• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "inode-map.h"
21 
22 /* magic values for the inode_only field in btrfs_log_inode:
23  *
24  * LOG_INODE_ALL means to log everything
25  * LOG_INODE_EXISTS means to log just enough to recreate the inode
26  * during log replay
27  */
28 enum {
29 	LOG_INODE_ALL,
30 	LOG_INODE_EXISTS,
31 	LOG_OTHER_INODE,
32 	LOG_OTHER_INODE_ALL,
33 };
34 
35 /*
36  * directory trouble cases
37  *
38  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
39  * log, we must force a full commit before doing an fsync of the directory
40  * where the unlink was done.
41  * ---> record transid of last unlink/rename per directory
42  *
43  * mkdir foo/some_dir
44  * normal commit
45  * rename foo/some_dir foo2/some_dir
46  * mkdir foo/some_dir
47  * fsync foo/some_dir/some_file
48  *
49  * The fsync above will unlink the original some_dir without recording
50  * it in its new location (foo2).  After a crash, some_dir will be gone
51  * unless the fsync of some_file forces a full commit
52  *
53  * 2) we must log any new names for any file or dir that is in the fsync
54  * log. ---> check inode while renaming/linking.
55  *
56  * 2a) we must log any new names for any file or dir during rename
57  * when the directory they are being removed from was logged.
58  * ---> check inode and old parent dir during rename
59  *
60  *  2a is actually the more important variant.  With the extra logging
61  *  a crash might unlink the old name without recreating the new one
62  *
63  * 3) after a crash, we must go through any directories with a link count
64  * of zero and redo the rm -rf
65  *
66  * mkdir f1/foo
67  * normal commit
68  * rm -rf f1/foo
69  * fsync(f1)
70  *
71  * The directory f1 was fully removed from the FS, but fsync was never
72  * called on f1, only its parent dir.  After a crash the rm -rf must
73  * be replayed.  This must be able to recurse down the entire
74  * directory tree.  The inode link count fixup code takes care of the
75  * ugly details.
76  */
77 
78 /*
79  * stages for the tree walking.  The first
80  * stage (0) is to only pin down the blocks we find
81  * the second stage (1) is to make sure that all the inodes
82  * we find in the log are created in the subvolume.
83  *
84  * The last stage is to deal with directories and links and extents
85  * and all the other fun semantics
86  */
87 enum {
88 	LOG_WALK_PIN_ONLY,
89 	LOG_WALK_REPLAY_INODES,
90 	LOG_WALK_REPLAY_DIR_INDEX,
91 	LOG_WALK_REPLAY_ALL,
92 };
93 
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 			   struct btrfs_root *root, struct btrfs_inode *inode,
96 			   int inode_only,
97 			   const loff_t start,
98 			   const loff_t end,
99 			   struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 
109 /*
110  * tree logging is a special write ahead log used to make sure that
111  * fsyncs and O_SYNCs can happen without doing full tree commits.
112  *
113  * Full tree commits are expensive because they require commonly
114  * modified blocks to be recowed, creating many dirty pages in the
115  * extent tree an 4x-6x higher write load than ext3.
116  *
117  * Instead of doing a tree commit on every fsync, we use the
118  * key ranges and transaction ids to find items for a given file or directory
119  * that have changed in this transaction.  Those items are copied into
120  * a special tree (one per subvolume root), that tree is written to disk
121  * and then the fsync is considered complete.
122  *
123  * After a crash, items are copied out of the log-tree back into the
124  * subvolume tree.  Any file data extents found are recorded in the extent
125  * allocation tree, and the log-tree freed.
126  *
127  * The log tree is read three times, once to pin down all the extents it is
128  * using in ram and once, once to create all the inodes logged in the tree
129  * and once to do all the other items.
130  */
131 
132 /*
133  * start a sub transaction and setup the log tree
134  * this increments the log tree writer count to make the people
135  * syncing the tree wait for us to finish
136  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 			   struct btrfs_root *root,
139 			   struct btrfs_log_ctx *ctx)
140 {
141 	struct btrfs_fs_info *fs_info = root->fs_info;
142 	int ret = 0;
143 
144 	mutex_lock(&root->log_mutex);
145 
146 	if (root->log_root) {
147 		if (btrfs_need_log_full_commit(trans)) {
148 			ret = -EAGAIN;
149 			goto out;
150 		}
151 
152 		if (!root->log_start_pid) {
153 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154 			root->log_start_pid = current->pid;
155 		} else if (root->log_start_pid != current->pid) {
156 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 		}
158 	} else {
159 		mutex_lock(&fs_info->tree_log_mutex);
160 		if (!fs_info->log_root_tree)
161 			ret = btrfs_init_log_root_tree(trans, fs_info);
162 		mutex_unlock(&fs_info->tree_log_mutex);
163 		if (ret)
164 			goto out;
165 
166 		ret = btrfs_add_log_tree(trans, root);
167 		if (ret)
168 			goto out;
169 
170 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
171 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
172 		root->log_start_pid = current->pid;
173 	}
174 
175 	atomic_inc(&root->log_batch);
176 	atomic_inc(&root->log_writers);
177 	if (ctx && !ctx->logging_new_name) {
178 		int index = root->log_transid % 2;
179 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
180 		ctx->log_transid = root->log_transid;
181 	}
182 
183 out:
184 	mutex_unlock(&root->log_mutex);
185 	return ret;
186 }
187 
188 /*
189  * returns 0 if there was a log transaction running and we were able
190  * to join, or returns -ENOENT if there were not transactions
191  * in progress
192  */
join_running_log_trans(struct btrfs_root * root)193 static int join_running_log_trans(struct btrfs_root *root)
194 {
195 	int ret = -ENOENT;
196 
197 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
198 		return ret;
199 
200 	mutex_lock(&root->log_mutex);
201 	if (root->log_root) {
202 		ret = 0;
203 		atomic_inc(&root->log_writers);
204 	}
205 	mutex_unlock(&root->log_mutex);
206 	return ret;
207 }
208 
209 /*
210  * This either makes the current running log transaction wait
211  * until you call btrfs_end_log_trans() or it makes any future
212  * log transactions wait until you call btrfs_end_log_trans()
213  */
btrfs_pin_log_trans(struct btrfs_root * root)214 void btrfs_pin_log_trans(struct btrfs_root *root)
215 {
216 	mutex_lock(&root->log_mutex);
217 	atomic_inc(&root->log_writers);
218 	mutex_unlock(&root->log_mutex);
219 }
220 
221 /*
222  * indicate we're done making changes to the log tree
223  * and wake up anyone waiting to do a sync
224  */
btrfs_end_log_trans(struct btrfs_root * root)225 void btrfs_end_log_trans(struct btrfs_root *root)
226 {
227 	if (atomic_dec_and_test(&root->log_writers)) {
228 		/* atomic_dec_and_test implies a barrier */
229 		cond_wake_up_nomb(&root->log_writer_wait);
230 	}
231 }
232 
btrfs_write_tree_block(struct extent_buffer * buf)233 static int btrfs_write_tree_block(struct extent_buffer *buf)
234 {
235 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
236 					buf->start + buf->len - 1);
237 }
238 
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)239 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
240 {
241 	filemap_fdatawait_range(buf->pages[0]->mapping,
242 			        buf->start, buf->start + buf->len - 1);
243 }
244 
245 /*
246  * the walk control struct is used to pass state down the chain when
247  * processing the log tree.  The stage field tells us which part
248  * of the log tree processing we are currently doing.  The others
249  * are state fields used for that specific part
250  */
251 struct walk_control {
252 	/* should we free the extent on disk when done?  This is used
253 	 * at transaction commit time while freeing a log tree
254 	 */
255 	int free;
256 
257 	/* should we write out the extent buffer?  This is used
258 	 * while flushing the log tree to disk during a sync
259 	 */
260 	int write;
261 
262 	/* should we wait for the extent buffer io to finish?  Also used
263 	 * while flushing the log tree to disk for a sync
264 	 */
265 	int wait;
266 
267 	/* pin only walk, we record which extents on disk belong to the
268 	 * log trees
269 	 */
270 	int pin;
271 
272 	/* what stage of the replay code we're currently in */
273 	int stage;
274 
275 	/*
276 	 * Ignore any items from the inode currently being processed. Needs
277 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
278 	 * the LOG_WALK_REPLAY_INODES stage.
279 	 */
280 	bool ignore_cur_inode;
281 
282 	/* the root we are currently replaying */
283 	struct btrfs_root *replay_dest;
284 
285 	/* the trans handle for the current replay */
286 	struct btrfs_trans_handle *trans;
287 
288 	/* the function that gets used to process blocks we find in the
289 	 * tree.  Note the extent_buffer might not be up to date when it is
290 	 * passed in, and it must be checked or read if you need the data
291 	 * inside it
292 	 */
293 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
294 			    struct walk_control *wc, u64 gen, int level);
295 };
296 
297 /*
298  * process_func used to pin down extents, write them or wait on them
299  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)300 static int process_one_buffer(struct btrfs_root *log,
301 			      struct extent_buffer *eb,
302 			      struct walk_control *wc, u64 gen, int level)
303 {
304 	struct btrfs_fs_info *fs_info = log->fs_info;
305 	int ret = 0;
306 
307 	/*
308 	 * If this fs is mixed then we need to be able to process the leaves to
309 	 * pin down any logged extents, so we have to read the block.
310 	 */
311 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
312 		ret = btrfs_read_buffer(eb, gen, level, NULL);
313 		if (ret)
314 			return ret;
315 	}
316 
317 	if (wc->pin)
318 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
319 						      eb->len);
320 
321 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
322 		if (wc->pin && btrfs_header_level(eb) == 0)
323 			ret = btrfs_exclude_logged_extents(eb);
324 		if (wc->write)
325 			btrfs_write_tree_block(eb);
326 		if (wc->wait)
327 			btrfs_wait_tree_block_writeback(eb);
328 	}
329 	return ret;
330 }
331 
332 /*
333  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
334  * to the src data we are copying out.
335  *
336  * root is the tree we are copying into, and path is a scratch
337  * path for use in this function (it should be released on entry and
338  * will be released on exit).
339  *
340  * If the key is already in the destination tree the existing item is
341  * overwritten.  If the existing item isn't big enough, it is extended.
342  * If it is too large, it is truncated.
343  *
344  * If the key isn't in the destination yet, a new item is inserted.
345  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)346 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
347 				   struct btrfs_root *root,
348 				   struct btrfs_path *path,
349 				   struct extent_buffer *eb, int slot,
350 				   struct btrfs_key *key)
351 {
352 	int ret;
353 	u32 item_size;
354 	u64 saved_i_size = 0;
355 	int save_old_i_size = 0;
356 	unsigned long src_ptr;
357 	unsigned long dst_ptr;
358 	int overwrite_root = 0;
359 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
360 
361 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
362 		overwrite_root = 1;
363 
364 	item_size = btrfs_item_size_nr(eb, slot);
365 	src_ptr = btrfs_item_ptr_offset(eb, slot);
366 
367 	/* look for the key in the destination tree */
368 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
369 	if (ret < 0)
370 		return ret;
371 
372 	if (ret == 0) {
373 		char *src_copy;
374 		char *dst_copy;
375 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
376 						  path->slots[0]);
377 		if (dst_size != item_size)
378 			goto insert;
379 
380 		if (item_size == 0) {
381 			btrfs_release_path(path);
382 			return 0;
383 		}
384 		dst_copy = kmalloc(item_size, GFP_NOFS);
385 		src_copy = kmalloc(item_size, GFP_NOFS);
386 		if (!dst_copy || !src_copy) {
387 			btrfs_release_path(path);
388 			kfree(dst_copy);
389 			kfree(src_copy);
390 			return -ENOMEM;
391 		}
392 
393 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
394 
395 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
396 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
397 				   item_size);
398 		ret = memcmp(dst_copy, src_copy, item_size);
399 
400 		kfree(dst_copy);
401 		kfree(src_copy);
402 		/*
403 		 * they have the same contents, just return, this saves
404 		 * us from cowing blocks in the destination tree and doing
405 		 * extra writes that may not have been done by a previous
406 		 * sync
407 		 */
408 		if (ret == 0) {
409 			btrfs_release_path(path);
410 			return 0;
411 		}
412 
413 		/*
414 		 * We need to load the old nbytes into the inode so when we
415 		 * replay the extents we've logged we get the right nbytes.
416 		 */
417 		if (inode_item) {
418 			struct btrfs_inode_item *item;
419 			u64 nbytes;
420 			u32 mode;
421 
422 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
423 					      struct btrfs_inode_item);
424 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
425 			item = btrfs_item_ptr(eb, slot,
426 					      struct btrfs_inode_item);
427 			btrfs_set_inode_nbytes(eb, item, nbytes);
428 
429 			/*
430 			 * If this is a directory we need to reset the i_size to
431 			 * 0 so that we can set it up properly when replaying
432 			 * the rest of the items in this log.
433 			 */
434 			mode = btrfs_inode_mode(eb, item);
435 			if (S_ISDIR(mode))
436 				btrfs_set_inode_size(eb, item, 0);
437 		}
438 	} else if (inode_item) {
439 		struct btrfs_inode_item *item;
440 		u32 mode;
441 
442 		/*
443 		 * New inode, set nbytes to 0 so that the nbytes comes out
444 		 * properly when we replay the extents.
445 		 */
446 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
447 		btrfs_set_inode_nbytes(eb, item, 0);
448 
449 		/*
450 		 * If this is a directory we need to reset the i_size to 0 so
451 		 * that we can set it up properly when replaying the rest of
452 		 * the items in this log.
453 		 */
454 		mode = btrfs_inode_mode(eb, item);
455 		if (S_ISDIR(mode))
456 			btrfs_set_inode_size(eb, item, 0);
457 	}
458 insert:
459 	btrfs_release_path(path);
460 	/* try to insert the key into the destination tree */
461 	path->skip_release_on_error = 1;
462 	ret = btrfs_insert_empty_item(trans, root, path,
463 				      key, item_size);
464 	path->skip_release_on_error = 0;
465 
466 	/* make sure any existing item is the correct size */
467 	if (ret == -EEXIST || ret == -EOVERFLOW) {
468 		u32 found_size;
469 		found_size = btrfs_item_size_nr(path->nodes[0],
470 						path->slots[0]);
471 		if (found_size > item_size)
472 			btrfs_truncate_item(path, item_size, 1);
473 		else if (found_size < item_size)
474 			btrfs_extend_item(path, item_size - found_size);
475 	} else if (ret) {
476 		return ret;
477 	}
478 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
479 					path->slots[0]);
480 
481 	/* don't overwrite an existing inode if the generation number
482 	 * was logged as zero.  This is done when the tree logging code
483 	 * is just logging an inode to make sure it exists after recovery.
484 	 *
485 	 * Also, don't overwrite i_size on directories during replay.
486 	 * log replay inserts and removes directory items based on the
487 	 * state of the tree found in the subvolume, and i_size is modified
488 	 * as it goes
489 	 */
490 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
491 		struct btrfs_inode_item *src_item;
492 		struct btrfs_inode_item *dst_item;
493 
494 		src_item = (struct btrfs_inode_item *)src_ptr;
495 		dst_item = (struct btrfs_inode_item *)dst_ptr;
496 
497 		if (btrfs_inode_generation(eb, src_item) == 0) {
498 			struct extent_buffer *dst_eb = path->nodes[0];
499 			const u64 ino_size = btrfs_inode_size(eb, src_item);
500 
501 			/*
502 			 * For regular files an ino_size == 0 is used only when
503 			 * logging that an inode exists, as part of a directory
504 			 * fsync, and the inode wasn't fsynced before. In this
505 			 * case don't set the size of the inode in the fs/subvol
506 			 * tree, otherwise we would be throwing valid data away.
507 			 */
508 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
509 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
510 			    ino_size != 0) {
511 				struct btrfs_map_token token;
512 
513 				btrfs_init_map_token(&token, dst_eb);
514 				btrfs_set_token_inode_size(dst_eb, dst_item,
515 							   ino_size, &token);
516 			}
517 			goto no_copy;
518 		}
519 
520 		if (overwrite_root &&
521 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
522 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
523 			save_old_i_size = 1;
524 			saved_i_size = btrfs_inode_size(path->nodes[0],
525 							dst_item);
526 		}
527 	}
528 
529 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
530 			   src_ptr, item_size);
531 
532 	if (save_old_i_size) {
533 		struct btrfs_inode_item *dst_item;
534 		dst_item = (struct btrfs_inode_item *)dst_ptr;
535 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
536 	}
537 
538 	/* make sure the generation is filled in */
539 	if (key->type == BTRFS_INODE_ITEM_KEY) {
540 		struct btrfs_inode_item *dst_item;
541 		dst_item = (struct btrfs_inode_item *)dst_ptr;
542 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
543 			btrfs_set_inode_generation(path->nodes[0], dst_item,
544 						   trans->transid);
545 		}
546 	}
547 no_copy:
548 	btrfs_mark_buffer_dirty(path->nodes[0]);
549 	btrfs_release_path(path);
550 	return 0;
551 }
552 
553 /*
554  * simple helper to read an inode off the disk from a given root
555  * This can only be called for subvolume roots and not for the log
556  */
read_one_inode(struct btrfs_root * root,u64 objectid)557 static noinline struct inode *read_one_inode(struct btrfs_root *root,
558 					     u64 objectid)
559 {
560 	struct btrfs_key key;
561 	struct inode *inode;
562 
563 	key.objectid = objectid;
564 	key.type = BTRFS_INODE_ITEM_KEY;
565 	key.offset = 0;
566 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
567 	if (IS_ERR(inode))
568 		inode = NULL;
569 	return inode;
570 }
571 
572 /* replays a single extent in 'eb' at 'slot' with 'key' into the
573  * subvolume 'root'.  path is released on entry and should be released
574  * on exit.
575  *
576  * extents in the log tree have not been allocated out of the extent
577  * tree yet.  So, this completes the allocation, taking a reference
578  * as required if the extent already exists or creating a new extent
579  * if it isn't in the extent allocation tree yet.
580  *
581  * The extent is inserted into the file, dropping any existing extents
582  * from the file that overlap the new one.
583  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)584 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
585 				      struct btrfs_root *root,
586 				      struct btrfs_path *path,
587 				      struct extent_buffer *eb, int slot,
588 				      struct btrfs_key *key)
589 {
590 	struct btrfs_fs_info *fs_info = root->fs_info;
591 	int found_type;
592 	u64 extent_end;
593 	u64 start = key->offset;
594 	u64 nbytes = 0;
595 	struct btrfs_file_extent_item *item;
596 	struct inode *inode = NULL;
597 	unsigned long size;
598 	int ret = 0;
599 
600 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
601 	found_type = btrfs_file_extent_type(eb, item);
602 
603 	if (found_type == BTRFS_FILE_EXTENT_REG ||
604 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
605 		nbytes = btrfs_file_extent_num_bytes(eb, item);
606 		extent_end = start + nbytes;
607 
608 		/*
609 		 * We don't add to the inodes nbytes if we are prealloc or a
610 		 * hole.
611 		 */
612 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
613 			nbytes = 0;
614 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
615 		size = btrfs_file_extent_ram_bytes(eb, item);
616 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
617 		extent_end = ALIGN(start + size,
618 				   fs_info->sectorsize);
619 	} else {
620 		ret = 0;
621 		goto out;
622 	}
623 
624 	inode = read_one_inode(root, key->objectid);
625 	if (!inode) {
626 		ret = -EIO;
627 		goto out;
628 	}
629 
630 	/*
631 	 * first check to see if we already have this extent in the
632 	 * file.  This must be done before the btrfs_drop_extents run
633 	 * so we don't try to drop this extent.
634 	 */
635 	ret = btrfs_lookup_file_extent(trans, root, path,
636 			btrfs_ino(BTRFS_I(inode)), start, 0);
637 
638 	if (ret == 0 &&
639 	    (found_type == BTRFS_FILE_EXTENT_REG ||
640 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
641 		struct btrfs_file_extent_item cmp1;
642 		struct btrfs_file_extent_item cmp2;
643 		struct btrfs_file_extent_item *existing;
644 		struct extent_buffer *leaf;
645 
646 		leaf = path->nodes[0];
647 		existing = btrfs_item_ptr(leaf, path->slots[0],
648 					  struct btrfs_file_extent_item);
649 
650 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
651 				   sizeof(cmp1));
652 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
653 				   sizeof(cmp2));
654 
655 		/*
656 		 * we already have a pointer to this exact extent,
657 		 * we don't have to do anything
658 		 */
659 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
660 			btrfs_release_path(path);
661 			goto out;
662 		}
663 	}
664 	btrfs_release_path(path);
665 
666 	/* drop any overlapping extents */
667 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
668 	if (ret)
669 		goto out;
670 
671 	if (found_type == BTRFS_FILE_EXTENT_REG ||
672 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
673 		u64 offset;
674 		unsigned long dest_offset;
675 		struct btrfs_key ins;
676 
677 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
678 		    btrfs_fs_incompat(fs_info, NO_HOLES))
679 			goto update_inode;
680 
681 		ret = btrfs_insert_empty_item(trans, root, path, key,
682 					      sizeof(*item));
683 		if (ret)
684 			goto out;
685 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
686 						    path->slots[0]);
687 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
688 				(unsigned long)item,  sizeof(*item));
689 
690 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
691 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
692 		ins.type = BTRFS_EXTENT_ITEM_KEY;
693 		offset = key->offset - btrfs_file_extent_offset(eb, item);
694 
695 		/*
696 		 * Manually record dirty extent, as here we did a shallow
697 		 * file extent item copy and skip normal backref update,
698 		 * but modifying extent tree all by ourselves.
699 		 * So need to manually record dirty extent for qgroup,
700 		 * as the owner of the file extent changed from log tree
701 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
702 		 */
703 		ret = btrfs_qgroup_trace_extent(trans,
704 				btrfs_file_extent_disk_bytenr(eb, item),
705 				btrfs_file_extent_disk_num_bytes(eb, item),
706 				GFP_NOFS);
707 		if (ret < 0)
708 			goto out;
709 
710 		if (ins.objectid > 0) {
711 			struct btrfs_ref ref = { 0 };
712 			u64 csum_start;
713 			u64 csum_end;
714 			LIST_HEAD(ordered_sums);
715 
716 			/*
717 			 * is this extent already allocated in the extent
718 			 * allocation tree?  If so, just add a reference
719 			 */
720 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
721 						ins.offset);
722 			if (ret < 0) {
723 				goto out;
724 			} else if (ret == 0) {
725 				btrfs_init_generic_ref(&ref,
726 						BTRFS_ADD_DELAYED_REF,
727 						ins.objectid, ins.offset, 0);
728 				btrfs_init_data_ref(&ref,
729 						root->root_key.objectid,
730 						key->objectid, offset);
731 				ret = btrfs_inc_extent_ref(trans, &ref);
732 				if (ret)
733 					goto out;
734 			} else {
735 				/*
736 				 * insert the extent pointer in the extent
737 				 * allocation tree
738 				 */
739 				ret = btrfs_alloc_logged_file_extent(trans,
740 						root->root_key.objectid,
741 						key->objectid, offset, &ins);
742 				if (ret)
743 					goto out;
744 			}
745 			btrfs_release_path(path);
746 
747 			if (btrfs_file_extent_compression(eb, item)) {
748 				csum_start = ins.objectid;
749 				csum_end = csum_start + ins.offset;
750 			} else {
751 				csum_start = ins.objectid +
752 					btrfs_file_extent_offset(eb, item);
753 				csum_end = csum_start +
754 					btrfs_file_extent_num_bytes(eb, item);
755 			}
756 
757 			ret = btrfs_lookup_csums_range(root->log_root,
758 						csum_start, csum_end - 1,
759 						&ordered_sums, 0);
760 			if (ret)
761 				goto out;
762 			/*
763 			 * Now delete all existing cums in the csum root that
764 			 * cover our range. We do this because we can have an
765 			 * extent that is completely referenced by one file
766 			 * extent item and partially referenced by another
767 			 * file extent item (like after using the clone or
768 			 * extent_same ioctls). In this case if we end up doing
769 			 * the replay of the one that partially references the
770 			 * extent first, and we do not do the csum deletion
771 			 * below, we can get 2 csum items in the csum tree that
772 			 * overlap each other. For example, imagine our log has
773 			 * the two following file extent items:
774 			 *
775 			 * key (257 EXTENT_DATA 409600)
776 			 *     extent data disk byte 12845056 nr 102400
777 			 *     extent data offset 20480 nr 20480 ram 102400
778 			 *
779 			 * key (257 EXTENT_DATA 819200)
780 			 *     extent data disk byte 12845056 nr 102400
781 			 *     extent data offset 0 nr 102400 ram 102400
782 			 *
783 			 * Where the second one fully references the 100K extent
784 			 * that starts at disk byte 12845056, and the log tree
785 			 * has a single csum item that covers the entire range
786 			 * of the extent:
787 			 *
788 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
789 			 *
790 			 * After the first file extent item is replayed, the
791 			 * csum tree gets the following csum item:
792 			 *
793 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
794 			 *
795 			 * Which covers the 20K sub-range starting at offset 20K
796 			 * of our extent. Now when we replay the second file
797 			 * extent item, if we do not delete existing csum items
798 			 * that cover any of its blocks, we end up getting two
799 			 * csum items in our csum tree that overlap each other:
800 			 *
801 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
802 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
803 			 *
804 			 * Which is a problem, because after this anyone trying
805 			 * to lookup up for the checksum of any block of our
806 			 * extent starting at an offset of 40K or higher, will
807 			 * end up looking at the second csum item only, which
808 			 * does not contain the checksum for any block starting
809 			 * at offset 40K or higher of our extent.
810 			 */
811 			while (!list_empty(&ordered_sums)) {
812 				struct btrfs_ordered_sum *sums;
813 				sums = list_entry(ordered_sums.next,
814 						struct btrfs_ordered_sum,
815 						list);
816 				if (!ret)
817 					ret = btrfs_del_csums(trans,
818 							      fs_info->csum_root,
819 							      sums->bytenr,
820 							      sums->len);
821 				if (!ret)
822 					ret = btrfs_csum_file_blocks(trans,
823 						fs_info->csum_root, sums);
824 				list_del(&sums->list);
825 				kfree(sums);
826 			}
827 			if (ret)
828 				goto out;
829 		} else {
830 			btrfs_release_path(path);
831 		}
832 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
833 		/* inline extents are easy, we just overwrite them */
834 		ret = overwrite_item(trans, root, path, eb, slot, key);
835 		if (ret)
836 			goto out;
837 	}
838 
839 	inode_add_bytes(inode, nbytes);
840 update_inode:
841 	ret = btrfs_update_inode(trans, root, inode);
842 out:
843 	if (inode)
844 		iput(inode);
845 	return ret;
846 }
847 
848 /*
849  * when cleaning up conflicts between the directory names in the
850  * subvolume, directory names in the log and directory names in the
851  * inode back references, we may have to unlink inodes from directories.
852  *
853  * This is a helper function to do the unlink of a specific directory
854  * item
855  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)856 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
857 				      struct btrfs_root *root,
858 				      struct btrfs_path *path,
859 				      struct btrfs_inode *dir,
860 				      struct btrfs_dir_item *di)
861 {
862 	struct inode *inode;
863 	char *name;
864 	int name_len;
865 	struct extent_buffer *leaf;
866 	struct btrfs_key location;
867 	int ret;
868 
869 	leaf = path->nodes[0];
870 
871 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
872 	name_len = btrfs_dir_name_len(leaf, di);
873 	name = kmalloc(name_len, GFP_NOFS);
874 	if (!name)
875 		return -ENOMEM;
876 
877 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
878 	btrfs_release_path(path);
879 
880 	inode = read_one_inode(root, location.objectid);
881 	if (!inode) {
882 		ret = -EIO;
883 		goto out;
884 	}
885 
886 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
887 	if (ret)
888 		goto out;
889 
890 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
891 			name_len);
892 	if (ret)
893 		goto out;
894 	else
895 		ret = btrfs_run_delayed_items(trans);
896 out:
897 	kfree(name);
898 	iput(inode);
899 	return ret;
900 }
901 
902 /*
903  * See if a given name and sequence number found in an inode back reference are
904  * already in a directory and correctly point to this inode.
905  *
906  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
907  * exists.
908  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)909 static noinline int inode_in_dir(struct btrfs_root *root,
910 				 struct btrfs_path *path,
911 				 u64 dirid, u64 objectid, u64 index,
912 				 const char *name, int name_len)
913 {
914 	struct btrfs_dir_item *di;
915 	struct btrfs_key location;
916 	int ret = 0;
917 
918 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
919 					 index, name, name_len, 0);
920 	if (IS_ERR(di)) {
921 		ret = PTR_ERR(di);
922 		goto out;
923 	} else if (di) {
924 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
925 		if (location.objectid != objectid)
926 			goto out;
927 	} else {
928 		goto out;
929 	}
930 
931 	btrfs_release_path(path);
932 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
933 	if (IS_ERR(di)) {
934 		ret = PTR_ERR(di);
935 		goto out;
936 	} else if (di) {
937 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
938 		if (location.objectid == objectid)
939 			ret = 1;
940 	}
941 out:
942 	btrfs_release_path(path);
943 	return ret;
944 }
945 
946 /*
947  * helper function to check a log tree for a named back reference in
948  * an inode.  This is used to decide if a back reference that is
949  * found in the subvolume conflicts with what we find in the log.
950  *
951  * inode backreferences may have multiple refs in a single item,
952  * during replay we process one reference at a time, and we don't
953  * want to delete valid links to a file from the subvolume if that
954  * link is also in the log.
955  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const char * name,int namelen)956 static noinline int backref_in_log(struct btrfs_root *log,
957 				   struct btrfs_key *key,
958 				   u64 ref_objectid,
959 				   const char *name, int namelen)
960 {
961 	struct btrfs_path *path;
962 	struct btrfs_inode_ref *ref;
963 	unsigned long ptr;
964 	unsigned long ptr_end;
965 	unsigned long name_ptr;
966 	int found_name_len;
967 	int item_size;
968 	int ret;
969 	int match = 0;
970 
971 	path = btrfs_alloc_path();
972 	if (!path)
973 		return -ENOMEM;
974 
975 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
976 	if (ret != 0)
977 		goto out;
978 
979 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
980 
981 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
982 		if (btrfs_find_name_in_ext_backref(path->nodes[0],
983 						   path->slots[0],
984 						   ref_objectid,
985 						   name, namelen))
986 			match = 1;
987 
988 		goto out;
989 	}
990 
991 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
992 	ptr_end = ptr + item_size;
993 	while (ptr < ptr_end) {
994 		ref = (struct btrfs_inode_ref *)ptr;
995 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
996 		if (found_name_len == namelen) {
997 			name_ptr = (unsigned long)(ref + 1);
998 			ret = memcmp_extent_buffer(path->nodes[0], name,
999 						   name_ptr, namelen);
1000 			if (ret == 0) {
1001 				match = 1;
1002 				goto out;
1003 			}
1004 		}
1005 		ptr = (unsigned long)(ref + 1) + found_name_len;
1006 	}
1007 out:
1008 	btrfs_free_path(path);
1009 	return match;
1010 }
1011 
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,char * name,int namelen,int * search_done)1012 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1013 				  struct btrfs_root *root,
1014 				  struct btrfs_path *path,
1015 				  struct btrfs_root *log_root,
1016 				  struct btrfs_inode *dir,
1017 				  struct btrfs_inode *inode,
1018 				  u64 inode_objectid, u64 parent_objectid,
1019 				  u64 ref_index, char *name, int namelen,
1020 				  int *search_done)
1021 {
1022 	int ret;
1023 	char *victim_name;
1024 	int victim_name_len;
1025 	struct extent_buffer *leaf;
1026 	struct btrfs_dir_item *di;
1027 	struct btrfs_key search_key;
1028 	struct btrfs_inode_extref *extref;
1029 
1030 again:
1031 	/* Search old style refs */
1032 	search_key.objectid = inode_objectid;
1033 	search_key.type = BTRFS_INODE_REF_KEY;
1034 	search_key.offset = parent_objectid;
1035 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1036 	if (ret == 0) {
1037 		struct btrfs_inode_ref *victim_ref;
1038 		unsigned long ptr;
1039 		unsigned long ptr_end;
1040 
1041 		leaf = path->nodes[0];
1042 
1043 		/* are we trying to overwrite a back ref for the root directory
1044 		 * if so, just jump out, we're done
1045 		 */
1046 		if (search_key.objectid == search_key.offset)
1047 			return 1;
1048 
1049 		/* check all the names in this back reference to see
1050 		 * if they are in the log.  if so, we allow them to stay
1051 		 * otherwise they must be unlinked as a conflict
1052 		 */
1053 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1054 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1055 		while (ptr < ptr_end) {
1056 			victim_ref = (struct btrfs_inode_ref *)ptr;
1057 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1058 								   victim_ref);
1059 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1060 			if (!victim_name)
1061 				return -ENOMEM;
1062 
1063 			read_extent_buffer(leaf, victim_name,
1064 					   (unsigned long)(victim_ref + 1),
1065 					   victim_name_len);
1066 
1067 			if (!backref_in_log(log_root, &search_key,
1068 					    parent_objectid,
1069 					    victim_name,
1070 					    victim_name_len)) {
1071 				inc_nlink(&inode->vfs_inode);
1072 				btrfs_release_path(path);
1073 
1074 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1075 						victim_name, victim_name_len);
1076 				kfree(victim_name);
1077 				if (ret)
1078 					return ret;
1079 				ret = btrfs_run_delayed_items(trans);
1080 				if (ret)
1081 					return ret;
1082 				*search_done = 1;
1083 				goto again;
1084 			}
1085 			kfree(victim_name);
1086 
1087 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1088 		}
1089 
1090 		/*
1091 		 * NOTE: we have searched root tree and checked the
1092 		 * corresponding ref, it does not need to check again.
1093 		 */
1094 		*search_done = 1;
1095 	}
1096 	btrfs_release_path(path);
1097 
1098 	/* Same search but for extended refs */
1099 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1100 					   inode_objectid, parent_objectid, 0,
1101 					   0);
1102 	if (IS_ERR(extref)) {
1103 		return PTR_ERR(extref);
1104 	} else if (extref) {
1105 		u32 item_size;
1106 		u32 cur_offset = 0;
1107 		unsigned long base;
1108 		struct inode *victim_parent;
1109 
1110 		leaf = path->nodes[0];
1111 
1112 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1113 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1114 
1115 		while (cur_offset < item_size) {
1116 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1117 
1118 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1119 
1120 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1121 				goto next;
1122 
1123 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1124 			if (!victim_name)
1125 				return -ENOMEM;
1126 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1127 					   victim_name_len);
1128 
1129 			search_key.objectid = inode_objectid;
1130 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1131 			search_key.offset = btrfs_extref_hash(parent_objectid,
1132 							      victim_name,
1133 							      victim_name_len);
1134 			ret = 0;
1135 			if (!backref_in_log(log_root, &search_key,
1136 					    parent_objectid, victim_name,
1137 					    victim_name_len)) {
1138 				ret = -ENOENT;
1139 				victim_parent = read_one_inode(root,
1140 						parent_objectid);
1141 				if (victim_parent) {
1142 					inc_nlink(&inode->vfs_inode);
1143 					btrfs_release_path(path);
1144 
1145 					ret = btrfs_unlink_inode(trans, root,
1146 							BTRFS_I(victim_parent),
1147 							inode,
1148 							victim_name,
1149 							victim_name_len);
1150 					if (!ret)
1151 						ret = btrfs_run_delayed_items(
1152 								  trans);
1153 				}
1154 				iput(victim_parent);
1155 				kfree(victim_name);
1156 				if (ret)
1157 					return ret;
1158 				*search_done = 1;
1159 				goto again;
1160 			}
1161 			kfree(victim_name);
1162 next:
1163 			cur_offset += victim_name_len + sizeof(*extref);
1164 		}
1165 		*search_done = 1;
1166 	}
1167 	btrfs_release_path(path);
1168 
1169 	/* look for a conflicting sequence number */
1170 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1171 					 ref_index, name, namelen, 0);
1172 	if (IS_ERR(di)) {
1173 		return PTR_ERR(di);
1174 	} else if (di) {
1175 		ret = drop_one_dir_item(trans, root, path, dir, di);
1176 		if (ret)
1177 			return ret;
1178 	}
1179 	btrfs_release_path(path);
1180 
1181 	/* look for a conflicting name */
1182 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1183 				   name, namelen, 0);
1184 	if (IS_ERR(di)) {
1185 		return PTR_ERR(di);
1186 	} else if (di) {
1187 		ret = drop_one_dir_item(trans, root, path, dir, di);
1188 		if (ret)
1189 			return ret;
1190 	}
1191 	btrfs_release_path(path);
1192 
1193 	return 0;
1194 }
1195 
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index,u64 * parent_objectid)1196 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1197 			     u32 *namelen, char **name, u64 *index,
1198 			     u64 *parent_objectid)
1199 {
1200 	struct btrfs_inode_extref *extref;
1201 
1202 	extref = (struct btrfs_inode_extref *)ref_ptr;
1203 
1204 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1205 	*name = kmalloc(*namelen, GFP_NOFS);
1206 	if (*name == NULL)
1207 		return -ENOMEM;
1208 
1209 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1210 			   *namelen);
1211 
1212 	if (index)
1213 		*index = btrfs_inode_extref_index(eb, extref);
1214 	if (parent_objectid)
1215 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1216 
1217 	return 0;
1218 }
1219 
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,u32 * namelen,char ** name,u64 * index)1220 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1221 			  u32 *namelen, char **name, u64 *index)
1222 {
1223 	struct btrfs_inode_ref *ref;
1224 
1225 	ref = (struct btrfs_inode_ref *)ref_ptr;
1226 
1227 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1228 	*name = kmalloc(*namelen, GFP_NOFS);
1229 	if (*name == NULL)
1230 		return -ENOMEM;
1231 
1232 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1233 
1234 	if (index)
1235 		*index = btrfs_inode_ref_index(eb, ref);
1236 
1237 	return 0;
1238 }
1239 
1240 /*
1241  * Take an inode reference item from the log tree and iterate all names from the
1242  * inode reference item in the subvolume tree with the same key (if it exists).
1243  * For any name that is not in the inode reference item from the log tree, do a
1244  * proper unlink of that name (that is, remove its entry from the inode
1245  * reference item and both dir index keys).
1246  */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1247 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1248 				 struct btrfs_root *root,
1249 				 struct btrfs_path *path,
1250 				 struct btrfs_inode *inode,
1251 				 struct extent_buffer *log_eb,
1252 				 int log_slot,
1253 				 struct btrfs_key *key)
1254 {
1255 	int ret;
1256 	unsigned long ref_ptr;
1257 	unsigned long ref_end;
1258 	struct extent_buffer *eb;
1259 
1260 again:
1261 	btrfs_release_path(path);
1262 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1263 	if (ret > 0) {
1264 		ret = 0;
1265 		goto out;
1266 	}
1267 	if (ret < 0)
1268 		goto out;
1269 
1270 	eb = path->nodes[0];
1271 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1272 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1273 	while (ref_ptr < ref_end) {
1274 		char *name = NULL;
1275 		int namelen;
1276 		u64 parent_id;
1277 
1278 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1279 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1280 						NULL, &parent_id);
1281 		} else {
1282 			parent_id = key->offset;
1283 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1284 					     NULL);
1285 		}
1286 		if (ret)
1287 			goto out;
1288 
1289 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1290 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1291 							       parent_id, name,
1292 							       namelen);
1293 		else
1294 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1295 							   name, namelen);
1296 
1297 		if (!ret) {
1298 			struct inode *dir;
1299 
1300 			btrfs_release_path(path);
1301 			dir = read_one_inode(root, parent_id);
1302 			if (!dir) {
1303 				ret = -ENOENT;
1304 				kfree(name);
1305 				goto out;
1306 			}
1307 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1308 						 inode, name, namelen);
1309 			kfree(name);
1310 			iput(dir);
1311 			/*
1312 			 * Whenever we need to check if a name exists or not, we
1313 			 * check the subvolume tree. So after an unlink we must
1314 			 * run delayed items, so that future checks for a name
1315 			 * during log replay see that the name does not exists
1316 			 * anymore.
1317 			 */
1318 			if (!ret)
1319 				ret = btrfs_run_delayed_items(trans);
1320 			if (ret)
1321 				goto out;
1322 			goto again;
1323 		}
1324 
1325 		kfree(name);
1326 		ref_ptr += namelen;
1327 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1328 			ref_ptr += sizeof(struct btrfs_inode_extref);
1329 		else
1330 			ref_ptr += sizeof(struct btrfs_inode_ref);
1331 	}
1332 	ret = 0;
1333  out:
1334 	btrfs_release_path(path);
1335 	return ret;
1336 }
1337 
btrfs_inode_ref_exists(struct inode * inode,struct inode * dir,const u8 ref_type,const char * name,const int namelen)1338 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1339 				  const u8 ref_type, const char *name,
1340 				  const int namelen)
1341 {
1342 	struct btrfs_key key;
1343 	struct btrfs_path *path;
1344 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1345 	int ret;
1346 
1347 	path = btrfs_alloc_path();
1348 	if (!path)
1349 		return -ENOMEM;
1350 
1351 	key.objectid = btrfs_ino(BTRFS_I(inode));
1352 	key.type = ref_type;
1353 	if (key.type == BTRFS_INODE_REF_KEY)
1354 		key.offset = parent_id;
1355 	else
1356 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1357 
1358 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1359 	if (ret < 0)
1360 		goto out;
1361 	if (ret > 0) {
1362 		ret = 0;
1363 		goto out;
1364 	}
1365 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1366 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1367 				path->slots[0], parent_id, name, namelen);
1368 	else
1369 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1370 						   name, namelen);
1371 
1372 out:
1373 	btrfs_free_path(path);
1374 	return ret;
1375 }
1376 
add_link(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct inode * inode,const char * name,int namelen,u64 ref_index)1377 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1378 		    struct inode *dir, struct inode *inode, const char *name,
1379 		    int namelen, u64 ref_index)
1380 {
1381 	struct btrfs_dir_item *dir_item;
1382 	struct btrfs_key key;
1383 	struct btrfs_path *path;
1384 	struct inode *other_inode = NULL;
1385 	int ret;
1386 
1387 	path = btrfs_alloc_path();
1388 	if (!path)
1389 		return -ENOMEM;
1390 
1391 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1392 					 btrfs_ino(BTRFS_I(dir)),
1393 					 name, namelen, 0);
1394 	if (!dir_item) {
1395 		btrfs_release_path(path);
1396 		goto add_link;
1397 	} else if (IS_ERR(dir_item)) {
1398 		ret = PTR_ERR(dir_item);
1399 		goto out;
1400 	}
1401 
1402 	/*
1403 	 * Our inode's dentry collides with the dentry of another inode which is
1404 	 * in the log but not yet processed since it has a higher inode number.
1405 	 * So delete that other dentry.
1406 	 */
1407 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1408 	btrfs_release_path(path);
1409 	other_inode = read_one_inode(root, key.objectid);
1410 	if (!other_inode) {
1411 		ret = -ENOENT;
1412 		goto out;
1413 	}
1414 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1415 				 name, namelen);
1416 	if (ret)
1417 		goto out;
1418 	/*
1419 	 * If we dropped the link count to 0, bump it so that later the iput()
1420 	 * on the inode will not free it. We will fixup the link count later.
1421 	 */
1422 	if (other_inode->i_nlink == 0)
1423 		inc_nlink(other_inode);
1424 
1425 	ret = btrfs_run_delayed_items(trans);
1426 	if (ret)
1427 		goto out;
1428 add_link:
1429 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1430 			     name, namelen, 0, ref_index);
1431 out:
1432 	iput(other_inode);
1433 	btrfs_free_path(path);
1434 
1435 	return ret;
1436 }
1437 
1438 /*
1439  * replay one inode back reference item found in the log tree.
1440  * eb, slot and key refer to the buffer and key found in the log tree.
1441  * root is the destination we are replaying into, and path is for temp
1442  * use by this function.  (it should be released on return).
1443  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1444 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1445 				  struct btrfs_root *root,
1446 				  struct btrfs_root *log,
1447 				  struct btrfs_path *path,
1448 				  struct extent_buffer *eb, int slot,
1449 				  struct btrfs_key *key)
1450 {
1451 	struct inode *dir = NULL;
1452 	struct inode *inode = NULL;
1453 	unsigned long ref_ptr;
1454 	unsigned long ref_end;
1455 	char *name = NULL;
1456 	int namelen;
1457 	int ret;
1458 	int search_done = 0;
1459 	int log_ref_ver = 0;
1460 	u64 parent_objectid;
1461 	u64 inode_objectid;
1462 	u64 ref_index = 0;
1463 	int ref_struct_size;
1464 
1465 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1466 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1467 
1468 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1469 		struct btrfs_inode_extref *r;
1470 
1471 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1472 		log_ref_ver = 1;
1473 		r = (struct btrfs_inode_extref *)ref_ptr;
1474 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1475 	} else {
1476 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1477 		parent_objectid = key->offset;
1478 	}
1479 	inode_objectid = key->objectid;
1480 
1481 	/*
1482 	 * it is possible that we didn't log all the parent directories
1483 	 * for a given inode.  If we don't find the dir, just don't
1484 	 * copy the back ref in.  The link count fixup code will take
1485 	 * care of the rest
1486 	 */
1487 	dir = read_one_inode(root, parent_objectid);
1488 	if (!dir) {
1489 		ret = -ENOENT;
1490 		goto out;
1491 	}
1492 
1493 	inode = read_one_inode(root, inode_objectid);
1494 	if (!inode) {
1495 		ret = -EIO;
1496 		goto out;
1497 	}
1498 
1499 	while (ref_ptr < ref_end) {
1500 		if (log_ref_ver) {
1501 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1502 						&ref_index, &parent_objectid);
1503 			/*
1504 			 * parent object can change from one array
1505 			 * item to another.
1506 			 */
1507 			if (!dir)
1508 				dir = read_one_inode(root, parent_objectid);
1509 			if (!dir) {
1510 				ret = -ENOENT;
1511 				goto out;
1512 			}
1513 		} else {
1514 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1515 					     &ref_index);
1516 		}
1517 		if (ret)
1518 			goto out;
1519 
1520 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1521 				   btrfs_ino(BTRFS_I(inode)), ref_index,
1522 				   name, namelen);
1523 		if (ret < 0) {
1524 			goto out;
1525 		} else if (ret == 0) {
1526 			/*
1527 			 * look for a conflicting back reference in the
1528 			 * metadata. if we find one we have to unlink that name
1529 			 * of the file before we add our new link.  Later on, we
1530 			 * overwrite any existing back reference, and we don't
1531 			 * want to create dangling pointers in the directory.
1532 			 */
1533 
1534 			if (!search_done) {
1535 				ret = __add_inode_ref(trans, root, path, log,
1536 						      BTRFS_I(dir),
1537 						      BTRFS_I(inode),
1538 						      inode_objectid,
1539 						      parent_objectid,
1540 						      ref_index, name, namelen,
1541 						      &search_done);
1542 				if (ret) {
1543 					if (ret == 1)
1544 						ret = 0;
1545 					goto out;
1546 				}
1547 			}
1548 
1549 			/*
1550 			 * If a reference item already exists for this inode
1551 			 * with the same parent and name, but different index,
1552 			 * drop it and the corresponding directory index entries
1553 			 * from the parent before adding the new reference item
1554 			 * and dir index entries, otherwise we would fail with
1555 			 * -EEXIST returned from btrfs_add_link() below.
1556 			 */
1557 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1558 						     name, namelen);
1559 			if (ret > 0) {
1560 				ret = btrfs_unlink_inode(trans, root,
1561 							 BTRFS_I(dir),
1562 							 BTRFS_I(inode),
1563 							 name, namelen);
1564 				/*
1565 				 * If we dropped the link count to 0, bump it so
1566 				 * that later the iput() on the inode will not
1567 				 * free it. We will fixup the link count later.
1568 				 */
1569 				if (!ret && inode->i_nlink == 0)
1570 					inc_nlink(inode);
1571 				/*
1572 				 * Whenever we need to check if a name exists or
1573 				 * not, we check the subvolume tree. So after an
1574 				 * unlink we must run delayed items, so that future
1575 				 * checks for a name during log replay see that the
1576 				 * name does not exists anymore.
1577 				 */
1578 				if (!ret)
1579 					ret = btrfs_run_delayed_items(trans);
1580 			}
1581 			if (ret < 0)
1582 				goto out;
1583 
1584 			/* insert our name */
1585 			ret = add_link(trans, root, dir, inode, name, namelen,
1586 				       ref_index);
1587 			if (ret)
1588 				goto out;
1589 
1590 			btrfs_update_inode(trans, root, inode);
1591 		}
1592 		/* Else, ret == 1, we already have a perfect match, we're done. */
1593 
1594 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1595 		kfree(name);
1596 		name = NULL;
1597 		if (log_ref_ver) {
1598 			iput(dir);
1599 			dir = NULL;
1600 		}
1601 	}
1602 
1603 	/*
1604 	 * Before we overwrite the inode reference item in the subvolume tree
1605 	 * with the item from the log tree, we must unlink all names from the
1606 	 * parent directory that are in the subvolume's tree inode reference
1607 	 * item, otherwise we end up with an inconsistent subvolume tree where
1608 	 * dir index entries exist for a name but there is no inode reference
1609 	 * item with the same name.
1610 	 */
1611 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1612 				    key);
1613 	if (ret)
1614 		goto out;
1615 
1616 	/* finally write the back reference in the inode */
1617 	ret = overwrite_item(trans, root, path, eb, slot, key);
1618 out:
1619 	btrfs_release_path(path);
1620 	kfree(name);
1621 	iput(dir);
1622 	iput(inode);
1623 	return ret;
1624 }
1625 
insert_orphan_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 ino)1626 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1627 			      struct btrfs_root *root, u64 ino)
1628 {
1629 	int ret;
1630 
1631 	ret = btrfs_insert_orphan_item(trans, root, ino);
1632 	if (ret == -EEXIST)
1633 		ret = 0;
1634 
1635 	return ret;
1636 }
1637 
count_inode_extrefs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1638 static int count_inode_extrefs(struct btrfs_root *root,
1639 		struct btrfs_inode *inode, struct btrfs_path *path)
1640 {
1641 	int ret = 0;
1642 	int name_len;
1643 	unsigned int nlink = 0;
1644 	u32 item_size;
1645 	u32 cur_offset = 0;
1646 	u64 inode_objectid = btrfs_ino(inode);
1647 	u64 offset = 0;
1648 	unsigned long ptr;
1649 	struct btrfs_inode_extref *extref;
1650 	struct extent_buffer *leaf;
1651 
1652 	while (1) {
1653 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1654 					    &extref, &offset);
1655 		if (ret)
1656 			break;
1657 
1658 		leaf = path->nodes[0];
1659 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1660 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1661 		cur_offset = 0;
1662 
1663 		while (cur_offset < item_size) {
1664 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1665 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1666 
1667 			nlink++;
1668 
1669 			cur_offset += name_len + sizeof(*extref);
1670 		}
1671 
1672 		offset++;
1673 		btrfs_release_path(path);
1674 	}
1675 	btrfs_release_path(path);
1676 
1677 	if (ret < 0 && ret != -ENOENT)
1678 		return ret;
1679 	return nlink;
1680 }
1681 
count_inode_refs(struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)1682 static int count_inode_refs(struct btrfs_root *root,
1683 			struct btrfs_inode *inode, struct btrfs_path *path)
1684 {
1685 	int ret;
1686 	struct btrfs_key key;
1687 	unsigned int nlink = 0;
1688 	unsigned long ptr;
1689 	unsigned long ptr_end;
1690 	int name_len;
1691 	u64 ino = btrfs_ino(inode);
1692 
1693 	key.objectid = ino;
1694 	key.type = BTRFS_INODE_REF_KEY;
1695 	key.offset = (u64)-1;
1696 
1697 	while (1) {
1698 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1699 		if (ret < 0)
1700 			break;
1701 		if (ret > 0) {
1702 			if (path->slots[0] == 0)
1703 				break;
1704 			path->slots[0]--;
1705 		}
1706 process_slot:
1707 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1708 				      path->slots[0]);
1709 		if (key.objectid != ino ||
1710 		    key.type != BTRFS_INODE_REF_KEY)
1711 			break;
1712 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1713 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1714 						   path->slots[0]);
1715 		while (ptr < ptr_end) {
1716 			struct btrfs_inode_ref *ref;
1717 
1718 			ref = (struct btrfs_inode_ref *)ptr;
1719 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1720 							    ref);
1721 			ptr = (unsigned long)(ref + 1) + name_len;
1722 			nlink++;
1723 		}
1724 
1725 		if (key.offset == 0)
1726 			break;
1727 		if (path->slots[0] > 0) {
1728 			path->slots[0]--;
1729 			goto process_slot;
1730 		}
1731 		key.offset--;
1732 		btrfs_release_path(path);
1733 	}
1734 	btrfs_release_path(path);
1735 
1736 	return nlink;
1737 }
1738 
1739 /*
1740  * There are a few corners where the link count of the file can't
1741  * be properly maintained during replay.  So, instead of adding
1742  * lots of complexity to the log code, we just scan the backrefs
1743  * for any file that has been through replay.
1744  *
1745  * The scan will update the link count on the inode to reflect the
1746  * number of back refs found.  If it goes down to zero, the iput
1747  * will free the inode.
1748  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1749 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1750 					   struct btrfs_root *root,
1751 					   struct inode *inode)
1752 {
1753 	struct btrfs_path *path;
1754 	int ret;
1755 	u64 nlink = 0;
1756 	u64 ino = btrfs_ino(BTRFS_I(inode));
1757 
1758 	path = btrfs_alloc_path();
1759 	if (!path)
1760 		return -ENOMEM;
1761 
1762 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1763 	if (ret < 0)
1764 		goto out;
1765 
1766 	nlink = ret;
1767 
1768 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1769 	if (ret < 0)
1770 		goto out;
1771 
1772 	nlink += ret;
1773 
1774 	ret = 0;
1775 
1776 	if (nlink != inode->i_nlink) {
1777 		set_nlink(inode, nlink);
1778 		btrfs_update_inode(trans, root, inode);
1779 	}
1780 	BTRFS_I(inode)->index_cnt = (u64)-1;
1781 
1782 	if (inode->i_nlink == 0) {
1783 		if (S_ISDIR(inode->i_mode)) {
1784 			ret = replay_dir_deletes(trans, root, NULL, path,
1785 						 ino, 1);
1786 			if (ret)
1787 				goto out;
1788 		}
1789 		ret = insert_orphan_item(trans, root, ino);
1790 	}
1791 
1792 out:
1793 	btrfs_free_path(path);
1794 	return ret;
1795 }
1796 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1797 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1798 					    struct btrfs_root *root,
1799 					    struct btrfs_path *path)
1800 {
1801 	int ret;
1802 	struct btrfs_key key;
1803 	struct inode *inode;
1804 
1805 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1806 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1807 	key.offset = (u64)-1;
1808 	while (1) {
1809 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1810 		if (ret < 0)
1811 			break;
1812 
1813 		if (ret == 1) {
1814 			ret = 0;
1815 			if (path->slots[0] == 0)
1816 				break;
1817 			path->slots[0]--;
1818 		}
1819 
1820 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1821 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1822 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1823 			break;
1824 
1825 		ret = btrfs_del_item(trans, root, path);
1826 		if (ret)
1827 			break;
1828 
1829 		btrfs_release_path(path);
1830 		inode = read_one_inode(root, key.offset);
1831 		if (!inode) {
1832 			ret = -EIO;
1833 			break;
1834 		}
1835 
1836 		ret = fixup_inode_link_count(trans, root, inode);
1837 		iput(inode);
1838 		if (ret)
1839 			break;
1840 
1841 		/*
1842 		 * fixup on a directory may create new entries,
1843 		 * make sure we always look for the highset possible
1844 		 * offset
1845 		 */
1846 		key.offset = (u64)-1;
1847 	}
1848 	btrfs_release_path(path);
1849 	return ret;
1850 }
1851 
1852 
1853 /*
1854  * record a given inode in the fixup dir so we can check its link
1855  * count when replay is done.  The link count is incremented here
1856  * so the inode won't go away until we check it
1857  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1858 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1859 				      struct btrfs_root *root,
1860 				      struct btrfs_path *path,
1861 				      u64 objectid)
1862 {
1863 	struct btrfs_key key;
1864 	int ret = 0;
1865 	struct inode *inode;
1866 
1867 	inode = read_one_inode(root, objectid);
1868 	if (!inode)
1869 		return -EIO;
1870 
1871 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1872 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1873 	key.offset = objectid;
1874 
1875 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1876 
1877 	btrfs_release_path(path);
1878 	if (ret == 0) {
1879 		if (!inode->i_nlink)
1880 			set_nlink(inode, 1);
1881 		else
1882 			inc_nlink(inode);
1883 		ret = btrfs_update_inode(trans, root, inode);
1884 	} else if (ret == -EEXIST) {
1885 		ret = 0;
1886 	}
1887 	iput(inode);
1888 
1889 	return ret;
1890 }
1891 
1892 /*
1893  * when replaying the log for a directory, we only insert names
1894  * for inodes that actually exist.  This means an fsync on a directory
1895  * does not implicitly fsync all the new files in it
1896  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,char * name,int name_len,struct btrfs_key * location)1897 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1898 				    struct btrfs_root *root,
1899 				    u64 dirid, u64 index,
1900 				    char *name, int name_len,
1901 				    struct btrfs_key *location)
1902 {
1903 	struct inode *inode;
1904 	struct inode *dir;
1905 	int ret;
1906 
1907 	inode = read_one_inode(root, location->objectid);
1908 	if (!inode)
1909 		return -ENOENT;
1910 
1911 	dir = read_one_inode(root, dirid);
1912 	if (!dir) {
1913 		iput(inode);
1914 		return -EIO;
1915 	}
1916 
1917 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1918 			name_len, 1, index);
1919 
1920 	/* FIXME, put inode into FIXUP list */
1921 
1922 	iput(inode);
1923 	iput(dir);
1924 	return ret;
1925 }
1926 
1927 /*
1928  * Return true if an inode reference exists in the log for the given name,
1929  * inode and parent inode.
1930  */
name_in_log_ref(struct btrfs_root * log_root,const char * name,const int name_len,const u64 dirid,const u64 ino)1931 static bool name_in_log_ref(struct btrfs_root *log_root,
1932 			    const char *name, const int name_len,
1933 			    const u64 dirid, const u64 ino)
1934 {
1935 	struct btrfs_key search_key;
1936 
1937 	search_key.objectid = ino;
1938 	search_key.type = BTRFS_INODE_REF_KEY;
1939 	search_key.offset = dirid;
1940 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1941 		return true;
1942 
1943 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1944 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1945 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1946 		return true;
1947 
1948 	return false;
1949 }
1950 
1951 /*
1952  * take a single entry in a log directory item and replay it into
1953  * the subvolume.
1954  *
1955  * if a conflicting item exists in the subdirectory already,
1956  * the inode it points to is unlinked and put into the link count
1957  * fix up tree.
1958  *
1959  * If a name from the log points to a file or directory that does
1960  * not exist in the FS, it is skipped.  fsyncs on directories
1961  * do not force down inodes inside that directory, just changes to the
1962  * names or unlinks in a directory.
1963  *
1964  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1965  * non-existing inode) and 1 if the name was replayed.
1966  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1967 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1968 				    struct btrfs_root *root,
1969 				    struct btrfs_path *path,
1970 				    struct extent_buffer *eb,
1971 				    struct btrfs_dir_item *di,
1972 				    struct btrfs_key *key)
1973 {
1974 	char *name;
1975 	int name_len;
1976 	struct btrfs_dir_item *dst_di;
1977 	struct btrfs_key found_key;
1978 	struct btrfs_key log_key;
1979 	struct inode *dir;
1980 	u8 log_type;
1981 	bool exists;
1982 	int ret;
1983 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1984 	bool name_added = false;
1985 
1986 	dir = read_one_inode(root, key->objectid);
1987 	if (!dir)
1988 		return -EIO;
1989 
1990 	name_len = btrfs_dir_name_len(eb, di);
1991 	name = kmalloc(name_len, GFP_NOFS);
1992 	if (!name) {
1993 		ret = -ENOMEM;
1994 		goto out;
1995 	}
1996 
1997 	log_type = btrfs_dir_type(eb, di);
1998 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1999 		   name_len);
2000 
2001 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
2002 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
2003 	btrfs_release_path(path);
2004 	if (ret < 0)
2005 		goto out;
2006 	exists = (ret == 0);
2007 	ret = 0;
2008 
2009 	if (key->type == BTRFS_DIR_ITEM_KEY) {
2010 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
2011 				       name, name_len, 1);
2012 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
2013 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
2014 						     key->objectid,
2015 						     key->offset, name,
2016 						     name_len, 1);
2017 	} else {
2018 		/* Corruption */
2019 		ret = -EINVAL;
2020 		goto out;
2021 	}
2022 
2023 	if (IS_ERR(dst_di)) {
2024 		ret = PTR_ERR(dst_di);
2025 		goto out;
2026 	} else if (!dst_di) {
2027 		/* we need a sequence number to insert, so we only
2028 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
2029 		 */
2030 		if (key->type != BTRFS_DIR_INDEX_KEY)
2031 			goto out;
2032 		goto insert;
2033 	}
2034 
2035 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
2036 	/* the existing item matches the logged item */
2037 	if (found_key.objectid == log_key.objectid &&
2038 	    found_key.type == log_key.type &&
2039 	    found_key.offset == log_key.offset &&
2040 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
2041 		update_size = false;
2042 		goto out;
2043 	}
2044 
2045 	/*
2046 	 * don't drop the conflicting directory entry if the inode
2047 	 * for the new entry doesn't exist
2048 	 */
2049 	if (!exists)
2050 		goto out;
2051 
2052 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2053 	if (ret)
2054 		goto out;
2055 
2056 	if (key->type == BTRFS_DIR_INDEX_KEY)
2057 		goto insert;
2058 out:
2059 	btrfs_release_path(path);
2060 	if (!ret && update_size) {
2061 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2062 		ret = btrfs_update_inode(trans, root, dir);
2063 	}
2064 	kfree(name);
2065 	iput(dir);
2066 	if (!ret && name_added)
2067 		ret = 1;
2068 	return ret;
2069 
2070 insert:
2071 	if (name_in_log_ref(root->log_root, name, name_len,
2072 			    key->objectid, log_key.objectid)) {
2073 		/* The dentry will be added later. */
2074 		ret = 0;
2075 		update_size = false;
2076 		goto out;
2077 	}
2078 	btrfs_release_path(path);
2079 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2080 			      name, name_len, &log_key);
2081 	if (ret && ret != -ENOENT && ret != -EEXIST)
2082 		goto out;
2083 	if (!ret)
2084 		name_added = true;
2085 	update_size = false;
2086 	ret = 0;
2087 	goto out;
2088 }
2089 
2090 /*
2091  * find all the names in a directory item and reconcile them into
2092  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2093  * one name in a directory item, but the same code gets used for
2094  * both directory index types
2095  */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)2096 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2097 					struct btrfs_root *root,
2098 					struct btrfs_path *path,
2099 					struct extent_buffer *eb, int slot,
2100 					struct btrfs_key *key)
2101 {
2102 	int ret = 0;
2103 	u32 item_size = btrfs_item_size_nr(eb, slot);
2104 	struct btrfs_dir_item *di;
2105 	int name_len;
2106 	unsigned long ptr;
2107 	unsigned long ptr_end;
2108 	struct btrfs_path *fixup_path = NULL;
2109 
2110 	ptr = btrfs_item_ptr_offset(eb, slot);
2111 	ptr_end = ptr + item_size;
2112 	while (ptr < ptr_end) {
2113 		di = (struct btrfs_dir_item *)ptr;
2114 		name_len = btrfs_dir_name_len(eb, di);
2115 		ret = replay_one_name(trans, root, path, eb, di, key);
2116 		if (ret < 0)
2117 			break;
2118 		ptr = (unsigned long)(di + 1);
2119 		ptr += name_len;
2120 
2121 		/*
2122 		 * If this entry refers to a non-directory (directories can not
2123 		 * have a link count > 1) and it was added in the transaction
2124 		 * that was not committed, make sure we fixup the link count of
2125 		 * the inode it the entry points to. Otherwise something like
2126 		 * the following would result in a directory pointing to an
2127 		 * inode with a wrong link that does not account for this dir
2128 		 * entry:
2129 		 *
2130 		 * mkdir testdir
2131 		 * touch testdir/foo
2132 		 * touch testdir/bar
2133 		 * sync
2134 		 *
2135 		 * ln testdir/bar testdir/bar_link
2136 		 * ln testdir/foo testdir/foo_link
2137 		 * xfs_io -c "fsync" testdir/bar
2138 		 *
2139 		 * <power failure>
2140 		 *
2141 		 * mount fs, log replay happens
2142 		 *
2143 		 * File foo would remain with a link count of 1 when it has two
2144 		 * entries pointing to it in the directory testdir. This would
2145 		 * make it impossible to ever delete the parent directory has
2146 		 * it would result in stale dentries that can never be deleted.
2147 		 */
2148 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2149 			struct btrfs_key di_key;
2150 
2151 			if (!fixup_path) {
2152 				fixup_path = btrfs_alloc_path();
2153 				if (!fixup_path) {
2154 					ret = -ENOMEM;
2155 					break;
2156 				}
2157 			}
2158 
2159 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2160 			ret = link_to_fixup_dir(trans, root, fixup_path,
2161 						di_key.objectid);
2162 			if (ret)
2163 				break;
2164 		}
2165 		ret = 0;
2166 	}
2167 	btrfs_free_path(fixup_path);
2168 	return ret;
2169 }
2170 
2171 /*
2172  * directory replay has two parts.  There are the standard directory
2173  * items in the log copied from the subvolume, and range items
2174  * created in the log while the subvolume was logged.
2175  *
2176  * The range items tell us which parts of the key space the log
2177  * is authoritative for.  During replay, if a key in the subvolume
2178  * directory is in a logged range item, but not actually in the log
2179  * that means it was deleted from the directory before the fsync
2180  * and should be removed.
2181  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)2182 static noinline int find_dir_range(struct btrfs_root *root,
2183 				   struct btrfs_path *path,
2184 				   u64 dirid, int key_type,
2185 				   u64 *start_ret, u64 *end_ret)
2186 {
2187 	struct btrfs_key key;
2188 	u64 found_end;
2189 	struct btrfs_dir_log_item *item;
2190 	int ret;
2191 	int nritems;
2192 
2193 	if (*start_ret == (u64)-1)
2194 		return 1;
2195 
2196 	key.objectid = dirid;
2197 	key.type = key_type;
2198 	key.offset = *start_ret;
2199 
2200 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2201 	if (ret < 0)
2202 		goto out;
2203 	if (ret > 0) {
2204 		if (path->slots[0] == 0)
2205 			goto out;
2206 		path->slots[0]--;
2207 	}
2208 	if (ret != 0)
2209 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2210 
2211 	if (key.type != key_type || key.objectid != dirid) {
2212 		ret = 1;
2213 		goto next;
2214 	}
2215 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2216 			      struct btrfs_dir_log_item);
2217 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2218 
2219 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2220 		ret = 0;
2221 		*start_ret = key.offset;
2222 		*end_ret = found_end;
2223 		goto out;
2224 	}
2225 	ret = 1;
2226 next:
2227 	/* check the next slot in the tree to see if it is a valid item */
2228 	nritems = btrfs_header_nritems(path->nodes[0]);
2229 	path->slots[0]++;
2230 	if (path->slots[0] >= nritems) {
2231 		ret = btrfs_next_leaf(root, path);
2232 		if (ret)
2233 			goto out;
2234 	}
2235 
2236 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2237 
2238 	if (key.type != key_type || key.objectid != dirid) {
2239 		ret = 1;
2240 		goto out;
2241 	}
2242 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2243 			      struct btrfs_dir_log_item);
2244 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2245 	*start_ret = key.offset;
2246 	*end_ret = found_end;
2247 	ret = 0;
2248 out:
2249 	btrfs_release_path(path);
2250 	return ret;
2251 }
2252 
2253 /*
2254  * this looks for a given directory item in the log.  If the directory
2255  * item is not in the log, the item is removed and the inode it points
2256  * to is unlinked
2257  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)2258 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2259 				      struct btrfs_root *root,
2260 				      struct btrfs_root *log,
2261 				      struct btrfs_path *path,
2262 				      struct btrfs_path *log_path,
2263 				      struct inode *dir,
2264 				      struct btrfs_key *dir_key)
2265 {
2266 	int ret;
2267 	struct extent_buffer *eb;
2268 	int slot;
2269 	u32 item_size;
2270 	struct btrfs_dir_item *di;
2271 	struct btrfs_dir_item *log_di;
2272 	int name_len;
2273 	unsigned long ptr;
2274 	unsigned long ptr_end;
2275 	char *name;
2276 	struct inode *inode;
2277 	struct btrfs_key location;
2278 
2279 again:
2280 	eb = path->nodes[0];
2281 	slot = path->slots[0];
2282 	item_size = btrfs_item_size_nr(eb, slot);
2283 	ptr = btrfs_item_ptr_offset(eb, slot);
2284 	ptr_end = ptr + item_size;
2285 	while (ptr < ptr_end) {
2286 		di = (struct btrfs_dir_item *)ptr;
2287 		name_len = btrfs_dir_name_len(eb, di);
2288 		name = kmalloc(name_len, GFP_NOFS);
2289 		if (!name) {
2290 			ret = -ENOMEM;
2291 			goto out;
2292 		}
2293 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2294 				  name_len);
2295 		log_di = NULL;
2296 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2297 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2298 						       dir_key->objectid,
2299 						       name, name_len, 0);
2300 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2301 			log_di = btrfs_lookup_dir_index_item(trans, log,
2302 						     log_path,
2303 						     dir_key->objectid,
2304 						     dir_key->offset,
2305 						     name, name_len, 0);
2306 		}
2307 		if (!log_di) {
2308 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2309 			btrfs_release_path(path);
2310 			btrfs_release_path(log_path);
2311 			inode = read_one_inode(root, location.objectid);
2312 			if (!inode) {
2313 				kfree(name);
2314 				return -EIO;
2315 			}
2316 
2317 			ret = link_to_fixup_dir(trans, root,
2318 						path, location.objectid);
2319 			if (ret) {
2320 				kfree(name);
2321 				iput(inode);
2322 				goto out;
2323 			}
2324 
2325 			inc_nlink(inode);
2326 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2327 					BTRFS_I(inode), name, name_len);
2328 			if (!ret)
2329 				ret = btrfs_run_delayed_items(trans);
2330 			kfree(name);
2331 			iput(inode);
2332 			if (ret)
2333 				goto out;
2334 
2335 			/* there might still be more names under this key
2336 			 * check and repeat if required
2337 			 */
2338 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2339 						0, 0);
2340 			if (ret == 0)
2341 				goto again;
2342 			ret = 0;
2343 			goto out;
2344 		} else if (IS_ERR(log_di)) {
2345 			kfree(name);
2346 			return PTR_ERR(log_di);
2347 		}
2348 		btrfs_release_path(log_path);
2349 		kfree(name);
2350 
2351 		ptr = (unsigned long)(di + 1);
2352 		ptr += name_len;
2353 	}
2354 	ret = 0;
2355 out:
2356 	btrfs_release_path(path);
2357 	btrfs_release_path(log_path);
2358 	return ret;
2359 }
2360 
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2361 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2362 			      struct btrfs_root *root,
2363 			      struct btrfs_root *log,
2364 			      struct btrfs_path *path,
2365 			      const u64 ino)
2366 {
2367 	struct btrfs_key search_key;
2368 	struct btrfs_path *log_path;
2369 	int i;
2370 	int nritems;
2371 	int ret;
2372 
2373 	log_path = btrfs_alloc_path();
2374 	if (!log_path)
2375 		return -ENOMEM;
2376 
2377 	search_key.objectid = ino;
2378 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2379 	search_key.offset = 0;
2380 again:
2381 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2382 	if (ret < 0)
2383 		goto out;
2384 process_leaf:
2385 	nritems = btrfs_header_nritems(path->nodes[0]);
2386 	for (i = path->slots[0]; i < nritems; i++) {
2387 		struct btrfs_key key;
2388 		struct btrfs_dir_item *di;
2389 		struct btrfs_dir_item *log_di;
2390 		u32 total_size;
2391 		u32 cur;
2392 
2393 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2394 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2395 			ret = 0;
2396 			goto out;
2397 		}
2398 
2399 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2400 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2401 		cur = 0;
2402 		while (cur < total_size) {
2403 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2404 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2405 			u32 this_len = sizeof(*di) + name_len + data_len;
2406 			char *name;
2407 
2408 			name = kmalloc(name_len, GFP_NOFS);
2409 			if (!name) {
2410 				ret = -ENOMEM;
2411 				goto out;
2412 			}
2413 			read_extent_buffer(path->nodes[0], name,
2414 					   (unsigned long)(di + 1), name_len);
2415 
2416 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2417 						    name, name_len, 0);
2418 			btrfs_release_path(log_path);
2419 			if (!log_di) {
2420 				/* Doesn't exist in log tree, so delete it. */
2421 				btrfs_release_path(path);
2422 				di = btrfs_lookup_xattr(trans, root, path, ino,
2423 							name, name_len, -1);
2424 				kfree(name);
2425 				if (IS_ERR(di)) {
2426 					ret = PTR_ERR(di);
2427 					goto out;
2428 				}
2429 				ASSERT(di);
2430 				ret = btrfs_delete_one_dir_name(trans, root,
2431 								path, di);
2432 				if (ret)
2433 					goto out;
2434 				btrfs_release_path(path);
2435 				search_key = key;
2436 				goto again;
2437 			}
2438 			kfree(name);
2439 			if (IS_ERR(log_di)) {
2440 				ret = PTR_ERR(log_di);
2441 				goto out;
2442 			}
2443 			cur += this_len;
2444 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2445 		}
2446 	}
2447 	ret = btrfs_next_leaf(root, path);
2448 	if (ret > 0)
2449 		ret = 0;
2450 	else if (ret == 0)
2451 		goto process_leaf;
2452 out:
2453 	btrfs_free_path(log_path);
2454 	btrfs_release_path(path);
2455 	return ret;
2456 }
2457 
2458 
2459 /*
2460  * deletion replay happens before we copy any new directory items
2461  * out of the log or out of backreferences from inodes.  It
2462  * scans the log to find ranges of keys that log is authoritative for,
2463  * and then scans the directory to find items in those ranges that are
2464  * not present in the log.
2465  *
2466  * Anything we don't find in the log is unlinked and removed from the
2467  * directory.
2468  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2469 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2470 				       struct btrfs_root *root,
2471 				       struct btrfs_root *log,
2472 				       struct btrfs_path *path,
2473 				       u64 dirid, int del_all)
2474 {
2475 	u64 range_start;
2476 	u64 range_end;
2477 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2478 	int ret = 0;
2479 	struct btrfs_key dir_key;
2480 	struct btrfs_key found_key;
2481 	struct btrfs_path *log_path;
2482 	struct inode *dir;
2483 
2484 	dir_key.objectid = dirid;
2485 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2486 	log_path = btrfs_alloc_path();
2487 	if (!log_path)
2488 		return -ENOMEM;
2489 
2490 	dir = read_one_inode(root, dirid);
2491 	/* it isn't an error if the inode isn't there, that can happen
2492 	 * because we replay the deletes before we copy in the inode item
2493 	 * from the log
2494 	 */
2495 	if (!dir) {
2496 		btrfs_free_path(log_path);
2497 		return 0;
2498 	}
2499 again:
2500 	range_start = 0;
2501 	range_end = 0;
2502 	while (1) {
2503 		if (del_all)
2504 			range_end = (u64)-1;
2505 		else {
2506 			ret = find_dir_range(log, path, dirid, key_type,
2507 					     &range_start, &range_end);
2508 			if (ret < 0)
2509 				goto out;
2510 			else if (ret > 0)
2511 				break;
2512 		}
2513 
2514 		dir_key.offset = range_start;
2515 		while (1) {
2516 			int nritems;
2517 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2518 						0, 0);
2519 			if (ret < 0)
2520 				goto out;
2521 
2522 			nritems = btrfs_header_nritems(path->nodes[0]);
2523 			if (path->slots[0] >= nritems) {
2524 				ret = btrfs_next_leaf(root, path);
2525 				if (ret == 1)
2526 					break;
2527 				else if (ret < 0)
2528 					goto out;
2529 			}
2530 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2531 					      path->slots[0]);
2532 			if (found_key.objectid != dirid ||
2533 			    found_key.type != dir_key.type)
2534 				goto next_type;
2535 
2536 			if (found_key.offset > range_end)
2537 				break;
2538 
2539 			ret = check_item_in_log(trans, root, log, path,
2540 						log_path, dir,
2541 						&found_key);
2542 			if (ret)
2543 				goto out;
2544 			if (found_key.offset == (u64)-1)
2545 				break;
2546 			dir_key.offset = found_key.offset + 1;
2547 		}
2548 		btrfs_release_path(path);
2549 		if (range_end == (u64)-1)
2550 			break;
2551 		range_start = range_end + 1;
2552 	}
2553 
2554 next_type:
2555 	ret = 0;
2556 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2557 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2558 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2559 		btrfs_release_path(path);
2560 		goto again;
2561 	}
2562 out:
2563 	btrfs_release_path(path);
2564 	btrfs_free_path(log_path);
2565 	iput(dir);
2566 	return ret;
2567 }
2568 
2569 /*
2570  * the process_func used to replay items from the log tree.  This
2571  * gets called in two different stages.  The first stage just looks
2572  * for inodes and makes sure they are all copied into the subvolume.
2573  *
2574  * The second stage copies all the other item types from the log into
2575  * the subvolume.  The two stage approach is slower, but gets rid of
2576  * lots of complexity around inodes referencing other inodes that exist
2577  * only in the log (references come from either directory items or inode
2578  * back refs).
2579  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2580 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2581 			     struct walk_control *wc, u64 gen, int level)
2582 {
2583 	int nritems;
2584 	struct btrfs_path *path;
2585 	struct btrfs_root *root = wc->replay_dest;
2586 	struct btrfs_key key;
2587 	int i;
2588 	int ret;
2589 
2590 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2591 	if (ret)
2592 		return ret;
2593 
2594 	level = btrfs_header_level(eb);
2595 
2596 	if (level != 0)
2597 		return 0;
2598 
2599 	path = btrfs_alloc_path();
2600 	if (!path)
2601 		return -ENOMEM;
2602 
2603 	nritems = btrfs_header_nritems(eb);
2604 	for (i = 0; i < nritems; i++) {
2605 		btrfs_item_key_to_cpu(eb, &key, i);
2606 
2607 		/* inode keys are done during the first stage */
2608 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2609 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2610 			struct btrfs_inode_item *inode_item;
2611 			u32 mode;
2612 
2613 			inode_item = btrfs_item_ptr(eb, i,
2614 					    struct btrfs_inode_item);
2615 			/*
2616 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2617 			 * and never got linked before the fsync, skip it, as
2618 			 * replaying it is pointless since it would be deleted
2619 			 * later. We skip logging tmpfiles, but it's always
2620 			 * possible we are replaying a log created with a kernel
2621 			 * that used to log tmpfiles.
2622 			 */
2623 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2624 				wc->ignore_cur_inode = true;
2625 				continue;
2626 			} else {
2627 				wc->ignore_cur_inode = false;
2628 			}
2629 			ret = replay_xattr_deletes(wc->trans, root, log,
2630 						   path, key.objectid);
2631 			if (ret)
2632 				break;
2633 			mode = btrfs_inode_mode(eb, inode_item);
2634 			if (S_ISDIR(mode)) {
2635 				ret = replay_dir_deletes(wc->trans,
2636 					 root, log, path, key.objectid, 0);
2637 				if (ret)
2638 					break;
2639 			}
2640 			ret = overwrite_item(wc->trans, root, path,
2641 					     eb, i, &key);
2642 			if (ret)
2643 				break;
2644 
2645 			/*
2646 			 * Before replaying extents, truncate the inode to its
2647 			 * size. We need to do it now and not after log replay
2648 			 * because before an fsync we can have prealloc extents
2649 			 * added beyond the inode's i_size. If we did it after,
2650 			 * through orphan cleanup for example, we would drop
2651 			 * those prealloc extents just after replaying them.
2652 			 */
2653 			if (S_ISREG(mode)) {
2654 				struct inode *inode;
2655 				u64 from;
2656 
2657 				inode = read_one_inode(root, key.objectid);
2658 				if (!inode) {
2659 					ret = -EIO;
2660 					break;
2661 				}
2662 				from = ALIGN(i_size_read(inode),
2663 					     root->fs_info->sectorsize);
2664 				ret = btrfs_drop_extents(wc->trans, root, inode,
2665 							 from, (u64)-1, 1);
2666 				if (!ret) {
2667 					/* Update the inode's nbytes. */
2668 					ret = btrfs_update_inode(wc->trans,
2669 								 root, inode);
2670 				}
2671 				iput(inode);
2672 				if (ret)
2673 					break;
2674 			}
2675 
2676 			ret = link_to_fixup_dir(wc->trans, root,
2677 						path, key.objectid);
2678 			if (ret)
2679 				break;
2680 		}
2681 
2682 		if (wc->ignore_cur_inode)
2683 			continue;
2684 
2685 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2686 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2687 			ret = replay_one_dir_item(wc->trans, root, path,
2688 						  eb, i, &key);
2689 			if (ret)
2690 				break;
2691 		}
2692 
2693 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2694 			continue;
2695 
2696 		/* these keys are simply copied */
2697 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2698 			ret = overwrite_item(wc->trans, root, path,
2699 					     eb, i, &key);
2700 			if (ret)
2701 				break;
2702 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2703 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2704 			ret = add_inode_ref(wc->trans, root, log, path,
2705 					    eb, i, &key);
2706 			if (ret && ret != -ENOENT)
2707 				break;
2708 			ret = 0;
2709 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2710 			ret = replay_one_extent(wc->trans, root, path,
2711 						eb, i, &key);
2712 			if (ret)
2713 				break;
2714 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2715 			ret = replay_one_dir_item(wc->trans, root, path,
2716 						  eb, i, &key);
2717 			if (ret)
2718 				break;
2719 		}
2720 	}
2721 	btrfs_free_path(path);
2722 	return ret;
2723 }
2724 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2725 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2726 				   struct btrfs_root *root,
2727 				   struct btrfs_path *path, int *level,
2728 				   struct walk_control *wc)
2729 {
2730 	struct btrfs_fs_info *fs_info = root->fs_info;
2731 	u64 root_owner;
2732 	u64 bytenr;
2733 	u64 ptr_gen;
2734 	struct extent_buffer *next;
2735 	struct extent_buffer *cur;
2736 	struct extent_buffer *parent;
2737 	u32 blocksize;
2738 	int ret = 0;
2739 
2740 	WARN_ON(*level < 0);
2741 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2742 
2743 	while (*level > 0) {
2744 		struct btrfs_key first_key;
2745 
2746 		WARN_ON(*level < 0);
2747 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2748 		cur = path->nodes[*level];
2749 
2750 		WARN_ON(btrfs_header_level(cur) != *level);
2751 
2752 		if (path->slots[*level] >=
2753 		    btrfs_header_nritems(cur))
2754 			break;
2755 
2756 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2757 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2758 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2759 		blocksize = fs_info->nodesize;
2760 
2761 		parent = path->nodes[*level];
2762 		root_owner = btrfs_header_owner(parent);
2763 
2764 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2765 		if (IS_ERR(next))
2766 			return PTR_ERR(next);
2767 
2768 		if (*level == 1) {
2769 			ret = wc->process_func(root, next, wc, ptr_gen,
2770 					       *level - 1);
2771 			if (ret) {
2772 				free_extent_buffer(next);
2773 				return ret;
2774 			}
2775 
2776 			path->slots[*level]++;
2777 			if (wc->free) {
2778 				ret = btrfs_read_buffer(next, ptr_gen,
2779 							*level - 1, &first_key);
2780 				if (ret) {
2781 					free_extent_buffer(next);
2782 					return ret;
2783 				}
2784 
2785 				if (trans) {
2786 					btrfs_tree_lock(next);
2787 					btrfs_set_lock_blocking_write(next);
2788 					btrfs_clean_tree_block(next);
2789 					btrfs_wait_tree_block_writeback(next);
2790 					btrfs_tree_unlock(next);
2791 				} else {
2792 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2793 						clear_extent_buffer_dirty(next);
2794 				}
2795 
2796 				WARN_ON(root_owner !=
2797 					BTRFS_TREE_LOG_OBJECTID);
2798 				ret = btrfs_free_and_pin_reserved_extent(
2799 							fs_info, bytenr,
2800 							blocksize);
2801 				if (ret) {
2802 					free_extent_buffer(next);
2803 					return ret;
2804 				}
2805 			}
2806 			free_extent_buffer(next);
2807 			continue;
2808 		}
2809 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2810 		if (ret) {
2811 			free_extent_buffer(next);
2812 			return ret;
2813 		}
2814 
2815 		WARN_ON(*level <= 0);
2816 		if (path->nodes[*level-1])
2817 			free_extent_buffer(path->nodes[*level-1]);
2818 		path->nodes[*level-1] = next;
2819 		*level = btrfs_header_level(next);
2820 		path->slots[*level] = 0;
2821 		cond_resched();
2822 	}
2823 	WARN_ON(*level < 0);
2824 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2825 
2826 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2827 
2828 	cond_resched();
2829 	return 0;
2830 }
2831 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2832 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2833 				 struct btrfs_root *root,
2834 				 struct btrfs_path *path, int *level,
2835 				 struct walk_control *wc)
2836 {
2837 	struct btrfs_fs_info *fs_info = root->fs_info;
2838 	u64 root_owner;
2839 	int i;
2840 	int slot;
2841 	int ret;
2842 
2843 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2844 		slot = path->slots[i];
2845 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2846 			path->slots[i]++;
2847 			*level = i;
2848 			WARN_ON(*level == 0);
2849 			return 0;
2850 		} else {
2851 			struct extent_buffer *parent;
2852 			if (path->nodes[*level] == root->node)
2853 				parent = path->nodes[*level];
2854 			else
2855 				parent = path->nodes[*level + 1];
2856 
2857 			root_owner = btrfs_header_owner(parent);
2858 			ret = wc->process_func(root, path->nodes[*level], wc,
2859 				 btrfs_header_generation(path->nodes[*level]),
2860 				 *level);
2861 			if (ret)
2862 				return ret;
2863 
2864 			if (wc->free) {
2865 				struct extent_buffer *next;
2866 
2867 				next = path->nodes[*level];
2868 
2869 				if (trans) {
2870 					btrfs_tree_lock(next);
2871 					btrfs_set_lock_blocking_write(next);
2872 					btrfs_clean_tree_block(next);
2873 					btrfs_wait_tree_block_writeback(next);
2874 					btrfs_tree_unlock(next);
2875 				} else {
2876 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2877 						clear_extent_buffer_dirty(next);
2878 				}
2879 
2880 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2881 				ret = btrfs_free_and_pin_reserved_extent(
2882 						fs_info,
2883 						path->nodes[*level]->start,
2884 						path->nodes[*level]->len);
2885 				if (ret)
2886 					return ret;
2887 			}
2888 			free_extent_buffer(path->nodes[*level]);
2889 			path->nodes[*level] = NULL;
2890 			*level = i + 1;
2891 		}
2892 	}
2893 	return 1;
2894 }
2895 
2896 /*
2897  * drop the reference count on the tree rooted at 'snap'.  This traverses
2898  * the tree freeing any blocks that have a ref count of zero after being
2899  * decremented.
2900  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2901 static int walk_log_tree(struct btrfs_trans_handle *trans,
2902 			 struct btrfs_root *log, struct walk_control *wc)
2903 {
2904 	struct btrfs_fs_info *fs_info = log->fs_info;
2905 	int ret = 0;
2906 	int wret;
2907 	int level;
2908 	struct btrfs_path *path;
2909 	int orig_level;
2910 
2911 	path = btrfs_alloc_path();
2912 	if (!path)
2913 		return -ENOMEM;
2914 
2915 	level = btrfs_header_level(log->node);
2916 	orig_level = level;
2917 	path->nodes[level] = log->node;
2918 	extent_buffer_get(log->node);
2919 	path->slots[level] = 0;
2920 
2921 	while (1) {
2922 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2923 		if (wret > 0)
2924 			break;
2925 		if (wret < 0) {
2926 			ret = wret;
2927 			goto out;
2928 		}
2929 
2930 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2931 		if (wret > 0)
2932 			break;
2933 		if (wret < 0) {
2934 			ret = wret;
2935 			goto out;
2936 		}
2937 	}
2938 
2939 	/* was the root node processed? if not, catch it here */
2940 	if (path->nodes[orig_level]) {
2941 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2942 			 btrfs_header_generation(path->nodes[orig_level]),
2943 			 orig_level);
2944 		if (ret)
2945 			goto out;
2946 		if (wc->free) {
2947 			struct extent_buffer *next;
2948 
2949 			next = path->nodes[orig_level];
2950 
2951 			if (trans) {
2952 				btrfs_tree_lock(next);
2953 				btrfs_set_lock_blocking_write(next);
2954 				btrfs_clean_tree_block(next);
2955 				btrfs_wait_tree_block_writeback(next);
2956 				btrfs_tree_unlock(next);
2957 			} else {
2958 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2959 					clear_extent_buffer_dirty(next);
2960 			}
2961 
2962 			WARN_ON(log->root_key.objectid !=
2963 				BTRFS_TREE_LOG_OBJECTID);
2964 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2965 							next->start, next->len);
2966 			if (ret)
2967 				goto out;
2968 		}
2969 	}
2970 
2971 out:
2972 	btrfs_free_path(path);
2973 	return ret;
2974 }
2975 
2976 /*
2977  * helper function to update the item for a given subvolumes log root
2978  * in the tree of log roots
2979  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2980 static int update_log_root(struct btrfs_trans_handle *trans,
2981 			   struct btrfs_root *log,
2982 			   struct btrfs_root_item *root_item)
2983 {
2984 	struct btrfs_fs_info *fs_info = log->fs_info;
2985 	int ret;
2986 
2987 	if (log->log_transid == 1) {
2988 		/* insert root item on the first sync */
2989 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2990 				&log->root_key, root_item);
2991 	} else {
2992 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2993 				&log->root_key, root_item);
2994 	}
2995 	return ret;
2996 }
2997 
wait_log_commit(struct btrfs_root * root,int transid)2998 static void wait_log_commit(struct btrfs_root *root, int transid)
2999 {
3000 	DEFINE_WAIT(wait);
3001 	int index = transid % 2;
3002 
3003 	/*
3004 	 * we only allow two pending log transactions at a time,
3005 	 * so we know that if ours is more than 2 older than the
3006 	 * current transaction, we're done
3007 	 */
3008 	for (;;) {
3009 		prepare_to_wait(&root->log_commit_wait[index],
3010 				&wait, TASK_UNINTERRUPTIBLE);
3011 
3012 		if (!(root->log_transid_committed < transid &&
3013 		      atomic_read(&root->log_commit[index])))
3014 			break;
3015 
3016 		mutex_unlock(&root->log_mutex);
3017 		schedule();
3018 		mutex_lock(&root->log_mutex);
3019 	}
3020 	finish_wait(&root->log_commit_wait[index], &wait);
3021 }
3022 
wait_for_writer(struct btrfs_root * root)3023 static void wait_for_writer(struct btrfs_root *root)
3024 {
3025 	DEFINE_WAIT(wait);
3026 
3027 	for (;;) {
3028 		prepare_to_wait(&root->log_writer_wait, &wait,
3029 				TASK_UNINTERRUPTIBLE);
3030 		if (!atomic_read(&root->log_writers))
3031 			break;
3032 
3033 		mutex_unlock(&root->log_mutex);
3034 		schedule();
3035 		mutex_lock(&root->log_mutex);
3036 	}
3037 	finish_wait(&root->log_writer_wait, &wait);
3038 }
3039 
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)3040 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
3041 					struct btrfs_log_ctx *ctx)
3042 {
3043 	if (!ctx)
3044 		return;
3045 
3046 	mutex_lock(&root->log_mutex);
3047 	list_del_init(&ctx->list);
3048 	mutex_unlock(&root->log_mutex);
3049 }
3050 
3051 /*
3052  * Invoked in log mutex context, or be sure there is no other task which
3053  * can access the list.
3054  */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)3055 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3056 					     int index, int error)
3057 {
3058 	struct btrfs_log_ctx *ctx;
3059 	struct btrfs_log_ctx *safe;
3060 
3061 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3062 		list_del_init(&ctx->list);
3063 		ctx->log_ret = error;
3064 	}
3065 
3066 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3067 }
3068 
3069 /*
3070  * btrfs_sync_log does sends a given tree log down to the disk and
3071  * updates the super blocks to record it.  When this call is done,
3072  * you know that any inodes previously logged are safely on disk only
3073  * if it returns 0.
3074  *
3075  * Any other return value means you need to call btrfs_commit_transaction.
3076  * Some of the edge cases for fsyncing directories that have had unlinks
3077  * or renames done in the past mean that sometimes the only safe
3078  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3079  * that has happened.
3080  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)3081 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3082 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3083 {
3084 	int index1;
3085 	int index2;
3086 	int mark;
3087 	int ret;
3088 	struct btrfs_fs_info *fs_info = root->fs_info;
3089 	struct btrfs_root *log = root->log_root;
3090 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3091 	struct btrfs_root_item new_root_item;
3092 	int log_transid = 0;
3093 	struct btrfs_log_ctx root_log_ctx;
3094 	struct blk_plug plug;
3095 
3096 	mutex_lock(&root->log_mutex);
3097 	log_transid = ctx->log_transid;
3098 	if (root->log_transid_committed >= log_transid) {
3099 		mutex_unlock(&root->log_mutex);
3100 		return ctx->log_ret;
3101 	}
3102 
3103 	index1 = log_transid % 2;
3104 	if (atomic_read(&root->log_commit[index1])) {
3105 		wait_log_commit(root, log_transid);
3106 		mutex_unlock(&root->log_mutex);
3107 		return ctx->log_ret;
3108 	}
3109 	ASSERT(log_transid == root->log_transid);
3110 	atomic_set(&root->log_commit[index1], 1);
3111 
3112 	/* wait for previous tree log sync to complete */
3113 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3114 		wait_log_commit(root, log_transid - 1);
3115 
3116 	while (1) {
3117 		int batch = atomic_read(&root->log_batch);
3118 		/* when we're on an ssd, just kick the log commit out */
3119 		if (!btrfs_test_opt(fs_info, SSD) &&
3120 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3121 			mutex_unlock(&root->log_mutex);
3122 			schedule_timeout_uninterruptible(1);
3123 			mutex_lock(&root->log_mutex);
3124 		}
3125 		wait_for_writer(root);
3126 		if (batch == atomic_read(&root->log_batch))
3127 			break;
3128 	}
3129 
3130 	/* bail out if we need to do a full commit */
3131 	if (btrfs_need_log_full_commit(trans)) {
3132 		ret = -EAGAIN;
3133 		mutex_unlock(&root->log_mutex);
3134 		goto out;
3135 	}
3136 
3137 	if (log_transid % 2 == 0)
3138 		mark = EXTENT_DIRTY;
3139 	else
3140 		mark = EXTENT_NEW;
3141 
3142 	/* we start IO on  all the marked extents here, but we don't actually
3143 	 * wait for them until later.
3144 	 */
3145 	blk_start_plug(&plug);
3146 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3147 	if (ret) {
3148 		blk_finish_plug(&plug);
3149 		btrfs_abort_transaction(trans, ret);
3150 		btrfs_set_log_full_commit(trans);
3151 		mutex_unlock(&root->log_mutex);
3152 		goto out;
3153 	}
3154 
3155 	/*
3156 	 * We _must_ update under the root->log_mutex in order to make sure we
3157 	 * have a consistent view of the log root we are trying to commit at
3158 	 * this moment.
3159 	 *
3160 	 * We _must_ copy this into a local copy, because we are not holding the
3161 	 * log_root_tree->log_mutex yet.  This is important because when we
3162 	 * commit the log_root_tree we must have a consistent view of the
3163 	 * log_root_tree when we update the super block to point at the
3164 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3165 	 * with the commit and possibly point at the new block which we may not
3166 	 * have written out.
3167 	 */
3168 	btrfs_set_root_node(&log->root_item, log->node);
3169 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3170 
3171 	root->log_transid++;
3172 	log->log_transid = root->log_transid;
3173 	root->log_start_pid = 0;
3174 	/*
3175 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3176 	 * in their headers. new modifications of the log will be written to
3177 	 * new positions. so it's safe to allow log writers to go in.
3178 	 */
3179 	mutex_unlock(&root->log_mutex);
3180 
3181 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3182 
3183 	mutex_lock(&log_root_tree->log_mutex);
3184 
3185 	index2 = log_root_tree->log_transid % 2;
3186 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3187 	root_log_ctx.log_transid = log_root_tree->log_transid;
3188 
3189 	/*
3190 	 * Now we are safe to update the log_root_tree because we're under the
3191 	 * log_mutex, and we're a current writer so we're holding the commit
3192 	 * open until we drop the log_mutex.
3193 	 */
3194 	ret = update_log_root(trans, log, &new_root_item);
3195 	if (ret) {
3196 		if (!list_empty(&root_log_ctx.list))
3197 			list_del_init(&root_log_ctx.list);
3198 
3199 		blk_finish_plug(&plug);
3200 		btrfs_set_log_full_commit(trans);
3201 
3202 		if (ret != -ENOSPC) {
3203 			btrfs_abort_transaction(trans, ret);
3204 			mutex_unlock(&log_root_tree->log_mutex);
3205 			goto out;
3206 		}
3207 		btrfs_wait_tree_log_extents(log, mark);
3208 		mutex_unlock(&log_root_tree->log_mutex);
3209 		ret = -EAGAIN;
3210 		goto out;
3211 	}
3212 
3213 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3214 		blk_finish_plug(&plug);
3215 		list_del_init(&root_log_ctx.list);
3216 		mutex_unlock(&log_root_tree->log_mutex);
3217 		ret = root_log_ctx.log_ret;
3218 		goto out;
3219 	}
3220 
3221 	index2 = root_log_ctx.log_transid % 2;
3222 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3223 		blk_finish_plug(&plug);
3224 		ret = btrfs_wait_tree_log_extents(log, mark);
3225 		wait_log_commit(log_root_tree,
3226 				root_log_ctx.log_transid);
3227 		mutex_unlock(&log_root_tree->log_mutex);
3228 		if (!ret)
3229 			ret = root_log_ctx.log_ret;
3230 		goto out;
3231 	}
3232 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3233 	atomic_set(&log_root_tree->log_commit[index2], 1);
3234 
3235 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3236 		wait_log_commit(log_root_tree,
3237 				root_log_ctx.log_transid - 1);
3238 	}
3239 
3240 	/*
3241 	 * now that we've moved on to the tree of log tree roots,
3242 	 * check the full commit flag again
3243 	 */
3244 	if (btrfs_need_log_full_commit(trans)) {
3245 		blk_finish_plug(&plug);
3246 		btrfs_wait_tree_log_extents(log, mark);
3247 		mutex_unlock(&log_root_tree->log_mutex);
3248 		ret = -EAGAIN;
3249 		goto out_wake_log_root;
3250 	}
3251 
3252 	ret = btrfs_write_marked_extents(fs_info,
3253 					 &log_root_tree->dirty_log_pages,
3254 					 EXTENT_DIRTY | EXTENT_NEW);
3255 	blk_finish_plug(&plug);
3256 	if (ret) {
3257 		btrfs_set_log_full_commit(trans);
3258 		btrfs_abort_transaction(trans, ret);
3259 		mutex_unlock(&log_root_tree->log_mutex);
3260 		goto out_wake_log_root;
3261 	}
3262 	ret = btrfs_wait_tree_log_extents(log, mark);
3263 	if (!ret)
3264 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3265 						  EXTENT_NEW | EXTENT_DIRTY);
3266 	if (ret) {
3267 		btrfs_set_log_full_commit(trans);
3268 		mutex_unlock(&log_root_tree->log_mutex);
3269 		goto out_wake_log_root;
3270 	}
3271 
3272 	btrfs_set_super_log_root(fs_info->super_for_commit,
3273 				 log_root_tree->node->start);
3274 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3275 				       btrfs_header_level(log_root_tree->node));
3276 
3277 	log_root_tree->log_transid++;
3278 	mutex_unlock(&log_root_tree->log_mutex);
3279 
3280 	/*
3281 	 * Nobody else is going to jump in and write the ctree
3282 	 * super here because the log_commit atomic below is protecting
3283 	 * us.  We must be called with a transaction handle pinning
3284 	 * the running transaction open, so a full commit can't hop
3285 	 * in and cause problems either.
3286 	 */
3287 	ret = write_all_supers(fs_info, 1);
3288 	if (ret) {
3289 		btrfs_set_log_full_commit(trans);
3290 		btrfs_abort_transaction(trans, ret);
3291 		goto out_wake_log_root;
3292 	}
3293 
3294 	mutex_lock(&root->log_mutex);
3295 	if (root->last_log_commit < log_transid)
3296 		root->last_log_commit = log_transid;
3297 	mutex_unlock(&root->log_mutex);
3298 
3299 out_wake_log_root:
3300 	mutex_lock(&log_root_tree->log_mutex);
3301 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3302 
3303 	log_root_tree->log_transid_committed++;
3304 	atomic_set(&log_root_tree->log_commit[index2], 0);
3305 	mutex_unlock(&log_root_tree->log_mutex);
3306 
3307 	/*
3308 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3309 	 * all the updates above are seen by the woken threads. It might not be
3310 	 * necessary, but proving that seems to be hard.
3311 	 */
3312 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3313 out:
3314 	mutex_lock(&root->log_mutex);
3315 	btrfs_remove_all_log_ctxs(root, index1, ret);
3316 	root->log_transid_committed++;
3317 	atomic_set(&root->log_commit[index1], 0);
3318 	mutex_unlock(&root->log_mutex);
3319 
3320 	/*
3321 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3322 	 * all the updates above are seen by the woken threads. It might not be
3323 	 * necessary, but proving that seems to be hard.
3324 	 */
3325 	cond_wake_up(&root->log_commit_wait[index1]);
3326 	return ret;
3327 }
3328 
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3329 static void free_log_tree(struct btrfs_trans_handle *trans,
3330 			  struct btrfs_root *log)
3331 {
3332 	int ret;
3333 	struct walk_control wc = {
3334 		.free = 1,
3335 		.process_func = process_one_buffer
3336 	};
3337 
3338 	ret = walk_log_tree(trans, log, &wc);
3339 	if (ret) {
3340 		if (trans)
3341 			btrfs_abort_transaction(trans, ret);
3342 		else
3343 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3344 	}
3345 
3346 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3347 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3348 	free_extent_buffer(log->node);
3349 	kfree(log);
3350 }
3351 
3352 /*
3353  * free all the extents used by the tree log.  This should be called
3354  * at commit time of the full transaction
3355  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3356 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3357 {
3358 	if (root->log_root) {
3359 		free_log_tree(trans, root->log_root);
3360 		root->log_root = NULL;
3361 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3362 	}
3363 	return 0;
3364 }
3365 
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3366 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3367 			     struct btrfs_fs_info *fs_info)
3368 {
3369 	if (fs_info->log_root_tree) {
3370 		free_log_tree(trans, fs_info->log_root_tree);
3371 		fs_info->log_root_tree = NULL;
3372 	}
3373 	return 0;
3374 }
3375 
3376 /*
3377  * Check if an inode was logged in the current transaction. We can't always rely
3378  * on an inode's logged_trans value, because it's an in-memory only field and
3379  * therefore not persisted. This means that its value is lost if the inode gets
3380  * evicted and loaded again from disk (in which case it has a value of 0, and
3381  * certainly it is smaller then any possible transaction ID), when that happens
3382  * the full_sync flag is set in the inode's runtime flags, so on that case we
3383  * assume eviction happened and ignore the logged_trans value, assuming the
3384  * worst case, that the inode was logged before in the current transaction.
3385  */
inode_logged(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3386 static bool inode_logged(struct btrfs_trans_handle *trans,
3387 			 struct btrfs_inode *inode)
3388 {
3389 	if (inode->logged_trans == trans->transid)
3390 		return true;
3391 
3392 	if (inode->last_trans == trans->transid &&
3393 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3394 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3395 		return true;
3396 
3397 	return false;
3398 }
3399 
3400 /*
3401  * If both a file and directory are logged, and unlinks or renames are
3402  * mixed in, we have a few interesting corners:
3403  *
3404  * create file X in dir Y
3405  * link file X to X.link in dir Y
3406  * fsync file X
3407  * unlink file X but leave X.link
3408  * fsync dir Y
3409  *
3410  * After a crash we would expect only X.link to exist.  But file X
3411  * didn't get fsync'd again so the log has back refs for X and X.link.
3412  *
3413  * We solve this by removing directory entries and inode backrefs from the
3414  * log when a file that was logged in the current transaction is
3415  * unlinked.  Any later fsync will include the updated log entries, and
3416  * we'll be able to reconstruct the proper directory items from backrefs.
3417  *
3418  * This optimizations allows us to avoid relogging the entire inode
3419  * or the entire directory.
3420  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * dir,u64 index)3421 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3422 				 struct btrfs_root *root,
3423 				 const char *name, int name_len,
3424 				 struct btrfs_inode *dir, u64 index)
3425 {
3426 	struct btrfs_root *log;
3427 	struct btrfs_dir_item *di;
3428 	struct btrfs_path *path;
3429 	int ret;
3430 	int err = 0;
3431 	int bytes_del = 0;
3432 	u64 dir_ino = btrfs_ino(dir);
3433 
3434 	if (!inode_logged(trans, dir))
3435 		return 0;
3436 
3437 	ret = join_running_log_trans(root);
3438 	if (ret)
3439 		return 0;
3440 
3441 	mutex_lock(&dir->log_mutex);
3442 
3443 	log = root->log_root;
3444 	path = btrfs_alloc_path();
3445 	if (!path) {
3446 		err = -ENOMEM;
3447 		goto out_unlock;
3448 	}
3449 
3450 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3451 				   name, name_len, -1);
3452 	if (IS_ERR(di)) {
3453 		err = PTR_ERR(di);
3454 		goto fail;
3455 	}
3456 	if (di) {
3457 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3458 		bytes_del += name_len;
3459 		if (ret) {
3460 			err = ret;
3461 			goto fail;
3462 		}
3463 	}
3464 	btrfs_release_path(path);
3465 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3466 					 index, name, name_len, -1);
3467 	if (IS_ERR(di)) {
3468 		err = PTR_ERR(di);
3469 		goto fail;
3470 	}
3471 	if (di) {
3472 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3473 		bytes_del += name_len;
3474 		if (ret) {
3475 			err = ret;
3476 			goto fail;
3477 		}
3478 	}
3479 
3480 	/* update the directory size in the log to reflect the names
3481 	 * we have removed
3482 	 */
3483 	if (bytes_del) {
3484 		struct btrfs_key key;
3485 
3486 		key.objectid = dir_ino;
3487 		key.offset = 0;
3488 		key.type = BTRFS_INODE_ITEM_KEY;
3489 		btrfs_release_path(path);
3490 
3491 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3492 		if (ret < 0) {
3493 			err = ret;
3494 			goto fail;
3495 		}
3496 		if (ret == 0) {
3497 			struct btrfs_inode_item *item;
3498 			u64 i_size;
3499 
3500 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3501 					      struct btrfs_inode_item);
3502 			i_size = btrfs_inode_size(path->nodes[0], item);
3503 			if (i_size > bytes_del)
3504 				i_size -= bytes_del;
3505 			else
3506 				i_size = 0;
3507 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3508 			btrfs_mark_buffer_dirty(path->nodes[0]);
3509 		} else
3510 			ret = 0;
3511 		btrfs_release_path(path);
3512 	}
3513 fail:
3514 	btrfs_free_path(path);
3515 out_unlock:
3516 	mutex_unlock(&dir->log_mutex);
3517 	if (err == -ENOSPC) {
3518 		btrfs_set_log_full_commit(trans);
3519 		err = 0;
3520 	} else if (err < 0) {
3521 		btrfs_abort_transaction(trans, err);
3522 	}
3523 
3524 	btrfs_end_log_trans(root);
3525 
3526 	return err;
3527 }
3528 
3529 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct btrfs_inode * inode,u64 dirid)3530 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3531 			       struct btrfs_root *root,
3532 			       const char *name, int name_len,
3533 			       struct btrfs_inode *inode, u64 dirid)
3534 {
3535 	struct btrfs_root *log;
3536 	u64 index;
3537 	int ret;
3538 
3539 	if (!inode_logged(trans, inode))
3540 		return 0;
3541 
3542 	ret = join_running_log_trans(root);
3543 	if (ret)
3544 		return 0;
3545 	log = root->log_root;
3546 	mutex_lock(&inode->log_mutex);
3547 
3548 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3549 				  dirid, &index);
3550 	mutex_unlock(&inode->log_mutex);
3551 	if (ret == -ENOSPC) {
3552 		btrfs_set_log_full_commit(trans);
3553 		ret = 0;
3554 	} else if (ret < 0 && ret != -ENOENT)
3555 		btrfs_abort_transaction(trans, ret);
3556 	btrfs_end_log_trans(root);
3557 
3558 	return ret;
3559 }
3560 
3561 /*
3562  * creates a range item in the log for 'dirid'.  first_offset and
3563  * last_offset tell us which parts of the key space the log should
3564  * be considered authoritative for.
3565  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)3566 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3567 				       struct btrfs_root *log,
3568 				       struct btrfs_path *path,
3569 				       int key_type, u64 dirid,
3570 				       u64 first_offset, u64 last_offset)
3571 {
3572 	int ret;
3573 	struct btrfs_key key;
3574 	struct btrfs_dir_log_item *item;
3575 
3576 	key.objectid = dirid;
3577 	key.offset = first_offset;
3578 	if (key_type == BTRFS_DIR_ITEM_KEY)
3579 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3580 	else
3581 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3582 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3583 	if (ret)
3584 		return ret;
3585 
3586 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3587 			      struct btrfs_dir_log_item);
3588 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3589 	btrfs_mark_buffer_dirty(path->nodes[0]);
3590 	btrfs_release_path(path);
3591 	return 0;
3592 }
3593 
3594 /*
3595  * log all the items included in the current transaction for a given
3596  * directory.  This also creates the range items in the log tree required
3597  * to replay anything deleted before the fsync
3598  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3599 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3600 			  struct btrfs_root *root, struct btrfs_inode *inode,
3601 			  struct btrfs_path *path,
3602 			  struct btrfs_path *dst_path, int key_type,
3603 			  struct btrfs_log_ctx *ctx,
3604 			  u64 min_offset, u64 *last_offset_ret)
3605 {
3606 	struct btrfs_key min_key;
3607 	struct btrfs_root *log = root->log_root;
3608 	struct extent_buffer *src;
3609 	int err = 0;
3610 	int ret;
3611 	int i;
3612 	int nritems;
3613 	u64 first_offset = min_offset;
3614 	u64 last_offset = (u64)-1;
3615 	u64 ino = btrfs_ino(inode);
3616 
3617 	log = root->log_root;
3618 
3619 	min_key.objectid = ino;
3620 	min_key.type = key_type;
3621 	min_key.offset = min_offset;
3622 
3623 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3624 
3625 	/*
3626 	 * we didn't find anything from this transaction, see if there
3627 	 * is anything at all
3628 	 */
3629 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3630 		min_key.objectid = ino;
3631 		min_key.type = key_type;
3632 		min_key.offset = (u64)-1;
3633 		btrfs_release_path(path);
3634 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3635 		if (ret < 0) {
3636 			btrfs_release_path(path);
3637 			return ret;
3638 		}
3639 		ret = btrfs_previous_item(root, path, ino, key_type);
3640 
3641 		/* if ret == 0 there are items for this type,
3642 		 * create a range to tell us the last key of this type.
3643 		 * otherwise, there are no items in this directory after
3644 		 * *min_offset, and we create a range to indicate that.
3645 		 */
3646 		if (ret == 0) {
3647 			struct btrfs_key tmp;
3648 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3649 					      path->slots[0]);
3650 			if (key_type == tmp.type)
3651 				first_offset = max(min_offset, tmp.offset) + 1;
3652 		}
3653 		goto done;
3654 	}
3655 
3656 	/* go backward to find any previous key */
3657 	ret = btrfs_previous_item(root, path, ino, key_type);
3658 	if (ret == 0) {
3659 		struct btrfs_key tmp;
3660 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3661 		if (key_type == tmp.type) {
3662 			first_offset = tmp.offset;
3663 			ret = overwrite_item(trans, log, dst_path,
3664 					     path->nodes[0], path->slots[0],
3665 					     &tmp);
3666 			if (ret) {
3667 				err = ret;
3668 				goto done;
3669 			}
3670 		}
3671 	}
3672 	btrfs_release_path(path);
3673 
3674 	/*
3675 	 * Find the first key from this transaction again.  See the note for
3676 	 * log_new_dir_dentries, if we're logging a directory recursively we
3677 	 * won't be holding its i_mutex, which means we can modify the directory
3678 	 * while we're logging it.  If we remove an entry between our first
3679 	 * search and this search we'll not find the key again and can just
3680 	 * bail.
3681 	 */
3682 search:
3683 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3684 	if (ret != 0)
3685 		goto done;
3686 
3687 	/*
3688 	 * we have a block from this transaction, log every item in it
3689 	 * from our directory
3690 	 */
3691 	while (1) {
3692 		struct btrfs_key tmp;
3693 		src = path->nodes[0];
3694 		nritems = btrfs_header_nritems(src);
3695 		for (i = path->slots[0]; i < nritems; i++) {
3696 			struct btrfs_dir_item *di;
3697 
3698 			btrfs_item_key_to_cpu(src, &min_key, i);
3699 
3700 			if (min_key.objectid != ino || min_key.type != key_type)
3701 				goto done;
3702 
3703 			if (need_resched()) {
3704 				btrfs_release_path(path);
3705 				cond_resched();
3706 				goto search;
3707 			}
3708 
3709 			ret = overwrite_item(trans, log, dst_path, src, i,
3710 					     &min_key);
3711 			if (ret) {
3712 				err = ret;
3713 				goto done;
3714 			}
3715 
3716 			/*
3717 			 * We must make sure that when we log a directory entry,
3718 			 * the corresponding inode, after log replay, has a
3719 			 * matching link count. For example:
3720 			 *
3721 			 * touch foo
3722 			 * mkdir mydir
3723 			 * sync
3724 			 * ln foo mydir/bar
3725 			 * xfs_io -c "fsync" mydir
3726 			 * <crash>
3727 			 * <mount fs and log replay>
3728 			 *
3729 			 * Would result in a fsync log that when replayed, our
3730 			 * file inode would have a link count of 1, but we get
3731 			 * two directory entries pointing to the same inode.
3732 			 * After removing one of the names, it would not be
3733 			 * possible to remove the other name, which resulted
3734 			 * always in stale file handle errors, and would not
3735 			 * be possible to rmdir the parent directory, since
3736 			 * its i_size could never decrement to the value
3737 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3738 			 */
3739 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3740 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3741 			if (ctx &&
3742 			    (btrfs_dir_transid(src, di) == trans->transid ||
3743 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3744 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3745 				ctx->log_new_dentries = true;
3746 		}
3747 		path->slots[0] = nritems;
3748 
3749 		/*
3750 		 * look ahead to the next item and see if it is also
3751 		 * from this directory and from this transaction
3752 		 */
3753 		ret = btrfs_next_leaf(root, path);
3754 		if (ret) {
3755 			if (ret == 1)
3756 				last_offset = (u64)-1;
3757 			else
3758 				err = ret;
3759 			goto done;
3760 		}
3761 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3762 		if (tmp.objectid != ino || tmp.type != key_type) {
3763 			last_offset = (u64)-1;
3764 			goto done;
3765 		}
3766 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3767 			ret = overwrite_item(trans, log, dst_path,
3768 					     path->nodes[0], path->slots[0],
3769 					     &tmp);
3770 			if (ret)
3771 				err = ret;
3772 			else
3773 				last_offset = tmp.offset;
3774 			goto done;
3775 		}
3776 	}
3777 done:
3778 	btrfs_release_path(path);
3779 	btrfs_release_path(dst_path);
3780 
3781 	if (err == 0) {
3782 		*last_offset_ret = last_offset;
3783 		/*
3784 		 * insert the log range keys to indicate where the log
3785 		 * is valid
3786 		 */
3787 		ret = insert_dir_log_key(trans, log, path, key_type,
3788 					 ino, first_offset, last_offset);
3789 		if (ret)
3790 			err = ret;
3791 	}
3792 	return err;
3793 }
3794 
3795 /*
3796  * logging directories is very similar to logging inodes, We find all the items
3797  * from the current transaction and write them to the log.
3798  *
3799  * The recovery code scans the directory in the subvolume, and if it finds a
3800  * key in the range logged that is not present in the log tree, then it means
3801  * that dir entry was unlinked during the transaction.
3802  *
3803  * In order for that scan to work, we must include one key smaller than
3804  * the smallest logged by this transaction and one key larger than the largest
3805  * key logged by this transaction.
3806  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)3807 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3808 			  struct btrfs_root *root, struct btrfs_inode *inode,
3809 			  struct btrfs_path *path,
3810 			  struct btrfs_path *dst_path,
3811 			  struct btrfs_log_ctx *ctx)
3812 {
3813 	u64 min_key;
3814 	u64 max_key;
3815 	int ret;
3816 	int key_type = BTRFS_DIR_ITEM_KEY;
3817 
3818 again:
3819 	min_key = 0;
3820 	max_key = 0;
3821 	while (1) {
3822 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3823 				ctx, min_key, &max_key);
3824 		if (ret)
3825 			return ret;
3826 		if (max_key == (u64)-1)
3827 			break;
3828 		min_key = max_key + 1;
3829 	}
3830 
3831 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3832 		key_type = BTRFS_DIR_INDEX_KEY;
3833 		goto again;
3834 	}
3835 	return 0;
3836 }
3837 
3838 /*
3839  * a helper function to drop items from the log before we relog an
3840  * inode.  max_key_type indicates the highest item type to remove.
3841  * This cannot be run for file data extents because it does not
3842  * free the extents they point to.
3843  */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)3844 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3845 				  struct btrfs_root *log,
3846 				  struct btrfs_path *path,
3847 				  u64 objectid, int max_key_type)
3848 {
3849 	int ret;
3850 	struct btrfs_key key;
3851 	struct btrfs_key found_key;
3852 	int start_slot;
3853 
3854 	key.objectid = objectid;
3855 	key.type = max_key_type;
3856 	key.offset = (u64)-1;
3857 
3858 	while (1) {
3859 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3860 		BUG_ON(ret == 0); /* Logic error */
3861 		if (ret < 0)
3862 			break;
3863 
3864 		if (path->slots[0] == 0)
3865 			break;
3866 
3867 		path->slots[0]--;
3868 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3869 				      path->slots[0]);
3870 
3871 		if (found_key.objectid != objectid)
3872 			break;
3873 
3874 		found_key.offset = 0;
3875 		found_key.type = 0;
3876 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3877 				       &start_slot);
3878 		if (ret < 0)
3879 			break;
3880 
3881 		ret = btrfs_del_items(trans, log, path, start_slot,
3882 				      path->slots[0] - start_slot + 1);
3883 		/*
3884 		 * If start slot isn't 0 then we don't need to re-search, we've
3885 		 * found the last guy with the objectid in this tree.
3886 		 */
3887 		if (ret || start_slot != 0)
3888 			break;
3889 		btrfs_release_path(path);
3890 	}
3891 	btrfs_release_path(path);
3892 	if (ret > 0)
3893 		ret = 0;
3894 	return ret;
3895 }
3896 
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)3897 static void fill_inode_item(struct btrfs_trans_handle *trans,
3898 			    struct extent_buffer *leaf,
3899 			    struct btrfs_inode_item *item,
3900 			    struct inode *inode, int log_inode_only,
3901 			    u64 logged_isize)
3902 {
3903 	struct btrfs_map_token token;
3904 
3905 	btrfs_init_map_token(&token, leaf);
3906 
3907 	if (log_inode_only) {
3908 		/* set the generation to zero so the recover code
3909 		 * can tell the difference between an logging
3910 		 * just to say 'this inode exists' and a logging
3911 		 * to say 'update this inode with these values'
3912 		 */
3913 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3914 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3915 	} else {
3916 		btrfs_set_token_inode_generation(leaf, item,
3917 						 BTRFS_I(inode)->generation,
3918 						 &token);
3919 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3920 	}
3921 
3922 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3923 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3924 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3925 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3926 
3927 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3928 				     inode->i_atime.tv_sec, &token);
3929 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3930 				      inode->i_atime.tv_nsec, &token);
3931 
3932 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3933 				     inode->i_mtime.tv_sec, &token);
3934 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3935 				      inode->i_mtime.tv_nsec, &token);
3936 
3937 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3938 				     inode->i_ctime.tv_sec, &token);
3939 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3940 				      inode->i_ctime.tv_nsec, &token);
3941 
3942 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3943 				     &token);
3944 
3945 	btrfs_set_token_inode_sequence(leaf, item,
3946 				       inode_peek_iversion(inode), &token);
3947 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3948 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3949 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3950 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3951 }
3952 
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode)3953 static int log_inode_item(struct btrfs_trans_handle *trans,
3954 			  struct btrfs_root *log, struct btrfs_path *path,
3955 			  struct btrfs_inode *inode)
3956 {
3957 	struct btrfs_inode_item *inode_item;
3958 	int ret;
3959 
3960 	ret = btrfs_insert_empty_item(trans, log, path,
3961 				      &inode->location, sizeof(*inode_item));
3962 	if (ret && ret != -EEXIST)
3963 		return ret;
3964 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3965 				    struct btrfs_inode_item);
3966 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3967 			0, 0);
3968 	btrfs_release_path(path);
3969 	return 0;
3970 }
3971 
log_csums(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)3972 static int log_csums(struct btrfs_trans_handle *trans,
3973 		     struct btrfs_root *log_root,
3974 		     struct btrfs_ordered_sum *sums)
3975 {
3976 	int ret;
3977 
3978 	/*
3979 	 * Due to extent cloning, we might have logged a csum item that covers a
3980 	 * subrange of a cloned extent, and later we can end up logging a csum
3981 	 * item for a larger subrange of the same extent or the entire range.
3982 	 * This would leave csum items in the log tree that cover the same range
3983 	 * and break the searches for checksums in the log tree, resulting in
3984 	 * some checksums missing in the fs/subvolume tree. So just delete (or
3985 	 * trim and adjust) any existing csum items in the log for this range.
3986 	 */
3987 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3988 	if (ret)
3989 		return ret;
3990 
3991 	return btrfs_csum_file_blocks(trans, log_root, sums);
3992 }
3993 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize)3994 static noinline int copy_items(struct btrfs_trans_handle *trans,
3995 			       struct btrfs_inode *inode,
3996 			       struct btrfs_path *dst_path,
3997 			       struct btrfs_path *src_path,
3998 			       int start_slot, int nr, int inode_only,
3999 			       u64 logged_isize)
4000 {
4001 	struct btrfs_fs_info *fs_info = trans->fs_info;
4002 	unsigned long src_offset;
4003 	unsigned long dst_offset;
4004 	struct btrfs_root *log = inode->root->log_root;
4005 	struct btrfs_file_extent_item *extent;
4006 	struct btrfs_inode_item *inode_item;
4007 	struct extent_buffer *src = src_path->nodes[0];
4008 	int ret;
4009 	struct btrfs_key *ins_keys;
4010 	u32 *ins_sizes;
4011 	char *ins_data;
4012 	int i;
4013 	struct list_head ordered_sums;
4014 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
4015 
4016 	INIT_LIST_HEAD(&ordered_sums);
4017 
4018 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4019 			   nr * sizeof(u32), GFP_NOFS);
4020 	if (!ins_data)
4021 		return -ENOMEM;
4022 
4023 	ins_sizes = (u32 *)ins_data;
4024 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4025 
4026 	for (i = 0; i < nr; i++) {
4027 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4028 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4029 	}
4030 	ret = btrfs_insert_empty_items(trans, log, dst_path,
4031 				       ins_keys, ins_sizes, nr);
4032 	if (ret) {
4033 		kfree(ins_data);
4034 		return ret;
4035 	}
4036 
4037 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4038 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4039 						   dst_path->slots[0]);
4040 
4041 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4042 
4043 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4044 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
4045 						    dst_path->slots[0],
4046 						    struct btrfs_inode_item);
4047 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4048 					&inode->vfs_inode,
4049 					inode_only == LOG_INODE_EXISTS,
4050 					logged_isize);
4051 		} else {
4052 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4053 					   src_offset, ins_sizes[i]);
4054 		}
4055 
4056 		/* take a reference on file data extents so that truncates
4057 		 * or deletes of this inode don't have to relog the inode
4058 		 * again
4059 		 */
4060 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4061 		    !skip_csum) {
4062 			int found_type;
4063 			extent = btrfs_item_ptr(src, start_slot + i,
4064 						struct btrfs_file_extent_item);
4065 
4066 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4067 				continue;
4068 
4069 			found_type = btrfs_file_extent_type(src, extent);
4070 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4071 				u64 ds, dl, cs, cl;
4072 				ds = btrfs_file_extent_disk_bytenr(src,
4073 								extent);
4074 				/* ds == 0 is a hole */
4075 				if (ds == 0)
4076 					continue;
4077 
4078 				dl = btrfs_file_extent_disk_num_bytes(src,
4079 								extent);
4080 				cs = btrfs_file_extent_offset(src, extent);
4081 				cl = btrfs_file_extent_num_bytes(src,
4082 								extent);
4083 				if (btrfs_file_extent_compression(src,
4084 								  extent)) {
4085 					cs = 0;
4086 					cl = dl;
4087 				}
4088 
4089 				ret = btrfs_lookup_csums_range(
4090 						fs_info->csum_root,
4091 						ds + cs, ds + cs + cl - 1,
4092 						&ordered_sums, 0);
4093 				if (ret)
4094 					break;
4095 			}
4096 		}
4097 	}
4098 
4099 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4100 	btrfs_release_path(dst_path);
4101 	kfree(ins_data);
4102 
4103 	/*
4104 	 * we have to do this after the loop above to avoid changing the
4105 	 * log tree while trying to change the log tree.
4106 	 */
4107 	while (!list_empty(&ordered_sums)) {
4108 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4109 						   struct btrfs_ordered_sum,
4110 						   list);
4111 		if (!ret)
4112 			ret = log_csums(trans, log, sums);
4113 		list_del(&sums->list);
4114 		kfree(sums);
4115 	}
4116 
4117 	return ret;
4118 }
4119 
extent_cmp(void * priv,struct list_head * a,struct list_head * b)4120 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4121 {
4122 	struct extent_map *em1, *em2;
4123 
4124 	em1 = list_entry(a, struct extent_map, list);
4125 	em2 = list_entry(b, struct extent_map, list);
4126 
4127 	if (em1->start < em2->start)
4128 		return -1;
4129 	else if (em1->start > em2->start)
4130 		return 1;
4131 	return 0;
4132 }
4133 
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em)4134 static int log_extent_csums(struct btrfs_trans_handle *trans,
4135 			    struct btrfs_inode *inode,
4136 			    struct btrfs_root *log_root,
4137 			    const struct extent_map *em)
4138 {
4139 	u64 csum_offset;
4140 	u64 csum_len;
4141 	LIST_HEAD(ordered_sums);
4142 	int ret = 0;
4143 
4144 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4145 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4146 	    em->block_start == EXTENT_MAP_HOLE)
4147 		return 0;
4148 
4149 	/* If we're compressed we have to save the entire range of csums. */
4150 	if (em->compress_type) {
4151 		csum_offset = 0;
4152 		csum_len = max(em->block_len, em->orig_block_len);
4153 	} else {
4154 		csum_offset = em->mod_start - em->start;
4155 		csum_len = em->mod_len;
4156 	}
4157 
4158 	/* block start is already adjusted for the file extent offset. */
4159 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4160 				       em->block_start + csum_offset,
4161 				       em->block_start + csum_offset +
4162 				       csum_len - 1, &ordered_sums, 0);
4163 	if (ret)
4164 		return ret;
4165 
4166 	while (!list_empty(&ordered_sums)) {
4167 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4168 						   struct btrfs_ordered_sum,
4169 						   list);
4170 		if (!ret)
4171 			ret = log_csums(trans, log_root, sums);
4172 		list_del(&sums->list);
4173 		kfree(sums);
4174 	}
4175 
4176 	return ret;
4177 }
4178 
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * root,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4179 static int log_one_extent(struct btrfs_trans_handle *trans,
4180 			  struct btrfs_inode *inode, struct btrfs_root *root,
4181 			  const struct extent_map *em,
4182 			  struct btrfs_path *path,
4183 			  struct btrfs_log_ctx *ctx)
4184 {
4185 	struct btrfs_root *log = root->log_root;
4186 	struct btrfs_file_extent_item *fi;
4187 	struct extent_buffer *leaf;
4188 	struct btrfs_map_token token;
4189 	struct btrfs_key key;
4190 	u64 extent_offset = em->start - em->orig_start;
4191 	u64 block_len;
4192 	int ret;
4193 	int extent_inserted = 0;
4194 
4195 	ret = log_extent_csums(trans, inode, log, em);
4196 	if (ret)
4197 		return ret;
4198 
4199 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4200 				   em->start + em->len, NULL, 0, 1,
4201 				   sizeof(*fi), &extent_inserted);
4202 	if (ret)
4203 		return ret;
4204 
4205 	if (!extent_inserted) {
4206 		key.objectid = btrfs_ino(inode);
4207 		key.type = BTRFS_EXTENT_DATA_KEY;
4208 		key.offset = em->start;
4209 
4210 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4211 					      sizeof(*fi));
4212 		if (ret)
4213 			return ret;
4214 	}
4215 	leaf = path->nodes[0];
4216 	btrfs_init_map_token(&token, leaf);
4217 	fi = btrfs_item_ptr(leaf, path->slots[0],
4218 			    struct btrfs_file_extent_item);
4219 
4220 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4221 					       &token);
4222 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4223 		btrfs_set_token_file_extent_type(leaf, fi,
4224 						 BTRFS_FILE_EXTENT_PREALLOC,
4225 						 &token);
4226 	else
4227 		btrfs_set_token_file_extent_type(leaf, fi,
4228 						 BTRFS_FILE_EXTENT_REG,
4229 						 &token);
4230 
4231 	block_len = max(em->block_len, em->orig_block_len);
4232 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4233 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4234 							em->block_start,
4235 							&token);
4236 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4237 							   &token);
4238 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4239 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4240 							em->block_start -
4241 							extent_offset, &token);
4242 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4243 							   &token);
4244 	} else {
4245 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4246 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4247 							   &token);
4248 	}
4249 
4250 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4251 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4252 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4253 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4254 						&token);
4255 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4256 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4257 	btrfs_mark_buffer_dirty(leaf);
4258 
4259 	btrfs_release_path(path);
4260 
4261 	return ret;
4262 }
4263 
4264 /*
4265  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4266  * lose them after doing a full/fast fsync and replaying the log. We scan the
4267  * subvolume's root instead of iterating the inode's extent map tree because
4268  * otherwise we can log incorrect extent items based on extent map conversion.
4269  * That can happen due to the fact that extent maps are merged when they
4270  * are not in the extent map tree's list of modified extents.
4271  */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)4272 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4273 				      struct btrfs_inode *inode,
4274 				      struct btrfs_path *path)
4275 {
4276 	struct btrfs_root *root = inode->root;
4277 	struct btrfs_key key;
4278 	const u64 i_size = i_size_read(&inode->vfs_inode);
4279 	const u64 ino = btrfs_ino(inode);
4280 	struct btrfs_path *dst_path = NULL;
4281 	bool dropped_extents = false;
4282 	u64 truncate_offset = i_size;
4283 	struct extent_buffer *leaf;
4284 	int slot;
4285 	int ins_nr = 0;
4286 	int start_slot = 0;
4287 	int ret;
4288 
4289 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4290 		return 0;
4291 
4292 	key.objectid = ino;
4293 	key.type = BTRFS_EXTENT_DATA_KEY;
4294 	key.offset = i_size;
4295 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4296 	if (ret < 0)
4297 		goto out;
4298 
4299 	/*
4300 	 * We must check if there is a prealloc extent that starts before the
4301 	 * i_size and crosses the i_size boundary. This is to ensure later we
4302 	 * truncate down to the end of that extent and not to the i_size, as
4303 	 * otherwise we end up losing part of the prealloc extent after a log
4304 	 * replay and with an implicit hole if there is another prealloc extent
4305 	 * that starts at an offset beyond i_size.
4306 	 */
4307 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4308 	if (ret < 0)
4309 		goto out;
4310 
4311 	if (ret == 0) {
4312 		struct btrfs_file_extent_item *ei;
4313 
4314 		leaf = path->nodes[0];
4315 		slot = path->slots[0];
4316 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4317 
4318 		if (btrfs_file_extent_type(leaf, ei) ==
4319 		    BTRFS_FILE_EXTENT_PREALLOC) {
4320 			u64 extent_end;
4321 
4322 			btrfs_item_key_to_cpu(leaf, &key, slot);
4323 			extent_end = key.offset +
4324 				btrfs_file_extent_num_bytes(leaf, ei);
4325 
4326 			if (extent_end > i_size)
4327 				truncate_offset = extent_end;
4328 		}
4329 	} else {
4330 		ret = 0;
4331 	}
4332 
4333 	while (true) {
4334 		leaf = path->nodes[0];
4335 		slot = path->slots[0];
4336 
4337 		if (slot >= btrfs_header_nritems(leaf)) {
4338 			if (ins_nr > 0) {
4339 				ret = copy_items(trans, inode, dst_path, path,
4340 						 start_slot, ins_nr, 1, 0);
4341 				if (ret < 0)
4342 					goto out;
4343 				ins_nr = 0;
4344 			}
4345 			ret = btrfs_next_leaf(root, path);
4346 			if (ret < 0)
4347 				goto out;
4348 			if (ret > 0) {
4349 				ret = 0;
4350 				break;
4351 			}
4352 			continue;
4353 		}
4354 
4355 		btrfs_item_key_to_cpu(leaf, &key, slot);
4356 		if (key.objectid > ino)
4357 			break;
4358 		if (WARN_ON_ONCE(key.objectid < ino) ||
4359 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4360 		    key.offset < i_size) {
4361 			path->slots[0]++;
4362 			continue;
4363 		}
4364 		if (!dropped_extents) {
4365 			/*
4366 			 * Avoid logging extent items logged in past fsync calls
4367 			 * and leading to duplicate keys in the log tree.
4368 			 */
4369 			do {
4370 				ret = btrfs_truncate_inode_items(trans,
4371 							 root->log_root,
4372 							 &inode->vfs_inode,
4373 							 truncate_offset,
4374 							 BTRFS_EXTENT_DATA_KEY);
4375 			} while (ret == -EAGAIN);
4376 			if (ret)
4377 				goto out;
4378 			dropped_extents = true;
4379 		}
4380 		if (ins_nr == 0)
4381 			start_slot = slot;
4382 		ins_nr++;
4383 		path->slots[0]++;
4384 		if (!dst_path) {
4385 			dst_path = btrfs_alloc_path();
4386 			if (!dst_path) {
4387 				ret = -ENOMEM;
4388 				goto out;
4389 			}
4390 		}
4391 	}
4392 	if (ins_nr > 0) {
4393 		ret = copy_items(trans, inode, dst_path, path,
4394 				 start_slot, ins_nr, 1, 0);
4395 		if (ret > 0)
4396 			ret = 0;
4397 	}
4398 out:
4399 	btrfs_release_path(path);
4400 	btrfs_free_path(dst_path);
4401 	return ret;
4402 }
4403 
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx,const u64 start,const u64 end)4404 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4405 				     struct btrfs_root *root,
4406 				     struct btrfs_inode *inode,
4407 				     struct btrfs_path *path,
4408 				     struct btrfs_log_ctx *ctx,
4409 				     const u64 start,
4410 				     const u64 end)
4411 {
4412 	struct extent_map *em, *n;
4413 	struct list_head extents;
4414 	struct extent_map_tree *tree = &inode->extent_tree;
4415 	u64 test_gen;
4416 	int ret = 0;
4417 	int num = 0;
4418 
4419 	INIT_LIST_HEAD(&extents);
4420 
4421 	write_lock(&tree->lock);
4422 	test_gen = root->fs_info->last_trans_committed;
4423 
4424 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4425 		/*
4426 		 * Skip extents outside our logging range. It's important to do
4427 		 * it for correctness because if we don't ignore them, we may
4428 		 * log them before their ordered extent completes, and therefore
4429 		 * we could log them without logging their respective checksums
4430 		 * (the checksum items are added to the csum tree at the very
4431 		 * end of btrfs_finish_ordered_io()). Also leave such extents
4432 		 * outside of our range in the list, since we may have another
4433 		 * ranged fsync in the near future that needs them. If an extent
4434 		 * outside our range corresponds to a hole, log it to avoid
4435 		 * leaving gaps between extents (fsck will complain when we are
4436 		 * not using the NO_HOLES feature).
4437 		 */
4438 		if ((em->start > end || em->start + em->len <= start) &&
4439 		    em->block_start != EXTENT_MAP_HOLE)
4440 			continue;
4441 
4442 		list_del_init(&em->list);
4443 		/*
4444 		 * Just an arbitrary number, this can be really CPU intensive
4445 		 * once we start getting a lot of extents, and really once we
4446 		 * have a bunch of extents we just want to commit since it will
4447 		 * be faster.
4448 		 */
4449 		if (++num > 32768) {
4450 			list_del_init(&tree->modified_extents);
4451 			ret = -EFBIG;
4452 			goto process;
4453 		}
4454 
4455 		if (em->generation <= test_gen)
4456 			continue;
4457 
4458 		/* We log prealloc extents beyond eof later. */
4459 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4460 		    em->start >= i_size_read(&inode->vfs_inode))
4461 			continue;
4462 
4463 		/* Need a ref to keep it from getting evicted from cache */
4464 		refcount_inc(&em->refs);
4465 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4466 		list_add_tail(&em->list, &extents);
4467 		num++;
4468 	}
4469 
4470 	list_sort(NULL, &extents, extent_cmp);
4471 process:
4472 	while (!list_empty(&extents)) {
4473 		em = list_entry(extents.next, struct extent_map, list);
4474 
4475 		list_del_init(&em->list);
4476 
4477 		/*
4478 		 * If we had an error we just need to delete everybody from our
4479 		 * private list.
4480 		 */
4481 		if (ret) {
4482 			clear_em_logging(tree, em);
4483 			free_extent_map(em);
4484 			continue;
4485 		}
4486 
4487 		write_unlock(&tree->lock);
4488 
4489 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4490 		write_lock(&tree->lock);
4491 		clear_em_logging(tree, em);
4492 		free_extent_map(em);
4493 	}
4494 	WARN_ON(!list_empty(&extents));
4495 	write_unlock(&tree->lock);
4496 
4497 	btrfs_release_path(path);
4498 	if (!ret)
4499 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4500 
4501 	return ret;
4502 }
4503 
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)4504 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4505 			     struct btrfs_path *path, u64 *size_ret)
4506 {
4507 	struct btrfs_key key;
4508 	int ret;
4509 
4510 	key.objectid = btrfs_ino(inode);
4511 	key.type = BTRFS_INODE_ITEM_KEY;
4512 	key.offset = 0;
4513 
4514 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4515 	if (ret < 0) {
4516 		return ret;
4517 	} else if (ret > 0) {
4518 		*size_ret = 0;
4519 	} else {
4520 		struct btrfs_inode_item *item;
4521 
4522 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4523 				      struct btrfs_inode_item);
4524 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4525 		/*
4526 		 * If the in-memory inode's i_size is smaller then the inode
4527 		 * size stored in the btree, return the inode's i_size, so
4528 		 * that we get a correct inode size after replaying the log
4529 		 * when before a power failure we had a shrinking truncate
4530 		 * followed by addition of a new name (rename / new hard link).
4531 		 * Otherwise return the inode size from the btree, to avoid
4532 		 * data loss when replaying a log due to previously doing a
4533 		 * write that expands the inode's size and logging a new name
4534 		 * immediately after.
4535 		 */
4536 		if (*size_ret > inode->vfs_inode.i_size)
4537 			*size_ret = inode->vfs_inode.i_size;
4538 	}
4539 
4540 	btrfs_release_path(path);
4541 	return 0;
4542 }
4543 
4544 /*
4545  * At the moment we always log all xattrs. This is to figure out at log replay
4546  * time which xattrs must have their deletion replayed. If a xattr is missing
4547  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4548  * because if a xattr is deleted, the inode is fsynced and a power failure
4549  * happens, causing the log to be replayed the next time the fs is mounted,
4550  * we want the xattr to not exist anymore (same behaviour as other filesystems
4551  * with a journal, ext3/4, xfs, f2fs, etc).
4552  */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)4553 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4554 				struct btrfs_root *root,
4555 				struct btrfs_inode *inode,
4556 				struct btrfs_path *path,
4557 				struct btrfs_path *dst_path)
4558 {
4559 	int ret;
4560 	struct btrfs_key key;
4561 	const u64 ino = btrfs_ino(inode);
4562 	int ins_nr = 0;
4563 	int start_slot = 0;
4564 
4565 	key.objectid = ino;
4566 	key.type = BTRFS_XATTR_ITEM_KEY;
4567 	key.offset = 0;
4568 
4569 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4570 	if (ret < 0)
4571 		return ret;
4572 
4573 	while (true) {
4574 		int slot = path->slots[0];
4575 		struct extent_buffer *leaf = path->nodes[0];
4576 		int nritems = btrfs_header_nritems(leaf);
4577 
4578 		if (slot >= nritems) {
4579 			if (ins_nr > 0) {
4580 				ret = copy_items(trans, inode, dst_path, path,
4581 						 start_slot, ins_nr, 1, 0);
4582 				if (ret < 0)
4583 					return ret;
4584 				ins_nr = 0;
4585 			}
4586 			ret = btrfs_next_leaf(root, path);
4587 			if (ret < 0)
4588 				return ret;
4589 			else if (ret > 0)
4590 				break;
4591 			continue;
4592 		}
4593 
4594 		btrfs_item_key_to_cpu(leaf, &key, slot);
4595 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4596 			break;
4597 
4598 		if (ins_nr == 0)
4599 			start_slot = slot;
4600 		ins_nr++;
4601 		path->slots[0]++;
4602 		cond_resched();
4603 	}
4604 	if (ins_nr > 0) {
4605 		ret = copy_items(trans, inode, dst_path, path,
4606 				 start_slot, ins_nr, 1, 0);
4607 		if (ret < 0)
4608 			return ret;
4609 	}
4610 
4611 	return 0;
4612 }
4613 
4614 /*
4615  * When using the NO_HOLES feature if we punched a hole that causes the
4616  * deletion of entire leafs or all the extent items of the first leaf (the one
4617  * that contains the inode item and references) we may end up not processing
4618  * any extents, because there are no leafs with a generation matching the
4619  * current transaction that have extent items for our inode. So we need to find
4620  * if any holes exist and then log them. We also need to log holes after any
4621  * truncate operation that changes the inode's size.
4622  */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path)4623 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4624 			   struct btrfs_root *root,
4625 			   struct btrfs_inode *inode,
4626 			   struct btrfs_path *path)
4627 {
4628 	struct btrfs_fs_info *fs_info = root->fs_info;
4629 	struct btrfs_key key;
4630 	const u64 ino = btrfs_ino(inode);
4631 	const u64 i_size = i_size_read(&inode->vfs_inode);
4632 	u64 prev_extent_end = 0;
4633 	int ret;
4634 
4635 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4636 		return 0;
4637 
4638 	key.objectid = ino;
4639 	key.type = BTRFS_EXTENT_DATA_KEY;
4640 	key.offset = 0;
4641 
4642 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4643 	if (ret < 0)
4644 		return ret;
4645 
4646 	while (true) {
4647 		struct btrfs_file_extent_item *extent;
4648 		struct extent_buffer *leaf = path->nodes[0];
4649 		u64 len;
4650 
4651 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4652 			ret = btrfs_next_leaf(root, path);
4653 			if (ret < 0)
4654 				return ret;
4655 			if (ret > 0) {
4656 				ret = 0;
4657 				break;
4658 			}
4659 			leaf = path->nodes[0];
4660 		}
4661 
4662 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4663 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4664 			break;
4665 
4666 		/* We have a hole, log it. */
4667 		if (prev_extent_end < key.offset) {
4668 			const u64 hole_len = key.offset - prev_extent_end;
4669 
4670 			/*
4671 			 * Release the path to avoid deadlocks with other code
4672 			 * paths that search the root while holding locks on
4673 			 * leafs from the log root.
4674 			 */
4675 			btrfs_release_path(path);
4676 			ret = btrfs_insert_file_extent(trans, root->log_root,
4677 						       ino, prev_extent_end, 0,
4678 						       0, hole_len, 0, hole_len,
4679 						       0, 0, 0);
4680 			if (ret < 0)
4681 				return ret;
4682 
4683 			/*
4684 			 * Search for the same key again in the root. Since it's
4685 			 * an extent item and we are holding the inode lock, the
4686 			 * key must still exist. If it doesn't just emit warning
4687 			 * and return an error to fall back to a transaction
4688 			 * commit.
4689 			 */
4690 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4691 			if (ret < 0)
4692 				return ret;
4693 			if (WARN_ON(ret > 0))
4694 				return -ENOENT;
4695 			leaf = path->nodes[0];
4696 		}
4697 
4698 		extent = btrfs_item_ptr(leaf, path->slots[0],
4699 					struct btrfs_file_extent_item);
4700 		if (btrfs_file_extent_type(leaf, extent) ==
4701 		    BTRFS_FILE_EXTENT_INLINE) {
4702 			len = btrfs_file_extent_ram_bytes(leaf, extent);
4703 			prev_extent_end = ALIGN(key.offset + len,
4704 						fs_info->sectorsize);
4705 		} else {
4706 			len = btrfs_file_extent_num_bytes(leaf, extent);
4707 			prev_extent_end = key.offset + len;
4708 		}
4709 
4710 		path->slots[0]++;
4711 		cond_resched();
4712 	}
4713 
4714 	if (prev_extent_end < i_size) {
4715 		u64 hole_len;
4716 
4717 		btrfs_release_path(path);
4718 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4719 		ret = btrfs_insert_file_extent(trans, root->log_root,
4720 					       ino, prev_extent_end, 0, 0,
4721 					       hole_len, 0, hole_len,
4722 					       0, 0, 0);
4723 		if (ret < 0)
4724 			return ret;
4725 	}
4726 
4727 	return 0;
4728 }
4729 
4730 /*
4731  * When we are logging a new inode X, check if it doesn't have a reference that
4732  * matches the reference from some other inode Y created in a past transaction
4733  * and that was renamed in the current transaction. If we don't do this, then at
4734  * log replay time we can lose inode Y (and all its files if it's a directory):
4735  *
4736  * mkdir /mnt/x
4737  * echo "hello world" > /mnt/x/foobar
4738  * sync
4739  * mv /mnt/x /mnt/y
4740  * mkdir /mnt/x                 # or touch /mnt/x
4741  * xfs_io -c fsync /mnt/x
4742  * <power fail>
4743  * mount fs, trigger log replay
4744  *
4745  * After the log replay procedure, we would lose the first directory and all its
4746  * files (file foobar).
4747  * For the case where inode Y is not a directory we simply end up losing it:
4748  *
4749  * echo "123" > /mnt/foo
4750  * sync
4751  * mv /mnt/foo /mnt/bar
4752  * echo "abc" > /mnt/foo
4753  * xfs_io -c fsync /mnt/foo
4754  * <power fail>
4755  *
4756  * We also need this for cases where a snapshot entry is replaced by some other
4757  * entry (file or directory) otherwise we end up with an unreplayable log due to
4758  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4759  * if it were a regular entry:
4760  *
4761  * mkdir /mnt/x
4762  * btrfs subvolume snapshot /mnt /mnt/x/snap
4763  * btrfs subvolume delete /mnt/x/snap
4764  * rmdir /mnt/x
4765  * mkdir /mnt/x
4766  * fsync /mnt/x or fsync some new file inside it
4767  * <power fail>
4768  *
4769  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4770  * the same transaction.
4771  */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)4772 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4773 					 const int slot,
4774 					 const struct btrfs_key *key,
4775 					 struct btrfs_inode *inode,
4776 					 u64 *other_ino, u64 *other_parent)
4777 {
4778 	int ret;
4779 	struct btrfs_path *search_path;
4780 	char *name = NULL;
4781 	u32 name_len = 0;
4782 	u32 item_size = btrfs_item_size_nr(eb, slot);
4783 	u32 cur_offset = 0;
4784 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4785 
4786 	search_path = btrfs_alloc_path();
4787 	if (!search_path)
4788 		return -ENOMEM;
4789 	search_path->search_commit_root = 1;
4790 	search_path->skip_locking = 1;
4791 
4792 	while (cur_offset < item_size) {
4793 		u64 parent;
4794 		u32 this_name_len;
4795 		u32 this_len;
4796 		unsigned long name_ptr;
4797 		struct btrfs_dir_item *di;
4798 
4799 		if (key->type == BTRFS_INODE_REF_KEY) {
4800 			struct btrfs_inode_ref *iref;
4801 
4802 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4803 			parent = key->offset;
4804 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4805 			name_ptr = (unsigned long)(iref + 1);
4806 			this_len = sizeof(*iref) + this_name_len;
4807 		} else {
4808 			struct btrfs_inode_extref *extref;
4809 
4810 			extref = (struct btrfs_inode_extref *)(ptr +
4811 							       cur_offset);
4812 			parent = btrfs_inode_extref_parent(eb, extref);
4813 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4814 			name_ptr = (unsigned long)&extref->name;
4815 			this_len = sizeof(*extref) + this_name_len;
4816 		}
4817 
4818 		if (this_name_len > name_len) {
4819 			char *new_name;
4820 
4821 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4822 			if (!new_name) {
4823 				ret = -ENOMEM;
4824 				goto out;
4825 			}
4826 			name_len = this_name_len;
4827 			name = new_name;
4828 		}
4829 
4830 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4831 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4832 				parent, name, this_name_len, 0);
4833 		if (di && !IS_ERR(di)) {
4834 			struct btrfs_key di_key;
4835 
4836 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4837 						  di, &di_key);
4838 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4839 				if (di_key.objectid != key->objectid) {
4840 					ret = 1;
4841 					*other_ino = di_key.objectid;
4842 					*other_parent = parent;
4843 				} else {
4844 					ret = 0;
4845 				}
4846 			} else {
4847 				ret = -EAGAIN;
4848 			}
4849 			goto out;
4850 		} else if (IS_ERR(di)) {
4851 			ret = PTR_ERR(di);
4852 			goto out;
4853 		}
4854 		btrfs_release_path(search_path);
4855 
4856 		cur_offset += this_len;
4857 	}
4858 	ret = 0;
4859 out:
4860 	btrfs_free_path(search_path);
4861 	kfree(name);
4862 	return ret;
4863 }
4864 
4865 struct btrfs_ino_list {
4866 	u64 ino;
4867 	u64 parent;
4868 	struct list_head list;
4869 };
4870 
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx,u64 ino,u64 parent)4871 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4872 				  struct btrfs_root *root,
4873 				  struct btrfs_path *path,
4874 				  struct btrfs_log_ctx *ctx,
4875 				  u64 ino, u64 parent)
4876 {
4877 	struct btrfs_ino_list *ino_elem;
4878 	LIST_HEAD(inode_list);
4879 	int ret = 0;
4880 
4881 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4882 	if (!ino_elem)
4883 		return -ENOMEM;
4884 	ino_elem->ino = ino;
4885 	ino_elem->parent = parent;
4886 	list_add_tail(&ino_elem->list, &inode_list);
4887 
4888 	while (!list_empty(&inode_list)) {
4889 		struct btrfs_fs_info *fs_info = root->fs_info;
4890 		struct btrfs_key key;
4891 		struct inode *inode;
4892 
4893 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4894 					    list);
4895 		ino = ino_elem->ino;
4896 		parent = ino_elem->parent;
4897 		list_del(&ino_elem->list);
4898 		kfree(ino_elem);
4899 		if (ret)
4900 			continue;
4901 
4902 		btrfs_release_path(path);
4903 
4904 		key.objectid = ino;
4905 		key.type = BTRFS_INODE_ITEM_KEY;
4906 		key.offset = 0;
4907 		inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4908 		/*
4909 		 * If the other inode that had a conflicting dir entry was
4910 		 * deleted in the current transaction, we need to log its parent
4911 		 * directory.
4912 		 */
4913 		if (IS_ERR(inode)) {
4914 			ret = PTR_ERR(inode);
4915 			if (ret == -ENOENT) {
4916 				key.objectid = parent;
4917 				inode = btrfs_iget(fs_info->sb, &key, root,
4918 						   NULL);
4919 				if (IS_ERR(inode)) {
4920 					ret = PTR_ERR(inode);
4921 				} else {
4922 					ret = btrfs_log_inode(trans, root,
4923 						      BTRFS_I(inode),
4924 						      LOG_OTHER_INODE_ALL,
4925 						      0, LLONG_MAX, ctx);
4926 					btrfs_add_delayed_iput(inode);
4927 				}
4928 			}
4929 			continue;
4930 		}
4931 		/*
4932 		 * If the inode was already logged skip it - otherwise we can
4933 		 * hit an infinite loop. Example:
4934 		 *
4935 		 * From the commit root (previous transaction) we have the
4936 		 * following inodes:
4937 		 *
4938 		 * inode 257 a directory
4939 		 * inode 258 with references "zz" and "zz_link" on inode 257
4940 		 * inode 259 with reference "a" on inode 257
4941 		 *
4942 		 * And in the current (uncommitted) transaction we have:
4943 		 *
4944 		 * inode 257 a directory, unchanged
4945 		 * inode 258 with references "a" and "a2" on inode 257
4946 		 * inode 259 with reference "zz_link" on inode 257
4947 		 * inode 261 with reference "zz" on inode 257
4948 		 *
4949 		 * When logging inode 261 the following infinite loop could
4950 		 * happen if we don't skip already logged inodes:
4951 		 *
4952 		 * - we detect inode 258 as a conflicting inode, with inode 261
4953 		 *   on reference "zz", and log it;
4954 		 *
4955 		 * - we detect inode 259 as a conflicting inode, with inode 258
4956 		 *   on reference "a", and log it;
4957 		 *
4958 		 * - we detect inode 258 as a conflicting inode, with inode 259
4959 		 *   on reference "zz_link", and log it - again! After this we
4960 		 *   repeat the above steps forever.
4961 		 */
4962 		spin_lock(&BTRFS_I(inode)->lock);
4963 		/*
4964 		 * Check the inode's logged_trans only instead of
4965 		 * btrfs_inode_in_log(). This is because the last_log_commit of
4966 		 * the inode is not updated when we only log that it exists and
4967 		 * it has the full sync bit set (see btrfs_log_inode()).
4968 		 */
4969 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
4970 			spin_unlock(&BTRFS_I(inode)->lock);
4971 			btrfs_add_delayed_iput(inode);
4972 			continue;
4973 		}
4974 		spin_unlock(&BTRFS_I(inode)->lock);
4975 		/*
4976 		 * We are safe logging the other inode without acquiring its
4977 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4978 		 * are safe against concurrent renames of the other inode as
4979 		 * well because during a rename we pin the log and update the
4980 		 * log with the new name before we unpin it.
4981 		 */
4982 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4983 				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4984 		if (ret) {
4985 			btrfs_add_delayed_iput(inode);
4986 			continue;
4987 		}
4988 
4989 		key.objectid = ino;
4990 		key.type = BTRFS_INODE_REF_KEY;
4991 		key.offset = 0;
4992 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4993 		if (ret < 0) {
4994 			btrfs_add_delayed_iput(inode);
4995 			continue;
4996 		}
4997 
4998 		while (true) {
4999 			struct extent_buffer *leaf = path->nodes[0];
5000 			int slot = path->slots[0];
5001 			u64 other_ino = 0;
5002 			u64 other_parent = 0;
5003 
5004 			if (slot >= btrfs_header_nritems(leaf)) {
5005 				ret = btrfs_next_leaf(root, path);
5006 				if (ret < 0) {
5007 					break;
5008 				} else if (ret > 0) {
5009 					ret = 0;
5010 					break;
5011 				}
5012 				continue;
5013 			}
5014 
5015 			btrfs_item_key_to_cpu(leaf, &key, slot);
5016 			if (key.objectid != ino ||
5017 			    (key.type != BTRFS_INODE_REF_KEY &&
5018 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5019 				ret = 0;
5020 				break;
5021 			}
5022 
5023 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5024 					BTRFS_I(inode), &other_ino,
5025 					&other_parent);
5026 			if (ret < 0)
5027 				break;
5028 			if (ret > 0) {
5029 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5030 				if (!ino_elem) {
5031 					ret = -ENOMEM;
5032 					break;
5033 				}
5034 				ino_elem->ino = other_ino;
5035 				ino_elem->parent = other_parent;
5036 				list_add_tail(&ino_elem->list, &inode_list);
5037 				ret = 0;
5038 			}
5039 			path->slots[0]++;
5040 		}
5041 		btrfs_add_delayed_iput(inode);
5042 	}
5043 
5044 	return ret;
5045 }
5046 
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const bool recursive_logging,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5047 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5048 				   struct btrfs_inode *inode,
5049 				   struct btrfs_key *min_key,
5050 				   const struct btrfs_key *max_key,
5051 				   struct btrfs_path *path,
5052 				   struct btrfs_path *dst_path,
5053 				   const u64 logged_isize,
5054 				   const bool recursive_logging,
5055 				   const int inode_only,
5056 				   struct btrfs_log_ctx *ctx,
5057 				   bool *need_log_inode_item)
5058 {
5059 	const u64 i_size = i_size_read(&inode->vfs_inode);
5060 	struct btrfs_root *root = inode->root;
5061 	int ins_start_slot = 0;
5062 	int ins_nr = 0;
5063 	int ret;
5064 
5065 	while (1) {
5066 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5067 		if (ret < 0)
5068 			return ret;
5069 		if (ret > 0) {
5070 			ret = 0;
5071 			break;
5072 		}
5073 again:
5074 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5075 		if (min_key->objectid != max_key->objectid)
5076 			break;
5077 		if (min_key->type > max_key->type)
5078 			break;
5079 
5080 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5081 			*need_log_inode_item = false;
5082 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5083 			   min_key->offset >= i_size) {
5084 			/*
5085 			 * Extents at and beyond eof are logged with
5086 			 * btrfs_log_prealloc_extents().
5087 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5088 			 * and no keys greater than that, so bail out.
5089 			 */
5090 			break;
5091 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5092 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5093 			   inode->generation == trans->transid &&
5094 			   !recursive_logging) {
5095 			u64 other_ino = 0;
5096 			u64 other_parent = 0;
5097 
5098 			ret = btrfs_check_ref_name_override(path->nodes[0],
5099 					path->slots[0], min_key, inode,
5100 					&other_ino, &other_parent);
5101 			if (ret < 0) {
5102 				return ret;
5103 			} else if (ret > 0 && ctx &&
5104 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5105 				if (ins_nr > 0) {
5106 					ins_nr++;
5107 				} else {
5108 					ins_nr = 1;
5109 					ins_start_slot = path->slots[0];
5110 				}
5111 				ret = copy_items(trans, inode, dst_path, path,
5112 						 ins_start_slot, ins_nr,
5113 						 inode_only, logged_isize);
5114 				if (ret < 0)
5115 					return ret;
5116 				ins_nr = 0;
5117 
5118 				ret = log_conflicting_inodes(trans, root, path,
5119 						ctx, other_ino, other_parent);
5120 				if (ret)
5121 					return ret;
5122 				btrfs_release_path(path);
5123 				goto next_key;
5124 			}
5125 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5126 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5127 			if (ins_nr == 0)
5128 				goto next_slot;
5129 			ret = copy_items(trans, inode, dst_path, path,
5130 					 ins_start_slot,
5131 					 ins_nr, inode_only, logged_isize);
5132 			if (ret < 0)
5133 				return ret;
5134 			ins_nr = 0;
5135 			goto next_slot;
5136 		}
5137 
5138 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5139 			ins_nr++;
5140 			goto next_slot;
5141 		} else if (!ins_nr) {
5142 			ins_start_slot = path->slots[0];
5143 			ins_nr = 1;
5144 			goto next_slot;
5145 		}
5146 
5147 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5148 				 ins_nr, inode_only, logged_isize);
5149 		if (ret < 0)
5150 			return ret;
5151 		ins_nr = 1;
5152 		ins_start_slot = path->slots[0];
5153 next_slot:
5154 		path->slots[0]++;
5155 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5156 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5157 					      path->slots[0]);
5158 			goto again;
5159 		}
5160 		if (ins_nr) {
5161 			ret = copy_items(trans, inode, dst_path, path,
5162 					 ins_start_slot, ins_nr, inode_only,
5163 					 logged_isize);
5164 			if (ret < 0)
5165 				return ret;
5166 			ins_nr = 0;
5167 		}
5168 		btrfs_release_path(path);
5169 next_key:
5170 		if (min_key->offset < (u64)-1) {
5171 			min_key->offset++;
5172 		} else if (min_key->type < max_key->type) {
5173 			min_key->type++;
5174 			min_key->offset = 0;
5175 		} else {
5176 			break;
5177 		}
5178 	}
5179 	if (ins_nr) {
5180 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5181 				 ins_nr, inode_only, logged_isize);
5182 		if (ret)
5183 			return ret;
5184 	}
5185 
5186 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5187 		/*
5188 		 * Release the path because otherwise we might attempt to double
5189 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5190 		 */
5191 		btrfs_release_path(path);
5192 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5193 	}
5194 
5195 	return ret;
5196 }
5197 
5198 /* log a single inode in the tree log.
5199  * At least one parent directory for this inode must exist in the tree
5200  * or be logged already.
5201  *
5202  * Any items from this inode changed by the current transaction are copied
5203  * to the log tree.  An extra reference is taken on any extents in this
5204  * file, allowing us to avoid a whole pile of corner cases around logging
5205  * blocks that have been removed from the tree.
5206  *
5207  * See LOG_INODE_ALL and related defines for a description of what inode_only
5208  * does.
5209  *
5210  * This handles both files and directories.
5211  */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,int inode_only,const loff_t start,const loff_t end,struct btrfs_log_ctx * ctx)5212 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5213 			   struct btrfs_root *root, struct btrfs_inode *inode,
5214 			   int inode_only,
5215 			   const loff_t start,
5216 			   const loff_t end,
5217 			   struct btrfs_log_ctx *ctx)
5218 {
5219 	struct btrfs_path *path;
5220 	struct btrfs_path *dst_path;
5221 	struct btrfs_key min_key;
5222 	struct btrfs_key max_key;
5223 	struct btrfs_root *log = root->log_root;
5224 	int err = 0;
5225 	int ret = 0;
5226 	bool fast_search = false;
5227 	u64 ino = btrfs_ino(inode);
5228 	struct extent_map_tree *em_tree = &inode->extent_tree;
5229 	u64 logged_isize = 0;
5230 	bool need_log_inode_item = true;
5231 	bool xattrs_logged = false;
5232 	bool recursive_logging = false;
5233 
5234 	path = btrfs_alloc_path();
5235 	if (!path)
5236 		return -ENOMEM;
5237 	dst_path = btrfs_alloc_path();
5238 	if (!dst_path) {
5239 		btrfs_free_path(path);
5240 		return -ENOMEM;
5241 	}
5242 
5243 	min_key.objectid = ino;
5244 	min_key.type = BTRFS_INODE_ITEM_KEY;
5245 	min_key.offset = 0;
5246 
5247 	max_key.objectid = ino;
5248 
5249 
5250 	/* today the code can only do partial logging of directories */
5251 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5252 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5253 		       &inode->runtime_flags) &&
5254 	     inode_only >= LOG_INODE_EXISTS))
5255 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5256 	else
5257 		max_key.type = (u8)-1;
5258 	max_key.offset = (u64)-1;
5259 
5260 	/*
5261 	 * Only run delayed items if we are a directory. We want to make sure
5262 	 * all directory indexes hit the fs/subvolume tree so we can find them
5263 	 * and figure out which index ranges have to be logged.
5264 	 *
5265 	 * Otherwise commit the delayed inode only if the full sync flag is set,
5266 	 * as we want to make sure an up to date version is in the subvolume
5267 	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5268 	 * it to the log tree. For a non full sync, we always log the inode item
5269 	 * based on the in-memory struct btrfs_inode which is always up to date.
5270 	 */
5271 	if (S_ISDIR(inode->vfs_inode.i_mode))
5272 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5273 	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5274 		ret = btrfs_commit_inode_delayed_inode(inode);
5275 
5276 	if (ret) {
5277 		btrfs_free_path(path);
5278 		btrfs_free_path(dst_path);
5279 		return ret;
5280 	}
5281 
5282 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5283 		recursive_logging = true;
5284 		if (inode_only == LOG_OTHER_INODE)
5285 			inode_only = LOG_INODE_EXISTS;
5286 		else
5287 			inode_only = LOG_INODE_ALL;
5288 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5289 	} else {
5290 		mutex_lock(&inode->log_mutex);
5291 	}
5292 
5293 	/*
5294 	 * For symlinks, we must always log their content, which is stored in an
5295 	 * inline extent, otherwise we could end up with an empty symlink after
5296 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
5297 	 * one attempts to create an empty symlink).
5298 	 * We don't need to worry about flushing delalloc, because when we create
5299 	 * the inline extent when the symlink is created (we never have delalloc
5300 	 * for symlinks).
5301 	 */
5302 	if (S_ISLNK(inode->vfs_inode.i_mode))
5303 		inode_only = LOG_INODE_ALL;
5304 
5305 	/*
5306 	 * a brute force approach to making sure we get the most uptodate
5307 	 * copies of everything.
5308 	 */
5309 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5310 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5311 
5312 		if (inode_only == LOG_INODE_EXISTS)
5313 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5314 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5315 	} else {
5316 		if (inode_only == LOG_INODE_EXISTS) {
5317 			/*
5318 			 * Make sure the new inode item we write to the log has
5319 			 * the same isize as the current one (if it exists).
5320 			 * This is necessary to prevent data loss after log
5321 			 * replay, and also to prevent doing a wrong expanding
5322 			 * truncate - for e.g. create file, write 4K into offset
5323 			 * 0, fsync, write 4K into offset 4096, add hard link,
5324 			 * fsync some other file (to sync log), power fail - if
5325 			 * we use the inode's current i_size, after log replay
5326 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5327 			 * (zeroes), as if an expanding truncate happened,
5328 			 * instead of getting a file of 4Kb only.
5329 			 */
5330 			err = logged_inode_size(log, inode, path, &logged_isize);
5331 			if (err)
5332 				goto out_unlock;
5333 		}
5334 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5335 			     &inode->runtime_flags)) {
5336 			if (inode_only == LOG_INODE_EXISTS) {
5337 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5338 				ret = drop_objectid_items(trans, log, path, ino,
5339 							  max_key.type);
5340 			} else {
5341 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5342 					  &inode->runtime_flags);
5343 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5344 					  &inode->runtime_flags);
5345 				while(1) {
5346 					ret = btrfs_truncate_inode_items(trans,
5347 						log, &inode->vfs_inode, 0, 0);
5348 					if (ret != -EAGAIN)
5349 						break;
5350 				}
5351 			}
5352 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5353 					      &inode->runtime_flags) ||
5354 			   inode_only == LOG_INODE_EXISTS) {
5355 			if (inode_only == LOG_INODE_ALL)
5356 				fast_search = true;
5357 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5358 			ret = drop_objectid_items(trans, log, path, ino,
5359 						  max_key.type);
5360 		} else {
5361 			if (inode_only == LOG_INODE_ALL)
5362 				fast_search = true;
5363 			goto log_extents;
5364 		}
5365 
5366 	}
5367 	if (ret) {
5368 		err = ret;
5369 		goto out_unlock;
5370 	}
5371 
5372 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5373 				      path, dst_path, logged_isize,
5374 				      recursive_logging, inode_only, ctx,
5375 				      &need_log_inode_item);
5376 	if (err)
5377 		goto out_unlock;
5378 
5379 	btrfs_release_path(path);
5380 	btrfs_release_path(dst_path);
5381 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5382 	if (err)
5383 		goto out_unlock;
5384 	xattrs_logged = true;
5385 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5386 		btrfs_release_path(path);
5387 		btrfs_release_path(dst_path);
5388 		err = btrfs_log_holes(trans, root, inode, path);
5389 		if (err)
5390 			goto out_unlock;
5391 	}
5392 log_extents:
5393 	btrfs_release_path(path);
5394 	btrfs_release_path(dst_path);
5395 	if (need_log_inode_item) {
5396 		err = log_inode_item(trans, log, dst_path, inode);
5397 		if (!err && !xattrs_logged) {
5398 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5399 						   dst_path);
5400 			btrfs_release_path(path);
5401 		}
5402 		if (err)
5403 			goto out_unlock;
5404 	}
5405 	if (fast_search) {
5406 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5407 						ctx, start, end);
5408 		if (ret) {
5409 			err = ret;
5410 			goto out_unlock;
5411 		}
5412 	} else if (inode_only == LOG_INODE_ALL) {
5413 		struct extent_map *em, *n;
5414 
5415 		write_lock(&em_tree->lock);
5416 		/*
5417 		 * We can't just remove every em if we're called for a ranged
5418 		 * fsync - that is, one that doesn't cover the whole possible
5419 		 * file range (0 to LLONG_MAX). This is because we can have
5420 		 * em's that fall outside the range we're logging and therefore
5421 		 * their ordered operations haven't completed yet
5422 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5423 		 * didn't get their respective file extent item in the fs/subvol
5424 		 * tree yet, and need to let the next fast fsync (one which
5425 		 * consults the list of modified extent maps) find the em so
5426 		 * that it logs a matching file extent item and waits for the
5427 		 * respective ordered operation to complete (if it's still
5428 		 * running).
5429 		 *
5430 		 * Removing every em outside the range we're logging would make
5431 		 * the next fast fsync not log their matching file extent items,
5432 		 * therefore making us lose data after a log replay.
5433 		 */
5434 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5435 					 list) {
5436 			const u64 mod_end = em->mod_start + em->mod_len - 1;
5437 
5438 			if (em->mod_start >= start && mod_end <= end)
5439 				list_del_init(&em->list);
5440 		}
5441 		write_unlock(&em_tree->lock);
5442 	}
5443 
5444 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5445 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5446 					ctx);
5447 		if (ret) {
5448 			err = ret;
5449 			goto out_unlock;
5450 		}
5451 	}
5452 
5453 	/*
5454 	 * If we are logging that an ancestor inode exists as part of logging a
5455 	 * new name from a link or rename operation, don't mark the inode as
5456 	 * logged - otherwise if an explicit fsync is made against an ancestor,
5457 	 * the fsync considers the inode in the log and doesn't sync the log,
5458 	 * resulting in the ancestor missing after a power failure unless the
5459 	 * log was synced as part of an fsync against any other unrelated inode.
5460 	 * So keep it simple for this case and just don't flag the ancestors as
5461 	 * logged.
5462 	 */
5463 	if (!ctx ||
5464 	    !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5465 	      &inode->vfs_inode != ctx->inode)) {
5466 		spin_lock(&inode->lock);
5467 		inode->logged_trans = trans->transid;
5468 		/*
5469 		 * Don't update last_log_commit if we logged that an inode exists
5470 		 * after it was loaded to memory (full_sync bit set).
5471 		 * This is to prevent data loss when we do a write to the inode,
5472 		 * then the inode gets evicted after all delalloc was flushed,
5473 		 * then we log it exists (due to a rename for example) and then
5474 		 * fsync it. This last fsync would do nothing (not logging the
5475 		 * extents previously written).
5476 		 */
5477 		if (inode_only != LOG_INODE_EXISTS ||
5478 		    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5479 			inode->last_log_commit = inode->last_sub_trans;
5480 		spin_unlock(&inode->lock);
5481 	}
5482 out_unlock:
5483 	mutex_unlock(&inode->log_mutex);
5484 
5485 	btrfs_free_path(path);
5486 	btrfs_free_path(dst_path);
5487 	return err;
5488 }
5489 
5490 /*
5491  * Check if we must fallback to a transaction commit when logging an inode.
5492  * This must be called after logging the inode and is used only in the context
5493  * when fsyncing an inode requires the need to log some other inode - in which
5494  * case we can't lock the i_mutex of each other inode we need to log as that
5495  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5496  * log inodes up or down in the hierarchy) or rename operations for example. So
5497  * we take the log_mutex of the inode after we have logged it and then check for
5498  * its last_unlink_trans value - this is safe because any task setting
5499  * last_unlink_trans must take the log_mutex and it must do this before it does
5500  * the actual unlink operation, so if we do this check before a concurrent task
5501  * sets last_unlink_trans it means we've logged a consistent version/state of
5502  * all the inode items, otherwise we are not sure and must do a transaction
5503  * commit (the concurrent task might have only updated last_unlink_trans before
5504  * we logged the inode or it might have also done the unlink).
5505  */
btrfs_must_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5506 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5507 					  struct btrfs_inode *inode)
5508 {
5509 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5510 	bool ret = false;
5511 
5512 	mutex_lock(&inode->log_mutex);
5513 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5514 		/*
5515 		 * Make sure any commits to the log are forced to be full
5516 		 * commits.
5517 		 */
5518 		btrfs_set_log_full_commit(trans);
5519 		ret = true;
5520 	}
5521 	mutex_unlock(&inode->log_mutex);
5522 
5523 	return ret;
5524 }
5525 
5526 /*
5527  * follow the dentry parent pointers up the chain and see if any
5528  * of the directories in it require a full commit before they can
5529  * be logged.  Returns zero if nothing special needs to be done or 1 if
5530  * a full commit is required.
5531  */
check_parent_dirs_for_sync(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct super_block * sb,u64 last_committed)5532 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5533 					       struct btrfs_inode *inode,
5534 					       struct dentry *parent,
5535 					       struct super_block *sb,
5536 					       u64 last_committed)
5537 {
5538 	int ret = 0;
5539 	struct dentry *old_parent = NULL;
5540 
5541 	/*
5542 	 * for regular files, if its inode is already on disk, we don't
5543 	 * have to worry about the parents at all.  This is because
5544 	 * we can use the last_unlink_trans field to record renames
5545 	 * and other fun in this file.
5546 	 */
5547 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5548 	    inode->generation <= last_committed &&
5549 	    inode->last_unlink_trans <= last_committed)
5550 		goto out;
5551 
5552 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5553 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5554 			goto out;
5555 		inode = BTRFS_I(d_inode(parent));
5556 	}
5557 
5558 	while (1) {
5559 		if (btrfs_must_commit_transaction(trans, inode)) {
5560 			ret = 1;
5561 			break;
5562 		}
5563 
5564 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5565 			break;
5566 
5567 		if (IS_ROOT(parent)) {
5568 			inode = BTRFS_I(d_inode(parent));
5569 			if (btrfs_must_commit_transaction(trans, inode))
5570 				ret = 1;
5571 			break;
5572 		}
5573 
5574 		parent = dget_parent(parent);
5575 		dput(old_parent);
5576 		old_parent = parent;
5577 		inode = BTRFS_I(d_inode(parent));
5578 
5579 	}
5580 	dput(old_parent);
5581 out:
5582 	return ret;
5583 }
5584 
5585 struct btrfs_dir_list {
5586 	u64 ino;
5587 	struct list_head list;
5588 };
5589 
5590 /*
5591  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5592  * details about the why it is needed.
5593  * This is a recursive operation - if an existing dentry corresponds to a
5594  * directory, that directory's new entries are logged too (same behaviour as
5595  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5596  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5597  * complains about the following circular lock dependency / possible deadlock:
5598  *
5599  *        CPU0                                        CPU1
5600  *        ----                                        ----
5601  * lock(&type->i_mutex_dir_key#3/2);
5602  *                                            lock(sb_internal#2);
5603  *                                            lock(&type->i_mutex_dir_key#3/2);
5604  * lock(&sb->s_type->i_mutex_key#14);
5605  *
5606  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5607  * sb_start_intwrite() in btrfs_start_transaction().
5608  * Not locking i_mutex of the inodes is still safe because:
5609  *
5610  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5611  *    that while logging the inode new references (names) are added or removed
5612  *    from the inode, leaving the logged inode item with a link count that does
5613  *    not match the number of logged inode reference items. This is fine because
5614  *    at log replay time we compute the real number of links and correct the
5615  *    link count in the inode item (see replay_one_buffer() and
5616  *    link_to_fixup_dir());
5617  *
5618  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5619  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5620  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5621  *    has a size that doesn't match the sum of the lengths of all the logged
5622  *    names. This does not result in a problem because if a dir_item key is
5623  *    logged but its matching dir_index key is not logged, at log replay time we
5624  *    don't use it to replay the respective name (see replay_one_name()). On the
5625  *    other hand if only the dir_index key ends up being logged, the respective
5626  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5627  *    keys created (see replay_one_name()).
5628  *    The directory's inode item with a wrong i_size is not a problem as well,
5629  *    since we don't use it at log replay time to set the i_size in the inode
5630  *    item of the fs/subvol tree (see overwrite_item()).
5631  */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5632 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5633 				struct btrfs_root *root,
5634 				struct btrfs_inode *start_inode,
5635 				struct btrfs_log_ctx *ctx)
5636 {
5637 	struct btrfs_fs_info *fs_info = root->fs_info;
5638 	struct btrfs_root *log = root->log_root;
5639 	struct btrfs_path *path;
5640 	LIST_HEAD(dir_list);
5641 	struct btrfs_dir_list *dir_elem;
5642 	int ret = 0;
5643 
5644 	path = btrfs_alloc_path();
5645 	if (!path)
5646 		return -ENOMEM;
5647 
5648 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5649 	if (!dir_elem) {
5650 		btrfs_free_path(path);
5651 		return -ENOMEM;
5652 	}
5653 	dir_elem->ino = btrfs_ino(start_inode);
5654 	list_add_tail(&dir_elem->list, &dir_list);
5655 
5656 	while (!list_empty(&dir_list)) {
5657 		struct extent_buffer *leaf;
5658 		struct btrfs_key min_key;
5659 		int nritems;
5660 		int i;
5661 
5662 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5663 					    list);
5664 		if (ret)
5665 			goto next_dir_inode;
5666 
5667 		min_key.objectid = dir_elem->ino;
5668 		min_key.type = BTRFS_DIR_ITEM_KEY;
5669 		min_key.offset = 0;
5670 again:
5671 		btrfs_release_path(path);
5672 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5673 		if (ret < 0) {
5674 			goto next_dir_inode;
5675 		} else if (ret > 0) {
5676 			ret = 0;
5677 			goto next_dir_inode;
5678 		}
5679 
5680 process_leaf:
5681 		leaf = path->nodes[0];
5682 		nritems = btrfs_header_nritems(leaf);
5683 		for (i = path->slots[0]; i < nritems; i++) {
5684 			struct btrfs_dir_item *di;
5685 			struct btrfs_key di_key;
5686 			struct inode *di_inode;
5687 			struct btrfs_dir_list *new_dir_elem;
5688 			int log_mode = LOG_INODE_EXISTS;
5689 			int type;
5690 
5691 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5692 			if (min_key.objectid != dir_elem->ino ||
5693 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5694 				goto next_dir_inode;
5695 
5696 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5697 			type = btrfs_dir_type(leaf, di);
5698 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5699 			    type != BTRFS_FT_DIR)
5700 				continue;
5701 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5702 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5703 				continue;
5704 
5705 			btrfs_release_path(path);
5706 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5707 			if (IS_ERR(di_inode)) {
5708 				ret = PTR_ERR(di_inode);
5709 				goto next_dir_inode;
5710 			}
5711 
5712 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5713 				btrfs_add_delayed_iput(di_inode);
5714 				break;
5715 			}
5716 
5717 			ctx->log_new_dentries = false;
5718 			if (type == BTRFS_FT_DIR)
5719 				log_mode = LOG_INODE_ALL;
5720 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5721 					      log_mode, 0, LLONG_MAX, ctx);
5722 			if (!ret &&
5723 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5724 				ret = 1;
5725 			btrfs_add_delayed_iput(di_inode);
5726 			if (ret)
5727 				goto next_dir_inode;
5728 			if (ctx->log_new_dentries) {
5729 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5730 						       GFP_NOFS);
5731 				if (!new_dir_elem) {
5732 					ret = -ENOMEM;
5733 					goto next_dir_inode;
5734 				}
5735 				new_dir_elem->ino = di_key.objectid;
5736 				list_add_tail(&new_dir_elem->list, &dir_list);
5737 			}
5738 			break;
5739 		}
5740 		if (i == nritems) {
5741 			ret = btrfs_next_leaf(log, path);
5742 			if (ret < 0) {
5743 				goto next_dir_inode;
5744 			} else if (ret > 0) {
5745 				ret = 0;
5746 				goto next_dir_inode;
5747 			}
5748 			goto process_leaf;
5749 		}
5750 		if (min_key.offset < (u64)-1) {
5751 			min_key.offset++;
5752 			goto again;
5753 		}
5754 next_dir_inode:
5755 		list_del(&dir_elem->list);
5756 		kfree(dir_elem);
5757 	}
5758 
5759 	btrfs_free_path(path);
5760 	return ret;
5761 }
5762 
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)5763 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5764 				 struct btrfs_inode *inode,
5765 				 struct btrfs_log_ctx *ctx)
5766 {
5767 	struct btrfs_fs_info *fs_info = trans->fs_info;
5768 	int ret;
5769 	struct btrfs_path *path;
5770 	struct btrfs_key key;
5771 	struct btrfs_root *root = inode->root;
5772 	const u64 ino = btrfs_ino(inode);
5773 
5774 	path = btrfs_alloc_path();
5775 	if (!path)
5776 		return -ENOMEM;
5777 	path->skip_locking = 1;
5778 	path->search_commit_root = 1;
5779 
5780 	key.objectid = ino;
5781 	key.type = BTRFS_INODE_REF_KEY;
5782 	key.offset = 0;
5783 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5784 	if (ret < 0)
5785 		goto out;
5786 
5787 	while (true) {
5788 		struct extent_buffer *leaf = path->nodes[0];
5789 		int slot = path->slots[0];
5790 		u32 cur_offset = 0;
5791 		u32 item_size;
5792 		unsigned long ptr;
5793 
5794 		if (slot >= btrfs_header_nritems(leaf)) {
5795 			ret = btrfs_next_leaf(root, path);
5796 			if (ret < 0)
5797 				goto out;
5798 			else if (ret > 0)
5799 				break;
5800 			continue;
5801 		}
5802 
5803 		btrfs_item_key_to_cpu(leaf, &key, slot);
5804 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5805 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5806 			break;
5807 
5808 		item_size = btrfs_item_size_nr(leaf, slot);
5809 		ptr = btrfs_item_ptr_offset(leaf, slot);
5810 		while (cur_offset < item_size) {
5811 			struct btrfs_key inode_key;
5812 			struct inode *dir_inode;
5813 
5814 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5815 			inode_key.offset = 0;
5816 
5817 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5818 				struct btrfs_inode_extref *extref;
5819 
5820 				extref = (struct btrfs_inode_extref *)
5821 					(ptr + cur_offset);
5822 				inode_key.objectid = btrfs_inode_extref_parent(
5823 					leaf, extref);
5824 				cur_offset += sizeof(*extref);
5825 				cur_offset += btrfs_inode_extref_name_len(leaf,
5826 					extref);
5827 			} else {
5828 				inode_key.objectid = key.offset;
5829 				cur_offset = item_size;
5830 			}
5831 
5832 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5833 					       root, NULL);
5834 			/*
5835 			 * If the parent inode was deleted, return an error to
5836 			 * fallback to a transaction commit. This is to prevent
5837 			 * getting an inode that was moved from one parent A to
5838 			 * a parent B, got its former parent A deleted and then
5839 			 * it got fsync'ed, from existing at both parents after
5840 			 * a log replay (and the old parent still existing).
5841 			 * Example:
5842 			 *
5843 			 * mkdir /mnt/A
5844 			 * mkdir /mnt/B
5845 			 * touch /mnt/B/bar
5846 			 * sync
5847 			 * mv /mnt/B/bar /mnt/A/bar
5848 			 * mv -T /mnt/A /mnt/B
5849 			 * fsync /mnt/B/bar
5850 			 * <power fail>
5851 			 *
5852 			 * If we ignore the old parent B which got deleted,
5853 			 * after a log replay we would have file bar linked
5854 			 * at both parents and the old parent B would still
5855 			 * exist.
5856 			 */
5857 			if (IS_ERR(dir_inode)) {
5858 				ret = PTR_ERR(dir_inode);
5859 				goto out;
5860 			}
5861 
5862 			if (ctx)
5863 				ctx->log_new_dentries = false;
5864 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5865 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5866 			if (!ret &&
5867 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5868 				ret = 1;
5869 			if (!ret && ctx && ctx->log_new_dentries)
5870 				ret = log_new_dir_dentries(trans, root,
5871 						   BTRFS_I(dir_inode), ctx);
5872 			btrfs_add_delayed_iput(dir_inode);
5873 			if (ret)
5874 				goto out;
5875 		}
5876 		path->slots[0]++;
5877 	}
5878 	ret = 0;
5879 out:
5880 	btrfs_free_path(path);
5881 	return ret;
5882 }
5883 
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)5884 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5885 			     struct btrfs_root *root,
5886 			     struct btrfs_path *path,
5887 			     struct btrfs_log_ctx *ctx)
5888 {
5889 	struct btrfs_key found_key;
5890 
5891 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5892 
5893 	while (true) {
5894 		struct btrfs_fs_info *fs_info = root->fs_info;
5895 		const u64 last_committed = fs_info->last_trans_committed;
5896 		struct extent_buffer *leaf = path->nodes[0];
5897 		int slot = path->slots[0];
5898 		struct btrfs_key search_key;
5899 		struct inode *inode;
5900 		int ret = 0;
5901 
5902 		btrfs_release_path(path);
5903 
5904 		search_key.objectid = found_key.offset;
5905 		search_key.type = BTRFS_INODE_ITEM_KEY;
5906 		search_key.offset = 0;
5907 		inode = btrfs_iget(fs_info->sb, &search_key, root, NULL);
5908 		if (IS_ERR(inode))
5909 			return PTR_ERR(inode);
5910 
5911 		if (BTRFS_I(inode)->generation > last_committed)
5912 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5913 					      LOG_INODE_EXISTS,
5914 					      0, LLONG_MAX, ctx);
5915 		btrfs_add_delayed_iput(inode);
5916 		if (ret)
5917 			return ret;
5918 
5919 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5920 			break;
5921 
5922 		search_key.type = BTRFS_INODE_REF_KEY;
5923 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5924 		if (ret < 0)
5925 			return ret;
5926 
5927 		leaf = path->nodes[0];
5928 		slot = path->slots[0];
5929 		if (slot >= btrfs_header_nritems(leaf)) {
5930 			ret = btrfs_next_leaf(root, path);
5931 			if (ret < 0)
5932 				return ret;
5933 			else if (ret > 0)
5934 				return -ENOENT;
5935 			leaf = path->nodes[0];
5936 			slot = path->slots[0];
5937 		}
5938 
5939 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5940 		if (found_key.objectid != search_key.objectid ||
5941 		    found_key.type != BTRFS_INODE_REF_KEY)
5942 			return -ENOENT;
5943 	}
5944 	return 0;
5945 }
5946 
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)5947 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5948 				  struct btrfs_inode *inode,
5949 				  struct dentry *parent,
5950 				  struct btrfs_log_ctx *ctx)
5951 {
5952 	struct btrfs_root *root = inode->root;
5953 	struct btrfs_fs_info *fs_info = root->fs_info;
5954 	struct dentry *old_parent = NULL;
5955 	struct super_block *sb = inode->vfs_inode.i_sb;
5956 	int ret = 0;
5957 
5958 	while (true) {
5959 		if (!parent || d_really_is_negative(parent) ||
5960 		    sb != parent->d_sb)
5961 			break;
5962 
5963 		inode = BTRFS_I(d_inode(parent));
5964 		if (root != inode->root)
5965 			break;
5966 
5967 		if (inode->generation > fs_info->last_trans_committed) {
5968 			ret = btrfs_log_inode(trans, root, inode,
5969 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5970 			if (ret)
5971 				break;
5972 		}
5973 		if (IS_ROOT(parent))
5974 			break;
5975 
5976 		parent = dget_parent(parent);
5977 		dput(old_parent);
5978 		old_parent = parent;
5979 	}
5980 	dput(old_parent);
5981 
5982 	return ret;
5983 }
5984 
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)5985 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5986 				 struct btrfs_inode *inode,
5987 				 struct dentry *parent,
5988 				 struct btrfs_log_ctx *ctx)
5989 {
5990 	struct btrfs_root *root = inode->root;
5991 	const u64 ino = btrfs_ino(inode);
5992 	struct btrfs_path *path;
5993 	struct btrfs_key search_key;
5994 	int ret;
5995 
5996 	/*
5997 	 * For a single hard link case, go through a fast path that does not
5998 	 * need to iterate the fs/subvolume tree.
5999 	 */
6000 	if (inode->vfs_inode.i_nlink < 2)
6001 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6002 
6003 	path = btrfs_alloc_path();
6004 	if (!path)
6005 		return -ENOMEM;
6006 
6007 	search_key.objectid = ino;
6008 	search_key.type = BTRFS_INODE_REF_KEY;
6009 	search_key.offset = 0;
6010 again:
6011 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6012 	if (ret < 0)
6013 		goto out;
6014 	if (ret == 0)
6015 		path->slots[0]++;
6016 
6017 	while (true) {
6018 		struct extent_buffer *leaf = path->nodes[0];
6019 		int slot = path->slots[0];
6020 		struct btrfs_key found_key;
6021 
6022 		if (slot >= btrfs_header_nritems(leaf)) {
6023 			ret = btrfs_next_leaf(root, path);
6024 			if (ret < 0)
6025 				goto out;
6026 			else if (ret > 0)
6027 				break;
6028 			continue;
6029 		}
6030 
6031 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6032 		if (found_key.objectid != ino ||
6033 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6034 			break;
6035 
6036 		/*
6037 		 * Don't deal with extended references because they are rare
6038 		 * cases and too complex to deal with (we would need to keep
6039 		 * track of which subitem we are processing for each item in
6040 		 * this loop, etc). So just return some error to fallback to
6041 		 * a transaction commit.
6042 		 */
6043 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6044 			ret = -EMLINK;
6045 			goto out;
6046 		}
6047 
6048 		/*
6049 		 * Logging ancestors needs to do more searches on the fs/subvol
6050 		 * tree, so it releases the path as needed to avoid deadlocks.
6051 		 * Keep track of the last inode ref key and resume from that key
6052 		 * after logging all new ancestors for the current hard link.
6053 		 */
6054 		memcpy(&search_key, &found_key, sizeof(search_key));
6055 
6056 		ret = log_new_ancestors(trans, root, path, ctx);
6057 		if (ret)
6058 			goto out;
6059 		btrfs_release_path(path);
6060 		goto again;
6061 	}
6062 	ret = 0;
6063 out:
6064 	btrfs_free_path(path);
6065 	return ret;
6066 }
6067 
6068 /*
6069  * helper function around btrfs_log_inode to make sure newly created
6070  * parent directories also end up in the log.  A minimal inode and backref
6071  * only logging is done of any parent directories that are older than
6072  * the last committed transaction
6073  */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,const loff_t start,const loff_t end,int inode_only,struct btrfs_log_ctx * ctx)6074 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6075 				  struct btrfs_inode *inode,
6076 				  struct dentry *parent,
6077 				  const loff_t start,
6078 				  const loff_t end,
6079 				  int inode_only,
6080 				  struct btrfs_log_ctx *ctx)
6081 {
6082 	struct btrfs_root *root = inode->root;
6083 	struct btrfs_fs_info *fs_info = root->fs_info;
6084 	struct super_block *sb;
6085 	int ret = 0;
6086 	u64 last_committed = fs_info->last_trans_committed;
6087 	bool log_dentries = false;
6088 
6089 	sb = inode->vfs_inode.i_sb;
6090 
6091 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6092 		ret = 1;
6093 		goto end_no_trans;
6094 	}
6095 
6096 	/*
6097 	 * The prev transaction commit doesn't complete, we need do
6098 	 * full commit by ourselves.
6099 	 */
6100 	if (fs_info->last_trans_log_full_commit >
6101 	    fs_info->last_trans_committed) {
6102 		ret = 1;
6103 		goto end_no_trans;
6104 	}
6105 
6106 	if (btrfs_root_refs(&root->root_item) == 0) {
6107 		ret = 1;
6108 		goto end_no_trans;
6109 	}
6110 
6111 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6112 			last_committed);
6113 	if (ret)
6114 		goto end_no_trans;
6115 
6116 	/*
6117 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6118 	 * (since logging them is pointless, a link count of 0 means they
6119 	 * will never be accessible).
6120 	 */
6121 	if (btrfs_inode_in_log(inode, trans->transid) ||
6122 	    inode->vfs_inode.i_nlink == 0) {
6123 		ret = BTRFS_NO_LOG_SYNC;
6124 		goto end_no_trans;
6125 	}
6126 
6127 	ret = start_log_trans(trans, root, ctx);
6128 	if (ret)
6129 		goto end_no_trans;
6130 
6131 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6132 	if (ret)
6133 		goto end_trans;
6134 
6135 	/*
6136 	 * for regular files, if its inode is already on disk, we don't
6137 	 * have to worry about the parents at all.  This is because
6138 	 * we can use the last_unlink_trans field to record renames
6139 	 * and other fun in this file.
6140 	 */
6141 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6142 	    inode->generation <= last_committed &&
6143 	    inode->last_unlink_trans <= last_committed) {
6144 		ret = 0;
6145 		goto end_trans;
6146 	}
6147 
6148 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6149 		log_dentries = true;
6150 
6151 	/*
6152 	 * On unlink we must make sure all our current and old parent directory
6153 	 * inodes are fully logged. This is to prevent leaving dangling
6154 	 * directory index entries in directories that were our parents but are
6155 	 * not anymore. Not doing this results in old parent directory being
6156 	 * impossible to delete after log replay (rmdir will always fail with
6157 	 * error -ENOTEMPTY).
6158 	 *
6159 	 * Example 1:
6160 	 *
6161 	 * mkdir testdir
6162 	 * touch testdir/foo
6163 	 * ln testdir/foo testdir/bar
6164 	 * sync
6165 	 * unlink testdir/bar
6166 	 * xfs_io -c fsync testdir/foo
6167 	 * <power failure>
6168 	 * mount fs, triggers log replay
6169 	 *
6170 	 * If we don't log the parent directory (testdir), after log replay the
6171 	 * directory still has an entry pointing to the file inode using the bar
6172 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6173 	 * the file inode has a link count of 1.
6174 	 *
6175 	 * Example 2:
6176 	 *
6177 	 * mkdir testdir
6178 	 * touch foo
6179 	 * ln foo testdir/foo2
6180 	 * ln foo testdir/foo3
6181 	 * sync
6182 	 * unlink testdir/foo3
6183 	 * xfs_io -c fsync foo
6184 	 * <power failure>
6185 	 * mount fs, triggers log replay
6186 	 *
6187 	 * Similar as the first example, after log replay the parent directory
6188 	 * testdir still has an entry pointing to the inode file with name foo3
6189 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6190 	 * and has a link count of 2.
6191 	 */
6192 	if (inode->last_unlink_trans > last_committed) {
6193 		ret = btrfs_log_all_parents(trans, inode, ctx);
6194 		if (ret)
6195 			goto end_trans;
6196 	}
6197 
6198 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6199 	if (ret)
6200 		goto end_trans;
6201 
6202 	if (log_dentries)
6203 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6204 	else
6205 		ret = 0;
6206 end_trans:
6207 	if (ret < 0) {
6208 		btrfs_set_log_full_commit(trans);
6209 		ret = 1;
6210 	}
6211 
6212 	if (ret)
6213 		btrfs_remove_log_ctx(root, ctx);
6214 	btrfs_end_log_trans(root);
6215 end_no_trans:
6216 	return ret;
6217 }
6218 
6219 /*
6220  * it is not safe to log dentry if the chunk root has added new
6221  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6222  * If this returns 1, you must commit the transaction to safely get your
6223  * data on disk.
6224  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,const loff_t start,const loff_t end,struct btrfs_log_ctx * ctx)6225 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6226 			  struct dentry *dentry,
6227 			  const loff_t start,
6228 			  const loff_t end,
6229 			  struct btrfs_log_ctx *ctx)
6230 {
6231 	struct dentry *parent = dget_parent(dentry);
6232 	int ret;
6233 
6234 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6235 				     start, end, LOG_INODE_ALL, ctx);
6236 	dput(parent);
6237 
6238 	return ret;
6239 }
6240 
6241 /*
6242  * should be called during mount to recover any replay any log trees
6243  * from the FS
6244  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)6245 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6246 {
6247 	int ret;
6248 	struct btrfs_path *path;
6249 	struct btrfs_trans_handle *trans;
6250 	struct btrfs_key key;
6251 	struct btrfs_key found_key;
6252 	struct btrfs_key tmp_key;
6253 	struct btrfs_root *log;
6254 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6255 	struct walk_control wc = {
6256 		.process_func = process_one_buffer,
6257 		.stage = LOG_WALK_PIN_ONLY,
6258 	};
6259 
6260 	path = btrfs_alloc_path();
6261 	if (!path)
6262 		return -ENOMEM;
6263 
6264 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6265 
6266 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6267 	if (IS_ERR(trans)) {
6268 		ret = PTR_ERR(trans);
6269 		goto error;
6270 	}
6271 
6272 	wc.trans = trans;
6273 	wc.pin = 1;
6274 
6275 	ret = walk_log_tree(trans, log_root_tree, &wc);
6276 	if (ret) {
6277 		btrfs_handle_fs_error(fs_info, ret,
6278 			"Failed to pin buffers while recovering log root tree.");
6279 		goto error;
6280 	}
6281 
6282 again:
6283 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6284 	key.offset = (u64)-1;
6285 	key.type = BTRFS_ROOT_ITEM_KEY;
6286 
6287 	while (1) {
6288 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6289 
6290 		if (ret < 0) {
6291 			btrfs_handle_fs_error(fs_info, ret,
6292 				    "Couldn't find tree log root.");
6293 			goto error;
6294 		}
6295 		if (ret > 0) {
6296 			if (path->slots[0] == 0)
6297 				break;
6298 			path->slots[0]--;
6299 		}
6300 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6301 				      path->slots[0]);
6302 		btrfs_release_path(path);
6303 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6304 			break;
6305 
6306 		log = btrfs_read_fs_root(log_root_tree, &found_key);
6307 		if (IS_ERR(log)) {
6308 			ret = PTR_ERR(log);
6309 			btrfs_handle_fs_error(fs_info, ret,
6310 				    "Couldn't read tree log root.");
6311 			goto error;
6312 		}
6313 
6314 		tmp_key.objectid = found_key.offset;
6315 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6316 		tmp_key.offset = (u64)-1;
6317 
6318 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
6319 		if (IS_ERR(wc.replay_dest)) {
6320 			ret = PTR_ERR(wc.replay_dest);
6321 
6322 			/*
6323 			 * We didn't find the subvol, likely because it was
6324 			 * deleted.  This is ok, simply skip this log and go to
6325 			 * the next one.
6326 			 *
6327 			 * We need to exclude the root because we can't have
6328 			 * other log replays overwriting this log as we'll read
6329 			 * it back in a few more times.  This will keep our
6330 			 * block from being modified, and we'll just bail for
6331 			 * each subsequent pass.
6332 			 */
6333 			if (ret == -ENOENT)
6334 				ret = btrfs_pin_extent_for_log_replay(fs_info,
6335 							log->node->start,
6336 							log->node->len);
6337 			free_extent_buffer(log->node);
6338 			free_extent_buffer(log->commit_root);
6339 			kfree(log);
6340 
6341 			if (!ret)
6342 				goto next;
6343 			btrfs_handle_fs_error(fs_info, ret,
6344 				"Couldn't read target root for tree log recovery.");
6345 			goto error;
6346 		}
6347 
6348 		wc.replay_dest->log_root = log;
6349 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6350 		ret = walk_log_tree(trans, log, &wc);
6351 
6352 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6353 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6354 						      path);
6355 		}
6356 
6357 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6358 			struct btrfs_root *root = wc.replay_dest;
6359 
6360 			btrfs_release_path(path);
6361 
6362 			/*
6363 			 * We have just replayed everything, and the highest
6364 			 * objectid of fs roots probably has changed in case
6365 			 * some inode_item's got replayed.
6366 			 *
6367 			 * root->objectid_mutex is not acquired as log replay
6368 			 * could only happen during mount.
6369 			 */
6370 			ret = btrfs_find_highest_objectid(root,
6371 						  &root->highest_objectid);
6372 		}
6373 
6374 		wc.replay_dest->log_root = NULL;
6375 		free_extent_buffer(log->node);
6376 		free_extent_buffer(log->commit_root);
6377 		kfree(log);
6378 
6379 		if (ret)
6380 			goto error;
6381 next:
6382 		if (found_key.offset == 0)
6383 			break;
6384 		key.offset = found_key.offset - 1;
6385 	}
6386 	btrfs_release_path(path);
6387 
6388 	/* step one is to pin it all, step two is to replay just inodes */
6389 	if (wc.pin) {
6390 		wc.pin = 0;
6391 		wc.process_func = replay_one_buffer;
6392 		wc.stage = LOG_WALK_REPLAY_INODES;
6393 		goto again;
6394 	}
6395 	/* step three is to replay everything */
6396 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6397 		wc.stage++;
6398 		goto again;
6399 	}
6400 
6401 	btrfs_free_path(path);
6402 
6403 	/* step 4: commit the transaction, which also unpins the blocks */
6404 	ret = btrfs_commit_transaction(trans);
6405 	if (ret)
6406 		return ret;
6407 
6408 	free_extent_buffer(log_root_tree->node);
6409 	log_root_tree->log_root = NULL;
6410 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6411 	kfree(log_root_tree);
6412 
6413 	return 0;
6414 error:
6415 	if (wc.trans)
6416 		btrfs_end_transaction(wc.trans);
6417 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6418 	btrfs_free_path(path);
6419 	return ret;
6420 }
6421 
6422 /*
6423  * there are some corner cases where we want to force a full
6424  * commit instead of allowing a directory to be logged.
6425  *
6426  * They revolve around files there were unlinked from the directory, and
6427  * this function updates the parent directory so that a full commit is
6428  * properly done if it is fsync'd later after the unlinks are done.
6429  *
6430  * Must be called before the unlink operations (updates to the subvolume tree,
6431  * inodes, etc) are done.
6432  */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,int for_rename)6433 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6434 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6435 			     int for_rename)
6436 {
6437 	/*
6438 	 * when we're logging a file, if it hasn't been renamed
6439 	 * or unlinked, and its inode is fully committed on disk,
6440 	 * we don't have to worry about walking up the directory chain
6441 	 * to log its parents.
6442 	 *
6443 	 * So, we use the last_unlink_trans field to put this transid
6444 	 * into the file.  When the file is logged we check it and
6445 	 * don't log the parents if the file is fully on disk.
6446 	 */
6447 	mutex_lock(&inode->log_mutex);
6448 	inode->last_unlink_trans = trans->transid;
6449 	mutex_unlock(&inode->log_mutex);
6450 
6451 	/*
6452 	 * if this directory was already logged any new
6453 	 * names for this file/dir will get recorded
6454 	 */
6455 	if (dir->logged_trans == trans->transid)
6456 		return;
6457 
6458 	/*
6459 	 * if the inode we're about to unlink was logged,
6460 	 * the log will be properly updated for any new names
6461 	 */
6462 	if (inode->logged_trans == trans->transid)
6463 		return;
6464 
6465 	/*
6466 	 * when renaming files across directories, if the directory
6467 	 * there we're unlinking from gets fsync'd later on, there's
6468 	 * no way to find the destination directory later and fsync it
6469 	 * properly.  So, we have to be conservative and force commits
6470 	 * so the new name gets discovered.
6471 	 */
6472 	if (for_rename)
6473 		goto record;
6474 
6475 	/* we can safely do the unlink without any special recording */
6476 	return;
6477 
6478 record:
6479 	mutex_lock(&dir->log_mutex);
6480 	dir->last_unlink_trans = trans->transid;
6481 	mutex_unlock(&dir->log_mutex);
6482 }
6483 
6484 /*
6485  * Make sure that if someone attempts to fsync the parent directory of a deleted
6486  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6487  * that after replaying the log tree of the parent directory's root we will not
6488  * see the snapshot anymore and at log replay time we will not see any log tree
6489  * corresponding to the deleted snapshot's root, which could lead to replaying
6490  * it after replaying the log tree of the parent directory (which would replay
6491  * the snapshot delete operation).
6492  *
6493  * Must be called before the actual snapshot destroy operation (updates to the
6494  * parent root and tree of tree roots trees, etc) are done.
6495  */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)6496 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6497 				   struct btrfs_inode *dir)
6498 {
6499 	mutex_lock(&dir->log_mutex);
6500 	dir->last_unlink_trans = trans->transid;
6501 	mutex_unlock(&dir->log_mutex);
6502 }
6503 
6504 /*
6505  * Call this after adding a new name for a file and it will properly
6506  * update the log to reflect the new name.
6507  */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_inode * old_dir,struct dentry * parent)6508 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6509 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6510 			struct dentry *parent)
6511 {
6512 	struct btrfs_log_ctx ctx;
6513 
6514 	/*
6515 	 * this will force the logging code to walk the dentry chain
6516 	 * up for the file
6517 	 */
6518 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6519 		inode->last_unlink_trans = trans->transid;
6520 
6521 	/*
6522 	 * if this inode hasn't been logged and directory we're renaming it
6523 	 * from hasn't been logged, we don't need to log it
6524 	 */
6525 	if (!inode_logged(trans, inode) &&
6526 	    (!old_dir || !inode_logged(trans, old_dir)))
6527 		return;
6528 
6529 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6530 	ctx.logging_new_name = true;
6531 	/*
6532 	 * We don't care about the return value. If we fail to log the new name
6533 	 * then we know the next attempt to sync the log will fallback to a full
6534 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6535 	 * we don't need to worry about getting a log committed that has an
6536 	 * inconsistent state after a rename operation.
6537 	 */
6538 	btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6539 			       LOG_INODE_EXISTS, &ctx);
6540 }
6541 
6542