• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/file.h>
4 #include <linux/fdtable.h>
5 #include <linux/freezer.h>
6 #include <linux/mm.h>
7 #include <linux/stat.h>
8 #include <linux/fcntl.h>
9 #include <linux/swap.h>
10 #include <linux/ctype.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/pagemap.h>
14 #include <linux/perf_event.h>
15 #include <linux/highmem.h>
16 #include <linux/spinlock.h>
17 #include <linux/key.h>
18 #include <linux/personality.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/sched/coredump.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/utsname.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/module.h>
27 #include <linux/namei.h>
28 #include <linux/mount.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/tsacct_kern.h>
32 #include <linux/cn_proc.h>
33 #include <linux/audit.h>
34 #include <linux/tracehook.h>
35 #include <linux/kmod.h>
36 #include <linux/fsnotify.h>
37 #include <linux/fs_struct.h>
38 #include <linux/pipe_fs_i.h>
39 #include <linux/oom.h>
40 #include <linux/compat.h>
41 #include <linux/fs.h>
42 #include <linux/path.h>
43 #include <linux/timekeeping.h>
44 
45 #include <linux/uaccess.h>
46 #include <asm/mmu_context.h>
47 #include <asm/tlb.h>
48 #include <asm/exec.h>
49 
50 #include <trace/events/task.h>
51 #include "internal.h"
52 
53 #include <trace/events/sched.h>
54 
55 int core_uses_pid;
56 unsigned int core_pipe_limit;
57 char core_pattern[CORENAME_MAX_SIZE] = "core";
58 static int core_name_size = CORENAME_MAX_SIZE;
59 
60 struct core_name {
61 	char *corename;
62 	int used, size;
63 };
64 
65 /* The maximal length of core_pattern is also specified in sysctl.c */
66 
expand_corename(struct core_name * cn,int size)67 static int expand_corename(struct core_name *cn, int size)
68 {
69 	char *corename = krealloc(cn->corename, size, GFP_KERNEL);
70 
71 	if (!corename)
72 		return -ENOMEM;
73 
74 	if (size > core_name_size) /* racy but harmless */
75 		core_name_size = size;
76 
77 	cn->size = ksize(corename);
78 	cn->corename = corename;
79 	return 0;
80 }
81 
cn_vprintf(struct core_name * cn,const char * fmt,va_list arg)82 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
83 				     va_list arg)
84 {
85 	int free, need;
86 	va_list arg_copy;
87 
88 again:
89 	free = cn->size - cn->used;
90 
91 	va_copy(arg_copy, arg);
92 	need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
93 	va_end(arg_copy);
94 
95 	if (need < free) {
96 		cn->used += need;
97 		return 0;
98 	}
99 
100 	if (!expand_corename(cn, cn->size + need - free + 1))
101 		goto again;
102 
103 	return -ENOMEM;
104 }
105 
cn_printf(struct core_name * cn,const char * fmt,...)106 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
107 {
108 	va_list arg;
109 	int ret;
110 
111 	va_start(arg, fmt);
112 	ret = cn_vprintf(cn, fmt, arg);
113 	va_end(arg);
114 
115 	return ret;
116 }
117 
118 static __printf(2, 3)
cn_esc_printf(struct core_name * cn,const char * fmt,...)119 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
120 {
121 	int cur = cn->used;
122 	va_list arg;
123 	int ret;
124 
125 	va_start(arg, fmt);
126 	ret = cn_vprintf(cn, fmt, arg);
127 	va_end(arg);
128 
129 	if (ret == 0) {
130 		/*
131 		 * Ensure that this coredump name component can't cause the
132 		 * resulting corefile path to consist of a ".." or ".".
133 		 */
134 		if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
135 				(cn->used - cur == 2 && cn->corename[cur] == '.'
136 				&& cn->corename[cur+1] == '.'))
137 			cn->corename[cur] = '!';
138 
139 		/*
140 		 * Empty names are fishy and could be used to create a "//" in a
141 		 * corefile name, causing the coredump to happen one directory
142 		 * level too high. Enforce that all components of the core
143 		 * pattern are at least one character long.
144 		 */
145 		if (cn->used == cur)
146 			ret = cn_printf(cn, "!");
147 	}
148 
149 	for (; cur < cn->used; ++cur) {
150 		if (cn->corename[cur] == '/')
151 			cn->corename[cur] = '!';
152 	}
153 	return ret;
154 }
155 
cn_print_exe_file(struct core_name * cn)156 static int cn_print_exe_file(struct core_name *cn)
157 {
158 	struct file *exe_file;
159 	char *pathbuf, *path;
160 	int ret;
161 
162 	exe_file = get_mm_exe_file(current->mm);
163 	if (!exe_file)
164 		return cn_esc_printf(cn, "%s (path unknown)", current->comm);
165 
166 	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
167 	if (!pathbuf) {
168 		ret = -ENOMEM;
169 		goto put_exe_file;
170 	}
171 
172 	path = file_path(exe_file, pathbuf, PATH_MAX);
173 	if (IS_ERR(path)) {
174 		ret = PTR_ERR(path);
175 		goto free_buf;
176 	}
177 
178 	ret = cn_esc_printf(cn, "%s", path);
179 
180 free_buf:
181 	kfree(pathbuf);
182 put_exe_file:
183 	fput(exe_file);
184 	return ret;
185 }
186 
187 /* format_corename will inspect the pattern parameter, and output a
188  * name into corename, which must have space for at least
189  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
190  */
format_corename(struct core_name * cn,struct coredump_params * cprm,size_t ** argv,int * argc)191 static int format_corename(struct core_name *cn, struct coredump_params *cprm,
192 			   size_t **argv, int *argc)
193 {
194 	const struct cred *cred = current_cred();
195 	const char *pat_ptr = core_pattern;
196 	int ispipe = (*pat_ptr == '|');
197 	bool was_space = false;
198 	int pid_in_pattern = 0;
199 	int err = 0;
200 
201 	cn->used = 0;
202 	cn->corename = NULL;
203 	if (expand_corename(cn, core_name_size))
204 		return -ENOMEM;
205 	cn->corename[0] = '\0';
206 
207 	if (ispipe) {
208 		int argvs = sizeof(core_pattern) / 2;
209 		(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
210 		if (!(*argv))
211 			return -ENOMEM;
212 		(*argv)[(*argc)++] = 0;
213 		++pat_ptr;
214 		if (!(*pat_ptr))
215 			return -ENOMEM;
216 	}
217 
218 	/* Repeat as long as we have more pattern to process and more output
219 	   space */
220 	while (*pat_ptr) {
221 		/*
222 		 * Split on spaces before doing template expansion so that
223 		 * %e and %E don't get split if they have spaces in them
224 		 */
225 		if (ispipe) {
226 			if (isspace(*pat_ptr)) {
227 				if (cn->used != 0)
228 					was_space = true;
229 				pat_ptr++;
230 				continue;
231 			} else if (was_space) {
232 				was_space = false;
233 				err = cn_printf(cn, "%c", '\0');
234 				if (err)
235 					return err;
236 				(*argv)[(*argc)++] = cn->used;
237 			}
238 		}
239 		if (*pat_ptr != '%') {
240 			err = cn_printf(cn, "%c", *pat_ptr++);
241 		} else {
242 			switch (*++pat_ptr) {
243 			/* single % at the end, drop that */
244 			case 0:
245 				goto out;
246 			/* Double percent, output one percent */
247 			case '%':
248 				err = cn_printf(cn, "%c", '%');
249 				break;
250 			/* pid */
251 			case 'p':
252 				pid_in_pattern = 1;
253 				err = cn_printf(cn, "%d",
254 					      task_tgid_vnr(current));
255 				break;
256 			/* global pid */
257 			case 'P':
258 				err = cn_printf(cn, "%d",
259 					      task_tgid_nr(current));
260 				break;
261 			case 'i':
262 				err = cn_printf(cn, "%d",
263 					      task_pid_vnr(current));
264 				break;
265 			case 'I':
266 				err = cn_printf(cn, "%d",
267 					      task_pid_nr(current));
268 				break;
269 			/* uid */
270 			case 'u':
271 				err = cn_printf(cn, "%u",
272 						from_kuid(&init_user_ns,
273 							  cred->uid));
274 				break;
275 			/* gid */
276 			case 'g':
277 				err = cn_printf(cn, "%u",
278 						from_kgid(&init_user_ns,
279 							  cred->gid));
280 				break;
281 			case 'd':
282 				err = cn_printf(cn, "%d",
283 					__get_dumpable(cprm->mm_flags));
284 				break;
285 			/* signal that caused the coredump */
286 			case 's':
287 				err = cn_printf(cn, "%d",
288 						cprm->siginfo->si_signo);
289 				break;
290 			/* UNIX time of coredump */
291 			case 't': {
292 				time64_t time;
293 
294 				time = ktime_get_real_seconds();
295 				err = cn_printf(cn, "%lld", time);
296 				break;
297 			}
298 			/* hostname */
299 			case 'h':
300 				down_read(&uts_sem);
301 				err = cn_esc_printf(cn, "%s",
302 					      utsname()->nodename);
303 				up_read(&uts_sem);
304 				break;
305 			/* executable */
306 			case 'e':
307 				err = cn_esc_printf(cn, "%s", current->comm);
308 				break;
309 			case 'E':
310 				err = cn_print_exe_file(cn);
311 				break;
312 			/* core limit size */
313 			case 'c':
314 				err = cn_printf(cn, "%lu",
315 					      rlimit(RLIMIT_CORE));
316 				break;
317 			default:
318 				break;
319 			}
320 			++pat_ptr;
321 		}
322 
323 		if (err)
324 			return err;
325 	}
326 
327 out:
328 	/* Backward compatibility with core_uses_pid:
329 	 *
330 	 * If core_pattern does not include a %p (as is the default)
331 	 * and core_uses_pid is set, then .%pid will be appended to
332 	 * the filename. Do not do this for piped commands. */
333 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
334 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
335 		if (err)
336 			return err;
337 	}
338 	return ispipe;
339 }
340 
zap_process(struct task_struct * start,int exit_code,int flags)341 static int zap_process(struct task_struct *start, int exit_code, int flags)
342 {
343 	struct task_struct *t;
344 	int nr = 0;
345 
346 	/* ignore all signals except SIGKILL, see prepare_signal() */
347 	start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
348 	start->signal->group_exit_code = exit_code;
349 	start->signal->group_stop_count = 0;
350 
351 	for_each_thread(start, t) {
352 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
353 		if (t != current && t->mm) {
354 			sigaddset(&t->pending.signal, SIGKILL);
355 			signal_wake_up(t, 1);
356 			nr++;
357 		}
358 	}
359 
360 	return nr;
361 }
362 
zap_threads(struct task_struct * tsk,struct mm_struct * mm,struct core_state * core_state,int exit_code)363 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
364 			struct core_state *core_state, int exit_code)
365 {
366 	struct task_struct *g, *p;
367 	unsigned long flags;
368 	int nr = -EAGAIN;
369 
370 	spin_lock_irq(&tsk->sighand->siglock);
371 	if (!signal_group_exit(tsk->signal)) {
372 		mm->core_state = core_state;
373 		tsk->signal->group_exit_task = tsk;
374 		nr = zap_process(tsk, exit_code, 0);
375 		clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
376 	}
377 	spin_unlock_irq(&tsk->sighand->siglock);
378 	if (unlikely(nr < 0))
379 		return nr;
380 
381 	tsk->flags |= PF_DUMPCORE;
382 	if (atomic_read(&mm->mm_users) == nr + 1)
383 		goto done;
384 	/*
385 	 * We should find and kill all tasks which use this mm, and we should
386 	 * count them correctly into ->nr_threads. We don't take tasklist
387 	 * lock, but this is safe wrt:
388 	 *
389 	 * fork:
390 	 *	None of sub-threads can fork after zap_process(leader). All
391 	 *	processes which were created before this point should be
392 	 *	visible to zap_threads() because copy_process() adds the new
393 	 *	process to the tail of init_task.tasks list, and lock/unlock
394 	 *	of ->siglock provides a memory barrier.
395 	 *
396 	 * do_exit:
397 	 *	The caller holds mm->mmap_sem. This means that the task which
398 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
399 	 *	its ->mm.
400 	 *
401 	 * de_thread:
402 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
403 	 *	we must see either old or new leader, this does not matter.
404 	 *	However, it can change p->sighand, so lock_task_sighand(p)
405 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
406 	 *	it can't fail.
407 	 *
408 	 *	Note also that "g" can be the old leader with ->mm == NULL
409 	 *	and already unhashed and thus removed from ->thread_group.
410 	 *	This is OK, __unhash_process()->list_del_rcu() does not
411 	 *	clear the ->next pointer, we will find the new leader via
412 	 *	next_thread().
413 	 */
414 	rcu_read_lock();
415 	for_each_process(g) {
416 		if (g == tsk->group_leader)
417 			continue;
418 		if (g->flags & PF_KTHREAD)
419 			continue;
420 
421 		for_each_thread(g, p) {
422 			if (unlikely(!p->mm))
423 				continue;
424 			if (unlikely(p->mm == mm)) {
425 				lock_task_sighand(p, &flags);
426 				nr += zap_process(p, exit_code,
427 							SIGNAL_GROUP_EXIT);
428 				unlock_task_sighand(p, &flags);
429 			}
430 			break;
431 		}
432 	}
433 	rcu_read_unlock();
434 done:
435 	atomic_set(&core_state->nr_threads, nr);
436 	return nr;
437 }
438 
coredump_wait(int exit_code,struct core_state * core_state)439 static int coredump_wait(int exit_code, struct core_state *core_state)
440 {
441 	struct task_struct *tsk = current;
442 	struct mm_struct *mm = tsk->mm;
443 	int core_waiters = -EBUSY;
444 
445 	init_completion(&core_state->startup);
446 	core_state->dumper.task = tsk;
447 	core_state->dumper.next = NULL;
448 
449 	if (down_write_killable(&mm->mmap_sem))
450 		return -EINTR;
451 
452 	if (!mm->core_state)
453 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
454 	up_write(&mm->mmap_sem);
455 
456 	if (core_waiters > 0) {
457 		struct core_thread *ptr;
458 
459 		freezer_do_not_count();
460 		wait_for_completion(&core_state->startup);
461 		freezer_count();
462 		/*
463 		 * Wait for all the threads to become inactive, so that
464 		 * all the thread context (extended register state, like
465 		 * fpu etc) gets copied to the memory.
466 		 */
467 		ptr = core_state->dumper.next;
468 		while (ptr != NULL) {
469 			wait_task_inactive(ptr->task, 0);
470 			ptr = ptr->next;
471 		}
472 	}
473 
474 	return core_waiters;
475 }
476 
coredump_finish(struct mm_struct * mm,bool core_dumped)477 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
478 {
479 	struct core_thread *curr, *next;
480 	struct task_struct *task;
481 
482 	spin_lock_irq(&current->sighand->siglock);
483 	if (core_dumped && !__fatal_signal_pending(current))
484 		current->signal->group_exit_code |= 0x80;
485 	current->signal->group_exit_task = NULL;
486 	current->signal->flags = SIGNAL_GROUP_EXIT;
487 	spin_unlock_irq(&current->sighand->siglock);
488 
489 	next = mm->core_state->dumper.next;
490 	while ((curr = next) != NULL) {
491 		next = curr->next;
492 		task = curr->task;
493 		/*
494 		 * see exit_mm(), curr->task must not see
495 		 * ->task == NULL before we read ->next.
496 		 */
497 		smp_mb();
498 		curr->task = NULL;
499 		wake_up_process(task);
500 	}
501 
502 	mm->core_state = NULL;
503 }
504 
dump_interrupted(void)505 static bool dump_interrupted(void)
506 {
507 	/*
508 	 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
509 	 * can do try_to_freeze() and check __fatal_signal_pending(),
510 	 * but then we need to teach dump_write() to restart and clear
511 	 * TIF_SIGPENDING.
512 	 */
513 	return signal_pending(current);
514 }
515 
wait_for_dump_helpers(struct file * file)516 static void wait_for_dump_helpers(struct file *file)
517 {
518 	struct pipe_inode_info *pipe = file->private_data;
519 
520 	pipe_lock(pipe);
521 	pipe->readers++;
522 	pipe->writers--;
523 	wake_up_interruptible_sync(&pipe->wait);
524 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
525 	pipe_unlock(pipe);
526 
527 	/*
528 	 * We actually want wait_event_freezable() but then we need
529 	 * to clear TIF_SIGPENDING and improve dump_interrupted().
530 	 */
531 	wait_event_interruptible(pipe->wait, pipe->readers == 1);
532 
533 	pipe_lock(pipe);
534 	pipe->readers--;
535 	pipe->writers++;
536 	pipe_unlock(pipe);
537 }
538 
539 /*
540  * umh_pipe_setup
541  * helper function to customize the process used
542  * to collect the core in userspace.  Specifically
543  * it sets up a pipe and installs it as fd 0 (stdin)
544  * for the process.  Returns 0 on success, or
545  * PTR_ERR on failure.
546  * Note that it also sets the core limit to 1.  This
547  * is a special value that we use to trap recursive
548  * core dumps
549  */
umh_pipe_setup(struct subprocess_info * info,struct cred * new)550 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
551 {
552 	struct file *files[2];
553 	struct coredump_params *cp = (struct coredump_params *)info->data;
554 	int err = create_pipe_files(files, 0);
555 	if (err)
556 		return err;
557 
558 	cp->file = files[1];
559 
560 	err = replace_fd(0, files[0], 0);
561 	fput(files[0]);
562 	/* and disallow core files too */
563 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
564 
565 	return err;
566 }
567 
do_coredump(const kernel_siginfo_t * siginfo)568 void do_coredump(const kernel_siginfo_t *siginfo)
569 {
570 	struct core_state core_state;
571 	struct core_name cn;
572 	struct mm_struct *mm = current->mm;
573 	struct linux_binfmt * binfmt;
574 	const struct cred *old_cred;
575 	struct cred *cred;
576 	int retval = 0;
577 	int ispipe;
578 	size_t *argv = NULL;
579 	int argc = 0;
580 	struct files_struct *displaced;
581 	/* require nonrelative corefile path and be extra careful */
582 	bool need_suid_safe = false;
583 	bool core_dumped = false;
584 	static atomic_t core_dump_count = ATOMIC_INIT(0);
585 	struct coredump_params cprm = {
586 		.siginfo = siginfo,
587 		.regs = signal_pt_regs(),
588 		.limit = rlimit(RLIMIT_CORE),
589 		/*
590 		 * We must use the same mm->flags while dumping core to avoid
591 		 * inconsistency of bit flags, since this flag is not protected
592 		 * by any locks.
593 		 */
594 		.mm_flags = mm->flags,
595 	};
596 
597 	audit_core_dumps(siginfo->si_signo);
598 
599 	binfmt = mm->binfmt;
600 	if (!binfmt || !binfmt->core_dump)
601 		goto fail;
602 	if (!__get_dumpable(cprm.mm_flags))
603 		goto fail;
604 
605 	cred = prepare_creds();
606 	if (!cred)
607 		goto fail;
608 	/*
609 	 * We cannot trust fsuid as being the "true" uid of the process
610 	 * nor do we know its entire history. We only know it was tainted
611 	 * so we dump it as root in mode 2, and only into a controlled
612 	 * environment (pipe handler or fully qualified path).
613 	 */
614 	if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
615 		/* Setuid core dump mode */
616 		cred->fsuid = GLOBAL_ROOT_UID;	/* Dump root private */
617 		need_suid_safe = true;
618 	}
619 
620 	retval = coredump_wait(siginfo->si_signo, &core_state);
621 	if (retval < 0)
622 		goto fail_creds;
623 
624 	old_cred = override_creds(cred);
625 
626 	ispipe = format_corename(&cn, &cprm, &argv, &argc);
627 
628 	if (ispipe) {
629 		int argi;
630 		int dump_count;
631 		char **helper_argv;
632 		struct subprocess_info *sub_info;
633 
634 		if (ispipe < 0) {
635 			printk(KERN_WARNING "format_corename failed\n");
636 			printk(KERN_WARNING "Aborting core\n");
637 			goto fail_unlock;
638 		}
639 
640 		if (cprm.limit == 1) {
641 			/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
642 			 *
643 			 * Normally core limits are irrelevant to pipes, since
644 			 * we're not writing to the file system, but we use
645 			 * cprm.limit of 1 here as a special value, this is a
646 			 * consistent way to catch recursive crashes.
647 			 * We can still crash if the core_pattern binary sets
648 			 * RLIM_CORE = !1, but it runs as root, and can do
649 			 * lots of stupid things.
650 			 *
651 			 * Note that we use task_tgid_vnr here to grab the pid
652 			 * of the process group leader.  That way we get the
653 			 * right pid if a thread in a multi-threaded
654 			 * core_pattern process dies.
655 			 */
656 			printk(KERN_WARNING
657 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
658 				task_tgid_vnr(current), current->comm);
659 			printk(KERN_WARNING "Aborting core\n");
660 			goto fail_unlock;
661 		}
662 		cprm.limit = RLIM_INFINITY;
663 
664 		dump_count = atomic_inc_return(&core_dump_count);
665 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
666 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
667 			       task_tgid_vnr(current), current->comm);
668 			printk(KERN_WARNING "Skipping core dump\n");
669 			goto fail_dropcount;
670 		}
671 
672 		helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
673 					    GFP_KERNEL);
674 		if (!helper_argv) {
675 			printk(KERN_WARNING "%s failed to allocate memory\n",
676 			       __func__);
677 			goto fail_dropcount;
678 		}
679 		for (argi = 0; argi < argc; argi++)
680 			helper_argv[argi] = cn.corename + argv[argi];
681 		helper_argv[argi] = NULL;
682 
683 		retval = -ENOMEM;
684 		sub_info = call_usermodehelper_setup(helper_argv[0],
685 						helper_argv, NULL, GFP_KERNEL,
686 						umh_pipe_setup, NULL, &cprm);
687 		if (sub_info)
688 			retval = call_usermodehelper_exec(sub_info,
689 							  UMH_WAIT_EXEC);
690 
691 		kfree(helper_argv);
692 		if (retval) {
693 			printk(KERN_INFO "Core dump to |%s pipe failed\n",
694 			       cn.corename);
695 			goto close_fail;
696 		}
697 	} else {
698 		struct inode *inode;
699 		int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
700 				 O_LARGEFILE | O_EXCL;
701 
702 		if (cprm.limit < binfmt->min_coredump)
703 			goto fail_unlock;
704 
705 		if (need_suid_safe && cn.corename[0] != '/') {
706 			printk(KERN_WARNING "Pid %d(%s) can only dump core "\
707 				"to fully qualified path!\n",
708 				task_tgid_vnr(current), current->comm);
709 			printk(KERN_WARNING "Skipping core dump\n");
710 			goto fail_unlock;
711 		}
712 
713 		/*
714 		 * Unlink the file if it exists unless this is a SUID
715 		 * binary - in that case, we're running around with root
716 		 * privs and don't want to unlink another user's coredump.
717 		 */
718 		if (!need_suid_safe) {
719 			/*
720 			 * If it doesn't exist, that's fine. If there's some
721 			 * other problem, we'll catch it at the filp_open().
722 			 */
723 			do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
724 		}
725 
726 		/*
727 		 * There is a race between unlinking and creating the
728 		 * file, but if that causes an EEXIST here, that's
729 		 * fine - another process raced with us while creating
730 		 * the corefile, and the other process won. To userspace,
731 		 * what matters is that at least one of the two processes
732 		 * writes its coredump successfully, not which one.
733 		 */
734 		if (need_suid_safe) {
735 			/*
736 			 * Using user namespaces, normal user tasks can change
737 			 * their current->fs->root to point to arbitrary
738 			 * directories. Since the intention of the "only dump
739 			 * with a fully qualified path" rule is to control where
740 			 * coredumps may be placed using root privileges,
741 			 * current->fs->root must not be used. Instead, use the
742 			 * root directory of init_task.
743 			 */
744 			struct path root;
745 
746 			task_lock(&init_task);
747 			get_fs_root(init_task.fs, &root);
748 			task_unlock(&init_task);
749 			cprm.file = file_open_root(root.dentry, root.mnt,
750 				cn.corename, open_flags, 0600);
751 			path_put(&root);
752 		} else {
753 			cprm.file = filp_open(cn.corename, open_flags, 0600);
754 		}
755 		if (IS_ERR(cprm.file))
756 			goto fail_unlock;
757 
758 		inode = file_inode(cprm.file);
759 		if (inode->i_nlink > 1)
760 			goto close_fail;
761 		if (d_unhashed(cprm.file->f_path.dentry))
762 			goto close_fail;
763 		/*
764 		 * AK: actually i see no reason to not allow this for named
765 		 * pipes etc, but keep the previous behaviour for now.
766 		 */
767 		if (!S_ISREG(inode->i_mode))
768 			goto close_fail;
769 		/*
770 		 * Don't dump core if the filesystem changed owner or mode
771 		 * of the file during file creation. This is an issue when
772 		 * a process dumps core while its cwd is e.g. on a vfat
773 		 * filesystem.
774 		 */
775 		if (!uid_eq(inode->i_uid, current_fsuid()))
776 			goto close_fail;
777 		if ((inode->i_mode & 0677) != 0600)
778 			goto close_fail;
779 		if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
780 			goto close_fail;
781 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
782 			goto close_fail;
783 	}
784 
785 	/* get us an unshared descriptor table; almost always a no-op */
786 	retval = unshare_files(&displaced);
787 	if (retval)
788 		goto close_fail;
789 	if (displaced)
790 		put_files_struct(displaced);
791 	if (!dump_interrupted()) {
792 		/*
793 		 * umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
794 		 * have this set to NULL.
795 		 */
796 		if (!cprm.file) {
797 			pr_info("Core dump to |%s disabled\n", cn.corename);
798 			goto close_fail;
799 		}
800 		file_start_write(cprm.file);
801 		core_dumped = binfmt->core_dump(&cprm);
802 		file_end_write(cprm.file);
803 	}
804 	if (ispipe && core_pipe_limit)
805 		wait_for_dump_helpers(cprm.file);
806 close_fail:
807 	if (cprm.file)
808 		filp_close(cprm.file, NULL);
809 fail_dropcount:
810 	if (ispipe)
811 		atomic_dec(&core_dump_count);
812 fail_unlock:
813 	kfree(argv);
814 	kfree(cn.corename);
815 	coredump_finish(mm, core_dumped);
816 	revert_creds(old_cred);
817 fail_creds:
818 	put_cred(cred);
819 fail:
820 	return;
821 }
822 
823 /*
824  * Core dumping helper functions.  These are the only things you should
825  * do on a core-file: use only these functions to write out all the
826  * necessary info.
827  */
dump_emit(struct coredump_params * cprm,const void * addr,int nr)828 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
829 {
830 	struct file *file = cprm->file;
831 	loff_t pos = file->f_pos;
832 	ssize_t n;
833 	if (cprm->written + nr > cprm->limit)
834 		return 0;
835 	while (nr) {
836 		if (dump_interrupted())
837 			return 0;
838 		n = __kernel_write(file, addr, nr, &pos);
839 		if (n <= 0)
840 			return 0;
841 		file->f_pos = pos;
842 		cprm->written += n;
843 		cprm->pos += n;
844 		nr -= n;
845 	}
846 	return 1;
847 }
848 EXPORT_SYMBOL(dump_emit);
849 
dump_skip(struct coredump_params * cprm,size_t nr)850 int dump_skip(struct coredump_params *cprm, size_t nr)
851 {
852 	static char zeroes[PAGE_SIZE];
853 	struct file *file = cprm->file;
854 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
855 		if (dump_interrupted() ||
856 		    file->f_op->llseek(file, nr, SEEK_CUR) < 0)
857 			return 0;
858 		cprm->pos += nr;
859 		return 1;
860 	} else {
861 		while (nr > PAGE_SIZE) {
862 			if (!dump_emit(cprm, zeroes, PAGE_SIZE))
863 				return 0;
864 			nr -= PAGE_SIZE;
865 		}
866 		return dump_emit(cprm, zeroes, nr);
867 	}
868 }
869 EXPORT_SYMBOL(dump_skip);
870 
dump_align(struct coredump_params * cprm,int align)871 int dump_align(struct coredump_params *cprm, int align)
872 {
873 	unsigned mod = cprm->pos & (align - 1);
874 	if (align & (align - 1))
875 		return 0;
876 	return mod ? dump_skip(cprm, align - mod) : 1;
877 }
878 EXPORT_SYMBOL(dump_align);
879 
880 /*
881  * Ensures that file size is big enough to contain the current file
882  * postion. This prevents gdb from complaining about a truncated file
883  * if the last "write" to the file was dump_skip.
884  */
dump_truncate(struct coredump_params * cprm)885 void dump_truncate(struct coredump_params *cprm)
886 {
887 	struct file *file = cprm->file;
888 	loff_t offset;
889 
890 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
891 		offset = file->f_op->llseek(file, 0, SEEK_CUR);
892 		if (i_size_read(file->f_mapping->host) < offset)
893 			do_truncate(file->f_path.dentry, offset, 0, file);
894 	}
895 }
896 EXPORT_SYMBOL(dump_truncate);
897