1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "locking.h"
17 #include "btrfs_inode.h"
18 #include "async-thread.h"
19 #include "free-space-cache.h"
20 #include "inode-map.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25
26 /*
27 * backref_node, mapping_node and tree_block start with this
28 */
29 struct tree_entry {
30 struct rb_node rb_node;
31 u64 bytenr;
32 };
33
34 /*
35 * present a tree block in the backref cache
36 */
37 struct backref_node {
38 struct rb_node rb_node;
39 u64 bytenr;
40
41 u64 new_bytenr;
42 /* objectid of tree block owner, can be not uptodate */
43 u64 owner;
44 /* link to pending, changed or detached list */
45 struct list_head list;
46 /* list of upper level blocks reference this block */
47 struct list_head upper;
48 /* list of child blocks in the cache */
49 struct list_head lower;
50 /* NULL if this node is not tree root */
51 struct btrfs_root *root;
52 /* extent buffer got by COW the block */
53 struct extent_buffer *eb;
54 /* level of tree block */
55 unsigned int level:8;
56 /* is the block in non-reference counted tree */
57 unsigned int cowonly:1;
58 /* 1 if no child node in the cache */
59 unsigned int lowest:1;
60 /* is the extent buffer locked */
61 unsigned int locked:1;
62 /* has the block been processed */
63 unsigned int processed:1;
64 /* have backrefs of this block been checked */
65 unsigned int checked:1;
66 /*
67 * 1 if corresponding block has been cowed but some upper
68 * level block pointers may not point to the new location
69 */
70 unsigned int pending:1;
71 /*
72 * 1 if the backref node isn't connected to any other
73 * backref node.
74 */
75 unsigned int detached:1;
76 };
77
78 /*
79 * present a block pointer in the backref cache
80 */
81 struct backref_edge {
82 struct list_head list[2];
83 struct backref_node *node[2];
84 };
85
86 #define LOWER 0
87 #define UPPER 1
88 #define RELOCATION_RESERVED_NODES 256
89
90 struct backref_cache {
91 /* red black tree of all backref nodes in the cache */
92 struct rb_root rb_root;
93 /* for passing backref nodes to btrfs_reloc_cow_block */
94 struct backref_node *path[BTRFS_MAX_LEVEL];
95 /*
96 * list of blocks that have been cowed but some block
97 * pointers in upper level blocks may not reflect the
98 * new location
99 */
100 struct list_head pending[BTRFS_MAX_LEVEL];
101 /* list of backref nodes with no child node */
102 struct list_head leaves;
103 /* list of blocks that have been cowed in current transaction */
104 struct list_head changed;
105 /* list of detached backref node. */
106 struct list_head detached;
107
108 u64 last_trans;
109
110 int nr_nodes;
111 int nr_edges;
112 };
113
114 /*
115 * map address of tree root to tree
116 */
117 struct mapping_node {
118 struct rb_node rb_node;
119 u64 bytenr;
120 void *data;
121 };
122
123 struct mapping_tree {
124 struct rb_root rb_root;
125 spinlock_t lock;
126 };
127
128 /*
129 * present a tree block to process
130 */
131 struct tree_block {
132 struct rb_node rb_node;
133 u64 bytenr;
134 struct btrfs_key key;
135 unsigned int level:8;
136 unsigned int key_ready:1;
137 };
138
139 #define MAX_EXTENTS 128
140
141 struct file_extent_cluster {
142 u64 start;
143 u64 end;
144 u64 boundary[MAX_EXTENTS];
145 unsigned int nr;
146 };
147
148 struct reloc_control {
149 /* block group to relocate */
150 struct btrfs_block_group_cache *block_group;
151 /* extent tree */
152 struct btrfs_root *extent_root;
153 /* inode for moving data */
154 struct inode *data_inode;
155
156 struct btrfs_block_rsv *block_rsv;
157
158 struct backref_cache backref_cache;
159
160 struct file_extent_cluster cluster;
161 /* tree blocks have been processed */
162 struct extent_io_tree processed_blocks;
163 /* map start of tree root to corresponding reloc tree */
164 struct mapping_tree reloc_root_tree;
165 /* list of reloc trees */
166 struct list_head reloc_roots;
167 /* list of subvolume trees that get relocated */
168 struct list_head dirty_subvol_roots;
169 /* size of metadata reservation for merging reloc trees */
170 u64 merging_rsv_size;
171 /* size of relocated tree nodes */
172 u64 nodes_relocated;
173 /* reserved size for block group relocation*/
174 u64 reserved_bytes;
175
176 u64 search_start;
177 u64 extents_found;
178
179 unsigned int stage:8;
180 unsigned int create_reloc_tree:1;
181 unsigned int merge_reloc_tree:1;
182 unsigned int found_file_extent:1;
183 };
184
185 /* stages of data relocation */
186 #define MOVE_DATA_EXTENTS 0
187 #define UPDATE_DATA_PTRS 1
188
189 static void remove_backref_node(struct backref_cache *cache,
190 struct backref_node *node);
191 static void __mark_block_processed(struct reloc_control *rc,
192 struct backref_node *node);
193
mapping_tree_init(struct mapping_tree * tree)194 static void mapping_tree_init(struct mapping_tree *tree)
195 {
196 tree->rb_root = RB_ROOT;
197 spin_lock_init(&tree->lock);
198 }
199
backref_cache_init(struct backref_cache * cache)200 static void backref_cache_init(struct backref_cache *cache)
201 {
202 int i;
203 cache->rb_root = RB_ROOT;
204 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
205 INIT_LIST_HEAD(&cache->pending[i]);
206 INIT_LIST_HEAD(&cache->changed);
207 INIT_LIST_HEAD(&cache->detached);
208 INIT_LIST_HEAD(&cache->leaves);
209 }
210
backref_cache_cleanup(struct backref_cache * cache)211 static void backref_cache_cleanup(struct backref_cache *cache)
212 {
213 struct backref_node *node;
214 int i;
215
216 while (!list_empty(&cache->detached)) {
217 node = list_entry(cache->detached.next,
218 struct backref_node, list);
219 remove_backref_node(cache, node);
220 }
221
222 while (!list_empty(&cache->leaves)) {
223 node = list_entry(cache->leaves.next,
224 struct backref_node, lower);
225 remove_backref_node(cache, node);
226 }
227
228 cache->last_trans = 0;
229
230 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
231 ASSERT(list_empty(&cache->pending[i]));
232 ASSERT(list_empty(&cache->changed));
233 ASSERT(list_empty(&cache->detached));
234 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
235 ASSERT(!cache->nr_nodes);
236 ASSERT(!cache->nr_edges);
237 }
238
alloc_backref_node(struct backref_cache * cache)239 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
240 {
241 struct backref_node *node;
242
243 node = kzalloc(sizeof(*node), GFP_NOFS);
244 if (node) {
245 INIT_LIST_HEAD(&node->list);
246 INIT_LIST_HEAD(&node->upper);
247 INIT_LIST_HEAD(&node->lower);
248 RB_CLEAR_NODE(&node->rb_node);
249 cache->nr_nodes++;
250 }
251 return node;
252 }
253
free_backref_node(struct backref_cache * cache,struct backref_node * node)254 static void free_backref_node(struct backref_cache *cache,
255 struct backref_node *node)
256 {
257 if (node) {
258 cache->nr_nodes--;
259 kfree(node);
260 }
261 }
262
alloc_backref_edge(struct backref_cache * cache)263 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
264 {
265 struct backref_edge *edge;
266
267 edge = kzalloc(sizeof(*edge), GFP_NOFS);
268 if (edge)
269 cache->nr_edges++;
270 return edge;
271 }
272
free_backref_edge(struct backref_cache * cache,struct backref_edge * edge)273 static void free_backref_edge(struct backref_cache *cache,
274 struct backref_edge *edge)
275 {
276 if (edge) {
277 cache->nr_edges--;
278 kfree(edge);
279 }
280 }
281
tree_insert(struct rb_root * root,u64 bytenr,struct rb_node * node)282 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
283 struct rb_node *node)
284 {
285 struct rb_node **p = &root->rb_node;
286 struct rb_node *parent = NULL;
287 struct tree_entry *entry;
288
289 while (*p) {
290 parent = *p;
291 entry = rb_entry(parent, struct tree_entry, rb_node);
292
293 if (bytenr < entry->bytenr)
294 p = &(*p)->rb_left;
295 else if (bytenr > entry->bytenr)
296 p = &(*p)->rb_right;
297 else
298 return parent;
299 }
300
301 rb_link_node(node, parent, p);
302 rb_insert_color(node, root);
303 return NULL;
304 }
305
tree_search(struct rb_root * root,u64 bytenr)306 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
307 {
308 struct rb_node *n = root->rb_node;
309 struct tree_entry *entry;
310
311 while (n) {
312 entry = rb_entry(n, struct tree_entry, rb_node);
313
314 if (bytenr < entry->bytenr)
315 n = n->rb_left;
316 else if (bytenr > entry->bytenr)
317 n = n->rb_right;
318 else
319 return n;
320 }
321 return NULL;
322 }
323
backref_tree_panic(struct rb_node * rb_node,int errno,u64 bytenr)324 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
325 {
326
327 struct btrfs_fs_info *fs_info = NULL;
328 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
329 rb_node);
330 if (bnode->root)
331 fs_info = bnode->root->fs_info;
332 btrfs_panic(fs_info, errno,
333 "Inconsistency in backref cache found at offset %llu",
334 bytenr);
335 }
336
337 /*
338 * walk up backref nodes until reach node presents tree root
339 */
walk_up_backref(struct backref_node * node,struct backref_edge * edges[],int * index)340 static struct backref_node *walk_up_backref(struct backref_node *node,
341 struct backref_edge *edges[],
342 int *index)
343 {
344 struct backref_edge *edge;
345 int idx = *index;
346
347 while (!list_empty(&node->upper)) {
348 edge = list_entry(node->upper.next,
349 struct backref_edge, list[LOWER]);
350 edges[idx++] = edge;
351 node = edge->node[UPPER];
352 }
353 BUG_ON(node->detached);
354 *index = idx;
355 return node;
356 }
357
358 /*
359 * walk down backref nodes to find start of next reference path
360 */
walk_down_backref(struct backref_edge * edges[],int * index)361 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
362 int *index)
363 {
364 struct backref_edge *edge;
365 struct backref_node *lower;
366 int idx = *index;
367
368 while (idx > 0) {
369 edge = edges[idx - 1];
370 lower = edge->node[LOWER];
371 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
372 idx--;
373 continue;
374 }
375 edge = list_entry(edge->list[LOWER].next,
376 struct backref_edge, list[LOWER]);
377 edges[idx - 1] = edge;
378 *index = idx;
379 return edge->node[UPPER];
380 }
381 *index = 0;
382 return NULL;
383 }
384
unlock_node_buffer(struct backref_node * node)385 static void unlock_node_buffer(struct backref_node *node)
386 {
387 if (node->locked) {
388 btrfs_tree_unlock(node->eb);
389 node->locked = 0;
390 }
391 }
392
drop_node_buffer(struct backref_node * node)393 static void drop_node_buffer(struct backref_node *node)
394 {
395 if (node->eb) {
396 unlock_node_buffer(node);
397 free_extent_buffer(node->eb);
398 node->eb = NULL;
399 }
400 }
401
drop_backref_node(struct backref_cache * tree,struct backref_node * node)402 static void drop_backref_node(struct backref_cache *tree,
403 struct backref_node *node)
404 {
405 BUG_ON(!list_empty(&node->upper));
406
407 drop_node_buffer(node);
408 list_del(&node->list);
409 list_del(&node->lower);
410 if (!RB_EMPTY_NODE(&node->rb_node))
411 rb_erase(&node->rb_node, &tree->rb_root);
412 free_backref_node(tree, node);
413 }
414
415 /*
416 * remove a backref node from the backref cache
417 */
remove_backref_node(struct backref_cache * cache,struct backref_node * node)418 static void remove_backref_node(struct backref_cache *cache,
419 struct backref_node *node)
420 {
421 struct backref_node *upper;
422 struct backref_edge *edge;
423
424 if (!node)
425 return;
426
427 BUG_ON(!node->lowest && !node->detached);
428 while (!list_empty(&node->upper)) {
429 edge = list_entry(node->upper.next, struct backref_edge,
430 list[LOWER]);
431 upper = edge->node[UPPER];
432 list_del(&edge->list[LOWER]);
433 list_del(&edge->list[UPPER]);
434 free_backref_edge(cache, edge);
435
436 if (RB_EMPTY_NODE(&upper->rb_node)) {
437 BUG_ON(!list_empty(&node->upper));
438 drop_backref_node(cache, node);
439 node = upper;
440 node->lowest = 1;
441 continue;
442 }
443 /*
444 * add the node to leaf node list if no other
445 * child block cached.
446 */
447 if (list_empty(&upper->lower)) {
448 list_add_tail(&upper->lower, &cache->leaves);
449 upper->lowest = 1;
450 }
451 }
452
453 drop_backref_node(cache, node);
454 }
455
update_backref_node(struct backref_cache * cache,struct backref_node * node,u64 bytenr)456 static void update_backref_node(struct backref_cache *cache,
457 struct backref_node *node, u64 bytenr)
458 {
459 struct rb_node *rb_node;
460 rb_erase(&node->rb_node, &cache->rb_root);
461 node->bytenr = bytenr;
462 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
463 if (rb_node)
464 backref_tree_panic(rb_node, -EEXIST, bytenr);
465 }
466
467 /*
468 * update backref cache after a transaction commit
469 */
update_backref_cache(struct btrfs_trans_handle * trans,struct backref_cache * cache)470 static int update_backref_cache(struct btrfs_trans_handle *trans,
471 struct backref_cache *cache)
472 {
473 struct backref_node *node;
474 int level = 0;
475
476 if (cache->last_trans == 0) {
477 cache->last_trans = trans->transid;
478 return 0;
479 }
480
481 if (cache->last_trans == trans->transid)
482 return 0;
483
484 /*
485 * detached nodes are used to avoid unnecessary backref
486 * lookup. transaction commit changes the extent tree.
487 * so the detached nodes are no longer useful.
488 */
489 while (!list_empty(&cache->detached)) {
490 node = list_entry(cache->detached.next,
491 struct backref_node, list);
492 remove_backref_node(cache, node);
493 }
494
495 while (!list_empty(&cache->changed)) {
496 node = list_entry(cache->changed.next,
497 struct backref_node, list);
498 list_del_init(&node->list);
499 BUG_ON(node->pending);
500 update_backref_node(cache, node, node->new_bytenr);
501 }
502
503 /*
504 * some nodes can be left in the pending list if there were
505 * errors during processing the pending nodes.
506 */
507 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
508 list_for_each_entry(node, &cache->pending[level], list) {
509 BUG_ON(!node->pending);
510 if (node->bytenr == node->new_bytenr)
511 continue;
512 update_backref_node(cache, node, node->new_bytenr);
513 }
514 }
515
516 cache->last_trans = 0;
517 return 1;
518 }
519
reloc_root_is_dead(struct btrfs_root * root)520 static bool reloc_root_is_dead(struct btrfs_root *root)
521 {
522 /*
523 * Pair with set_bit/clear_bit in clean_dirty_subvols and
524 * btrfs_update_reloc_root. We need to see the updated bit before
525 * trying to access reloc_root
526 */
527 smp_rmb();
528 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
529 return true;
530 return false;
531 }
532
533 /*
534 * Check if this subvolume tree has valid reloc tree.
535 *
536 * Reloc tree after swap is considered dead, thus not considered as valid.
537 * This is enough for most callers, as they don't distinguish dead reloc root
538 * from no reloc root. But should_ignore_root() below is a special case.
539 */
have_reloc_root(struct btrfs_root * root)540 static bool have_reloc_root(struct btrfs_root *root)
541 {
542 if (reloc_root_is_dead(root))
543 return false;
544 if (!root->reloc_root)
545 return false;
546 return true;
547 }
548
should_ignore_root(struct btrfs_root * root)549 static int should_ignore_root(struct btrfs_root *root)
550 {
551 struct btrfs_root *reloc_root;
552
553 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
554 return 0;
555
556 /* This root has been merged with its reloc tree, we can ignore it */
557 if (reloc_root_is_dead(root))
558 return 1;
559
560 reloc_root = root->reloc_root;
561 if (!reloc_root)
562 return 0;
563
564 if (btrfs_header_generation(reloc_root->commit_root) ==
565 root->fs_info->running_transaction->transid)
566 return 0;
567 /*
568 * if there is reloc tree and it was created in previous
569 * transaction backref lookup can find the reloc tree,
570 * so backref node for the fs tree root is useless for
571 * relocation.
572 */
573 return 1;
574 }
575 /*
576 * find reloc tree by address of tree root
577 */
find_reloc_root(struct reloc_control * rc,u64 bytenr)578 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
579 u64 bytenr)
580 {
581 struct rb_node *rb_node;
582 struct mapping_node *node;
583 struct btrfs_root *root = NULL;
584
585 spin_lock(&rc->reloc_root_tree.lock);
586 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
587 if (rb_node) {
588 node = rb_entry(rb_node, struct mapping_node, rb_node);
589 root = (struct btrfs_root *)node->data;
590 }
591 spin_unlock(&rc->reloc_root_tree.lock);
592 return root;
593 }
594
is_cowonly_root(u64 root_objectid)595 static int is_cowonly_root(u64 root_objectid)
596 {
597 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
598 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
599 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
600 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
601 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
602 root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
603 root_objectid == BTRFS_UUID_TREE_OBJECTID ||
604 root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
605 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
606 return 1;
607 return 0;
608 }
609
read_fs_root(struct btrfs_fs_info * fs_info,u64 root_objectid)610 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
611 u64 root_objectid)
612 {
613 struct btrfs_key key;
614
615 key.objectid = root_objectid;
616 key.type = BTRFS_ROOT_ITEM_KEY;
617 if (is_cowonly_root(root_objectid))
618 key.offset = 0;
619 else
620 key.offset = (u64)-1;
621
622 return btrfs_get_fs_root(fs_info, &key, false);
623 }
624
625 static noinline_for_stack
find_inline_backref(struct extent_buffer * leaf,int slot,unsigned long * ptr,unsigned long * end)626 int find_inline_backref(struct extent_buffer *leaf, int slot,
627 unsigned long *ptr, unsigned long *end)
628 {
629 struct btrfs_key key;
630 struct btrfs_extent_item *ei;
631 struct btrfs_tree_block_info *bi;
632 u32 item_size;
633
634 btrfs_item_key_to_cpu(leaf, &key, slot);
635
636 item_size = btrfs_item_size_nr(leaf, slot);
637 if (item_size < sizeof(*ei)) {
638 btrfs_print_v0_err(leaf->fs_info);
639 btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
640 return 1;
641 }
642 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
643 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
644 BTRFS_EXTENT_FLAG_TREE_BLOCK));
645
646 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
647 item_size <= sizeof(*ei) + sizeof(*bi)) {
648 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
649 return 1;
650 }
651 if (key.type == BTRFS_METADATA_ITEM_KEY &&
652 item_size <= sizeof(*ei)) {
653 WARN_ON(item_size < sizeof(*ei));
654 return 1;
655 }
656
657 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
658 bi = (struct btrfs_tree_block_info *)(ei + 1);
659 *ptr = (unsigned long)(bi + 1);
660 } else {
661 *ptr = (unsigned long)(ei + 1);
662 }
663 *end = (unsigned long)ei + item_size;
664 return 0;
665 }
666
667 /*
668 * build backref tree for a given tree block. root of the backref tree
669 * corresponds the tree block, leaves of the backref tree correspond
670 * roots of b-trees that reference the tree block.
671 *
672 * the basic idea of this function is check backrefs of a given block
673 * to find upper level blocks that reference the block, and then check
674 * backrefs of these upper level blocks recursively. the recursion stop
675 * when tree root is reached or backrefs for the block is cached.
676 *
677 * NOTE: if we find backrefs for a block are cached, we know backrefs
678 * for all upper level blocks that directly/indirectly reference the
679 * block are also cached.
680 */
681 static noinline_for_stack
build_backref_tree(struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)682 struct backref_node *build_backref_tree(struct reloc_control *rc,
683 struct btrfs_key *node_key,
684 int level, u64 bytenr)
685 {
686 struct backref_cache *cache = &rc->backref_cache;
687 struct btrfs_path *path1; /* For searching extent root */
688 struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
689 struct extent_buffer *eb;
690 struct btrfs_root *root;
691 struct backref_node *cur;
692 struct backref_node *upper;
693 struct backref_node *lower;
694 struct backref_node *node = NULL;
695 struct backref_node *exist = NULL;
696 struct backref_edge *edge;
697 struct rb_node *rb_node;
698 struct btrfs_key key;
699 unsigned long end;
700 unsigned long ptr;
701 LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
702 LIST_HEAD(useless);
703 int cowonly;
704 int ret;
705 int err = 0;
706 bool need_check = true;
707
708 path1 = btrfs_alloc_path();
709 path2 = btrfs_alloc_path();
710 if (!path1 || !path2) {
711 err = -ENOMEM;
712 goto out;
713 }
714 path1->reada = READA_FORWARD;
715 path2->reada = READA_FORWARD;
716
717 node = alloc_backref_node(cache);
718 if (!node) {
719 err = -ENOMEM;
720 goto out;
721 }
722
723 node->bytenr = bytenr;
724 node->level = level;
725 node->lowest = 1;
726 cur = node;
727 again:
728 end = 0;
729 ptr = 0;
730 key.objectid = cur->bytenr;
731 key.type = BTRFS_METADATA_ITEM_KEY;
732 key.offset = (u64)-1;
733
734 path1->search_commit_root = 1;
735 path1->skip_locking = 1;
736 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
737 0, 0);
738 if (ret < 0) {
739 err = ret;
740 goto out;
741 }
742 ASSERT(ret);
743 ASSERT(path1->slots[0]);
744
745 path1->slots[0]--;
746
747 WARN_ON(cur->checked);
748 if (!list_empty(&cur->upper)) {
749 /*
750 * the backref was added previously when processing
751 * backref of type BTRFS_TREE_BLOCK_REF_KEY
752 */
753 ASSERT(list_is_singular(&cur->upper));
754 edge = list_entry(cur->upper.next, struct backref_edge,
755 list[LOWER]);
756 ASSERT(list_empty(&edge->list[UPPER]));
757 exist = edge->node[UPPER];
758 /*
759 * add the upper level block to pending list if we need
760 * check its backrefs
761 */
762 if (!exist->checked)
763 list_add_tail(&edge->list[UPPER], &list);
764 } else {
765 exist = NULL;
766 }
767
768 while (1) {
769 cond_resched();
770 eb = path1->nodes[0];
771
772 if (ptr >= end) {
773 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
774 ret = btrfs_next_leaf(rc->extent_root, path1);
775 if (ret < 0) {
776 err = ret;
777 goto out;
778 }
779 if (ret > 0)
780 break;
781 eb = path1->nodes[0];
782 }
783
784 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
785 if (key.objectid != cur->bytenr) {
786 WARN_ON(exist);
787 break;
788 }
789
790 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
791 key.type == BTRFS_METADATA_ITEM_KEY) {
792 ret = find_inline_backref(eb, path1->slots[0],
793 &ptr, &end);
794 if (ret)
795 goto next;
796 }
797 }
798
799 if (ptr < end) {
800 /* update key for inline back ref */
801 struct btrfs_extent_inline_ref *iref;
802 int type;
803 iref = (struct btrfs_extent_inline_ref *)ptr;
804 type = btrfs_get_extent_inline_ref_type(eb, iref,
805 BTRFS_REF_TYPE_BLOCK);
806 if (type == BTRFS_REF_TYPE_INVALID) {
807 err = -EUCLEAN;
808 goto out;
809 }
810 key.type = type;
811 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
812
813 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
814 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
815 }
816
817 /*
818 * Parent node found and matches current inline ref, no need to
819 * rebuild this node for this inline ref.
820 */
821 if (exist &&
822 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
823 exist->owner == key.offset) ||
824 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
825 exist->bytenr == key.offset))) {
826 exist = NULL;
827 goto next;
828 }
829
830 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
831 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
832 if (key.objectid == key.offset) {
833 /*
834 * Only root blocks of reloc trees use backref
835 * pointing to itself.
836 */
837 root = find_reloc_root(rc, cur->bytenr);
838 ASSERT(root);
839 cur->root = root;
840 break;
841 }
842
843 edge = alloc_backref_edge(cache);
844 if (!edge) {
845 err = -ENOMEM;
846 goto out;
847 }
848 rb_node = tree_search(&cache->rb_root, key.offset);
849 if (!rb_node) {
850 upper = alloc_backref_node(cache);
851 if (!upper) {
852 free_backref_edge(cache, edge);
853 err = -ENOMEM;
854 goto out;
855 }
856 upper->bytenr = key.offset;
857 upper->level = cur->level + 1;
858 /*
859 * backrefs for the upper level block isn't
860 * cached, add the block to pending list
861 */
862 list_add_tail(&edge->list[UPPER], &list);
863 } else {
864 upper = rb_entry(rb_node, struct backref_node,
865 rb_node);
866 ASSERT(upper->checked);
867 INIT_LIST_HEAD(&edge->list[UPPER]);
868 }
869 list_add_tail(&edge->list[LOWER], &cur->upper);
870 edge->node[LOWER] = cur;
871 edge->node[UPPER] = upper;
872
873 goto next;
874 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
875 err = -EINVAL;
876 btrfs_print_v0_err(rc->extent_root->fs_info);
877 btrfs_handle_fs_error(rc->extent_root->fs_info, err,
878 NULL);
879 goto out;
880 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
881 goto next;
882 }
883
884 /*
885 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
886 * means the root objectid. We need to search the tree to get
887 * its parent bytenr.
888 */
889 root = read_fs_root(rc->extent_root->fs_info, key.offset);
890 if (IS_ERR(root)) {
891 err = PTR_ERR(root);
892 goto out;
893 }
894
895 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
896 cur->cowonly = 1;
897
898 if (btrfs_root_level(&root->root_item) == cur->level) {
899 /* tree root */
900 ASSERT(btrfs_root_bytenr(&root->root_item) ==
901 cur->bytenr);
902 if (should_ignore_root(root))
903 list_add(&cur->list, &useless);
904 else
905 cur->root = root;
906 break;
907 }
908
909 level = cur->level + 1;
910
911 /* Search the tree to find parent blocks referring the block. */
912 path2->search_commit_root = 1;
913 path2->skip_locking = 1;
914 path2->lowest_level = level;
915 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
916 path2->lowest_level = 0;
917 if (ret < 0) {
918 err = ret;
919 goto out;
920 }
921 if (ret > 0 && path2->slots[level] > 0)
922 path2->slots[level]--;
923
924 eb = path2->nodes[level];
925 if (btrfs_node_blockptr(eb, path2->slots[level]) !=
926 cur->bytenr) {
927 btrfs_err(root->fs_info,
928 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
929 cur->bytenr, level - 1,
930 root->root_key.objectid,
931 node_key->objectid, node_key->type,
932 node_key->offset);
933 err = -ENOENT;
934 goto out;
935 }
936 lower = cur;
937 need_check = true;
938
939 /* Add all nodes and edges in the path */
940 for (; level < BTRFS_MAX_LEVEL; level++) {
941 if (!path2->nodes[level]) {
942 ASSERT(btrfs_root_bytenr(&root->root_item) ==
943 lower->bytenr);
944 if (should_ignore_root(root))
945 list_add(&lower->list, &useless);
946 else
947 lower->root = root;
948 break;
949 }
950
951 edge = alloc_backref_edge(cache);
952 if (!edge) {
953 err = -ENOMEM;
954 goto out;
955 }
956
957 eb = path2->nodes[level];
958 rb_node = tree_search(&cache->rb_root, eb->start);
959 if (!rb_node) {
960 upper = alloc_backref_node(cache);
961 if (!upper) {
962 free_backref_edge(cache, edge);
963 err = -ENOMEM;
964 goto out;
965 }
966 upper->bytenr = eb->start;
967 upper->owner = btrfs_header_owner(eb);
968 upper->level = lower->level + 1;
969 if (!test_bit(BTRFS_ROOT_REF_COWS,
970 &root->state))
971 upper->cowonly = 1;
972
973 /*
974 * if we know the block isn't shared
975 * we can void checking its backrefs.
976 */
977 if (btrfs_block_can_be_shared(root, eb))
978 upper->checked = 0;
979 else
980 upper->checked = 1;
981
982 /*
983 * add the block to pending list if we
984 * need check its backrefs, we only do this once
985 * while walking up a tree as we will catch
986 * anything else later on.
987 */
988 if (!upper->checked && need_check) {
989 need_check = false;
990 list_add_tail(&edge->list[UPPER],
991 &list);
992 } else {
993 if (upper->checked)
994 need_check = true;
995 INIT_LIST_HEAD(&edge->list[UPPER]);
996 }
997 } else {
998 upper = rb_entry(rb_node, struct backref_node,
999 rb_node);
1000 ASSERT(upper->checked);
1001 INIT_LIST_HEAD(&edge->list[UPPER]);
1002 if (!upper->owner)
1003 upper->owner = btrfs_header_owner(eb);
1004 }
1005 list_add_tail(&edge->list[LOWER], &lower->upper);
1006 edge->node[LOWER] = lower;
1007 edge->node[UPPER] = upper;
1008
1009 if (rb_node)
1010 break;
1011 lower = upper;
1012 upper = NULL;
1013 }
1014 btrfs_release_path(path2);
1015 next:
1016 if (ptr < end) {
1017 ptr += btrfs_extent_inline_ref_size(key.type);
1018 if (ptr >= end) {
1019 WARN_ON(ptr > end);
1020 ptr = 0;
1021 end = 0;
1022 }
1023 }
1024 if (ptr >= end)
1025 path1->slots[0]++;
1026 }
1027 btrfs_release_path(path1);
1028
1029 cur->checked = 1;
1030 WARN_ON(exist);
1031
1032 /* the pending list isn't empty, take the first block to process */
1033 if (!list_empty(&list)) {
1034 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1035 list_del_init(&edge->list[UPPER]);
1036 cur = edge->node[UPPER];
1037 goto again;
1038 }
1039
1040 /*
1041 * everything goes well, connect backref nodes and insert backref nodes
1042 * into the cache.
1043 */
1044 ASSERT(node->checked);
1045 cowonly = node->cowonly;
1046 if (!cowonly) {
1047 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1048 &node->rb_node);
1049 if (rb_node)
1050 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1051 list_add_tail(&node->lower, &cache->leaves);
1052 }
1053
1054 list_for_each_entry(edge, &node->upper, list[LOWER])
1055 list_add_tail(&edge->list[UPPER], &list);
1056
1057 while (!list_empty(&list)) {
1058 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1059 list_del_init(&edge->list[UPPER]);
1060 upper = edge->node[UPPER];
1061 if (upper->detached) {
1062 list_del(&edge->list[LOWER]);
1063 lower = edge->node[LOWER];
1064 free_backref_edge(cache, edge);
1065 if (list_empty(&lower->upper))
1066 list_add(&lower->list, &useless);
1067 continue;
1068 }
1069
1070 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1071 if (upper->lowest) {
1072 list_del_init(&upper->lower);
1073 upper->lowest = 0;
1074 }
1075
1076 list_add_tail(&edge->list[UPPER], &upper->lower);
1077 continue;
1078 }
1079
1080 if (!upper->checked) {
1081 /*
1082 * Still want to blow up for developers since this is a
1083 * logic bug.
1084 */
1085 ASSERT(0);
1086 err = -EINVAL;
1087 goto out;
1088 }
1089 if (cowonly != upper->cowonly) {
1090 ASSERT(0);
1091 err = -EINVAL;
1092 goto out;
1093 }
1094
1095 if (!cowonly) {
1096 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1097 &upper->rb_node);
1098 if (rb_node)
1099 backref_tree_panic(rb_node, -EEXIST,
1100 upper->bytenr);
1101 }
1102
1103 list_add_tail(&edge->list[UPPER], &upper->lower);
1104
1105 list_for_each_entry(edge, &upper->upper, list[LOWER])
1106 list_add_tail(&edge->list[UPPER], &list);
1107 }
1108 /*
1109 * process useless backref nodes. backref nodes for tree leaves
1110 * are deleted from the cache. backref nodes for upper level
1111 * tree blocks are left in the cache to avoid unnecessary backref
1112 * lookup.
1113 */
1114 while (!list_empty(&useless)) {
1115 upper = list_entry(useless.next, struct backref_node, list);
1116 list_del_init(&upper->list);
1117 ASSERT(list_empty(&upper->upper));
1118 if (upper == node)
1119 node = NULL;
1120 if (upper->lowest) {
1121 list_del_init(&upper->lower);
1122 upper->lowest = 0;
1123 }
1124 while (!list_empty(&upper->lower)) {
1125 edge = list_entry(upper->lower.next,
1126 struct backref_edge, list[UPPER]);
1127 list_del(&edge->list[UPPER]);
1128 list_del(&edge->list[LOWER]);
1129 lower = edge->node[LOWER];
1130 free_backref_edge(cache, edge);
1131
1132 if (list_empty(&lower->upper))
1133 list_add(&lower->list, &useless);
1134 }
1135 __mark_block_processed(rc, upper);
1136 if (upper->level > 0) {
1137 list_add(&upper->list, &cache->detached);
1138 upper->detached = 1;
1139 } else {
1140 rb_erase(&upper->rb_node, &cache->rb_root);
1141 free_backref_node(cache, upper);
1142 }
1143 }
1144 out:
1145 btrfs_free_path(path1);
1146 btrfs_free_path(path2);
1147 if (err) {
1148 while (!list_empty(&useless)) {
1149 lower = list_entry(useless.next,
1150 struct backref_node, list);
1151 list_del_init(&lower->list);
1152 }
1153 while (!list_empty(&list)) {
1154 edge = list_first_entry(&list, struct backref_edge,
1155 list[UPPER]);
1156 list_del(&edge->list[UPPER]);
1157 list_del(&edge->list[LOWER]);
1158 lower = edge->node[LOWER];
1159 upper = edge->node[UPPER];
1160 free_backref_edge(cache, edge);
1161
1162 /*
1163 * Lower is no longer linked to any upper backref nodes
1164 * and isn't in the cache, we can free it ourselves.
1165 */
1166 if (list_empty(&lower->upper) &&
1167 RB_EMPTY_NODE(&lower->rb_node))
1168 list_add(&lower->list, &useless);
1169
1170 if (!RB_EMPTY_NODE(&upper->rb_node))
1171 continue;
1172
1173 /* Add this guy's upper edges to the list to process */
1174 list_for_each_entry(edge, &upper->upper, list[LOWER])
1175 list_add_tail(&edge->list[UPPER], &list);
1176 if (list_empty(&upper->upper))
1177 list_add(&upper->list, &useless);
1178 }
1179
1180 while (!list_empty(&useless)) {
1181 lower = list_entry(useless.next,
1182 struct backref_node, list);
1183 list_del_init(&lower->list);
1184 if (lower == node)
1185 node = NULL;
1186 free_backref_node(cache, lower);
1187 }
1188
1189 remove_backref_node(cache, node);
1190 return ERR_PTR(err);
1191 }
1192 ASSERT(!node || !node->detached);
1193 return node;
1194 }
1195
1196 /*
1197 * helper to add backref node for the newly created snapshot.
1198 * the backref node is created by cloning backref node that
1199 * corresponds to root of source tree
1200 */
clone_backref_node(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * src,struct btrfs_root * dest)1201 static int clone_backref_node(struct btrfs_trans_handle *trans,
1202 struct reloc_control *rc,
1203 struct btrfs_root *src,
1204 struct btrfs_root *dest)
1205 {
1206 struct btrfs_root *reloc_root = src->reloc_root;
1207 struct backref_cache *cache = &rc->backref_cache;
1208 struct backref_node *node = NULL;
1209 struct backref_node *new_node;
1210 struct backref_edge *edge;
1211 struct backref_edge *new_edge;
1212 struct rb_node *rb_node;
1213
1214 if (cache->last_trans > 0)
1215 update_backref_cache(trans, cache);
1216
1217 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1218 if (rb_node) {
1219 node = rb_entry(rb_node, struct backref_node, rb_node);
1220 if (node->detached)
1221 node = NULL;
1222 else
1223 BUG_ON(node->new_bytenr != reloc_root->node->start);
1224 }
1225
1226 if (!node) {
1227 rb_node = tree_search(&cache->rb_root,
1228 reloc_root->commit_root->start);
1229 if (rb_node) {
1230 node = rb_entry(rb_node, struct backref_node,
1231 rb_node);
1232 BUG_ON(node->detached);
1233 }
1234 }
1235
1236 if (!node)
1237 return 0;
1238
1239 new_node = alloc_backref_node(cache);
1240 if (!new_node)
1241 return -ENOMEM;
1242
1243 new_node->bytenr = dest->node->start;
1244 new_node->level = node->level;
1245 new_node->lowest = node->lowest;
1246 new_node->checked = 1;
1247 new_node->root = dest;
1248
1249 if (!node->lowest) {
1250 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1251 new_edge = alloc_backref_edge(cache);
1252 if (!new_edge)
1253 goto fail;
1254
1255 new_edge->node[UPPER] = new_node;
1256 new_edge->node[LOWER] = edge->node[LOWER];
1257 list_add_tail(&new_edge->list[UPPER],
1258 &new_node->lower);
1259 }
1260 } else {
1261 list_add_tail(&new_node->lower, &cache->leaves);
1262 }
1263
1264 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1265 &new_node->rb_node);
1266 if (rb_node)
1267 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1268
1269 if (!new_node->lowest) {
1270 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1271 list_add_tail(&new_edge->list[LOWER],
1272 &new_edge->node[LOWER]->upper);
1273 }
1274 }
1275 return 0;
1276 fail:
1277 while (!list_empty(&new_node->lower)) {
1278 new_edge = list_entry(new_node->lower.next,
1279 struct backref_edge, list[UPPER]);
1280 list_del(&new_edge->list[UPPER]);
1281 free_backref_edge(cache, new_edge);
1282 }
1283 free_backref_node(cache, new_node);
1284 return -ENOMEM;
1285 }
1286
1287 /*
1288 * helper to add 'address of tree root -> reloc tree' mapping
1289 */
__add_reloc_root(struct btrfs_root * root)1290 static int __must_check __add_reloc_root(struct btrfs_root *root)
1291 {
1292 struct btrfs_fs_info *fs_info = root->fs_info;
1293 struct rb_node *rb_node;
1294 struct mapping_node *node;
1295 struct reloc_control *rc = fs_info->reloc_ctl;
1296
1297 node = kmalloc(sizeof(*node), GFP_NOFS);
1298 if (!node)
1299 return -ENOMEM;
1300
1301 node->bytenr = root->commit_root->start;
1302 node->data = root;
1303
1304 spin_lock(&rc->reloc_root_tree.lock);
1305 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1306 node->bytenr, &node->rb_node);
1307 spin_unlock(&rc->reloc_root_tree.lock);
1308 if (rb_node) {
1309 btrfs_panic(fs_info, -EEXIST,
1310 "Duplicate root found for start=%llu while inserting into relocation tree",
1311 node->bytenr);
1312 }
1313
1314 list_add_tail(&root->root_list, &rc->reloc_roots);
1315 return 0;
1316 }
1317
1318 /*
1319 * helper to delete the 'address of tree root -> reloc tree'
1320 * mapping
1321 */
__del_reloc_root(struct btrfs_root * root)1322 static void __del_reloc_root(struct btrfs_root *root)
1323 {
1324 struct btrfs_fs_info *fs_info = root->fs_info;
1325 struct rb_node *rb_node;
1326 struct mapping_node *node = NULL;
1327 struct reloc_control *rc = fs_info->reloc_ctl;
1328
1329 if (rc && root->node) {
1330 spin_lock(&rc->reloc_root_tree.lock);
1331 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1332 root->commit_root->start);
1333 if (rb_node) {
1334 node = rb_entry(rb_node, struct mapping_node, rb_node);
1335 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1336 RB_CLEAR_NODE(&node->rb_node);
1337 }
1338 spin_unlock(&rc->reloc_root_tree.lock);
1339 ASSERT(!node || (struct btrfs_root *)node->data == root);
1340 }
1341
1342 spin_lock(&fs_info->trans_lock);
1343 list_del_init(&root->root_list);
1344 spin_unlock(&fs_info->trans_lock);
1345 kfree(node);
1346 }
1347
1348 /*
1349 * helper to update the 'address of tree root -> reloc tree'
1350 * mapping
1351 */
__update_reloc_root(struct btrfs_root * root)1352 static int __update_reloc_root(struct btrfs_root *root)
1353 {
1354 struct btrfs_fs_info *fs_info = root->fs_info;
1355 struct rb_node *rb_node;
1356 struct mapping_node *node = NULL;
1357 struct reloc_control *rc = fs_info->reloc_ctl;
1358
1359 spin_lock(&rc->reloc_root_tree.lock);
1360 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1361 root->commit_root->start);
1362 if (rb_node) {
1363 node = rb_entry(rb_node, struct mapping_node, rb_node);
1364 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1365 }
1366 spin_unlock(&rc->reloc_root_tree.lock);
1367
1368 if (!node)
1369 return 0;
1370 BUG_ON((struct btrfs_root *)node->data != root);
1371
1372 spin_lock(&rc->reloc_root_tree.lock);
1373 node->bytenr = root->node->start;
1374 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1375 node->bytenr, &node->rb_node);
1376 spin_unlock(&rc->reloc_root_tree.lock);
1377 if (rb_node)
1378 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1379 return 0;
1380 }
1381
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)1382 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1383 struct btrfs_root *root, u64 objectid)
1384 {
1385 struct btrfs_fs_info *fs_info = root->fs_info;
1386 struct btrfs_root *reloc_root;
1387 struct extent_buffer *eb;
1388 struct btrfs_root_item *root_item;
1389 struct btrfs_key root_key;
1390 int ret;
1391
1392 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1393 BUG_ON(!root_item);
1394
1395 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1396 root_key.type = BTRFS_ROOT_ITEM_KEY;
1397 root_key.offset = objectid;
1398
1399 if (root->root_key.objectid == objectid) {
1400 u64 commit_root_gen;
1401
1402 /* called by btrfs_init_reloc_root */
1403 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1404 BTRFS_TREE_RELOC_OBJECTID);
1405 BUG_ON(ret);
1406 /*
1407 * Set the last_snapshot field to the generation of the commit
1408 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1409 * correctly (returns true) when the relocation root is created
1410 * either inside the critical section of a transaction commit
1411 * (through transaction.c:qgroup_account_snapshot()) and when
1412 * it's created before the transaction commit is started.
1413 */
1414 commit_root_gen = btrfs_header_generation(root->commit_root);
1415 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1416 } else {
1417 /*
1418 * called by btrfs_reloc_post_snapshot_hook.
1419 * the source tree is a reloc tree, all tree blocks
1420 * modified after it was created have RELOC flag
1421 * set in their headers. so it's OK to not update
1422 * the 'last_snapshot'.
1423 */
1424 ret = btrfs_copy_root(trans, root, root->node, &eb,
1425 BTRFS_TREE_RELOC_OBJECTID);
1426 BUG_ON(ret);
1427 }
1428
1429 memcpy(root_item, &root->root_item, sizeof(*root_item));
1430 btrfs_set_root_bytenr(root_item, eb->start);
1431 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1432 btrfs_set_root_generation(root_item, trans->transid);
1433
1434 if (root->root_key.objectid == objectid) {
1435 btrfs_set_root_refs(root_item, 0);
1436 memset(&root_item->drop_progress, 0,
1437 sizeof(struct btrfs_disk_key));
1438 root_item->drop_level = 0;
1439 }
1440
1441 btrfs_tree_unlock(eb);
1442 free_extent_buffer(eb);
1443
1444 ret = btrfs_insert_root(trans, fs_info->tree_root,
1445 &root_key, root_item);
1446 BUG_ON(ret);
1447 kfree(root_item);
1448
1449 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1450 BUG_ON(IS_ERR(reloc_root));
1451 reloc_root->last_trans = trans->transid;
1452 return reloc_root;
1453 }
1454
1455 /*
1456 * create reloc tree for a given fs tree. reloc tree is just a
1457 * snapshot of the fs tree with special root objectid.
1458 */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1459 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1460 struct btrfs_root *root)
1461 {
1462 struct btrfs_fs_info *fs_info = root->fs_info;
1463 struct btrfs_root *reloc_root;
1464 struct reloc_control *rc = fs_info->reloc_ctl;
1465 struct btrfs_block_rsv *rsv;
1466 int clear_rsv = 0;
1467 int ret;
1468
1469 if (!rc)
1470 return 0;
1471
1472 /*
1473 * The subvolume has reloc tree but the swap is finished, no need to
1474 * create/update the dead reloc tree
1475 */
1476 if (reloc_root_is_dead(root))
1477 return 0;
1478
1479 /*
1480 * This is subtle but important. We do not do
1481 * record_root_in_transaction for reloc roots, instead we record their
1482 * corresponding fs root, and then here we update the last trans for the
1483 * reloc root. This means that we have to do this for the entire life
1484 * of the reloc root, regardless of which stage of the relocation we are
1485 * in.
1486 */
1487 if (root->reloc_root) {
1488 reloc_root = root->reloc_root;
1489 reloc_root->last_trans = trans->transid;
1490 return 0;
1491 }
1492
1493 /*
1494 * We are merging reloc roots, we do not need new reloc trees. Also
1495 * reloc trees never need their own reloc tree.
1496 */
1497 if (!rc->create_reloc_tree ||
1498 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1499 return 0;
1500
1501 if (!trans->reloc_reserved) {
1502 rsv = trans->block_rsv;
1503 trans->block_rsv = rc->block_rsv;
1504 clear_rsv = 1;
1505 }
1506 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1507 if (clear_rsv)
1508 trans->block_rsv = rsv;
1509
1510 ret = __add_reloc_root(reloc_root);
1511 BUG_ON(ret < 0);
1512 root->reloc_root = reloc_root;
1513 return 0;
1514 }
1515
1516 /*
1517 * update root item of reloc tree
1518 */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1519 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1520 struct btrfs_root *root)
1521 {
1522 struct btrfs_fs_info *fs_info = root->fs_info;
1523 struct btrfs_root *reloc_root;
1524 struct btrfs_root_item *root_item;
1525 int ret;
1526
1527 if (!have_reloc_root(root))
1528 goto out;
1529
1530 reloc_root = root->reloc_root;
1531 root_item = &reloc_root->root_item;
1532
1533 /* root->reloc_root will stay until current relocation finished */
1534 if (fs_info->reloc_ctl->merge_reloc_tree &&
1535 btrfs_root_refs(root_item) == 0) {
1536 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1537 /*
1538 * Mark the tree as dead before we change reloc_root so
1539 * have_reloc_root will not touch it from now on.
1540 */
1541 smp_wmb();
1542 __del_reloc_root(reloc_root);
1543 }
1544
1545 if (reloc_root->commit_root != reloc_root->node) {
1546 __update_reloc_root(reloc_root);
1547 btrfs_set_root_node(root_item, reloc_root->node);
1548 free_extent_buffer(reloc_root->commit_root);
1549 reloc_root->commit_root = btrfs_root_node(reloc_root);
1550 }
1551
1552 ret = btrfs_update_root(trans, fs_info->tree_root,
1553 &reloc_root->root_key, root_item);
1554 BUG_ON(ret);
1555
1556 out:
1557 return 0;
1558 }
1559
1560 /*
1561 * helper to find first cached inode with inode number >= objectid
1562 * in a subvolume
1563 */
find_next_inode(struct btrfs_root * root,u64 objectid)1564 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1565 {
1566 struct rb_node *node;
1567 struct rb_node *prev;
1568 struct btrfs_inode *entry;
1569 struct inode *inode;
1570
1571 spin_lock(&root->inode_lock);
1572 again:
1573 node = root->inode_tree.rb_node;
1574 prev = NULL;
1575 while (node) {
1576 prev = node;
1577 entry = rb_entry(node, struct btrfs_inode, rb_node);
1578
1579 if (objectid < btrfs_ino(entry))
1580 node = node->rb_left;
1581 else if (objectid > btrfs_ino(entry))
1582 node = node->rb_right;
1583 else
1584 break;
1585 }
1586 if (!node) {
1587 while (prev) {
1588 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1589 if (objectid <= btrfs_ino(entry)) {
1590 node = prev;
1591 break;
1592 }
1593 prev = rb_next(prev);
1594 }
1595 }
1596 while (node) {
1597 entry = rb_entry(node, struct btrfs_inode, rb_node);
1598 inode = igrab(&entry->vfs_inode);
1599 if (inode) {
1600 spin_unlock(&root->inode_lock);
1601 return inode;
1602 }
1603
1604 objectid = btrfs_ino(entry) + 1;
1605 if (cond_resched_lock(&root->inode_lock))
1606 goto again;
1607
1608 node = rb_next(node);
1609 }
1610 spin_unlock(&root->inode_lock);
1611 return NULL;
1612 }
1613
in_block_group(u64 bytenr,struct btrfs_block_group_cache * block_group)1614 static int in_block_group(u64 bytenr,
1615 struct btrfs_block_group_cache *block_group)
1616 {
1617 if (bytenr >= block_group->key.objectid &&
1618 bytenr < block_group->key.objectid + block_group->key.offset)
1619 return 1;
1620 return 0;
1621 }
1622
1623 /*
1624 * get new location of data
1625 */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)1626 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1627 u64 bytenr, u64 num_bytes)
1628 {
1629 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1630 struct btrfs_path *path;
1631 struct btrfs_file_extent_item *fi;
1632 struct extent_buffer *leaf;
1633 int ret;
1634
1635 path = btrfs_alloc_path();
1636 if (!path)
1637 return -ENOMEM;
1638
1639 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1640 ret = btrfs_lookup_file_extent(NULL, root, path,
1641 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1642 if (ret < 0)
1643 goto out;
1644 if (ret > 0) {
1645 ret = -ENOENT;
1646 goto out;
1647 }
1648
1649 leaf = path->nodes[0];
1650 fi = btrfs_item_ptr(leaf, path->slots[0],
1651 struct btrfs_file_extent_item);
1652
1653 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1654 btrfs_file_extent_compression(leaf, fi) ||
1655 btrfs_file_extent_encryption(leaf, fi) ||
1656 btrfs_file_extent_other_encoding(leaf, fi));
1657
1658 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1659 ret = -EINVAL;
1660 goto out;
1661 }
1662
1663 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1664 ret = 0;
1665 out:
1666 btrfs_free_path(path);
1667 return ret;
1668 }
1669
1670 /*
1671 * update file extent items in the tree leaf to point to
1672 * the new locations.
1673 */
1674 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)1675 int replace_file_extents(struct btrfs_trans_handle *trans,
1676 struct reloc_control *rc,
1677 struct btrfs_root *root,
1678 struct extent_buffer *leaf)
1679 {
1680 struct btrfs_fs_info *fs_info = root->fs_info;
1681 struct btrfs_key key;
1682 struct btrfs_file_extent_item *fi;
1683 struct inode *inode = NULL;
1684 u64 parent;
1685 u64 bytenr;
1686 u64 new_bytenr = 0;
1687 u64 num_bytes;
1688 u64 end;
1689 u32 nritems;
1690 u32 i;
1691 int ret = 0;
1692 int first = 1;
1693 int dirty = 0;
1694
1695 if (rc->stage != UPDATE_DATA_PTRS)
1696 return 0;
1697
1698 /* reloc trees always use full backref */
1699 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1700 parent = leaf->start;
1701 else
1702 parent = 0;
1703
1704 nritems = btrfs_header_nritems(leaf);
1705 for (i = 0; i < nritems; i++) {
1706 struct btrfs_ref ref = { 0 };
1707
1708 cond_resched();
1709 btrfs_item_key_to_cpu(leaf, &key, i);
1710 if (key.type != BTRFS_EXTENT_DATA_KEY)
1711 continue;
1712 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1713 if (btrfs_file_extent_type(leaf, fi) ==
1714 BTRFS_FILE_EXTENT_INLINE)
1715 continue;
1716 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1717 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1718 if (bytenr == 0)
1719 continue;
1720 if (!in_block_group(bytenr, rc->block_group))
1721 continue;
1722
1723 /*
1724 * if we are modifying block in fs tree, wait for readpage
1725 * to complete and drop the extent cache
1726 */
1727 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1728 if (first) {
1729 inode = find_next_inode(root, key.objectid);
1730 first = 0;
1731 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1732 btrfs_add_delayed_iput(inode);
1733 inode = find_next_inode(root, key.objectid);
1734 }
1735 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1736 end = key.offset +
1737 btrfs_file_extent_num_bytes(leaf, fi);
1738 WARN_ON(!IS_ALIGNED(key.offset,
1739 fs_info->sectorsize));
1740 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1741 end--;
1742 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1743 key.offset, end);
1744 if (!ret)
1745 continue;
1746
1747 btrfs_drop_extent_cache(BTRFS_I(inode),
1748 key.offset, end, 1);
1749 unlock_extent(&BTRFS_I(inode)->io_tree,
1750 key.offset, end);
1751 }
1752 }
1753
1754 ret = get_new_location(rc->data_inode, &new_bytenr,
1755 bytenr, num_bytes);
1756 if (ret) {
1757 /*
1758 * Don't have to abort since we've not changed anything
1759 * in the file extent yet.
1760 */
1761 break;
1762 }
1763
1764 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1765 dirty = 1;
1766
1767 key.offset -= btrfs_file_extent_offset(leaf, fi);
1768 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1769 num_bytes, parent);
1770 ref.real_root = root->root_key.objectid;
1771 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1772 key.objectid, key.offset);
1773 ret = btrfs_inc_extent_ref(trans, &ref);
1774 if (ret) {
1775 btrfs_abort_transaction(trans, ret);
1776 break;
1777 }
1778
1779 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1780 num_bytes, parent);
1781 ref.real_root = root->root_key.objectid;
1782 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1783 key.objectid, key.offset);
1784 ret = btrfs_free_extent(trans, &ref);
1785 if (ret) {
1786 btrfs_abort_transaction(trans, ret);
1787 break;
1788 }
1789 }
1790 if (dirty)
1791 btrfs_mark_buffer_dirty(leaf);
1792 if (inode)
1793 btrfs_add_delayed_iput(inode);
1794 return ret;
1795 }
1796
1797 static noinline_for_stack
memcmp_node_keys(struct extent_buffer * eb,int slot,struct btrfs_path * path,int level)1798 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1799 struct btrfs_path *path, int level)
1800 {
1801 struct btrfs_disk_key key1;
1802 struct btrfs_disk_key key2;
1803 btrfs_node_key(eb, &key1, slot);
1804 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1805 return memcmp(&key1, &key2, sizeof(key1));
1806 }
1807
1808 /*
1809 * try to replace tree blocks in fs tree with the new blocks
1810 * in reloc tree. tree blocks haven't been modified since the
1811 * reloc tree was create can be replaced.
1812 *
1813 * if a block was replaced, level of the block + 1 is returned.
1814 * if no block got replaced, 0 is returned. if there are other
1815 * errors, a negative error number is returned.
1816 */
1817 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)1818 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1819 struct btrfs_root *dest, struct btrfs_root *src,
1820 struct btrfs_path *path, struct btrfs_key *next_key,
1821 int lowest_level, int max_level)
1822 {
1823 struct btrfs_fs_info *fs_info = dest->fs_info;
1824 struct extent_buffer *eb;
1825 struct extent_buffer *parent;
1826 struct btrfs_ref ref = { 0 };
1827 struct btrfs_key key;
1828 u64 old_bytenr;
1829 u64 new_bytenr;
1830 u64 old_ptr_gen;
1831 u64 new_ptr_gen;
1832 u64 last_snapshot;
1833 u32 blocksize;
1834 int cow = 0;
1835 int level;
1836 int ret;
1837 int slot;
1838
1839 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1840 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1841
1842 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1843 again:
1844 slot = path->slots[lowest_level];
1845 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1846
1847 eb = btrfs_lock_root_node(dest);
1848 btrfs_set_lock_blocking_write(eb);
1849 level = btrfs_header_level(eb);
1850
1851 if (level < lowest_level) {
1852 btrfs_tree_unlock(eb);
1853 free_extent_buffer(eb);
1854 return 0;
1855 }
1856
1857 if (cow) {
1858 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1859 BUG_ON(ret);
1860 }
1861 btrfs_set_lock_blocking_write(eb);
1862
1863 if (next_key) {
1864 next_key->objectid = (u64)-1;
1865 next_key->type = (u8)-1;
1866 next_key->offset = (u64)-1;
1867 }
1868
1869 parent = eb;
1870 while (1) {
1871 struct btrfs_key first_key;
1872
1873 level = btrfs_header_level(parent);
1874 ASSERT(level >= lowest_level);
1875
1876 ret = btrfs_bin_search(parent, &key, level, &slot);
1877 if (ret < 0)
1878 break;
1879 if (ret && slot > 0)
1880 slot--;
1881
1882 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1883 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1884
1885 old_bytenr = btrfs_node_blockptr(parent, slot);
1886 blocksize = fs_info->nodesize;
1887 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1888 btrfs_node_key_to_cpu(parent, &first_key, slot);
1889
1890 if (level <= max_level) {
1891 eb = path->nodes[level];
1892 new_bytenr = btrfs_node_blockptr(eb,
1893 path->slots[level]);
1894 new_ptr_gen = btrfs_node_ptr_generation(eb,
1895 path->slots[level]);
1896 } else {
1897 new_bytenr = 0;
1898 new_ptr_gen = 0;
1899 }
1900
1901 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1902 ret = level;
1903 break;
1904 }
1905
1906 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1907 memcmp_node_keys(parent, slot, path, level)) {
1908 if (level <= lowest_level) {
1909 ret = 0;
1910 break;
1911 }
1912
1913 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1914 level - 1, &first_key);
1915 if (IS_ERR(eb)) {
1916 ret = PTR_ERR(eb);
1917 break;
1918 } else if (!extent_buffer_uptodate(eb)) {
1919 ret = -EIO;
1920 free_extent_buffer(eb);
1921 break;
1922 }
1923 btrfs_tree_lock(eb);
1924 if (cow) {
1925 ret = btrfs_cow_block(trans, dest, eb, parent,
1926 slot, &eb);
1927 BUG_ON(ret);
1928 }
1929 btrfs_set_lock_blocking_write(eb);
1930
1931 btrfs_tree_unlock(parent);
1932 free_extent_buffer(parent);
1933
1934 parent = eb;
1935 continue;
1936 }
1937
1938 if (!cow) {
1939 btrfs_tree_unlock(parent);
1940 free_extent_buffer(parent);
1941 cow = 1;
1942 goto again;
1943 }
1944
1945 btrfs_node_key_to_cpu(path->nodes[level], &key,
1946 path->slots[level]);
1947 btrfs_release_path(path);
1948
1949 path->lowest_level = level;
1950 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1951 path->lowest_level = 0;
1952 BUG_ON(ret);
1953
1954 /*
1955 * Info qgroup to trace both subtrees.
1956 *
1957 * We must trace both trees.
1958 * 1) Tree reloc subtree
1959 * If not traced, we will leak data numbers
1960 * 2) Fs subtree
1961 * If not traced, we will double count old data
1962 *
1963 * We don't scan the subtree right now, but only record
1964 * the swapped tree blocks.
1965 * The real subtree rescan is delayed until we have new
1966 * CoW on the subtree root node before transaction commit.
1967 */
1968 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1969 rc->block_group, parent, slot,
1970 path->nodes[level], path->slots[level],
1971 last_snapshot);
1972 if (ret < 0)
1973 break;
1974 /*
1975 * swap blocks in fs tree and reloc tree.
1976 */
1977 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1978 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1979 btrfs_mark_buffer_dirty(parent);
1980
1981 btrfs_set_node_blockptr(path->nodes[level],
1982 path->slots[level], old_bytenr);
1983 btrfs_set_node_ptr_generation(path->nodes[level],
1984 path->slots[level], old_ptr_gen);
1985 btrfs_mark_buffer_dirty(path->nodes[level]);
1986
1987 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1988 blocksize, path->nodes[level]->start);
1989 ref.skip_qgroup = true;
1990 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1991 ret = btrfs_inc_extent_ref(trans, &ref);
1992 BUG_ON(ret);
1993 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1994 blocksize, 0);
1995 ref.skip_qgroup = true;
1996 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1997 ret = btrfs_inc_extent_ref(trans, &ref);
1998 BUG_ON(ret);
1999
2000 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
2001 blocksize, path->nodes[level]->start);
2002 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
2003 ref.skip_qgroup = true;
2004 ret = btrfs_free_extent(trans, &ref);
2005 BUG_ON(ret);
2006
2007 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
2008 blocksize, 0);
2009 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
2010 ref.skip_qgroup = true;
2011 ret = btrfs_free_extent(trans, &ref);
2012 BUG_ON(ret);
2013
2014 btrfs_unlock_up_safe(path, 0);
2015
2016 ret = level;
2017 break;
2018 }
2019 btrfs_tree_unlock(parent);
2020 free_extent_buffer(parent);
2021 return ret;
2022 }
2023
2024 /*
2025 * helper to find next relocated block in reloc tree
2026 */
2027 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)2028 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2029 int *level)
2030 {
2031 struct extent_buffer *eb;
2032 int i;
2033 u64 last_snapshot;
2034 u32 nritems;
2035
2036 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2037
2038 for (i = 0; i < *level; i++) {
2039 free_extent_buffer(path->nodes[i]);
2040 path->nodes[i] = NULL;
2041 }
2042
2043 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
2044 eb = path->nodes[i];
2045 nritems = btrfs_header_nritems(eb);
2046 while (path->slots[i] + 1 < nritems) {
2047 path->slots[i]++;
2048 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
2049 last_snapshot)
2050 continue;
2051
2052 *level = i;
2053 return 0;
2054 }
2055 free_extent_buffer(path->nodes[i]);
2056 path->nodes[i] = NULL;
2057 }
2058 return 1;
2059 }
2060
2061 /*
2062 * walk down reloc tree to find relocated block of lowest level
2063 */
2064 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)2065 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2066 int *level)
2067 {
2068 struct btrfs_fs_info *fs_info = root->fs_info;
2069 struct extent_buffer *eb = NULL;
2070 int i;
2071 u64 bytenr;
2072 u64 ptr_gen = 0;
2073 u64 last_snapshot;
2074 u32 nritems;
2075
2076 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2077
2078 for (i = *level; i > 0; i--) {
2079 struct btrfs_key first_key;
2080
2081 eb = path->nodes[i];
2082 nritems = btrfs_header_nritems(eb);
2083 while (path->slots[i] < nritems) {
2084 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2085 if (ptr_gen > last_snapshot)
2086 break;
2087 path->slots[i]++;
2088 }
2089 if (path->slots[i] >= nritems) {
2090 if (i == *level)
2091 break;
2092 *level = i + 1;
2093 return 0;
2094 }
2095 if (i == 1) {
2096 *level = i;
2097 return 0;
2098 }
2099
2100 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2101 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2102 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2103 &first_key);
2104 if (IS_ERR(eb)) {
2105 return PTR_ERR(eb);
2106 } else if (!extent_buffer_uptodate(eb)) {
2107 free_extent_buffer(eb);
2108 return -EIO;
2109 }
2110 BUG_ON(btrfs_header_level(eb) != i - 1);
2111 path->nodes[i - 1] = eb;
2112 path->slots[i - 1] = 0;
2113 }
2114 return 1;
2115 }
2116
2117 /*
2118 * invalidate extent cache for file extents whose key in range of
2119 * [min_key, max_key)
2120 */
invalidate_extent_cache(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_key * max_key)2121 static int invalidate_extent_cache(struct btrfs_root *root,
2122 struct btrfs_key *min_key,
2123 struct btrfs_key *max_key)
2124 {
2125 struct btrfs_fs_info *fs_info = root->fs_info;
2126 struct inode *inode = NULL;
2127 u64 objectid;
2128 u64 start, end;
2129 u64 ino;
2130
2131 objectid = min_key->objectid;
2132 while (1) {
2133 cond_resched();
2134 iput(inode);
2135
2136 if (objectid > max_key->objectid)
2137 break;
2138
2139 inode = find_next_inode(root, objectid);
2140 if (!inode)
2141 break;
2142 ino = btrfs_ino(BTRFS_I(inode));
2143
2144 if (ino > max_key->objectid) {
2145 iput(inode);
2146 break;
2147 }
2148
2149 objectid = ino + 1;
2150 if (!S_ISREG(inode->i_mode))
2151 continue;
2152
2153 if (unlikely(min_key->objectid == ino)) {
2154 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2155 continue;
2156 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2157 start = 0;
2158 else {
2159 start = min_key->offset;
2160 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2161 }
2162 } else {
2163 start = 0;
2164 }
2165
2166 if (unlikely(max_key->objectid == ino)) {
2167 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2168 continue;
2169 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2170 end = (u64)-1;
2171 } else {
2172 if (max_key->offset == 0)
2173 continue;
2174 end = max_key->offset;
2175 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2176 end--;
2177 }
2178 } else {
2179 end = (u64)-1;
2180 }
2181
2182 /* the lock_extent waits for readpage to complete */
2183 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2184 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2185 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2186 }
2187 return 0;
2188 }
2189
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)2190 static int find_next_key(struct btrfs_path *path, int level,
2191 struct btrfs_key *key)
2192
2193 {
2194 while (level < BTRFS_MAX_LEVEL) {
2195 if (!path->nodes[level])
2196 break;
2197 if (path->slots[level] + 1 <
2198 btrfs_header_nritems(path->nodes[level])) {
2199 btrfs_node_key_to_cpu(path->nodes[level], key,
2200 path->slots[level] + 1);
2201 return 0;
2202 }
2203 level++;
2204 }
2205 return 1;
2206 }
2207
2208 /*
2209 * Insert current subvolume into reloc_control::dirty_subvol_roots
2210 */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)2211 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
2212 struct reloc_control *rc,
2213 struct btrfs_root *root)
2214 {
2215 struct btrfs_root *reloc_root = root->reloc_root;
2216 struct btrfs_root_item *reloc_root_item;
2217
2218 /* @root must be a subvolume tree root with a valid reloc tree */
2219 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
2220 ASSERT(reloc_root);
2221
2222 reloc_root_item = &reloc_root->root_item;
2223 memset(&reloc_root_item->drop_progress, 0,
2224 sizeof(reloc_root_item->drop_progress));
2225 reloc_root_item->drop_level = 0;
2226 btrfs_set_root_refs(reloc_root_item, 0);
2227 btrfs_update_reloc_root(trans, root);
2228
2229 if (list_empty(&root->reloc_dirty_list)) {
2230 btrfs_grab_fs_root(root);
2231 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
2232 }
2233 }
2234
clean_dirty_subvols(struct reloc_control * rc)2235 static int clean_dirty_subvols(struct reloc_control *rc)
2236 {
2237 struct btrfs_root *root;
2238 struct btrfs_root *next;
2239 int ret = 0;
2240 int ret2;
2241
2242 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
2243 reloc_dirty_list) {
2244 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2245 /* Merged subvolume, cleanup its reloc root */
2246 struct btrfs_root *reloc_root = root->reloc_root;
2247
2248 list_del_init(&root->reloc_dirty_list);
2249 root->reloc_root = NULL;
2250 if (reloc_root) {
2251
2252 ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1);
2253 if (ret2 < 0 && !ret)
2254 ret = ret2;
2255 }
2256 /*
2257 * Need barrier to ensure clear_bit() only happens after
2258 * root->reloc_root = NULL. Pairs with have_reloc_root.
2259 */
2260 smp_wmb();
2261 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
2262 btrfs_put_fs_root(root);
2263 } else {
2264 /* Orphan reloc tree, just clean it up */
2265 ret2 = btrfs_drop_snapshot(root, NULL, 0, 1);
2266 if (ret2 < 0 && !ret)
2267 ret = ret2;
2268 }
2269 }
2270 return ret;
2271 }
2272
2273 /*
2274 * merge the relocated tree blocks in reloc tree with corresponding
2275 * fs tree.
2276 */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)2277 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2278 struct btrfs_root *root)
2279 {
2280 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2281 struct btrfs_key key;
2282 struct btrfs_key next_key;
2283 struct btrfs_trans_handle *trans = NULL;
2284 struct btrfs_root *reloc_root;
2285 struct btrfs_root_item *root_item;
2286 struct btrfs_path *path;
2287 struct extent_buffer *leaf;
2288 int reserve_level;
2289 int level;
2290 int max_level;
2291 int replaced = 0;
2292 int ret;
2293 int err = 0;
2294 u32 min_reserved;
2295
2296 path = btrfs_alloc_path();
2297 if (!path)
2298 return -ENOMEM;
2299 path->reada = READA_FORWARD;
2300
2301 reloc_root = root->reloc_root;
2302 root_item = &reloc_root->root_item;
2303
2304 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2305 level = btrfs_root_level(root_item);
2306 extent_buffer_get(reloc_root->node);
2307 path->nodes[level] = reloc_root->node;
2308 path->slots[level] = 0;
2309 } else {
2310 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2311
2312 level = root_item->drop_level;
2313 BUG_ON(level == 0);
2314 path->lowest_level = level;
2315 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2316 path->lowest_level = 0;
2317 if (ret < 0) {
2318 btrfs_free_path(path);
2319 return ret;
2320 }
2321
2322 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2323 path->slots[level]);
2324 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2325
2326 btrfs_unlock_up_safe(path, 0);
2327 }
2328
2329 /*
2330 * In merge_reloc_root(), we modify the upper level pointer to swap the
2331 * tree blocks between reloc tree and subvolume tree. Thus for tree
2332 * block COW, we COW at most from level 1 to root level for each tree.
2333 *
2334 * Thus the needed metadata size is at most root_level * nodesize,
2335 * and * 2 since we have two trees to COW.
2336 */
2337 reserve_level = max_t(int, 1, btrfs_root_level(root_item));
2338 min_reserved = fs_info->nodesize * reserve_level * 2;
2339 memset(&next_key, 0, sizeof(next_key));
2340
2341 while (1) {
2342 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2343 BTRFS_RESERVE_FLUSH_LIMIT);
2344 if (ret) {
2345 err = ret;
2346 goto out;
2347 }
2348 trans = btrfs_start_transaction(root, 0);
2349 if (IS_ERR(trans)) {
2350 err = PTR_ERR(trans);
2351 trans = NULL;
2352 goto out;
2353 }
2354
2355 /*
2356 * At this point we no longer have a reloc_control, so we can't
2357 * depend on btrfs_init_reloc_root to update our last_trans.
2358 *
2359 * But that's ok, we started the trans handle on our
2360 * corresponding fs_root, which means it's been added to the
2361 * dirty list. At commit time we'll still call
2362 * btrfs_update_reloc_root() and update our root item
2363 * appropriately.
2364 */
2365 reloc_root->last_trans = trans->transid;
2366 trans->block_rsv = rc->block_rsv;
2367
2368 replaced = 0;
2369 max_level = level;
2370
2371 ret = walk_down_reloc_tree(reloc_root, path, &level);
2372 if (ret < 0) {
2373 err = ret;
2374 goto out;
2375 }
2376 if (ret > 0)
2377 break;
2378
2379 if (!find_next_key(path, level, &key) &&
2380 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2381 ret = 0;
2382 } else {
2383 ret = replace_path(trans, rc, root, reloc_root, path,
2384 &next_key, level, max_level);
2385 }
2386 if (ret < 0) {
2387 err = ret;
2388 goto out;
2389 }
2390
2391 if (ret > 0) {
2392 level = ret;
2393 btrfs_node_key_to_cpu(path->nodes[level], &key,
2394 path->slots[level]);
2395 replaced = 1;
2396 }
2397
2398 ret = walk_up_reloc_tree(reloc_root, path, &level);
2399 if (ret > 0)
2400 break;
2401
2402 BUG_ON(level == 0);
2403 /*
2404 * save the merging progress in the drop_progress.
2405 * this is OK since root refs == 1 in this case.
2406 */
2407 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2408 path->slots[level]);
2409 root_item->drop_level = level;
2410
2411 btrfs_end_transaction_throttle(trans);
2412 trans = NULL;
2413
2414 btrfs_btree_balance_dirty(fs_info);
2415
2416 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2417 invalidate_extent_cache(root, &key, &next_key);
2418 }
2419
2420 /*
2421 * handle the case only one block in the fs tree need to be
2422 * relocated and the block is tree root.
2423 */
2424 leaf = btrfs_lock_root_node(root);
2425 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2426 btrfs_tree_unlock(leaf);
2427 free_extent_buffer(leaf);
2428 if (ret < 0)
2429 err = ret;
2430 out:
2431 btrfs_free_path(path);
2432
2433 if (err == 0)
2434 insert_dirty_subvol(trans, rc, root);
2435
2436 if (trans)
2437 btrfs_end_transaction_throttle(trans);
2438
2439 btrfs_btree_balance_dirty(fs_info);
2440
2441 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2442 invalidate_extent_cache(root, &key, &next_key);
2443
2444 return err;
2445 }
2446
2447 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)2448 int prepare_to_merge(struct reloc_control *rc, int err)
2449 {
2450 struct btrfs_root *root = rc->extent_root;
2451 struct btrfs_fs_info *fs_info = root->fs_info;
2452 struct btrfs_root *reloc_root;
2453 struct btrfs_trans_handle *trans;
2454 LIST_HEAD(reloc_roots);
2455 u64 num_bytes = 0;
2456 int ret;
2457
2458 mutex_lock(&fs_info->reloc_mutex);
2459 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2460 rc->merging_rsv_size += rc->nodes_relocated * 2;
2461 mutex_unlock(&fs_info->reloc_mutex);
2462
2463 again:
2464 if (!err) {
2465 num_bytes = rc->merging_rsv_size;
2466 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2467 BTRFS_RESERVE_FLUSH_ALL);
2468 if (ret)
2469 err = ret;
2470 }
2471
2472 trans = btrfs_join_transaction(rc->extent_root);
2473 if (IS_ERR(trans)) {
2474 if (!err)
2475 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2476 num_bytes);
2477 return PTR_ERR(trans);
2478 }
2479
2480 if (!err) {
2481 if (num_bytes != rc->merging_rsv_size) {
2482 btrfs_end_transaction(trans);
2483 btrfs_block_rsv_release(fs_info, rc->block_rsv,
2484 num_bytes);
2485 goto again;
2486 }
2487 }
2488
2489 rc->merge_reloc_tree = 1;
2490
2491 while (!list_empty(&rc->reloc_roots)) {
2492 reloc_root = list_entry(rc->reloc_roots.next,
2493 struct btrfs_root, root_list);
2494 list_del_init(&reloc_root->root_list);
2495
2496 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2497 BUG_ON(IS_ERR(root));
2498 BUG_ON(root->reloc_root != reloc_root);
2499
2500 /*
2501 * set reference count to 1, so btrfs_recover_relocation
2502 * knows it should resumes merging
2503 */
2504 if (!err)
2505 btrfs_set_root_refs(&reloc_root->root_item, 1);
2506 btrfs_update_reloc_root(trans, root);
2507
2508 list_add(&reloc_root->root_list, &reloc_roots);
2509 }
2510
2511 list_splice(&reloc_roots, &rc->reloc_roots);
2512
2513 if (!err)
2514 err = btrfs_commit_transaction(trans);
2515 else
2516 btrfs_end_transaction(trans);
2517 return err;
2518 }
2519
2520 static noinline_for_stack
free_reloc_roots(struct list_head * list)2521 void free_reloc_roots(struct list_head *list)
2522 {
2523 struct btrfs_root *reloc_root;
2524
2525 while (!list_empty(list)) {
2526 reloc_root = list_entry(list->next, struct btrfs_root,
2527 root_list);
2528 __del_reloc_root(reloc_root);
2529 free_extent_buffer(reloc_root->node);
2530 free_extent_buffer(reloc_root->commit_root);
2531 reloc_root->node = NULL;
2532 reloc_root->commit_root = NULL;
2533 }
2534 }
2535
2536 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)2537 void merge_reloc_roots(struct reloc_control *rc)
2538 {
2539 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2540 struct btrfs_root *root;
2541 struct btrfs_root *reloc_root;
2542 LIST_HEAD(reloc_roots);
2543 int found = 0;
2544 int ret = 0;
2545 again:
2546 root = rc->extent_root;
2547
2548 /*
2549 * this serializes us with btrfs_record_root_in_transaction,
2550 * we have to make sure nobody is in the middle of
2551 * adding their roots to the list while we are
2552 * doing this splice
2553 */
2554 mutex_lock(&fs_info->reloc_mutex);
2555 list_splice_init(&rc->reloc_roots, &reloc_roots);
2556 mutex_unlock(&fs_info->reloc_mutex);
2557
2558 while (!list_empty(&reloc_roots)) {
2559 found = 1;
2560 reloc_root = list_entry(reloc_roots.next,
2561 struct btrfs_root, root_list);
2562
2563 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2564 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2565 BUG_ON(IS_ERR(root));
2566 BUG_ON(root->reloc_root != reloc_root);
2567 ret = merge_reloc_root(rc, root);
2568 if (ret) {
2569 if (list_empty(&reloc_root->root_list))
2570 list_add_tail(&reloc_root->root_list,
2571 &reloc_roots);
2572 goto out;
2573 }
2574 } else {
2575 if (!IS_ERR(root)) {
2576 if (root->reloc_root == reloc_root)
2577 root->reloc_root = NULL;
2578 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2579 &root->state);
2580 }
2581
2582 list_del_init(&reloc_root->root_list);
2583 /* Don't forget to queue this reloc root for cleanup */
2584 list_add_tail(&reloc_root->reloc_dirty_list,
2585 &rc->dirty_subvol_roots);
2586 }
2587 }
2588
2589 if (found) {
2590 found = 0;
2591 goto again;
2592 }
2593 out:
2594 if (ret) {
2595 btrfs_handle_fs_error(fs_info, ret, NULL);
2596 if (!list_empty(&reloc_roots))
2597 free_reloc_roots(&reloc_roots);
2598
2599 /* new reloc root may be added */
2600 mutex_lock(&fs_info->reloc_mutex);
2601 list_splice_init(&rc->reloc_roots, &reloc_roots);
2602 mutex_unlock(&fs_info->reloc_mutex);
2603 if (!list_empty(&reloc_roots))
2604 free_reloc_roots(&reloc_roots);
2605 }
2606
2607 /*
2608 * We used to have
2609 *
2610 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2611 *
2612 * here, but it's wrong. If we fail to start the transaction in
2613 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2614 * have actually been removed from the reloc_root_tree rb tree. This is
2615 * fine because we're bailing here, and we hold a reference on the root
2616 * for the list that holds it, so these roots will be cleaned up when we
2617 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
2618 * will be cleaned up on unmount.
2619 *
2620 * The remaining nodes will be cleaned up by free_reloc_control.
2621 */
2622 }
2623
free_block_list(struct rb_root * blocks)2624 static void free_block_list(struct rb_root *blocks)
2625 {
2626 struct tree_block *block;
2627 struct rb_node *rb_node;
2628 while ((rb_node = rb_first(blocks))) {
2629 block = rb_entry(rb_node, struct tree_block, rb_node);
2630 rb_erase(rb_node, blocks);
2631 kfree(block);
2632 }
2633 }
2634
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)2635 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2636 struct btrfs_root *reloc_root)
2637 {
2638 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2639 struct btrfs_root *root;
2640
2641 if (reloc_root->last_trans == trans->transid)
2642 return 0;
2643
2644 root = read_fs_root(fs_info, reloc_root->root_key.offset);
2645 BUG_ON(IS_ERR(root));
2646 BUG_ON(root->reloc_root != reloc_root);
2647
2648 return btrfs_record_root_in_trans(trans, root);
2649 }
2650
2651 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct backref_edge * edges[])2652 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2653 struct reloc_control *rc,
2654 struct backref_node *node,
2655 struct backref_edge *edges[])
2656 {
2657 struct backref_node *next;
2658 struct btrfs_root *root;
2659 int index = 0;
2660
2661 next = node;
2662 while (1) {
2663 cond_resched();
2664 next = walk_up_backref(next, edges, &index);
2665 root = next->root;
2666 BUG_ON(!root);
2667 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2668
2669 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2670 record_reloc_root_in_trans(trans, root);
2671 break;
2672 }
2673
2674 btrfs_record_root_in_trans(trans, root);
2675 root = root->reloc_root;
2676
2677 if (next->new_bytenr != root->node->start) {
2678 BUG_ON(next->new_bytenr);
2679 BUG_ON(!list_empty(&next->list));
2680 next->new_bytenr = root->node->start;
2681 next->root = root;
2682 list_add_tail(&next->list,
2683 &rc->backref_cache.changed);
2684 __mark_block_processed(rc, next);
2685 break;
2686 }
2687
2688 WARN_ON(1);
2689 root = NULL;
2690 next = walk_down_backref(edges, &index);
2691 if (!next || next->level <= node->level)
2692 break;
2693 }
2694 if (!root)
2695 return NULL;
2696
2697 next = node;
2698 /* setup backref node path for btrfs_reloc_cow_block */
2699 while (1) {
2700 rc->backref_cache.path[next->level] = next;
2701 if (--index < 0)
2702 break;
2703 next = edges[index]->node[UPPER];
2704 }
2705 return root;
2706 }
2707
2708 /*
2709 * select a tree root for relocation. return NULL if the block
2710 * is reference counted. we should use do_relocation() in this
2711 * case. return a tree root pointer if the block isn't reference
2712 * counted. return -ENOENT if the block is root of reloc tree.
2713 */
2714 static noinline_for_stack
select_one_root(struct backref_node * node)2715 struct btrfs_root *select_one_root(struct backref_node *node)
2716 {
2717 struct backref_node *next;
2718 struct btrfs_root *root;
2719 struct btrfs_root *fs_root = NULL;
2720 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2721 int index = 0;
2722
2723 next = node;
2724 while (1) {
2725 cond_resched();
2726 next = walk_up_backref(next, edges, &index);
2727 root = next->root;
2728 BUG_ON(!root);
2729
2730 /* no other choice for non-references counted tree */
2731 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2732 return root;
2733
2734 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2735 fs_root = root;
2736
2737 if (next != node)
2738 return NULL;
2739
2740 next = walk_down_backref(edges, &index);
2741 if (!next || next->level <= node->level)
2742 break;
2743 }
2744
2745 if (!fs_root)
2746 return ERR_PTR(-ENOENT);
2747 return fs_root;
2748 }
2749
2750 static noinline_for_stack
calcu_metadata_size(struct reloc_control * rc,struct backref_node * node,int reserve)2751 u64 calcu_metadata_size(struct reloc_control *rc,
2752 struct backref_node *node, int reserve)
2753 {
2754 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2755 struct backref_node *next = node;
2756 struct backref_edge *edge;
2757 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2758 u64 num_bytes = 0;
2759 int index = 0;
2760
2761 BUG_ON(reserve && node->processed);
2762
2763 while (next) {
2764 cond_resched();
2765 while (1) {
2766 if (next->processed && (reserve || next != node))
2767 break;
2768
2769 num_bytes += fs_info->nodesize;
2770
2771 if (list_empty(&next->upper))
2772 break;
2773
2774 edge = list_entry(next->upper.next,
2775 struct backref_edge, list[LOWER]);
2776 edges[index++] = edge;
2777 next = edge->node[UPPER];
2778 }
2779 next = walk_down_backref(edges, &index);
2780 }
2781 return num_bytes;
2782 }
2783
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node)2784 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2785 struct reloc_control *rc,
2786 struct backref_node *node)
2787 {
2788 struct btrfs_root *root = rc->extent_root;
2789 struct btrfs_fs_info *fs_info = root->fs_info;
2790 u64 num_bytes;
2791 int ret;
2792 u64 tmp;
2793
2794 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2795
2796 trans->block_rsv = rc->block_rsv;
2797 rc->reserved_bytes += num_bytes;
2798
2799 /*
2800 * We are under a transaction here so we can only do limited flushing.
2801 * If we get an enospc just kick back -EAGAIN so we know to drop the
2802 * transaction and try to refill when we can flush all the things.
2803 */
2804 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2805 BTRFS_RESERVE_FLUSH_LIMIT);
2806 if (ret) {
2807 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2808 while (tmp <= rc->reserved_bytes)
2809 tmp <<= 1;
2810 /*
2811 * only one thread can access block_rsv at this point,
2812 * so we don't need hold lock to protect block_rsv.
2813 * we expand more reservation size here to allow enough
2814 * space for relocation and we will return earlier in
2815 * enospc case.
2816 */
2817 rc->block_rsv->size = tmp + fs_info->nodesize *
2818 RELOCATION_RESERVED_NODES;
2819 return -EAGAIN;
2820 }
2821
2822 return 0;
2823 }
2824
2825 /*
2826 * relocate a block tree, and then update pointers in upper level
2827 * blocks that reference the block to point to the new location.
2828 *
2829 * if called by link_to_upper, the block has already been relocated.
2830 * in that case this function just updates pointers.
2831 */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2832 static int do_relocation(struct btrfs_trans_handle *trans,
2833 struct reloc_control *rc,
2834 struct backref_node *node,
2835 struct btrfs_key *key,
2836 struct btrfs_path *path, int lowest)
2837 {
2838 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2839 struct backref_node *upper;
2840 struct backref_edge *edge;
2841 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2842 struct btrfs_root *root;
2843 struct extent_buffer *eb;
2844 u32 blocksize;
2845 u64 bytenr;
2846 u64 generation;
2847 int slot;
2848 int ret;
2849 int err = 0;
2850
2851 BUG_ON(lowest && node->eb);
2852
2853 path->lowest_level = node->level + 1;
2854 rc->backref_cache.path[node->level] = node;
2855 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2856 struct btrfs_key first_key;
2857 struct btrfs_ref ref = { 0 };
2858
2859 cond_resched();
2860
2861 upper = edge->node[UPPER];
2862 root = select_reloc_root(trans, rc, upper, edges);
2863 BUG_ON(!root);
2864
2865 if (upper->eb && !upper->locked) {
2866 if (!lowest) {
2867 ret = btrfs_bin_search(upper->eb, key,
2868 upper->level, &slot);
2869 if (ret < 0) {
2870 err = ret;
2871 goto next;
2872 }
2873 BUG_ON(ret);
2874 bytenr = btrfs_node_blockptr(upper->eb, slot);
2875 if (node->eb->start == bytenr)
2876 goto next;
2877 }
2878 drop_node_buffer(upper);
2879 }
2880
2881 if (!upper->eb) {
2882 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2883 if (ret) {
2884 if (ret < 0)
2885 err = ret;
2886 else
2887 err = -ENOENT;
2888
2889 btrfs_release_path(path);
2890 break;
2891 }
2892
2893 if (!upper->eb) {
2894 upper->eb = path->nodes[upper->level];
2895 path->nodes[upper->level] = NULL;
2896 } else {
2897 BUG_ON(upper->eb != path->nodes[upper->level]);
2898 }
2899
2900 upper->locked = 1;
2901 path->locks[upper->level] = 0;
2902
2903 slot = path->slots[upper->level];
2904 btrfs_release_path(path);
2905 } else {
2906 ret = btrfs_bin_search(upper->eb, key, upper->level,
2907 &slot);
2908 if (ret < 0) {
2909 err = ret;
2910 goto next;
2911 }
2912 BUG_ON(ret);
2913 }
2914
2915 bytenr = btrfs_node_blockptr(upper->eb, slot);
2916 if (lowest) {
2917 if (bytenr != node->bytenr) {
2918 btrfs_err(root->fs_info,
2919 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2920 bytenr, node->bytenr, slot,
2921 upper->eb->start);
2922 err = -EIO;
2923 goto next;
2924 }
2925 } else {
2926 if (node->eb->start == bytenr)
2927 goto next;
2928 }
2929
2930 blocksize = root->fs_info->nodesize;
2931 generation = btrfs_node_ptr_generation(upper->eb, slot);
2932 btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2933 eb = read_tree_block(fs_info, bytenr, generation,
2934 upper->level - 1, &first_key);
2935 if (IS_ERR(eb)) {
2936 err = PTR_ERR(eb);
2937 goto next;
2938 } else if (!extent_buffer_uptodate(eb)) {
2939 free_extent_buffer(eb);
2940 err = -EIO;
2941 goto next;
2942 }
2943 btrfs_tree_lock(eb);
2944 btrfs_set_lock_blocking_write(eb);
2945
2946 if (!node->eb) {
2947 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2948 slot, &eb);
2949 btrfs_tree_unlock(eb);
2950 free_extent_buffer(eb);
2951 if (ret < 0) {
2952 err = ret;
2953 goto next;
2954 }
2955 BUG_ON(node->eb != eb);
2956 } else {
2957 btrfs_set_node_blockptr(upper->eb, slot,
2958 node->eb->start);
2959 btrfs_set_node_ptr_generation(upper->eb, slot,
2960 trans->transid);
2961 btrfs_mark_buffer_dirty(upper->eb);
2962
2963 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2964 node->eb->start, blocksize,
2965 upper->eb->start);
2966 ref.real_root = root->root_key.objectid;
2967 btrfs_init_tree_ref(&ref, node->level,
2968 btrfs_header_owner(upper->eb));
2969 ret = btrfs_inc_extent_ref(trans, &ref);
2970 BUG_ON(ret);
2971
2972 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2973 BUG_ON(ret);
2974 }
2975 next:
2976 if (!upper->pending)
2977 drop_node_buffer(upper);
2978 else
2979 unlock_node_buffer(upper);
2980 if (err)
2981 break;
2982 }
2983
2984 if (!err && node->pending) {
2985 drop_node_buffer(node);
2986 list_move_tail(&node->list, &rc->backref_cache.changed);
2987 node->pending = 0;
2988 }
2989
2990 path->lowest_level = 0;
2991 BUG_ON(err == -ENOSPC);
2992 return err;
2993 }
2994
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_path * path)2995 static int link_to_upper(struct btrfs_trans_handle *trans,
2996 struct reloc_control *rc,
2997 struct backref_node *node,
2998 struct btrfs_path *path)
2999 {
3000 struct btrfs_key key;
3001
3002 btrfs_node_key_to_cpu(node->eb, &key, 0);
3003 return do_relocation(trans, rc, node, &key, path, 0);
3004 }
3005
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)3006 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
3007 struct reloc_control *rc,
3008 struct btrfs_path *path, int err)
3009 {
3010 LIST_HEAD(list);
3011 struct backref_cache *cache = &rc->backref_cache;
3012 struct backref_node *node;
3013 int level;
3014 int ret;
3015
3016 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
3017 while (!list_empty(&cache->pending[level])) {
3018 node = list_entry(cache->pending[level].next,
3019 struct backref_node, list);
3020 list_move_tail(&node->list, &list);
3021 BUG_ON(!node->pending);
3022
3023 if (!err) {
3024 ret = link_to_upper(trans, rc, node, path);
3025 if (ret < 0)
3026 err = ret;
3027 }
3028 }
3029 list_splice_init(&list, &cache->pending[level]);
3030 }
3031 return err;
3032 }
3033
mark_block_processed(struct reloc_control * rc,u64 bytenr,u32 blocksize)3034 static void mark_block_processed(struct reloc_control *rc,
3035 u64 bytenr, u32 blocksize)
3036 {
3037 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
3038 EXTENT_DIRTY);
3039 }
3040
__mark_block_processed(struct reloc_control * rc,struct backref_node * node)3041 static void __mark_block_processed(struct reloc_control *rc,
3042 struct backref_node *node)
3043 {
3044 u32 blocksize;
3045 if (node->level == 0 ||
3046 in_block_group(node->bytenr, rc->block_group)) {
3047 blocksize = rc->extent_root->fs_info->nodesize;
3048 mark_block_processed(rc, node->bytenr, blocksize);
3049 }
3050 node->processed = 1;
3051 }
3052
3053 /*
3054 * mark a block and all blocks directly/indirectly reference the block
3055 * as processed.
3056 */
update_processed_blocks(struct reloc_control * rc,struct backref_node * node)3057 static void update_processed_blocks(struct reloc_control *rc,
3058 struct backref_node *node)
3059 {
3060 struct backref_node *next = node;
3061 struct backref_edge *edge;
3062 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
3063 int index = 0;
3064
3065 while (next) {
3066 cond_resched();
3067 while (1) {
3068 if (next->processed)
3069 break;
3070
3071 __mark_block_processed(rc, next);
3072
3073 if (list_empty(&next->upper))
3074 break;
3075
3076 edge = list_entry(next->upper.next,
3077 struct backref_edge, list[LOWER]);
3078 edges[index++] = edge;
3079 next = edge->node[UPPER];
3080 }
3081 next = walk_down_backref(edges, &index);
3082 }
3083 }
3084
tree_block_processed(u64 bytenr,struct reloc_control * rc)3085 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
3086 {
3087 u32 blocksize = rc->extent_root->fs_info->nodesize;
3088
3089 if (test_range_bit(&rc->processed_blocks, bytenr,
3090 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
3091 return 1;
3092 return 0;
3093 }
3094
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)3095 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
3096 struct tree_block *block)
3097 {
3098 struct extent_buffer *eb;
3099
3100 BUG_ON(block->key_ready);
3101 eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
3102 block->level, NULL);
3103 if (IS_ERR(eb)) {
3104 return PTR_ERR(eb);
3105 } else if (!extent_buffer_uptodate(eb)) {
3106 free_extent_buffer(eb);
3107 return -EIO;
3108 }
3109 if (block->level == 0)
3110 btrfs_item_key_to_cpu(eb, &block->key, 0);
3111 else
3112 btrfs_node_key_to_cpu(eb, &block->key, 0);
3113 free_extent_buffer(eb);
3114 block->key_ready = 1;
3115 return 0;
3116 }
3117
3118 /*
3119 * helper function to relocate a tree block
3120 */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct backref_node * node,struct btrfs_key * key,struct btrfs_path * path)3121 static int relocate_tree_block(struct btrfs_trans_handle *trans,
3122 struct reloc_control *rc,
3123 struct backref_node *node,
3124 struct btrfs_key *key,
3125 struct btrfs_path *path)
3126 {
3127 struct btrfs_root *root;
3128 int ret = 0;
3129
3130 if (!node)
3131 return 0;
3132
3133 BUG_ON(node->processed);
3134 root = select_one_root(node);
3135 if (root == ERR_PTR(-ENOENT)) {
3136 update_processed_blocks(rc, node);
3137 goto out;
3138 }
3139
3140 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3141 ret = reserve_metadata_space(trans, rc, node);
3142 if (ret)
3143 goto out;
3144 }
3145
3146 if (root) {
3147 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3148 BUG_ON(node->new_bytenr);
3149 BUG_ON(!list_empty(&node->list));
3150 btrfs_record_root_in_trans(trans, root);
3151 root = root->reloc_root;
3152 node->new_bytenr = root->node->start;
3153 node->root = root;
3154 list_add_tail(&node->list, &rc->backref_cache.changed);
3155 } else {
3156 path->lowest_level = node->level;
3157 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3158 btrfs_release_path(path);
3159 if (ret > 0)
3160 ret = 0;
3161 }
3162 if (!ret)
3163 update_processed_blocks(rc, node);
3164 } else {
3165 ret = do_relocation(trans, rc, node, key, path, 1);
3166 }
3167 out:
3168 if (ret || node->level == 0 || node->cowonly)
3169 remove_backref_node(&rc->backref_cache, node);
3170 return ret;
3171 }
3172
3173 /*
3174 * relocate a list of blocks
3175 */
3176 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)3177 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3178 struct reloc_control *rc, struct rb_root *blocks)
3179 {
3180 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3181 struct backref_node *node;
3182 struct btrfs_path *path;
3183 struct tree_block *block;
3184 struct tree_block *next;
3185 int ret;
3186 int err = 0;
3187
3188 path = btrfs_alloc_path();
3189 if (!path) {
3190 err = -ENOMEM;
3191 goto out_free_blocks;
3192 }
3193
3194 /* Kick in readahead for tree blocks with missing keys */
3195 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3196 if (!block->key_ready)
3197 readahead_tree_block(fs_info, block->bytenr);
3198 }
3199
3200 /* Get first keys */
3201 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3202 if (!block->key_ready) {
3203 err = get_tree_block_key(fs_info, block);
3204 if (err)
3205 goto out_free_path;
3206 }
3207 }
3208
3209 /* Do tree relocation */
3210 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3211 node = build_backref_tree(rc, &block->key,
3212 block->level, block->bytenr);
3213 if (IS_ERR(node)) {
3214 err = PTR_ERR(node);
3215 goto out;
3216 }
3217
3218 ret = relocate_tree_block(trans, rc, node, &block->key,
3219 path);
3220 if (ret < 0) {
3221 err = ret;
3222 break;
3223 }
3224 }
3225 out:
3226 err = finish_pending_nodes(trans, rc, path, err);
3227
3228 out_free_path:
3229 btrfs_free_path(path);
3230 out_free_blocks:
3231 free_block_list(blocks);
3232 return err;
3233 }
3234
3235 static noinline_for_stack
prealloc_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)3236 int prealloc_file_extent_cluster(struct inode *inode,
3237 struct file_extent_cluster *cluster)
3238 {
3239 u64 alloc_hint = 0;
3240 u64 start;
3241 u64 end;
3242 u64 offset = BTRFS_I(inode)->index_cnt;
3243 u64 num_bytes;
3244 int nr = 0;
3245 int ret = 0;
3246 u64 prealloc_start = cluster->start - offset;
3247 u64 prealloc_end = cluster->end - offset;
3248 u64 cur_offset;
3249 struct extent_changeset *data_reserved = NULL;
3250
3251 BUG_ON(cluster->start != cluster->boundary[0]);
3252 inode_lock(inode);
3253
3254 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3255 prealloc_end + 1 - prealloc_start);
3256 if (ret)
3257 goto out;
3258
3259 cur_offset = prealloc_start;
3260 while (nr < cluster->nr) {
3261 start = cluster->boundary[nr] - offset;
3262 if (nr + 1 < cluster->nr)
3263 end = cluster->boundary[nr + 1] - 1 - offset;
3264 else
3265 end = cluster->end - offset;
3266
3267 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3268 num_bytes = end + 1 - start;
3269 if (cur_offset < start)
3270 btrfs_free_reserved_data_space(inode, data_reserved,
3271 cur_offset, start - cur_offset);
3272 ret = btrfs_prealloc_file_range(inode, 0, start,
3273 num_bytes, num_bytes,
3274 end + 1, &alloc_hint);
3275 cur_offset = end + 1;
3276 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3277 if (ret)
3278 break;
3279 nr++;
3280 }
3281 if (cur_offset < prealloc_end)
3282 btrfs_free_reserved_data_space(inode, data_reserved,
3283 cur_offset, prealloc_end + 1 - cur_offset);
3284 out:
3285 inode_unlock(inode);
3286 extent_changeset_free(data_reserved);
3287 return ret;
3288 }
3289
3290 static noinline_for_stack
setup_extent_mapping(struct inode * inode,u64 start,u64 end,u64 block_start)3291 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3292 u64 block_start)
3293 {
3294 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3295 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3296 struct extent_map *em;
3297 int ret = 0;
3298
3299 em = alloc_extent_map();
3300 if (!em)
3301 return -ENOMEM;
3302
3303 em->start = start;
3304 em->len = end + 1 - start;
3305 em->block_len = em->len;
3306 em->block_start = block_start;
3307 em->bdev = fs_info->fs_devices->latest_bdev;
3308 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3309
3310 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3311 while (1) {
3312 write_lock(&em_tree->lock);
3313 ret = add_extent_mapping(em_tree, em, 0);
3314 write_unlock(&em_tree->lock);
3315 if (ret != -EEXIST) {
3316 free_extent_map(em);
3317 break;
3318 }
3319 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3320 }
3321 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3322 return ret;
3323 }
3324
relocate_file_extent_cluster(struct inode * inode,struct file_extent_cluster * cluster)3325 static int relocate_file_extent_cluster(struct inode *inode,
3326 struct file_extent_cluster *cluster)
3327 {
3328 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3329 u64 page_start;
3330 u64 page_end;
3331 u64 offset = BTRFS_I(inode)->index_cnt;
3332 unsigned long index;
3333 unsigned long last_index;
3334 struct page *page;
3335 struct file_ra_state *ra;
3336 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3337 int nr = 0;
3338 int ret = 0;
3339
3340 if (!cluster->nr)
3341 return 0;
3342
3343 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3344 if (!ra)
3345 return -ENOMEM;
3346
3347 ret = prealloc_file_extent_cluster(inode, cluster);
3348 if (ret)
3349 goto out;
3350
3351 file_ra_state_init(ra, inode->i_mapping);
3352
3353 ret = setup_extent_mapping(inode, cluster->start - offset,
3354 cluster->end - offset, cluster->start);
3355 if (ret)
3356 goto out;
3357
3358 index = (cluster->start - offset) >> PAGE_SHIFT;
3359 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3360 while (index <= last_index) {
3361 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3362 PAGE_SIZE);
3363 if (ret)
3364 goto out;
3365
3366 page = find_lock_page(inode->i_mapping, index);
3367 if (!page) {
3368 page_cache_sync_readahead(inode->i_mapping,
3369 ra, NULL, index,
3370 last_index + 1 - index);
3371 page = find_or_create_page(inode->i_mapping, index,
3372 mask);
3373 if (!page) {
3374 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3375 PAGE_SIZE, true);
3376 btrfs_delalloc_release_extents(BTRFS_I(inode),
3377 PAGE_SIZE);
3378 ret = -ENOMEM;
3379 goto out;
3380 }
3381 }
3382
3383 if (PageReadahead(page)) {
3384 page_cache_async_readahead(inode->i_mapping,
3385 ra, NULL, page, index,
3386 last_index + 1 - index);
3387 }
3388
3389 if (!PageUptodate(page)) {
3390 btrfs_readpage(NULL, page);
3391 lock_page(page);
3392 if (!PageUptodate(page)) {
3393 unlock_page(page);
3394 put_page(page);
3395 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3396 PAGE_SIZE, true);
3397 btrfs_delalloc_release_extents(BTRFS_I(inode),
3398 PAGE_SIZE);
3399 ret = -EIO;
3400 goto out;
3401 }
3402 }
3403
3404 page_start = page_offset(page);
3405 page_end = page_start + PAGE_SIZE - 1;
3406
3407 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3408
3409 set_page_extent_mapped(page);
3410
3411 if (nr < cluster->nr &&
3412 page_start + offset == cluster->boundary[nr]) {
3413 set_extent_bits(&BTRFS_I(inode)->io_tree,
3414 page_start, page_end,
3415 EXTENT_BOUNDARY);
3416 nr++;
3417 }
3418
3419 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3420 NULL);
3421 if (ret) {
3422 unlock_page(page);
3423 put_page(page);
3424 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3425 PAGE_SIZE, true);
3426 btrfs_delalloc_release_extents(BTRFS_I(inode),
3427 PAGE_SIZE);
3428
3429 clear_extent_bits(&BTRFS_I(inode)->io_tree,
3430 page_start, page_end,
3431 EXTENT_LOCKED | EXTENT_BOUNDARY);
3432 goto out;
3433
3434 }
3435 set_page_dirty(page);
3436
3437 unlock_extent(&BTRFS_I(inode)->io_tree,
3438 page_start, page_end);
3439 unlock_page(page);
3440 put_page(page);
3441
3442 index++;
3443 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3444 balance_dirty_pages_ratelimited(inode->i_mapping);
3445 btrfs_throttle(fs_info);
3446 }
3447 WARN_ON(nr != cluster->nr);
3448 out:
3449 kfree(ra);
3450 return ret;
3451 }
3452
3453 static noinline_for_stack
relocate_data_extent(struct inode * inode,struct btrfs_key * extent_key,struct file_extent_cluster * cluster)3454 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3455 struct file_extent_cluster *cluster)
3456 {
3457 int ret;
3458
3459 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3460 ret = relocate_file_extent_cluster(inode, cluster);
3461 if (ret)
3462 return ret;
3463 cluster->nr = 0;
3464 }
3465
3466 if (!cluster->nr)
3467 cluster->start = extent_key->objectid;
3468 else
3469 BUG_ON(cluster->nr >= MAX_EXTENTS);
3470 cluster->end = extent_key->objectid + extent_key->offset - 1;
3471 cluster->boundary[cluster->nr] = extent_key->objectid;
3472 cluster->nr++;
3473
3474 if (cluster->nr >= MAX_EXTENTS) {
3475 ret = relocate_file_extent_cluster(inode, cluster);
3476 if (ret)
3477 return ret;
3478 cluster->nr = 0;
3479 }
3480 return 0;
3481 }
3482
3483 /*
3484 * helper to add a tree block to the list.
3485 * the major work is getting the generation and level of the block
3486 */
add_tree_block(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3487 static int add_tree_block(struct reloc_control *rc,
3488 struct btrfs_key *extent_key,
3489 struct btrfs_path *path,
3490 struct rb_root *blocks)
3491 {
3492 struct extent_buffer *eb;
3493 struct btrfs_extent_item *ei;
3494 struct btrfs_tree_block_info *bi;
3495 struct tree_block *block;
3496 struct rb_node *rb_node;
3497 u32 item_size;
3498 int level = -1;
3499 u64 generation;
3500
3501 eb = path->nodes[0];
3502 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3503
3504 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3505 item_size >= sizeof(*ei) + sizeof(*bi)) {
3506 ei = btrfs_item_ptr(eb, path->slots[0],
3507 struct btrfs_extent_item);
3508 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3509 bi = (struct btrfs_tree_block_info *)(ei + 1);
3510 level = btrfs_tree_block_level(eb, bi);
3511 } else {
3512 level = (int)extent_key->offset;
3513 }
3514 generation = btrfs_extent_generation(eb, ei);
3515 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3516 btrfs_print_v0_err(eb->fs_info);
3517 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3518 return -EINVAL;
3519 } else {
3520 BUG();
3521 }
3522
3523 btrfs_release_path(path);
3524
3525 BUG_ON(level == -1);
3526
3527 block = kmalloc(sizeof(*block), GFP_NOFS);
3528 if (!block)
3529 return -ENOMEM;
3530
3531 block->bytenr = extent_key->objectid;
3532 block->key.objectid = rc->extent_root->fs_info->nodesize;
3533 block->key.offset = generation;
3534 block->level = level;
3535 block->key_ready = 0;
3536
3537 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3538 if (rb_node)
3539 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3540
3541 return 0;
3542 }
3543
3544 /*
3545 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3546 */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)3547 static int __add_tree_block(struct reloc_control *rc,
3548 u64 bytenr, u32 blocksize,
3549 struct rb_root *blocks)
3550 {
3551 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3552 struct btrfs_path *path;
3553 struct btrfs_key key;
3554 int ret;
3555 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3556
3557 if (tree_block_processed(bytenr, rc))
3558 return 0;
3559
3560 if (tree_search(blocks, bytenr))
3561 return 0;
3562
3563 path = btrfs_alloc_path();
3564 if (!path)
3565 return -ENOMEM;
3566 again:
3567 key.objectid = bytenr;
3568 if (skinny) {
3569 key.type = BTRFS_METADATA_ITEM_KEY;
3570 key.offset = (u64)-1;
3571 } else {
3572 key.type = BTRFS_EXTENT_ITEM_KEY;
3573 key.offset = blocksize;
3574 }
3575
3576 path->search_commit_root = 1;
3577 path->skip_locking = 1;
3578 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3579 if (ret < 0)
3580 goto out;
3581
3582 if (ret > 0 && skinny) {
3583 if (path->slots[0]) {
3584 path->slots[0]--;
3585 btrfs_item_key_to_cpu(path->nodes[0], &key,
3586 path->slots[0]);
3587 if (key.objectid == bytenr &&
3588 (key.type == BTRFS_METADATA_ITEM_KEY ||
3589 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3590 key.offset == blocksize)))
3591 ret = 0;
3592 }
3593
3594 if (ret) {
3595 skinny = false;
3596 btrfs_release_path(path);
3597 goto again;
3598 }
3599 }
3600 if (ret) {
3601 ASSERT(ret == 1);
3602 btrfs_print_leaf(path->nodes[0]);
3603 btrfs_err(fs_info,
3604 "tree block extent item (%llu) is not found in extent tree",
3605 bytenr);
3606 WARN_ON(1);
3607 ret = -EINVAL;
3608 goto out;
3609 }
3610
3611 ret = add_tree_block(rc, &key, path, blocks);
3612 out:
3613 btrfs_free_path(path);
3614 return ret;
3615 }
3616
3617 /*
3618 * helper to check if the block use full backrefs for pointers in it
3619 */
block_use_full_backref(struct reloc_control * rc,struct extent_buffer * eb)3620 static int block_use_full_backref(struct reloc_control *rc,
3621 struct extent_buffer *eb)
3622 {
3623 u64 flags;
3624 int ret;
3625
3626 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3627 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3628 return 1;
3629
3630 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3631 eb->start, btrfs_header_level(eb), 1,
3632 NULL, &flags);
3633 BUG_ON(ret);
3634
3635 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3636 ret = 1;
3637 else
3638 ret = 0;
3639 return ret;
3640 }
3641
delete_block_group_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group,struct inode * inode,u64 ino)3642 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3643 struct btrfs_block_group_cache *block_group,
3644 struct inode *inode,
3645 u64 ino)
3646 {
3647 struct btrfs_key key;
3648 struct btrfs_root *root = fs_info->tree_root;
3649 struct btrfs_trans_handle *trans;
3650 int ret = 0;
3651
3652 if (inode)
3653 goto truncate;
3654
3655 key.objectid = ino;
3656 key.type = BTRFS_INODE_ITEM_KEY;
3657 key.offset = 0;
3658
3659 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3660 if (IS_ERR(inode))
3661 return -ENOENT;
3662
3663 truncate:
3664 ret = btrfs_check_trunc_cache_free_space(fs_info,
3665 &fs_info->global_block_rsv);
3666 if (ret)
3667 goto out;
3668
3669 trans = btrfs_join_transaction(root);
3670 if (IS_ERR(trans)) {
3671 ret = PTR_ERR(trans);
3672 goto out;
3673 }
3674
3675 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3676
3677 btrfs_end_transaction(trans);
3678 btrfs_btree_balance_dirty(fs_info);
3679 out:
3680 iput(inode);
3681 return ret;
3682 }
3683
3684 /*
3685 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3686 * this function scans fs tree to find blocks reference the data extent
3687 */
find_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,struct rb_root * blocks)3688 static int find_data_references(struct reloc_control *rc,
3689 struct btrfs_key *extent_key,
3690 struct extent_buffer *leaf,
3691 struct btrfs_extent_data_ref *ref,
3692 struct rb_root *blocks)
3693 {
3694 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3695 struct btrfs_path *path;
3696 struct tree_block *block;
3697 struct btrfs_root *root;
3698 struct btrfs_file_extent_item *fi;
3699 struct rb_node *rb_node;
3700 struct btrfs_key key;
3701 u64 ref_root;
3702 u64 ref_objectid;
3703 u64 ref_offset;
3704 u32 ref_count;
3705 u32 nritems;
3706 int err = 0;
3707 int added = 0;
3708 int counted;
3709 int ret;
3710
3711 ref_root = btrfs_extent_data_ref_root(leaf, ref);
3712 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3713 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3714 ref_count = btrfs_extent_data_ref_count(leaf, ref);
3715
3716 /*
3717 * This is an extent belonging to the free space cache, lets just delete
3718 * it and redo the search.
3719 */
3720 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3721 ret = delete_block_group_cache(fs_info, rc->block_group,
3722 NULL, ref_objectid);
3723 if (ret != -ENOENT)
3724 return ret;
3725 ret = 0;
3726 }
3727
3728 path = btrfs_alloc_path();
3729 if (!path)
3730 return -ENOMEM;
3731 path->reada = READA_FORWARD;
3732
3733 root = read_fs_root(fs_info, ref_root);
3734 if (IS_ERR(root)) {
3735 err = PTR_ERR(root);
3736 goto out;
3737 }
3738
3739 key.objectid = ref_objectid;
3740 key.type = BTRFS_EXTENT_DATA_KEY;
3741 if (ref_offset > ((u64)-1 << 32))
3742 key.offset = 0;
3743 else
3744 key.offset = ref_offset;
3745
3746 path->search_commit_root = 1;
3747 path->skip_locking = 1;
3748 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3749 if (ret < 0) {
3750 err = ret;
3751 goto out;
3752 }
3753
3754 leaf = path->nodes[0];
3755 nritems = btrfs_header_nritems(leaf);
3756 /*
3757 * the references in tree blocks that use full backrefs
3758 * are not counted in
3759 */
3760 if (block_use_full_backref(rc, leaf))
3761 counted = 0;
3762 else
3763 counted = 1;
3764 rb_node = tree_search(blocks, leaf->start);
3765 if (rb_node) {
3766 if (counted)
3767 added = 1;
3768 else
3769 path->slots[0] = nritems;
3770 }
3771
3772 while (ref_count > 0) {
3773 while (path->slots[0] >= nritems) {
3774 ret = btrfs_next_leaf(root, path);
3775 if (ret < 0) {
3776 err = ret;
3777 goto out;
3778 }
3779 if (WARN_ON(ret > 0))
3780 goto out;
3781
3782 leaf = path->nodes[0];
3783 nritems = btrfs_header_nritems(leaf);
3784 added = 0;
3785
3786 if (block_use_full_backref(rc, leaf))
3787 counted = 0;
3788 else
3789 counted = 1;
3790 rb_node = tree_search(blocks, leaf->start);
3791 if (rb_node) {
3792 if (counted)
3793 added = 1;
3794 else
3795 path->slots[0] = nritems;
3796 }
3797 }
3798
3799 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3800 if (WARN_ON(key.objectid != ref_objectid ||
3801 key.type != BTRFS_EXTENT_DATA_KEY))
3802 break;
3803
3804 fi = btrfs_item_ptr(leaf, path->slots[0],
3805 struct btrfs_file_extent_item);
3806
3807 if (btrfs_file_extent_type(leaf, fi) ==
3808 BTRFS_FILE_EXTENT_INLINE)
3809 goto next;
3810
3811 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3812 extent_key->objectid)
3813 goto next;
3814
3815 key.offset -= btrfs_file_extent_offset(leaf, fi);
3816 if (key.offset != ref_offset)
3817 goto next;
3818
3819 if (counted)
3820 ref_count--;
3821 if (added)
3822 goto next;
3823
3824 if (!tree_block_processed(leaf->start, rc)) {
3825 block = kmalloc(sizeof(*block), GFP_NOFS);
3826 if (!block) {
3827 err = -ENOMEM;
3828 break;
3829 }
3830 block->bytenr = leaf->start;
3831 btrfs_item_key_to_cpu(leaf, &block->key, 0);
3832 block->level = 0;
3833 block->key_ready = 1;
3834 rb_node = tree_insert(blocks, block->bytenr,
3835 &block->rb_node);
3836 if (rb_node)
3837 backref_tree_panic(rb_node, -EEXIST,
3838 block->bytenr);
3839 }
3840 if (counted)
3841 added = 1;
3842 else
3843 path->slots[0] = nritems;
3844 next:
3845 path->slots[0]++;
3846
3847 }
3848 out:
3849 btrfs_free_path(path);
3850 return err;
3851 }
3852
3853 /*
3854 * helper to find all tree blocks that reference a given data extent
3855 */
3856 static noinline_for_stack
add_data_references(struct reloc_control * rc,struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3857 int add_data_references(struct reloc_control *rc,
3858 struct btrfs_key *extent_key,
3859 struct btrfs_path *path,
3860 struct rb_root *blocks)
3861 {
3862 struct btrfs_key key;
3863 struct extent_buffer *eb;
3864 struct btrfs_extent_data_ref *dref;
3865 struct btrfs_extent_inline_ref *iref;
3866 unsigned long ptr;
3867 unsigned long end;
3868 u32 blocksize = rc->extent_root->fs_info->nodesize;
3869 int ret = 0;
3870 int err = 0;
3871
3872 eb = path->nodes[0];
3873 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3874 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3875 ptr += sizeof(struct btrfs_extent_item);
3876
3877 while (ptr < end) {
3878 iref = (struct btrfs_extent_inline_ref *)ptr;
3879 key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3880 BTRFS_REF_TYPE_DATA);
3881 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3882 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3883 ret = __add_tree_block(rc, key.offset, blocksize,
3884 blocks);
3885 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3886 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3887 ret = find_data_references(rc, extent_key,
3888 eb, dref, blocks);
3889 } else {
3890 ret = -EUCLEAN;
3891 btrfs_err(rc->extent_root->fs_info,
3892 "extent %llu slot %d has an invalid inline ref type",
3893 eb->start, path->slots[0]);
3894 }
3895 if (ret) {
3896 err = ret;
3897 goto out;
3898 }
3899 ptr += btrfs_extent_inline_ref_size(key.type);
3900 }
3901 WARN_ON(ptr > end);
3902
3903 while (1) {
3904 cond_resched();
3905 eb = path->nodes[0];
3906 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3907 ret = btrfs_next_leaf(rc->extent_root, path);
3908 if (ret < 0) {
3909 err = ret;
3910 break;
3911 }
3912 if (ret > 0)
3913 break;
3914 eb = path->nodes[0];
3915 }
3916
3917 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3918 if (key.objectid != extent_key->objectid)
3919 break;
3920
3921 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3922 ret = __add_tree_block(rc, key.offset, blocksize,
3923 blocks);
3924 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3925 dref = btrfs_item_ptr(eb, path->slots[0],
3926 struct btrfs_extent_data_ref);
3927 ret = find_data_references(rc, extent_key,
3928 eb, dref, blocks);
3929 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3930 btrfs_print_v0_err(eb->fs_info);
3931 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3932 ret = -EINVAL;
3933 } else {
3934 ret = 0;
3935 }
3936 if (ret) {
3937 err = ret;
3938 break;
3939 }
3940 path->slots[0]++;
3941 }
3942 out:
3943 btrfs_release_path(path);
3944 if (err)
3945 free_block_list(blocks);
3946 return err;
3947 }
3948
3949 /*
3950 * helper to find next unprocessed extent
3951 */
3952 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3953 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3954 struct btrfs_key *extent_key)
3955 {
3956 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3957 struct btrfs_key key;
3958 struct extent_buffer *leaf;
3959 u64 start, end, last;
3960 int ret;
3961
3962 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3963 while (1) {
3964 cond_resched();
3965 if (rc->search_start >= last) {
3966 ret = 1;
3967 break;
3968 }
3969
3970 key.objectid = rc->search_start;
3971 key.type = BTRFS_EXTENT_ITEM_KEY;
3972 key.offset = 0;
3973
3974 path->search_commit_root = 1;
3975 path->skip_locking = 1;
3976 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3977 0, 0);
3978 if (ret < 0)
3979 break;
3980 next:
3981 leaf = path->nodes[0];
3982 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3983 ret = btrfs_next_leaf(rc->extent_root, path);
3984 if (ret != 0)
3985 break;
3986 leaf = path->nodes[0];
3987 }
3988
3989 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3990 if (key.objectid >= last) {
3991 ret = 1;
3992 break;
3993 }
3994
3995 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3996 key.type != BTRFS_METADATA_ITEM_KEY) {
3997 path->slots[0]++;
3998 goto next;
3999 }
4000
4001 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4002 key.objectid + key.offset <= rc->search_start) {
4003 path->slots[0]++;
4004 goto next;
4005 }
4006
4007 if (key.type == BTRFS_METADATA_ITEM_KEY &&
4008 key.objectid + fs_info->nodesize <=
4009 rc->search_start) {
4010 path->slots[0]++;
4011 goto next;
4012 }
4013
4014 ret = find_first_extent_bit(&rc->processed_blocks,
4015 key.objectid, &start, &end,
4016 EXTENT_DIRTY, NULL);
4017
4018 if (ret == 0 && start <= key.objectid) {
4019 btrfs_release_path(path);
4020 rc->search_start = end + 1;
4021 } else {
4022 if (key.type == BTRFS_EXTENT_ITEM_KEY)
4023 rc->search_start = key.objectid + key.offset;
4024 else
4025 rc->search_start = key.objectid +
4026 fs_info->nodesize;
4027 memcpy(extent_key, &key, sizeof(key));
4028 return 0;
4029 }
4030 }
4031 btrfs_release_path(path);
4032 return ret;
4033 }
4034
set_reloc_control(struct reloc_control * rc)4035 static void set_reloc_control(struct reloc_control *rc)
4036 {
4037 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4038
4039 mutex_lock(&fs_info->reloc_mutex);
4040 fs_info->reloc_ctl = rc;
4041 mutex_unlock(&fs_info->reloc_mutex);
4042 }
4043
unset_reloc_control(struct reloc_control * rc)4044 static void unset_reloc_control(struct reloc_control *rc)
4045 {
4046 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4047
4048 mutex_lock(&fs_info->reloc_mutex);
4049 fs_info->reloc_ctl = NULL;
4050 mutex_unlock(&fs_info->reloc_mutex);
4051 }
4052
check_extent_flags(u64 flags)4053 static int check_extent_flags(u64 flags)
4054 {
4055 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
4056 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
4057 return 1;
4058 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
4059 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
4060 return 1;
4061 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
4062 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4063 return 1;
4064 return 0;
4065 }
4066
4067 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)4068 int prepare_to_relocate(struct reloc_control *rc)
4069 {
4070 struct btrfs_trans_handle *trans;
4071 int ret;
4072
4073 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
4074 BTRFS_BLOCK_RSV_TEMP);
4075 if (!rc->block_rsv)
4076 return -ENOMEM;
4077
4078 memset(&rc->cluster, 0, sizeof(rc->cluster));
4079 rc->search_start = rc->block_group->key.objectid;
4080 rc->extents_found = 0;
4081 rc->nodes_relocated = 0;
4082 rc->merging_rsv_size = 0;
4083 rc->reserved_bytes = 0;
4084 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
4085 RELOCATION_RESERVED_NODES;
4086 ret = btrfs_block_rsv_refill(rc->extent_root,
4087 rc->block_rsv, rc->block_rsv->size,
4088 BTRFS_RESERVE_FLUSH_ALL);
4089 if (ret)
4090 return ret;
4091
4092 rc->create_reloc_tree = 1;
4093 set_reloc_control(rc);
4094
4095 trans = btrfs_join_transaction(rc->extent_root);
4096 if (IS_ERR(trans)) {
4097 unset_reloc_control(rc);
4098 /*
4099 * extent tree is not a ref_cow tree and has no reloc_root to
4100 * cleanup. And callers are responsible to free the above
4101 * block rsv.
4102 */
4103 return PTR_ERR(trans);
4104 }
4105
4106 ret = btrfs_commit_transaction(trans);
4107 if (ret)
4108 unset_reloc_control(rc);
4109
4110 return ret;
4111 }
4112
relocate_block_group(struct reloc_control * rc)4113 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4114 {
4115 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4116 struct rb_root blocks = RB_ROOT;
4117 struct btrfs_key key;
4118 struct btrfs_trans_handle *trans = NULL;
4119 struct btrfs_path *path;
4120 struct btrfs_extent_item *ei;
4121 u64 flags;
4122 u32 item_size;
4123 int ret;
4124 int err = 0;
4125 int progress = 0;
4126
4127 path = btrfs_alloc_path();
4128 if (!path)
4129 return -ENOMEM;
4130 path->reada = READA_FORWARD;
4131
4132 ret = prepare_to_relocate(rc);
4133 if (ret) {
4134 err = ret;
4135 goto out_free;
4136 }
4137
4138 while (1) {
4139 rc->reserved_bytes = 0;
4140 ret = btrfs_block_rsv_refill(rc->extent_root,
4141 rc->block_rsv, rc->block_rsv->size,
4142 BTRFS_RESERVE_FLUSH_ALL);
4143 if (ret) {
4144 err = ret;
4145 break;
4146 }
4147 progress++;
4148 trans = btrfs_start_transaction(rc->extent_root, 0);
4149 if (IS_ERR(trans)) {
4150 err = PTR_ERR(trans);
4151 trans = NULL;
4152 break;
4153 }
4154 restart:
4155 if (update_backref_cache(trans, &rc->backref_cache)) {
4156 btrfs_end_transaction(trans);
4157 trans = NULL;
4158 continue;
4159 }
4160
4161 ret = find_next_extent(rc, path, &key);
4162 if (ret < 0)
4163 err = ret;
4164 if (ret != 0)
4165 break;
4166
4167 rc->extents_found++;
4168
4169 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4170 struct btrfs_extent_item);
4171 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4172 if (item_size >= sizeof(*ei)) {
4173 flags = btrfs_extent_flags(path->nodes[0], ei);
4174 ret = check_extent_flags(flags);
4175 BUG_ON(ret);
4176 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4177 err = -EINVAL;
4178 btrfs_print_v0_err(trans->fs_info);
4179 btrfs_abort_transaction(trans, err);
4180 break;
4181 } else {
4182 BUG();
4183 }
4184
4185 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4186 ret = add_tree_block(rc, &key, path, &blocks);
4187 } else if (rc->stage == UPDATE_DATA_PTRS &&
4188 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4189 ret = add_data_references(rc, &key, path, &blocks);
4190 } else {
4191 btrfs_release_path(path);
4192 ret = 0;
4193 }
4194 if (ret < 0) {
4195 err = ret;
4196 break;
4197 }
4198
4199 if (!RB_EMPTY_ROOT(&blocks)) {
4200 ret = relocate_tree_blocks(trans, rc, &blocks);
4201 if (ret < 0) {
4202 if (ret != -EAGAIN) {
4203 err = ret;
4204 break;
4205 }
4206 rc->extents_found--;
4207 rc->search_start = key.objectid;
4208 }
4209 }
4210
4211 btrfs_end_transaction_throttle(trans);
4212 btrfs_btree_balance_dirty(fs_info);
4213 trans = NULL;
4214
4215 if (rc->stage == MOVE_DATA_EXTENTS &&
4216 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4217 rc->found_file_extent = 1;
4218 ret = relocate_data_extent(rc->data_inode,
4219 &key, &rc->cluster);
4220 if (ret < 0) {
4221 err = ret;
4222 break;
4223 }
4224 }
4225 }
4226 if (trans && progress && err == -ENOSPC) {
4227 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4228 if (ret == 1) {
4229 err = 0;
4230 progress = 0;
4231 goto restart;
4232 }
4233 }
4234
4235 btrfs_release_path(path);
4236 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4237
4238 if (trans) {
4239 btrfs_end_transaction_throttle(trans);
4240 btrfs_btree_balance_dirty(fs_info);
4241 }
4242
4243 if (!err) {
4244 ret = relocate_file_extent_cluster(rc->data_inode,
4245 &rc->cluster);
4246 if (ret < 0)
4247 err = ret;
4248 }
4249
4250 rc->create_reloc_tree = 0;
4251 set_reloc_control(rc);
4252
4253 backref_cache_cleanup(&rc->backref_cache);
4254 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4255
4256 err = prepare_to_merge(rc, err);
4257
4258 merge_reloc_roots(rc);
4259
4260 rc->merge_reloc_tree = 0;
4261 unset_reloc_control(rc);
4262 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4263
4264 /* get rid of pinned extents */
4265 trans = btrfs_join_transaction(rc->extent_root);
4266 if (IS_ERR(trans)) {
4267 err = PTR_ERR(trans);
4268 goto out_free;
4269 }
4270 ret = btrfs_commit_transaction(trans);
4271 if (ret && !err)
4272 err = ret;
4273 out_free:
4274 ret = clean_dirty_subvols(rc);
4275 if (ret < 0 && !err)
4276 err = ret;
4277 btrfs_free_block_rsv(fs_info, rc->block_rsv);
4278 btrfs_free_path(path);
4279 return err;
4280 }
4281
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)4282 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4283 struct btrfs_root *root, u64 objectid)
4284 {
4285 struct btrfs_path *path;
4286 struct btrfs_inode_item *item;
4287 struct extent_buffer *leaf;
4288 int ret;
4289
4290 path = btrfs_alloc_path();
4291 if (!path)
4292 return -ENOMEM;
4293
4294 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4295 if (ret)
4296 goto out;
4297
4298 leaf = path->nodes[0];
4299 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4300 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4301 btrfs_set_inode_generation(leaf, item, 1);
4302 btrfs_set_inode_size(leaf, item, 0);
4303 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4304 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4305 BTRFS_INODE_PREALLOC);
4306 btrfs_mark_buffer_dirty(leaf);
4307 out:
4308 btrfs_free_path(path);
4309 return ret;
4310 }
4311
4312 /*
4313 * helper to create inode for data relocation.
4314 * the inode is in data relocation tree and its link count is 0
4315 */
4316 static noinline_for_stack
create_reloc_inode(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * group)4317 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4318 struct btrfs_block_group_cache *group)
4319 {
4320 struct inode *inode = NULL;
4321 struct btrfs_trans_handle *trans;
4322 struct btrfs_root *root;
4323 struct btrfs_key key;
4324 u64 objectid;
4325 int err = 0;
4326
4327 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4328 if (IS_ERR(root))
4329 return ERR_CAST(root);
4330
4331 trans = btrfs_start_transaction(root, 6);
4332 if (IS_ERR(trans))
4333 return ERR_CAST(trans);
4334
4335 err = btrfs_find_free_objectid(root, &objectid);
4336 if (err)
4337 goto out;
4338
4339 err = __insert_orphan_inode(trans, root, objectid);
4340 BUG_ON(err);
4341
4342 key.objectid = objectid;
4343 key.type = BTRFS_INODE_ITEM_KEY;
4344 key.offset = 0;
4345 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4346 BUG_ON(IS_ERR(inode));
4347 BTRFS_I(inode)->index_cnt = group->key.objectid;
4348
4349 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4350 out:
4351 btrfs_end_transaction(trans);
4352 btrfs_btree_balance_dirty(fs_info);
4353 if (err) {
4354 if (inode)
4355 iput(inode);
4356 inode = ERR_PTR(err);
4357 }
4358 return inode;
4359 }
4360
alloc_reloc_control(struct btrfs_fs_info * fs_info)4361 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4362 {
4363 struct reloc_control *rc;
4364
4365 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4366 if (!rc)
4367 return NULL;
4368
4369 INIT_LIST_HEAD(&rc->reloc_roots);
4370 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4371 backref_cache_init(&rc->backref_cache);
4372 mapping_tree_init(&rc->reloc_root_tree);
4373 extent_io_tree_init(fs_info, &rc->processed_blocks,
4374 IO_TREE_RELOC_BLOCKS, NULL);
4375 return rc;
4376 }
4377
free_reloc_control(struct reloc_control * rc)4378 static void free_reloc_control(struct reloc_control *rc)
4379 {
4380 struct mapping_node *node, *tmp;
4381
4382 free_reloc_roots(&rc->reloc_roots);
4383 rbtree_postorder_for_each_entry_safe(node, tmp,
4384 &rc->reloc_root_tree.rb_root, rb_node)
4385 kfree(node);
4386
4387 kfree(rc);
4388 }
4389
4390 /*
4391 * Print the block group being relocated
4392 */
describe_relocation(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group)4393 static void describe_relocation(struct btrfs_fs_info *fs_info,
4394 struct btrfs_block_group_cache *block_group)
4395 {
4396 char buf[128] = {'\0'};
4397
4398 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4399
4400 btrfs_info(fs_info,
4401 "relocating block group %llu flags %s",
4402 block_group->key.objectid, buf);
4403 }
4404
4405 /*
4406 * function to relocate all extents in a block group.
4407 */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start)4408 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4409 {
4410 struct btrfs_block_group_cache *bg;
4411 struct btrfs_root *extent_root = fs_info->extent_root;
4412 struct reloc_control *rc;
4413 struct inode *inode;
4414 struct btrfs_path *path;
4415 int ret;
4416 int rw = 0;
4417 int err = 0;
4418
4419 bg = btrfs_lookup_block_group(fs_info, group_start);
4420 if (!bg)
4421 return -ENOENT;
4422
4423 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4424 btrfs_put_block_group(bg);
4425 return -ETXTBSY;
4426 }
4427
4428 rc = alloc_reloc_control(fs_info);
4429 if (!rc) {
4430 btrfs_put_block_group(bg);
4431 return -ENOMEM;
4432 }
4433
4434 rc->extent_root = extent_root;
4435 rc->block_group = bg;
4436
4437 ret = btrfs_inc_block_group_ro(rc->block_group, true);
4438 if (ret) {
4439 err = ret;
4440 goto out;
4441 }
4442 rw = 1;
4443
4444 path = btrfs_alloc_path();
4445 if (!path) {
4446 err = -ENOMEM;
4447 goto out;
4448 }
4449
4450 inode = lookup_free_space_inode(rc->block_group, path);
4451 btrfs_free_path(path);
4452
4453 if (!IS_ERR(inode))
4454 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4455 else
4456 ret = PTR_ERR(inode);
4457
4458 if (ret && ret != -ENOENT) {
4459 err = ret;
4460 goto out;
4461 }
4462
4463 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4464 if (IS_ERR(rc->data_inode)) {
4465 err = PTR_ERR(rc->data_inode);
4466 rc->data_inode = NULL;
4467 goto out;
4468 }
4469
4470 describe_relocation(fs_info, rc->block_group);
4471
4472 btrfs_wait_block_group_reservations(rc->block_group);
4473 btrfs_wait_nocow_writers(rc->block_group);
4474 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4475 rc->block_group->key.objectid,
4476 rc->block_group->key.offset);
4477
4478 while (1) {
4479 mutex_lock(&fs_info->cleaner_mutex);
4480 ret = relocate_block_group(rc);
4481 mutex_unlock(&fs_info->cleaner_mutex);
4482 if (ret < 0)
4483 err = ret;
4484
4485 /*
4486 * We may have gotten ENOSPC after we already dirtied some
4487 * extents. If writeout happens while we're relocating a
4488 * different block group we could end up hitting the
4489 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4490 * btrfs_reloc_cow_block. Make sure we write everything out
4491 * properly so we don't trip over this problem, and then break
4492 * out of the loop if we hit an error.
4493 */
4494 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4495 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4496 (u64)-1);
4497 if (ret)
4498 err = ret;
4499 invalidate_mapping_pages(rc->data_inode->i_mapping,
4500 0, -1);
4501 rc->stage = UPDATE_DATA_PTRS;
4502 }
4503
4504 if (err < 0)
4505 goto out;
4506
4507 if (rc->extents_found == 0)
4508 break;
4509
4510 btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4511
4512 }
4513
4514 WARN_ON(rc->block_group->pinned > 0);
4515 WARN_ON(rc->block_group->reserved > 0);
4516 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4517 out:
4518 if (err && rw)
4519 btrfs_dec_block_group_ro(rc->block_group);
4520 iput(rc->data_inode);
4521 btrfs_put_block_group(rc->block_group);
4522 free_reloc_control(rc);
4523 return err;
4524 }
4525
mark_garbage_root(struct btrfs_root * root)4526 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4527 {
4528 struct btrfs_fs_info *fs_info = root->fs_info;
4529 struct btrfs_trans_handle *trans;
4530 int ret, err;
4531
4532 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4533 if (IS_ERR(trans))
4534 return PTR_ERR(trans);
4535
4536 memset(&root->root_item.drop_progress, 0,
4537 sizeof(root->root_item.drop_progress));
4538 root->root_item.drop_level = 0;
4539 btrfs_set_root_refs(&root->root_item, 0);
4540 ret = btrfs_update_root(trans, fs_info->tree_root,
4541 &root->root_key, &root->root_item);
4542
4543 err = btrfs_end_transaction(trans);
4544 if (err)
4545 return err;
4546 return ret;
4547 }
4548
4549 /*
4550 * recover relocation interrupted by system crash.
4551 *
4552 * this function resumes merging reloc trees with corresponding fs trees.
4553 * this is important for keeping the sharing of tree blocks
4554 */
btrfs_recover_relocation(struct btrfs_root * root)4555 int btrfs_recover_relocation(struct btrfs_root *root)
4556 {
4557 struct btrfs_fs_info *fs_info = root->fs_info;
4558 LIST_HEAD(reloc_roots);
4559 struct btrfs_key key;
4560 struct btrfs_root *fs_root;
4561 struct btrfs_root *reloc_root;
4562 struct btrfs_path *path;
4563 struct extent_buffer *leaf;
4564 struct reloc_control *rc = NULL;
4565 struct btrfs_trans_handle *trans;
4566 int ret;
4567 int err = 0;
4568
4569 path = btrfs_alloc_path();
4570 if (!path)
4571 return -ENOMEM;
4572 path->reada = READA_BACK;
4573
4574 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4575 key.type = BTRFS_ROOT_ITEM_KEY;
4576 key.offset = (u64)-1;
4577
4578 while (1) {
4579 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4580 path, 0, 0);
4581 if (ret < 0) {
4582 err = ret;
4583 goto out;
4584 }
4585 if (ret > 0) {
4586 if (path->slots[0] == 0)
4587 break;
4588 path->slots[0]--;
4589 }
4590 leaf = path->nodes[0];
4591 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4592 btrfs_release_path(path);
4593
4594 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4595 key.type != BTRFS_ROOT_ITEM_KEY)
4596 break;
4597
4598 reloc_root = btrfs_read_fs_root(root, &key);
4599 if (IS_ERR(reloc_root)) {
4600 err = PTR_ERR(reloc_root);
4601 goto out;
4602 }
4603
4604 list_add(&reloc_root->root_list, &reloc_roots);
4605
4606 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4607 fs_root = read_fs_root(fs_info,
4608 reloc_root->root_key.offset);
4609 if (IS_ERR(fs_root)) {
4610 ret = PTR_ERR(fs_root);
4611 if (ret != -ENOENT) {
4612 err = ret;
4613 goto out;
4614 }
4615 ret = mark_garbage_root(reloc_root);
4616 if (ret < 0) {
4617 err = ret;
4618 goto out;
4619 }
4620 }
4621 }
4622
4623 if (key.offset == 0)
4624 break;
4625
4626 key.offset--;
4627 }
4628 btrfs_release_path(path);
4629
4630 if (list_empty(&reloc_roots))
4631 goto out;
4632
4633 rc = alloc_reloc_control(fs_info);
4634 if (!rc) {
4635 err = -ENOMEM;
4636 goto out;
4637 }
4638
4639 rc->extent_root = fs_info->extent_root;
4640
4641 set_reloc_control(rc);
4642
4643 trans = btrfs_join_transaction(rc->extent_root);
4644 if (IS_ERR(trans)) {
4645 err = PTR_ERR(trans);
4646 goto out_unset;
4647 }
4648
4649 rc->merge_reloc_tree = 1;
4650
4651 while (!list_empty(&reloc_roots)) {
4652 reloc_root = list_entry(reloc_roots.next,
4653 struct btrfs_root, root_list);
4654 list_del(&reloc_root->root_list);
4655
4656 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4657 list_add_tail(&reloc_root->root_list,
4658 &rc->reloc_roots);
4659 continue;
4660 }
4661
4662 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4663 if (IS_ERR(fs_root)) {
4664 err = PTR_ERR(fs_root);
4665 list_add_tail(&reloc_root->root_list, &reloc_roots);
4666 btrfs_end_transaction(trans);
4667 goto out_unset;
4668 }
4669
4670 err = __add_reloc_root(reloc_root);
4671 BUG_ON(err < 0); /* -ENOMEM or logic error */
4672 fs_root->reloc_root = reloc_root;
4673 }
4674
4675 err = btrfs_commit_transaction(trans);
4676 if (err)
4677 goto out_unset;
4678
4679 merge_reloc_roots(rc);
4680
4681 unset_reloc_control(rc);
4682
4683 trans = btrfs_join_transaction(rc->extent_root);
4684 if (IS_ERR(trans)) {
4685 err = PTR_ERR(trans);
4686 goto out_clean;
4687 }
4688 err = btrfs_commit_transaction(trans);
4689 out_clean:
4690 ret = clean_dirty_subvols(rc);
4691 if (ret < 0 && !err)
4692 err = ret;
4693 out_unset:
4694 unset_reloc_control(rc);
4695 free_reloc_control(rc);
4696 out:
4697 if (!list_empty(&reloc_roots))
4698 free_reloc_roots(&reloc_roots);
4699
4700 btrfs_free_path(path);
4701
4702 if (err == 0) {
4703 /* cleanup orphan inode in data relocation tree */
4704 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4705 if (IS_ERR(fs_root))
4706 err = PTR_ERR(fs_root);
4707 else
4708 err = btrfs_orphan_cleanup(fs_root);
4709 }
4710 return err;
4711 }
4712
4713 /*
4714 * helper to add ordered checksum for data relocation.
4715 *
4716 * cloning checksum properly handles the nodatasum extents.
4717 * it also saves CPU time to re-calculate the checksum.
4718 */
btrfs_reloc_clone_csums(struct inode * inode,u64 file_pos,u64 len)4719 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4720 {
4721 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4722 struct btrfs_ordered_sum *sums;
4723 struct btrfs_ordered_extent *ordered;
4724 int ret;
4725 u64 disk_bytenr;
4726 u64 new_bytenr;
4727 LIST_HEAD(list);
4728
4729 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4730 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4731
4732 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4733 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4734 disk_bytenr + len - 1, &list, 0);
4735 if (ret)
4736 goto out;
4737
4738 while (!list_empty(&list)) {
4739 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4740 list_del_init(&sums->list);
4741
4742 /*
4743 * We need to offset the new_bytenr based on where the csum is.
4744 * We need to do this because we will read in entire prealloc
4745 * extents but we may have written to say the middle of the
4746 * prealloc extent, so we need to make sure the csum goes with
4747 * the right disk offset.
4748 *
4749 * We can do this because the data reloc inode refers strictly
4750 * to the on disk bytes, so we don't have to worry about
4751 * disk_len vs real len like with real inodes since it's all
4752 * disk length.
4753 */
4754 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4755 sums->bytenr = new_bytenr;
4756
4757 btrfs_add_ordered_sum(ordered, sums);
4758 }
4759 out:
4760 btrfs_put_ordered_extent(ordered);
4761 return ret;
4762 }
4763
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow)4764 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4765 struct btrfs_root *root, struct extent_buffer *buf,
4766 struct extent_buffer *cow)
4767 {
4768 struct btrfs_fs_info *fs_info = root->fs_info;
4769 struct reloc_control *rc;
4770 struct backref_node *node;
4771 int first_cow = 0;
4772 int level;
4773 int ret = 0;
4774
4775 rc = fs_info->reloc_ctl;
4776 if (!rc)
4777 return 0;
4778
4779 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4780 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4781
4782 level = btrfs_header_level(buf);
4783 if (btrfs_header_generation(buf) <=
4784 btrfs_root_last_snapshot(&root->root_item))
4785 first_cow = 1;
4786
4787 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4788 rc->create_reloc_tree) {
4789 WARN_ON(!first_cow && level == 0);
4790
4791 node = rc->backref_cache.path[level];
4792 BUG_ON(node->bytenr != buf->start &&
4793 node->new_bytenr != buf->start);
4794
4795 drop_node_buffer(node);
4796 extent_buffer_get(cow);
4797 node->eb = cow;
4798 node->new_bytenr = cow->start;
4799
4800 if (!node->pending) {
4801 list_move_tail(&node->list,
4802 &rc->backref_cache.pending[level]);
4803 node->pending = 1;
4804 }
4805
4806 if (first_cow)
4807 __mark_block_processed(rc, node);
4808
4809 if (first_cow && level > 0)
4810 rc->nodes_relocated += buf->len;
4811 }
4812
4813 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4814 ret = replace_file_extents(trans, rc, root, cow);
4815 return ret;
4816 }
4817
4818 /*
4819 * called before creating snapshot. it calculates metadata reservation
4820 * required for relocating tree blocks in the snapshot
4821 */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4822 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4823 u64 *bytes_to_reserve)
4824 {
4825 struct btrfs_root *root = pending->root;
4826 struct reloc_control *rc = root->fs_info->reloc_ctl;
4827
4828 if (!rc || !have_reloc_root(root))
4829 return;
4830
4831 if (!rc->merge_reloc_tree)
4832 return;
4833
4834 root = root->reloc_root;
4835 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4836 /*
4837 * relocation is in the stage of merging trees. the space
4838 * used by merging a reloc tree is twice the size of
4839 * relocated tree nodes in the worst case. half for cowing
4840 * the reloc tree, half for cowing the fs tree. the space
4841 * used by cowing the reloc tree will be freed after the
4842 * tree is dropped. if we create snapshot, cowing the fs
4843 * tree may use more space than it frees. so we need
4844 * reserve extra space.
4845 */
4846 *bytes_to_reserve += rc->nodes_relocated;
4847 }
4848
4849 /*
4850 * called after snapshot is created. migrate block reservation
4851 * and create reloc root for the newly created snapshot
4852 */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4853 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4854 struct btrfs_pending_snapshot *pending)
4855 {
4856 struct btrfs_root *root = pending->root;
4857 struct btrfs_root *reloc_root;
4858 struct btrfs_root *new_root;
4859 struct reloc_control *rc = root->fs_info->reloc_ctl;
4860 int ret;
4861
4862 if (!rc || !have_reloc_root(root))
4863 return 0;
4864
4865 rc = root->fs_info->reloc_ctl;
4866 rc->merging_rsv_size += rc->nodes_relocated;
4867
4868 if (rc->merge_reloc_tree) {
4869 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4870 rc->block_rsv,
4871 rc->nodes_relocated, true);
4872 if (ret)
4873 return ret;
4874 }
4875
4876 new_root = pending->snap;
4877 reloc_root = create_reloc_root(trans, root->reloc_root,
4878 new_root->root_key.objectid);
4879 if (IS_ERR(reloc_root))
4880 return PTR_ERR(reloc_root);
4881
4882 ret = __add_reloc_root(reloc_root);
4883 BUG_ON(ret < 0);
4884 new_root->reloc_root = reloc_root;
4885
4886 if (rc->create_reloc_tree)
4887 ret = clone_backref_node(trans, rc, root, reloc_root);
4888 return ret;
4889 }
4890