4278 
4279 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4280 		ret = -EFAULT;
4281 
4282 	kfree(dest_orig);
4283 out:
4284 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4285 		ret = -EFAULT;
4286 
4287 	return ret;
4288 }
4289 
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)4290 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4291 					    void __user *argp)
4292 {
4293 	struct btrfs_trans_handle *trans;
4294 	u64 transid;
4295 	int ret;
4296 
4297 	trans = btrfs_attach_transaction_barrier(root);
4298 	if (IS_ERR(trans)) {
4299 		if (PTR_ERR(trans) != -ENOENT)
4300 			return PTR_ERR(trans);
4301 
4302 		/* No running transaction, don't bother */
4303 		transid = root->fs_info->last_trans_committed;
4304 		goto out;
4305 	}
4306 	transid = trans->transid;
4307 	ret = btrfs_commit_transaction_async(trans, 0);
4308 	if (ret) {
4309 		btrfs_end_transaction(trans);
4310 		return ret;
4311 	}
4312 out:
4313 	if (argp)
4314 		if (copy_to_user(argp, &transid, sizeof(transid)))
4315 			return -EFAULT;
4316 	return 0;
4317 }
4318 
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)4319 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4320 					   void __user *argp)
4321 {
4322 	u64 transid;
4323 
4324 	if (argp) {
4325 		if (copy_from_user(&transid, argp, sizeof(transid)))
4326 			return -EFAULT;
4327 	} else {
4328 		transid = 0;  /* current trans */
4329 	}
4330 	return btrfs_wait_for_commit(fs_info, transid);
4331 }
4332 
btrfs_ioctl_scrub(struct file * file,void __user * arg)4333 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4334 {
4335 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4336 	struct btrfs_ioctl_scrub_args *sa;
4337 	int ret;
4338 
4339 	if (!capable(CAP_SYS_ADMIN))
4340 		return -EPERM;
4341 
4342 	sa = memdup_user(arg, sizeof(*sa));
4343 	if (IS_ERR(sa))
4344 		return PTR_ERR(sa);
4345 
4346 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
4347 		ret = -EOPNOTSUPP;
4348 		goto out;
4349 	}
4350 
4351 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4352 		ret = mnt_want_write_file(file);
4353 		if (ret)
4354 			goto out;
4355 	}
4356 
4357 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4358 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4359 			      0);
4360 
4361 	/*
4362 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
4363 	 * error. This is important as it allows user space to know how much
4364 	 * progress scrub has done. For example, if scrub is canceled we get
4365 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
4366 	 * space. Later user space can inspect the progress from the structure
4367 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
4368 	 * previously (btrfs-progs does this).
4369 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
4370 	 * then return -EFAULT to signal the structure was not copied or it may
4371 	 * be corrupt and unreliable due to a partial copy.
4372 	 */
4373 	if (copy_to_user(arg, sa, sizeof(*sa)))
4374 		ret = -EFAULT;
4375 
4376 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4377 		mnt_drop_write_file(file);
4378 out:
4379 	kfree(sa);
4380 	return ret;
4381 }
4382 
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)4383 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4384 {
4385 	if (!capable(CAP_SYS_ADMIN))
4386 		return -EPERM;
4387 
4388 	return btrfs_scrub_cancel(fs_info);
4389 }
4390 
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)4391 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4392 				       void __user *arg)
4393 {
4394 	struct btrfs_ioctl_scrub_args *sa;
4395 	int ret;
4396 
4397 	if (!capable(CAP_SYS_ADMIN))
4398 		return -EPERM;
4399 
4400 	sa = memdup_user(arg, sizeof(*sa));
4401 	if (IS_ERR(sa))
4402 		return PTR_ERR(sa);
4403 
4404 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4405 
4406 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4407 		ret = -EFAULT;
4408 
4409 	kfree(sa);
4410 	return ret;
4411 }
4412 
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)4413 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4414 				      void __user *arg)
4415 {
4416 	struct btrfs_ioctl_get_dev_stats *sa;
4417 	int ret;
4418 
4419 	sa = memdup_user(arg, sizeof(*sa));
4420 	if (IS_ERR(sa))
4421 		return PTR_ERR(sa);
4422 
4423 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4424 		kfree(sa);
4425 		return -EPERM;
4426 	}
4427 
4428 	ret = btrfs_get_dev_stats(fs_info, sa);
4429 
4430 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4431 		ret = -EFAULT;
4432 
4433 	kfree(sa);
4434 	return ret;
4435 }
4436 
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)4437 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4438 				    void __user *arg)
4439 {
4440 	struct btrfs_ioctl_dev_replace_args *p;
4441 	int ret;
4442 
4443 	if (!capable(CAP_SYS_ADMIN))
4444 		return -EPERM;
4445 
4446 	p = memdup_user(arg, sizeof(*p));
4447 	if (IS_ERR(p))
4448 		return PTR_ERR(p);
4449 
4450 	switch (p->cmd) {
4451 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4452 		if (sb_rdonly(fs_info->sb)) {
4453 			ret = -EROFS;
4454 			goto out;
4455 		}
4456 		if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4457 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4458 		} else {
4459 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4460 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4461 		}
4462 		break;
4463 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4464 		btrfs_dev_replace_status(fs_info, p);
4465 		ret = 0;
4466 		break;
4467 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4468 		p->result = btrfs_dev_replace_cancel(fs_info);
4469 		ret = 0;
4470 		break;
4471 	default:
4472 		ret = -EINVAL;
4473 		break;
4474 	}
4475 
4476 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4477 		ret = -EFAULT;
4478 out:
4479 	kfree(p);
4480 	return ret;
4481 }
4482 
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)4483 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4484 {
4485 	int ret = 0;
4486 	int i;
4487 	u64 rel_ptr;
4488 	int size;
4489 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4490 	struct inode_fs_paths *ipath = NULL;
4491 	struct btrfs_path *path;
4492 
4493 	if (!capable(CAP_DAC_READ_SEARCH))
4494 		return -EPERM;
4495 
4496 	path = btrfs_alloc_path();
4497 	if (!path) {
4498 		ret = -ENOMEM;
4499 		goto out;
4500 	}
4501 
4502 	ipa = memdup_user(arg, sizeof(*ipa));
4503 	if (IS_ERR(ipa)) {
4504 		ret = PTR_ERR(ipa);
4505 		ipa = NULL;
4506 		goto out;
4507 	}
4508 
4509 	size = min_t(u32, ipa->size, 4096);
4510 	ipath = init_ipath(size, root, path);
4511 	if (IS_ERR(ipath)) {
4512 		ret = PTR_ERR(ipath);
4513 		ipath = NULL;
4514 		goto out;
4515 	}
4516 
4517 	ret = paths_from_inode(ipa->inum, ipath);
4518 	if (ret < 0)
4519 		goto out;
4520 
4521 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4522 		rel_ptr = ipath->fspath->val[i] -
4523 			  (u64)(unsigned long)ipath->fspath->val;
4524 		ipath->fspath->val[i] = rel_ptr;
4525 	}
4526 
4527 	btrfs_free_path(path);
4528 	path = NULL;
4529 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4530 			   ipath->fspath, size);
4531 	if (ret) {
4532 		ret = -EFAULT;
4533 		goto out;
4534 	}
4535 
4536 out:
4537 	btrfs_free_path(path);
4538 	free_ipath(ipath);
4539 	kfree(ipa);
4540 
4541 	return ret;
4542 }
4543 
build_ino_list(u64 inum,u64 offset,u64 root,void * ctx)4544 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4545 {
4546 	struct btrfs_data_container *inodes = ctx;
4547 	const size_t c = 3 * sizeof(u64);
4548 
4549 	if (inodes->bytes_left >= c) {
4550 		inodes->bytes_left -= c;
4551 		inodes->val[inodes->elem_cnt] = inum;
4552 		inodes->val[inodes->elem_cnt + 1] = offset;
4553 		inodes->val[inodes->elem_cnt + 2] = root;
4554 		inodes->elem_cnt += 3;
4555 	} else {
4556 		inodes->bytes_missing += c - inodes->bytes_left;
4557 		inodes->bytes_left = 0;
4558 		inodes->elem_missed += 3;
4559 	}
4560 
4561 	return 0;
4562 }
4563 
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)4564 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4565 					void __user *arg, int version)
4566 {
4567 	int ret = 0;
4568 	int size;
4569 	struct btrfs_ioctl_logical_ino_args *loi;
4570 	struct btrfs_data_container *inodes = NULL;
4571 	struct btrfs_path *path = NULL;
4572 	bool ignore_offset;
4573 
4574 	if (!capable(CAP_SYS_ADMIN))
4575 		return -EPERM;
4576 
4577 	loi = memdup_user(arg, sizeof(*loi));
4578 	if (IS_ERR(loi))
4579 		return PTR_ERR(loi);
4580 
4581 	if (version == 1) {
4582 		ignore_offset = false;
4583 		size = min_t(u32, loi->size, SZ_64K);
4584 	} else {
4585 		/* All reserved bits must be 0 for now */
4586 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4587 			ret = -EINVAL;
4588 			goto out_loi;
4589 		}
4590 		/* Only accept flags we have defined so far */
4591 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4592 			ret = -EINVAL;
4593 			goto out_loi;
4594 		}
4595 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4596 		size = min_t(u32, loi->size, SZ_16M);
4597 	}
4598 
4599 	inodes = init_data_container(size);
4600 	if (IS_ERR(inodes)) {
4601 		ret = PTR_ERR(inodes);
4602 		goto out_loi;
4603 	}
4604 
4605 	path = btrfs_alloc_path();
4606 	if (!path) {
4607 		ret = -ENOMEM;
4608 		goto out;
4609 	}
4610 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4611 					  build_ino_list, inodes, ignore_offset);
4612 	btrfs_free_path(path);
4613 	if (ret == -EINVAL)
4614 		ret = -ENOENT;
4615 	if (ret < 0)
4616 		goto out;
4617 
4618 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4619 			   size);
4620 	if (ret)
4621 		ret = -EFAULT;
4622 
4623 out:
4624 	kvfree(inodes);
4625 out_loi:
4626 	kfree(loi);
4627 
4628 	return ret;
4629 }
4630 
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)4631 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4632 			       struct btrfs_ioctl_balance_args *bargs)
4633 {
4634 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4635 
4636 	bargs->flags = bctl->flags;
4637 
4638 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4639 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4640 	if (atomic_read(&fs_info->balance_pause_req))
4641 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4642 	if (atomic_read(&fs_info->balance_cancel_req))
4643 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4644 
4645 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4646 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4647 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4648 
4649 	spin_lock(&fs_info->balance_lock);
4650 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4651 	spin_unlock(&fs_info->balance_lock);
4652 }
4653 
btrfs_ioctl_balance(struct file * file,void __user * arg)4654 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4655 {
4656 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4657 	struct btrfs_fs_info *fs_info = root->fs_info;
4658 	struct btrfs_ioctl_balance_args *bargs;
4659 	struct btrfs_balance_control *bctl;
4660 	bool need_unlock; /* for mut. excl. ops lock */
4661 	int ret;
4662 
4663 	if (!capable(CAP_SYS_ADMIN))
4664 		return -EPERM;
4665 
4666 	ret = mnt_want_write_file(file);
4667 	if (ret)
4668 		return ret;
4669 
4670 again:
4671 	if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4672 		mutex_lock(&fs_info->balance_mutex);
4673 		need_unlock = true;
4674 		goto locked;
4675 	}
4676 
4677 	/*
4678 	 * mut. excl. ops lock is locked.  Three possibilities:
4679 	 *   (1) some other op is running
4680 	 *   (2) balance is running
4681 	 *   (3) balance is paused -- special case (think resume)
4682 	 */
4683 	mutex_lock(&fs_info->balance_mutex);
4684 	if (fs_info->balance_ctl) {
4685 		/* this is either (2) or (3) */
4686 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4687 			mutex_unlock(&fs_info->balance_mutex);
4688 			/*
4689 			 * Lock released to allow other waiters to continue,
4690 			 * we'll reexamine the status again.
4691 			 */
4692 			mutex_lock(&fs_info->balance_mutex);
4693 
4694 			if (fs_info->balance_ctl &&
4695 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4696 				/* this is (3) */
4697 				need_unlock = false;
4698 				goto locked;
4699 			}
4700 
4701 			mutex_unlock(&fs_info->balance_mutex);
4702 			goto again;
4703 		} else {
4704 			/* this is (2) */
4705 			mutex_unlock(&fs_info->balance_mutex);
4706 			ret = -EINPROGRESS;
4707 			goto out;
4708 		}
4709 	} else {
4710 		/* this is (1) */
4711 		mutex_unlock(&fs_info->balance_mutex);
4712 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4713 		goto out;
4714 	}
4715 
4716 locked:
4717 	BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4718 
4719 	if (arg) {
4720 		bargs = memdup_user(arg, sizeof(*bargs));
4721 		if (IS_ERR(bargs)) {
4722 			ret = PTR_ERR(bargs);
4723 			goto out_unlock;
4724 		}
4725 
4726 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4727 			if (!fs_info->balance_ctl) {
4728 				ret = -ENOTCONN;
4729 				goto out_bargs;
4730 			}
4731 
4732 			bctl = fs_info->balance_ctl;
4733 			spin_lock(&fs_info->balance_lock);
4734 			bctl->flags |= BTRFS_BALANCE_RESUME;
4735 			spin_unlock(&fs_info->balance_lock);
4736 
4737 			goto do_balance;
4738 		}
4739 	} else {
4740 		bargs = NULL;
4741 	}
4742 
4743 	if (fs_info->balance_ctl) {
4744 		ret = -EINPROGRESS;
4745 		goto out_bargs;
4746 	}
4747 
4748 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4749 	if (!bctl) {
4750 		ret = -ENOMEM;
4751 		goto out_bargs;
4752 	}
4753 
4754 	if (arg) {
4755 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4756 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4757 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4758 
4759 		bctl->flags = bargs->flags;
4760 	} else {
4761 		/* balance everything - no filters */
4762 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4763 	}
4764 
4765 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4766 		ret = -EINVAL;
4767 		goto out_bctl;
4768 	}
4769 
4770 do_balance:
4771 	/*
4772 	 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
4773 	 * btrfs_balance.  bctl is freed in reset_balance_state, or, if
4774 	 * restriper was paused all the way until unmount, in free_fs_info.
4775 	 * The flag should be cleared after reset_balance_state.
4776 	 */
4777 	need_unlock = false;
4778 
4779 	ret = btrfs_balance(fs_info, bctl, bargs);
4780 	bctl = NULL;
4781 
4782 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4783 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4784 			ret = -EFAULT;
4785 	}
4786 
4787 out_bctl:
4788 	kfree(bctl);
4789 out_bargs:
4790 	kfree(bargs);
4791 out_unlock:
4792 	mutex_unlock(&fs_info->balance_mutex);
4793 	if (need_unlock)
4794 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4795 out:
4796 	mnt_drop_write_file(file);
4797 	return ret;
4798 }
4799 
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)4800 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4801 {
4802 	if (!capable(CAP_SYS_ADMIN))
4803 		return -EPERM;
4804 
4805 	switch (cmd) {
4806 	case BTRFS_BALANCE_CTL_PAUSE:
4807 		return btrfs_pause_balance(fs_info);
4808 	case BTRFS_BALANCE_CTL_CANCEL:
4809 		return btrfs_cancel_balance(fs_info);
4810 	}
4811 
4812 	return -EINVAL;
4813 }
4814 
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)4815 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4816 					 void __user *arg)
4817 {
4818 	struct btrfs_ioctl_balance_args *bargs;
4819 	int ret = 0;
4820 
4821 	if (!capable(CAP_SYS_ADMIN))
4822 		return -EPERM;
4823 
4824 	mutex_lock(&fs_info->balance_mutex);
4825 	if (!fs_info->balance_ctl) {
4826 		ret = -ENOTCONN;
4827 		goto out;
4828 	}
4829 
4830 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4831 	if (!bargs) {
4832 		ret = -ENOMEM;
4833 		goto out;
4834 	}
4835 
4836 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4837 
4838 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4839 		ret = -EFAULT;
4840 
4841 	kfree(bargs);
4842 out:
4843 	mutex_unlock(&fs_info->balance_mutex);
4844 	return ret;
4845 }
4846 
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4847 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4848 {
4849 	struct inode *inode = file_inode(file);
4850 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4851 	struct btrfs_ioctl_quota_ctl_args *sa;
4852 	int ret;
4853 
4854 	if (!capable(CAP_SYS_ADMIN))
4855 		return -EPERM;
4856 
4857 	ret = mnt_want_write_file(file);
4858 	if (ret)
4859 		return ret;
4860 
4861 	sa = memdup_user(arg, sizeof(*sa));
4862 	if (IS_ERR(sa)) {
4863 		ret = PTR_ERR(sa);
4864 		goto drop_write;
4865 	}
4866 
4867 	down_write(&fs_info->subvol_sem);
4868 
4869 	switch (sa->cmd) {
4870 	case BTRFS_QUOTA_CTL_ENABLE:
4871 		ret = btrfs_quota_enable(fs_info);
4872 		break;
4873 	case BTRFS_QUOTA_CTL_DISABLE:
4874 		ret = btrfs_quota_disable(fs_info);
4875 		break;
4876 	default:
4877 		ret = -EINVAL;
4878 		break;
4879 	}
4880 
4881 	kfree(sa);
4882 	up_write(&fs_info->subvol_sem);
4883 drop_write:
4884 	mnt_drop_write_file(file);
4885 	return ret;
4886 }
4887 
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4888 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4889 {
4890 	struct inode *inode = file_inode(file);
4891 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4892 	struct btrfs_root *root = BTRFS_I(inode)->root;
4893 	struct btrfs_ioctl_qgroup_assign_args *sa;
4894 	struct btrfs_trans_handle *trans;
4895 	int ret;
4896 	int err;
4897 
4898 	if (!capable(CAP_SYS_ADMIN))
4899 		return -EPERM;
4900 
4901 	ret = mnt_want_write_file(file);
4902 	if (ret)
4903 		return ret;
4904 
4905 	sa = memdup_user(arg, sizeof(*sa));
4906 	if (IS_ERR(sa)) {
4907 		ret = PTR_ERR(sa);
4908 		goto drop_write;
4909 	}
4910 
4911 	trans = btrfs_join_transaction(root);
4912 	if (IS_ERR(trans)) {
4913 		ret = PTR_ERR(trans);
4914 		goto out;
4915 	}
4916 
4917 	if (sa->assign) {
4918 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4919 	} else {
4920 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4921 	}
4922 
4923 	/* update qgroup status and info */
4924 	mutex_lock(&fs_info->qgroup_ioctl_lock);
4925 	err = btrfs_run_qgroups(trans);
4926 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
4927 	if (err < 0)
4928 		btrfs_handle_fs_error(fs_info, err,
4929 				      "failed to update qgroup status and info");
4930 	err = btrfs_end_transaction(trans);
4931 	if (err && !ret)
4932 		ret = err;
4933 
4934 out:
4935 	kfree(sa);
4936 drop_write:
4937 	mnt_drop_write_file(file);
4938 	return ret;
4939 }
4940 
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4941 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4942 {
4943 	struct inode *inode = file_inode(file);
4944 	struct btrfs_root *root = BTRFS_I(inode)->root;
4945 	struct btrfs_ioctl_qgroup_create_args *sa;
4946 	struct btrfs_trans_handle *trans;
4947 	int ret;
4948 	int err;
4949 
4950 	if (!capable(CAP_SYS_ADMIN))
4951 		return -EPERM;
4952 
4953 	ret = mnt_want_write_file(file);
4954 	if (ret)
4955 		return ret;
4956 
4957 	sa = memdup_user(arg, sizeof(*sa));
4958 	if (IS_ERR(sa)) {
4959 		ret = PTR_ERR(sa);
4960 		goto drop_write;
4961 	}
4962 
4963 	if (!sa->qgroupid) {
4964 		ret = -EINVAL;
4965 		goto out;
4966 	}
4967 
4968 	if (sa->create && is_fstree(sa->qgroupid)) {
4969 		ret = -EINVAL;
4970 		goto out;
4971 	}
4972 
4973 	trans = btrfs_join_transaction(root);
4974 	if (IS_ERR(trans)) {
4975 		ret = PTR_ERR(trans);
4976 		goto out;
4977 	}
4978 
4979 	if (sa->create) {
4980 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4981 	} else {
4982 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4983 	}
4984 
4985 	err = btrfs_end_transaction(trans);
4986 	if (err && !ret)
4987 		ret = err;
4988 
4989 out:
4990 	kfree(sa);
4991 drop_write:
4992 	mnt_drop_write_file(file);
4993 	return ret;
4994 }
4995 
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)4996 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4997 {
4998 	struct inode *inode = file_inode(file);
4999 	struct btrfs_root *root = BTRFS_I(inode)->root;
5000 	struct btrfs_ioctl_qgroup_limit_args *sa;
5001 	struct btrfs_trans_handle *trans;
5002 	int ret;
5003 	int err;
5004 	u64 qgroupid;
5005 
5006 	if (!capable(CAP_SYS_ADMIN))
5007 		return -EPERM;
5008 
5009 	ret = mnt_want_write_file(file);
5010 	if (ret)
5011 		return ret;
5012 
5013 	sa = memdup_user(arg, sizeof(*sa));
5014 	if (IS_ERR(sa)) {
5015 		ret = PTR_ERR(sa);
5016 		goto drop_write;
5017 	}
5018 
5019 	trans = btrfs_join_transaction(root);
5020 	if (IS_ERR(trans)) {
5021 		ret = PTR_ERR(trans);
5022 		goto out;
5023 	}
5024 
5025 	qgroupid = sa->qgroupid;
5026 	if (!qgroupid) {
5027 		/* take the current subvol as qgroup */
5028 		qgroupid = root->root_key.objectid;
5029 	}
5030 
5031 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
5032 
5033 	err = btrfs_end_transaction(trans);
5034 	if (err && !ret)
5035 		ret = err;
5036 
5037 out:
5038 	kfree(sa);
5039 drop_write:
5040 	mnt_drop_write_file(file);
5041 	return ret;
5042 }
5043 
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)5044 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5045 {
5046 	struct inode *inode = file_inode(file);
5047 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5048 	struct btrfs_ioctl_quota_rescan_args *qsa;
5049 	int ret;
5050 
5051 	if (!capable(CAP_SYS_ADMIN))
5052 		return -EPERM;
5053 
5054 	ret = mnt_want_write_file(file);
5055 	if (ret)
5056 		return ret;
5057 
5058 	qsa = memdup_user(arg, sizeof(*qsa));
5059 	if (IS_ERR(qsa)) {
5060 		ret = PTR_ERR(qsa);
5061 		goto drop_write;
5062 	}
5063 
5064 	if (qsa->flags) {
5065 		ret = -EINVAL;
5066 		goto out;
5067 	}
5068 
5069 	ret = btrfs_qgroup_rescan(fs_info);
5070 
5071 out:
5072 	kfree(qsa);
5073 drop_write:
5074 	mnt_drop_write_file(file);
5075 	return ret;
5076 }
5077 
btrfs_ioctl_quota_rescan_status(struct file * file,void __user * arg)5078 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5079 {
5080 	struct inode *inode = file_inode(file);
5081 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5082 	struct btrfs_ioctl_quota_rescan_args *qsa;
5083 	int ret = 0;
5084 
5085 	if (!capable(CAP_SYS_ADMIN))
5086 		return -EPERM;
5087 
5088 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5089 	if (!qsa)
5090 		return -ENOMEM;
5091 
5092 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5093 		qsa->flags = 1;
5094 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5095 	}
5096 
5097 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5098 		ret = -EFAULT;
5099 
5100 	kfree(qsa);
5101 	return ret;
5102 }
5103 
btrfs_ioctl_quota_rescan_wait(struct file * file,void __user * arg)5104 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5105 {
5106 	struct inode *inode = file_inode(file);
5107 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5108 
5109 	if (!capable(CAP_SYS_ADMIN))
5110 		return -EPERM;
5111 
5112 	return btrfs_qgroup_wait_for_completion(fs_info, true);
5113 }
5114 
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)5115 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5116 					    struct btrfs_ioctl_received_subvol_args *sa)
5117 {
5118 	struct inode *inode = file_inode(file);
5119 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5120 	struct btrfs_root *root = BTRFS_I(inode)->root;
5121 	struct btrfs_root_item *root_item = &root->root_item;
5122 	struct btrfs_trans_handle *trans;
5123 	struct timespec64 ct = current_time(inode);
5124 	int ret = 0;
5125 	int received_uuid_changed;
5126 
5127 	if (!inode_owner_or_capable(inode))
5128 		return -EPERM;
5129 
5130 	ret = mnt_want_write_file(file);
5131 	if (ret < 0)
5132 		return ret;
5133 
5134 	down_write(&fs_info->subvol_sem);
5135 
5136 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5137 		ret = -EINVAL;
5138 		goto out;
5139 	}
5140 
5141 	if (btrfs_root_readonly(root)) {
5142 		ret = -EROFS;
5143 		goto out;
5144 	}
5145 
5146 	/*
5147 	 * 1 - root item
5148 	 * 2 - uuid items (received uuid + subvol uuid)
5149 	 */
5150 	trans = btrfs_start_transaction(root, 3);
5151 	if (IS_ERR(trans)) {
5152 		ret = PTR_ERR(trans);
5153 		trans = NULL;
5154 		goto out;
5155 	}
5156 
5157 	sa->rtransid = trans->transid;
5158 	sa->rtime.sec = ct.tv_sec;
5159 	sa->rtime.nsec = ct.tv_nsec;
5160 
5161 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5162 				       BTRFS_UUID_SIZE);
5163 	if (received_uuid_changed &&
5164 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
5165 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
5166 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5167 					  root->root_key.objectid);
5168 		if (ret && ret != -ENOENT) {
5169 		        btrfs_abort_transaction(trans, ret);
5170 		        btrfs_end_transaction(trans);
5171 		        goto out;
5172 		}
5173 	}
5174 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5175 	btrfs_set_root_stransid(root_item, sa->stransid);
5176 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5177 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5178 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5179 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5180 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5181 
5182 	ret = btrfs_update_root(trans, fs_info->tree_root,
5183 				&root->root_key, &root->root_item);
5184 	if (ret < 0) {
5185 		btrfs_end_transaction(trans);
5186 		goto out;
5187 	}
5188 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5189 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
5190 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5191 					  root->root_key.objectid);
5192 		if (ret < 0 && ret != -EEXIST) {
5193 			btrfs_abort_transaction(trans, ret);
5194 			btrfs_end_transaction(trans);
5195 			goto out;
5196 		}
5197 	}
5198 	ret = btrfs_commit_transaction(trans);
5199 out:
5200 	up_write(&fs_info->subvol_sem);
5201 	mnt_drop_write_file(file);
5202 	return ret;
5203 }
5204 
5205 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)5206 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5207 						void __user *arg)
5208 {
5209 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5210 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5211 	int ret = 0;
5212 
5213 	args32 = memdup_user(arg, sizeof(*args32));
5214 	if (IS_ERR(args32))
5215 		return PTR_ERR(args32);
5216 
5217 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5218 	if (!args64) {
5219 		ret = -ENOMEM;
5220 		goto out;
5221 	}
5222 
5223 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5224 	args64->stransid = args32->stransid;
5225 	args64->rtransid = args32->rtransid;
5226 	args64->stime.sec = args32->stime.sec;
5227 	args64->stime.nsec = args32->stime.nsec;
5228 	args64->rtime.sec = args32->rtime.sec;
5229 	args64->rtime.nsec = args32->rtime.nsec;
5230 	args64->flags = args32->flags;
5231 
5232 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5233 	if (ret)
5234 		goto out;
5235 
5236 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5237 	args32->stransid = args64->stransid;
5238 	args32->rtransid = args64->rtransid;
5239 	args32->stime.sec = args64->stime.sec;
5240 	args32->stime.nsec = args64->stime.nsec;
5241 	args32->rtime.sec = args64->rtime.sec;
5242 	args32->rtime.nsec = args64->rtime.nsec;
5243 	args32->flags = args64->flags;
5244 
5245 	ret = copy_to_user(arg, args32, sizeof(*args32));
5246 	if (ret)
5247 		ret = -EFAULT;
5248 
5249 out:
5250 	kfree(args32);
5251 	kfree(args64);
5252 	return ret;
5253 }
5254 #endif
5255 
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)5256 static long btrfs_ioctl_set_received_subvol(struct file *file,
5257 					    void __user *arg)
5258 {
5259 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5260 	int ret = 0;
5261 
5262 	sa = memdup_user(arg, sizeof(*sa));
5263 	if (IS_ERR(sa))
5264 		return PTR_ERR(sa);
5265 
5266 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5267 
5268 	if (ret)
5269 		goto out;
5270 
5271 	ret = copy_to_user(arg, sa, sizeof(*sa));
5272 	if (ret)
5273 		ret = -EFAULT;
5274 
5275 out:
5276 	kfree(sa);
5277 	return ret;
5278 }
5279 
btrfs_ioctl_get_fslabel(struct file * file,void __user * arg)5280 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5281 {
5282 	struct inode *inode = file_inode(file);
5283 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5284 	size_t len;
5285 	int ret;
5286 	char label[BTRFS_LABEL_SIZE];
5287 
5288 	spin_lock(&fs_info->super_lock);
5289 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5290 	spin_unlock(&fs_info->super_lock);
5291 
5292 	len = strnlen(label, BTRFS_LABEL_SIZE);
5293 
5294 	if (len == BTRFS_LABEL_SIZE) {
5295 		btrfs_warn(fs_info,
5296 			   "label is too long, return the first %zu bytes",
5297 			   --len);
5298 	}
5299 
5300 	ret = copy_to_user(arg, label, len);
5301 
5302 	return ret ? -EFAULT : 0;
5303 }
5304 
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)5305 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5306 {
5307 	struct inode *inode = file_inode(file);
5308 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5309 	struct btrfs_root *root = BTRFS_I(inode)->root;
5310 	struct btrfs_super_block *super_block = fs_info->super_copy;
5311 	struct btrfs_trans_handle *trans;
5312 	char label[BTRFS_LABEL_SIZE];
5313 	int ret;
5314 
5315 	if (!capable(CAP_SYS_ADMIN))
5316 		return -EPERM;
5317 
5318 	if (copy_from_user(label, arg, sizeof(label)))
5319 		return -EFAULT;
5320 
5321 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5322 		btrfs_err(fs_info,
5323 			  "unable to set label with more than %d bytes",
5324 			  BTRFS_LABEL_SIZE - 1);
5325 		return -EINVAL;
5326 	}
5327 
5328 	ret = mnt_want_write_file(file);
5329 	if (ret)
5330 		return ret;
5331 
5332 	trans = btrfs_start_transaction(root, 0);
5333 	if (IS_ERR(trans)) {
5334 		ret = PTR_ERR(trans);
5335 		goto out_unlock;
5336 	}
5337 
5338 	spin_lock(&fs_info->super_lock);
5339 	strcpy(super_block->label, label);
5340 	spin_unlock(&fs_info->super_lock);
5341 	ret = btrfs_commit_transaction(trans);
5342 
5343 out_unlock:
5344 	mnt_drop_write_file(file);
5345 	return ret;
5346 }
5347 
5348 #define INIT_FEATURE_FLAGS(suffix) \
5349 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5350 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5351 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5352 
btrfs_ioctl_get_supported_features(void __user * arg)5353 int btrfs_ioctl_get_supported_features(void __user *arg)
5354 {
5355 	static const struct btrfs_ioctl_feature_flags features[3] = {
5356 		INIT_FEATURE_FLAGS(SUPP),
5357 		INIT_FEATURE_FLAGS(SAFE_SET),
5358 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5359 	};
5360 
5361 	if (copy_to_user(arg, &features, sizeof(features)))
5362 		return -EFAULT;
5363 
5364 	return 0;
5365 }
5366 
btrfs_ioctl_get_features(struct file * file,void __user * arg)5367 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5368 {
5369 	struct inode *inode = file_inode(file);
5370 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5371 	struct btrfs_super_block *super_block = fs_info->super_copy;
5372 	struct btrfs_ioctl_feature_flags features;
5373 
5374 	features.compat_flags = btrfs_super_compat_flags(super_block);
5375 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5376 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5377 
5378 	if (copy_to_user(arg, &features, sizeof(features)))
5379 		return -EFAULT;
5380 
5381 	return 0;
5382 }
5383 
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)5384 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5385 			      enum btrfs_feature_set set,
5386 			      u64 change_mask, u64 flags, u64 supported_flags,
5387 			      u64 safe_set, u64 safe_clear)
5388 {
5389 	const char *type = btrfs_feature_set_name(set);
5390 	char *names;
5391 	u64 disallowed, unsupported;
5392 	u64 set_mask = flags & change_mask;
5393 	u64 clear_mask = ~flags & change_mask;
5394 
5395 	unsupported = set_mask & ~supported_flags;
5396 	if (unsupported) {
5397 		names = btrfs_printable_features(set, unsupported);
5398 		if (names) {
5399 			btrfs_warn(fs_info,
5400 				   "this kernel does not support the %s feature bit%s",
5401 				   names, strchr(names, ',') ? "s" : "");
5402 			kfree(names);
5403 		} else
5404 			btrfs_warn(fs_info,
5405 				   "this kernel does not support %s bits 0x%llx",
5406 				   type, unsupported);
5407 		return -EOPNOTSUPP;
5408 	}
5409 
5410 	disallowed = set_mask & ~safe_set;
5411 	if (disallowed) {
5412 		names = btrfs_printable_features(set, disallowed);
5413 		if (names) {
5414 			btrfs_warn(fs_info,
5415 				   "can't set the %s feature bit%s while mounted",
5416 				   names, strchr(names, ',') ? "s" : "");
5417 			kfree(names);
5418 		} else
5419 			btrfs_warn(fs_info,
5420 				   "can't set %s bits 0x%llx while mounted",
5421 				   type, disallowed);
5422 		return -EPERM;
5423 	}
5424 
5425 	disallowed = clear_mask & ~safe_clear;
5426 	if (disallowed) {
5427 		names = btrfs_printable_features(set, disallowed);
5428 		if (names) {
5429 			btrfs_warn(fs_info,
5430 				   "can't clear the %s feature bit%s while mounted",
5431 				   names, strchr(names, ',') ? "s" : "");
5432 			kfree(names);
5433 		} else
5434 			btrfs_warn(fs_info,
5435 				   "can't clear %s bits 0x%llx while mounted",
5436 				   type, disallowed);
5437 		return -EPERM;
5438 	}
5439 
5440 	return 0;
5441 }
5442 
5443 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5444 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5445 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5446 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5447 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5448 
btrfs_ioctl_set_features(struct file * file,void __user * arg)5449 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5450 {
5451 	struct inode *inode = file_inode(file);
5452 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5453 	struct btrfs_root *root = BTRFS_I(inode)->root;
5454 	struct btrfs_super_block *super_block = fs_info->super_copy;
5455 	struct btrfs_ioctl_feature_flags flags[2];
5456 	struct btrfs_trans_handle *trans;
5457 	u64 newflags;
5458 	int ret;
5459 
5460 	if (!capable(CAP_SYS_ADMIN))
5461 		return -EPERM;
5462 
5463 	if (copy_from_user(flags, arg, sizeof(flags)))
5464 		return -EFAULT;
5465 
5466 	/* Nothing to do */
5467 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5468 	    !flags[0].incompat_flags)
5469 		return 0;
5470 
5471 	ret = check_feature(fs_info, flags[0].compat_flags,
5472 			    flags[1].compat_flags, COMPAT);
5473 	if (ret)
5474 		return ret;
5475 
5476 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5477 			    flags[1].compat_ro_flags, COMPAT_RO);
5478 	if (ret)
5479 		return ret;
5480 
5481 	ret = check_feature(fs_info, flags[0].incompat_flags,
5482 			    flags[1].incompat_flags, INCOMPAT);
5483 	if (ret)
5484 		return ret;
5485 
5486 	ret = mnt_want_write_file(file);
5487 	if (ret)
5488 		return ret;
5489 
5490 	trans = btrfs_start_transaction(root, 0);
5491 	if (IS_ERR(trans)) {
5492 		ret = PTR_ERR(trans);
5493 		goto out_drop_write;
5494 	}
5495 
5496 	spin_lock(&fs_info->super_lock);
5497 	newflags = btrfs_super_compat_flags(super_block);
5498 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5499 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5500 	btrfs_set_super_compat_flags(super_block, newflags);
5501 
5502 	newflags = btrfs_super_compat_ro_flags(super_block);
5503 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5504 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5505 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5506 
5507 	newflags = btrfs_super_incompat_flags(super_block);
5508 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5509 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5510 	btrfs_set_super_incompat_flags(super_block, newflags);
5511 	spin_unlock(&fs_info->super_lock);
5512 
5513 	ret = btrfs_commit_transaction(trans);
5514 out_drop_write:
5515 	mnt_drop_write_file(file);
5516 
5517 	return ret;
5518 }
5519 
_btrfs_ioctl_send(struct file * file,void __user * argp,bool compat)5520 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5521 {
5522 	struct btrfs_ioctl_send_args *arg;
5523 	int ret;
5524 
5525 	if (compat) {
5526 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5527 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
5528 
5529 		ret = copy_from_user(&args32, argp, sizeof(args32));
5530 		if (ret)
5531 			return -EFAULT;
5532 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5533 		if (!arg)
5534 			return -ENOMEM;
5535 		arg->send_fd = args32.send_fd;
5536 		arg->clone_sources_count = args32.clone_sources_count;
5537 		arg->clone_sources = compat_ptr(args32.clone_sources);
5538 		arg->parent_root = args32.parent_root;
5539 		arg->flags = args32.flags;
5540 		memcpy(arg->reserved, args32.reserved,
5541 		       sizeof(args32.reserved));
5542 #else
5543 		return -ENOTTY;
5544 #endif
5545 	} else {
5546 		arg = memdup_user(argp, sizeof(*arg));
5547 		if (IS_ERR(arg))
5548 			return PTR_ERR(arg);
5549 	}
5550 	ret = btrfs_ioctl_send(file, arg);
5551 	kfree(arg);
5552 	return ret;
5553 }
5554 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5555 long btrfs_ioctl(struct file *file, unsigned int
5556 		cmd, unsigned long arg)
5557 {
5558 	struct inode *inode = file_inode(file);
5559 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5560 	struct btrfs_root *root = BTRFS_I(inode)->root;
5561 	void __user *argp = (void __user *)arg;
5562 
5563 	switch (cmd) {
5564 	case FS_IOC_GETFLAGS:
5565 		return btrfs_ioctl_getflags(file, argp);
5566 	case FS_IOC_SETFLAGS:
5567 		return btrfs_ioctl_setflags(file, argp);
5568 	case FS_IOC_GETVERSION:
5569 		return btrfs_ioctl_getversion(file, argp);
5570 	case FS_IOC_GETFSLABEL:
5571 		return btrfs_ioctl_get_fslabel(file, argp);
5572 	case FS_IOC_SETFSLABEL:
5573 		return btrfs_ioctl_set_fslabel(file, argp);
5574 	case FITRIM:
5575 		return btrfs_ioctl_fitrim(file, argp);
5576 	case BTRFS_IOC_SNAP_CREATE:
5577 		return btrfs_ioctl_snap_create(file, argp, 0);
5578 	case BTRFS_IOC_SNAP_CREATE_V2:
5579 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5580 	case BTRFS_IOC_SUBVOL_CREATE:
5581 		return btrfs_ioctl_snap_create(file, argp, 1);
5582 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5583 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5584 	case BTRFS_IOC_SNAP_DESTROY:
5585 		return btrfs_ioctl_snap_destroy(file, argp);
5586 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5587 		return btrfs_ioctl_subvol_getflags(file, argp);
5588 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5589 		return btrfs_ioctl_subvol_setflags(file, argp);
5590 	case BTRFS_IOC_DEFAULT_SUBVOL:
5591 		return btrfs_ioctl_default_subvol(file, argp);
5592 	case BTRFS_IOC_DEFRAG:
5593 		return btrfs_ioctl_defrag(file, NULL);
5594 	case BTRFS_IOC_DEFRAG_RANGE:
5595 		return btrfs_ioctl_defrag(file, argp);
5596 	case BTRFS_IOC_RESIZE:
5597 		return btrfs_ioctl_resize(file, argp);
5598 	case BTRFS_IOC_ADD_DEV:
5599 		return btrfs_ioctl_add_dev(fs_info, argp);
5600 	case BTRFS_IOC_RM_DEV:
5601 		return btrfs_ioctl_rm_dev(file, argp);
5602 	case BTRFS_IOC_RM_DEV_V2:
5603 		return btrfs_ioctl_rm_dev_v2(file, argp);
5604 	case BTRFS_IOC_FS_INFO:
5605 		return btrfs_ioctl_fs_info(fs_info, argp);
5606 	case BTRFS_IOC_DEV_INFO:
5607 		return btrfs_ioctl_dev_info(fs_info, argp);
5608 	case BTRFS_IOC_BALANCE:
5609 		return btrfs_ioctl_balance(file, NULL);
5610 	case BTRFS_IOC_TREE_SEARCH:
5611 		return btrfs_ioctl_tree_search(file, argp);
5612 	case BTRFS_IOC_TREE_SEARCH_V2:
5613 		return btrfs_ioctl_tree_search_v2(file, argp);
5614 	case BTRFS_IOC_INO_LOOKUP:
5615 		return btrfs_ioctl_ino_lookup(file, argp);
5616 	case BTRFS_IOC_INO_PATHS:
5617 		return btrfs_ioctl_ino_to_path(root, argp);
5618 	case BTRFS_IOC_LOGICAL_INO:
5619 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5620 	case BTRFS_IOC_LOGICAL_INO_V2:
5621 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5622 	case BTRFS_IOC_SPACE_INFO:
5623 		return btrfs_ioctl_space_info(fs_info, argp);
5624 	case BTRFS_IOC_SYNC: {
5625 		int ret;
5626 
5627 		ret = btrfs_start_delalloc_roots(fs_info, -1);
5628 		if (ret)
5629 			return ret;
5630 		ret = btrfs_sync_fs(inode->i_sb, 1);
5631 		/*
5632 		 * The transaction thread may want to do more work,
5633 		 * namely it pokes the cleaner kthread that will start
5634 		 * processing uncleaned subvols.
5635 		 */
5636 		wake_up_process(fs_info->transaction_kthread);
5637 		return ret;
5638 	}
5639 	case BTRFS_IOC_START_SYNC:
5640 		return btrfs_ioctl_start_sync(root, argp);
5641 	case BTRFS_IOC_WAIT_SYNC:
5642 		return btrfs_ioctl_wait_sync(fs_info, argp);
5643 	case BTRFS_IOC_SCRUB:
5644 		return btrfs_ioctl_scrub(file, argp);
5645 	case BTRFS_IOC_SCRUB_CANCEL:
5646 		return btrfs_ioctl_scrub_cancel(fs_info);
5647 	case BTRFS_IOC_SCRUB_PROGRESS:
5648 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5649 	case BTRFS_IOC_BALANCE_V2:
5650 		return btrfs_ioctl_balance(file, argp);
5651 	case BTRFS_IOC_BALANCE_CTL:
5652 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5653 	case BTRFS_IOC_BALANCE_PROGRESS:
5654 		return btrfs_ioctl_balance_progress(fs_info, argp);
5655 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5656 		return btrfs_ioctl_set_received_subvol(file, argp);
5657 #ifdef CONFIG_64BIT
5658 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5659 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5660 #endif
5661 	case BTRFS_IOC_SEND:
5662 		return _btrfs_ioctl_send(file, argp, false);
5663 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5664 	case BTRFS_IOC_SEND_32:
5665 		return _btrfs_ioctl_send(file, argp, true);
5666 #endif
5667 	case BTRFS_IOC_GET_DEV_STATS:
5668 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5669 	case BTRFS_IOC_QUOTA_CTL:
5670 		return btrfs_ioctl_quota_ctl(file, argp);
5671 	case BTRFS_IOC_QGROUP_ASSIGN:
5672 		return btrfs_ioctl_qgroup_assign(file, argp);
5673 	case BTRFS_IOC_QGROUP_CREATE:
5674 		return btrfs_ioctl_qgroup_create(file, argp);
5675 	case BTRFS_IOC_QGROUP_LIMIT:
5676 		return btrfs_ioctl_qgroup_limit(file, argp);
5677 	case BTRFS_IOC_QUOTA_RESCAN:
5678 		return btrfs_ioctl_quota_rescan(file, argp);
5679 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5680 		return btrfs_ioctl_quota_rescan_status(file, argp);
5681 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5682 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5683 	case BTRFS_IOC_DEV_REPLACE:
5684 		return btrfs_ioctl_dev_replace(fs_info, argp);
5685 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5686 		return btrfs_ioctl_get_supported_features(argp);
5687 	case BTRFS_IOC_GET_FEATURES:
5688 		return btrfs_ioctl_get_features(file, argp);
5689 	case BTRFS_IOC_SET_FEATURES:
5690 		return btrfs_ioctl_set_features(file, argp);
5691 	case FS_IOC_FSGETXATTR:
5692 		return btrfs_ioctl_fsgetxattr(file, argp);
5693 	case FS_IOC_FSSETXATTR:
5694 		return btrfs_ioctl_fssetxattr(file, argp);
5695 	case BTRFS_IOC_GET_SUBVOL_INFO:
5696 		return btrfs_ioctl_get_subvol_info(file, argp);
5697 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5698 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5699 	case BTRFS_IOC_INO_LOOKUP_USER:
5700 		return btrfs_ioctl_ino_lookup_user(file, argp);
5701 	}
5702 
5703 	return -ENOTTY;
5704 }
5705 
5706 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5707 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5708 {
5709 	/*
5710 	 * These all access 32-bit values anyway so no further
5711 	 * handling is necessary.
5712 	 */
5713 	switch (cmd) {
5714 	case FS_IOC32_GETFLAGS:
5715 		cmd = FS_IOC_GETFLAGS;
5716 		break;
5717 	case FS_IOC32_SETFLAGS:
5718 		cmd = FS_IOC_SETFLAGS;
5719 		break;
5720 	case FS_IOC32_GETVERSION:
5721 		cmd = FS_IOC_GETVERSION;
5722 		break;
5723 	}
5724 
5725 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5726 }
5727 #endif
5728