• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Key setup facility for FS encryption support.
4  *
5  * Copyright (C) 2015, Google, Inc.
6  *
7  * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8  * Heavily modified since then.
9  */
10 
11 #include <crypto/skcipher.h>
12 #include <linux/key.h>
13 
14 #include "fscrypt_private.h"
15 
16 struct fscrypt_mode fscrypt_modes[] = {
17 	[FSCRYPT_MODE_AES_256_XTS] = {
18 		.friendly_name = "AES-256-XTS",
19 		.cipher_str = "xts(aes)",
20 		.keysize = 64,
21 		.ivsize = 16,
22 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
23 	},
24 	[FSCRYPT_MODE_AES_256_CTS] = {
25 		.friendly_name = "AES-256-CTS-CBC",
26 		.cipher_str = "cts(cbc(aes))",
27 		.keysize = 32,
28 		.ivsize = 16,
29 	},
30 	[FSCRYPT_MODE_AES_128_CBC] = {
31 		.friendly_name = "AES-128-CBC-ESSIV",
32 		.cipher_str = "essiv(cbc(aes),sha256)",
33 		.keysize = 16,
34 		.ivsize = 16,
35 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
36 	},
37 	[FSCRYPT_MODE_AES_128_CTS] = {
38 		.friendly_name = "AES-128-CTS-CBC",
39 		.cipher_str = "cts(cbc(aes))",
40 		.keysize = 16,
41 		.ivsize = 16,
42 	},
43 	[FSCRYPT_MODE_ADIANTUM] = {
44 		.friendly_name = "Adiantum",
45 		.cipher_str = "adiantum(xchacha12,aes)",
46 		.keysize = 32,
47 		.ivsize = 32,
48 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
49 	},
50 };
51 
52 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
53 
54 static struct fscrypt_mode *
select_encryption_mode(const union fscrypt_policy * policy,const struct inode * inode)55 select_encryption_mode(const union fscrypt_policy *policy,
56 		       const struct inode *inode)
57 {
58 	BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1);
59 
60 	if (S_ISREG(inode->i_mode))
61 		return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
62 
63 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
64 		return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
65 
66 	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
67 		  inode->i_ino, (inode->i_mode & S_IFMT));
68 	return ERR_PTR(-EINVAL);
69 }
70 
71 /* Create a symmetric cipher object for the given encryption mode and key */
72 static struct crypto_skcipher *
fscrypt_allocate_skcipher(struct fscrypt_mode * mode,const u8 * raw_key,const struct inode * inode)73 fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
74 			  const struct inode *inode)
75 {
76 	struct crypto_skcipher *tfm;
77 	int err;
78 
79 	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
80 	if (IS_ERR(tfm)) {
81 		if (PTR_ERR(tfm) == -ENOENT) {
82 			fscrypt_warn(inode,
83 				     "Missing crypto API support for %s (API name: \"%s\")",
84 				     mode->friendly_name, mode->cipher_str);
85 			return ERR_PTR(-ENOPKG);
86 		}
87 		fscrypt_err(inode, "Error allocating '%s' transform: %ld",
88 			    mode->cipher_str, PTR_ERR(tfm));
89 		return tfm;
90 	}
91 	if (!xchg(&mode->logged_impl_name, 1)) {
92 		/*
93 		 * fscrypt performance can vary greatly depending on which
94 		 * crypto algorithm implementation is used.  Help people debug
95 		 * performance problems by logging the ->cra_driver_name the
96 		 * first time a mode is used.
97 		 */
98 		pr_info("fscrypt: %s using implementation \"%s\"\n",
99 			mode->friendly_name, crypto_skcipher_driver_name(tfm));
100 	}
101 	if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
102 		err = -EINVAL;
103 		goto err_free_tfm;
104 	}
105 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
106 	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
107 	if (err)
108 		goto err_free_tfm;
109 
110 	return tfm;
111 
112 err_free_tfm:
113 	crypto_free_skcipher(tfm);
114 	return ERR_PTR(err);
115 }
116 
117 /*
118  * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
119  * raw key, encryption mode, and flag indicating which encryption implementation
120  * (fs-layer or blk-crypto) will be used.
121  */
fscrypt_prepare_key(struct fscrypt_prepared_key * prep_key,const u8 * raw_key,unsigned int raw_key_size,bool is_hw_wrapped,const struct fscrypt_info * ci)122 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
123 			const u8 *raw_key, unsigned int raw_key_size,
124 			bool is_hw_wrapped, const struct fscrypt_info *ci)
125 {
126 	struct crypto_skcipher *tfm;
127 
128 	if (fscrypt_using_inline_encryption(ci))
129 		return fscrypt_prepare_inline_crypt_key(prep_key,
130 				raw_key, raw_key_size, is_hw_wrapped, ci);
131 
132 	if (WARN_ON(is_hw_wrapped || raw_key_size != ci->ci_mode->keysize))
133 		return -EINVAL;
134 
135 	tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
136 	if (IS_ERR(tfm))
137 		return PTR_ERR(tfm);
138 	/*
139 	 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
140 	 * I.e., here we publish ->tfm with a RELEASE barrier so that
141 	 * concurrent tasks can ACQUIRE it.  Note that this concurrency is only
142 	 * possible for per-mode keys, not for per-file keys.
143 	 */
144 	smp_store_release(&prep_key->tfm, tfm);
145 	return 0;
146 }
147 
148 /* Destroy a crypto transform object and/or blk-crypto key. */
fscrypt_destroy_prepared_key(struct fscrypt_prepared_key * prep_key)149 void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key)
150 {
151 	crypto_free_skcipher(prep_key->tfm);
152 	fscrypt_destroy_inline_crypt_key(prep_key);
153 }
154 
155 /* Given a per-file encryption key, set up the file's crypto transform object */
fscrypt_set_per_file_enc_key(struct fscrypt_info * ci,const u8 * raw_key)156 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
157 {
158 	ci->ci_owns_key = true;
159 	return fscrypt_prepare_key(&ci->ci_key, raw_key, ci->ci_mode->keysize,
160 				   false /*is_hw_wrapped*/, ci);
161 }
162 
setup_per_mode_enc_key(struct fscrypt_info * ci,struct fscrypt_master_key * mk,struct fscrypt_prepared_key * keys,u8 hkdf_context,bool include_fs_uuid)163 static int setup_per_mode_enc_key(struct fscrypt_info *ci,
164 				  struct fscrypt_master_key *mk,
165 				  struct fscrypt_prepared_key *keys,
166 				  u8 hkdf_context, bool include_fs_uuid)
167 {
168 	const struct inode *inode = ci->ci_inode;
169 	const struct super_block *sb = inode->i_sb;
170 	struct fscrypt_mode *mode = ci->ci_mode;
171 	const u8 mode_num = mode - fscrypt_modes;
172 	struct fscrypt_prepared_key *prep_key;
173 	u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
174 	u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
175 	unsigned int hkdf_infolen = 0;
176 	int err;
177 
178 	if (WARN_ON(mode_num > FSCRYPT_MODE_MAX))
179 		return -EINVAL;
180 
181 	prep_key = &keys[mode_num];
182 	if (fscrypt_is_key_prepared(prep_key, ci)) {
183 		ci->ci_key = *prep_key;
184 		return 0;
185 	}
186 
187 	mutex_lock(&fscrypt_mode_key_setup_mutex);
188 
189 	if (fscrypt_is_key_prepared(prep_key, ci))
190 		goto done_unlock;
191 
192 	if (mk->mk_secret.is_hw_wrapped && S_ISREG(inode->i_mode)) {
193 		int i;
194 
195 		if (!fscrypt_using_inline_encryption(ci)) {
196 			fscrypt_warn(ci->ci_inode,
197 				     "Hardware-wrapped keys require inline encryption (-o inlinecrypt)");
198 			err = -EINVAL;
199 			goto out_unlock;
200 		}
201 		for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
202 			if (fscrypt_is_key_prepared(&keys[i], ci)) {
203 				fscrypt_warn(ci->ci_inode,
204 					     "Each hardware-wrapped key can only be used with one encryption mode");
205 				err = -EINVAL;
206 				goto out_unlock;
207 			}
208 		}
209 		err = fscrypt_prepare_key(prep_key, mk->mk_secret.raw,
210 					  mk->mk_secret.size, true, ci);
211 		if (err)
212 			goto out_unlock;
213 	} else {
214 		BUILD_BUG_ON(sizeof(mode_num) != 1);
215 		BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
216 		BUILD_BUG_ON(sizeof(hkdf_info) != 17);
217 		hkdf_info[hkdf_infolen++] = mode_num;
218 		if (include_fs_uuid) {
219 			memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
220 				   sizeof(sb->s_uuid));
221 			hkdf_infolen += sizeof(sb->s_uuid);
222 		}
223 		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
224 					  hkdf_context, hkdf_info, hkdf_infolen,
225 					  mode_key, mode->keysize);
226 		if (err)
227 			goto out_unlock;
228 		err = fscrypt_prepare_key(prep_key, mode_key, mode->keysize,
229 					  false /*is_hw_wrapped*/, ci);
230 		memzero_explicit(mode_key, mode->keysize);
231 		if (err)
232 			goto out_unlock;
233 	}
234 done_unlock:
235 	ci->ci_key = *prep_key;
236 
237 	err = 0;
238 out_unlock:
239 	mutex_unlock(&fscrypt_mode_key_setup_mutex);
240 	return err;
241 }
242 
243 /*
244  * Derive a SipHash key from the given fscrypt master key and the given
245  * application-specific information string.
246  *
247  * Note that the KDF produces a byte array, but the SipHash APIs expect the key
248  * as a pair of 64-bit words.  Therefore, on big endian CPUs we have to do an
249  * endianness swap in order to get the same results as on little endian CPUs.
250  */
fscrypt_derive_siphash_key(const struct fscrypt_master_key * mk,u8 context,const u8 * info,unsigned int infolen,siphash_key_t * key)251 static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk,
252 				      u8 context, const u8 *info,
253 				      unsigned int infolen, siphash_key_t *key)
254 {
255 	int err;
256 
257 	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen,
258 				  (u8 *)key, sizeof(*key));
259 	if (err)
260 		return err;
261 
262 	BUILD_BUG_ON(sizeof(*key) != 16);
263 	BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2);
264 	le64_to_cpus(&key->key[0]);
265 	le64_to_cpus(&key->key[1]);
266 	return 0;
267 }
268 
fscrypt_derive_dirhash_key(struct fscrypt_info * ci,const struct fscrypt_master_key * mk)269 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
270 			       const struct fscrypt_master_key *mk)
271 {
272 	int err;
273 
274 	err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY,
275 					 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
276 					 &ci->ci_dirhash_key);
277 	if (err)
278 		return err;
279 	ci->ci_dirhash_key_initialized = true;
280 	return 0;
281 }
282 
fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info * ci,struct fscrypt_master_key * mk)283 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
284 					    struct fscrypt_master_key *mk)
285 {
286 	int err;
287 
288 	err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
289 				     HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
290 	if (err)
291 		return err;
292 
293 	/* pairs with smp_store_release() below */
294 	if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {
295 
296 		mutex_lock(&fscrypt_mode_key_setup_mutex);
297 
298 		if (mk->mk_ino_hash_key_initialized)
299 			goto unlock;
300 
301 		err = fscrypt_derive_siphash_key(mk,
302 						 HKDF_CONTEXT_INODE_HASH_KEY,
303 						 NULL, 0, &mk->mk_ino_hash_key);
304 		if (err)
305 			goto unlock;
306 		/* pairs with smp_load_acquire() above */
307 		smp_store_release(&mk->mk_ino_hash_key_initialized, true);
308 unlock:
309 		mutex_unlock(&fscrypt_mode_key_setup_mutex);
310 		if (err)
311 			return err;
312 	}
313 
314 	ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
315 					      &mk->mk_ino_hash_key);
316 	return 0;
317 }
318 
fscrypt_setup_v2_file_key(struct fscrypt_info * ci,struct fscrypt_master_key * mk)319 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
320 				     struct fscrypt_master_key *mk)
321 {
322 	int err;
323 
324 	if (mk->mk_secret.is_hw_wrapped &&
325 	    !(ci->ci_policy.v2.flags & (FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 |
326 					FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32))) {
327 		fscrypt_warn(ci->ci_inode,
328 			     "Hardware-wrapped keys are only supported with IV_INO_LBLK policies");
329 		return -EINVAL;
330 	}
331 
332 	if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
333 		/*
334 		 * DIRECT_KEY: instead of deriving per-file encryption keys, the
335 		 * per-file nonce will be included in all the IVs.  But unlike
336 		 * v1 policies, for v2 policies in this case we don't encrypt
337 		 * with the master key directly but rather derive a per-mode
338 		 * encryption key.  This ensures that the master key is
339 		 * consistently used only for HKDF, avoiding key reuse issues.
340 		 */
341 		err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
342 					     HKDF_CONTEXT_DIRECT_KEY, false);
343 	} else if (ci->ci_policy.v2.flags &
344 		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
345 		/*
346 		 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
347 		 * mode_num, filesystem_uuid), and inode number is included in
348 		 * the IVs.  This format is optimized for use with inline
349 		 * encryption hardware compliant with the UFS standard.
350 		 */
351 		err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
352 					     HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
353 					     true);
354 	} else if (ci->ci_policy.v2.flags &
355 		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
356 		err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
357 	} else {
358 		u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
359 
360 		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
361 					  HKDF_CONTEXT_PER_FILE_ENC_KEY,
362 					  ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
363 					  derived_key, ci->ci_mode->keysize);
364 		if (err)
365 			return err;
366 
367 		err = fscrypt_set_per_file_enc_key(ci, derived_key);
368 		memzero_explicit(derived_key, ci->ci_mode->keysize);
369 	}
370 	if (err)
371 		return err;
372 
373 	/* Derive a secret dirhash key for directories that need it. */
374 	if (S_ISDIR(ci->ci_inode->i_mode) && IS_CASEFOLDED(ci->ci_inode)) {
375 		err = fscrypt_derive_dirhash_key(ci, mk);
376 		if (err)
377 			return err;
378 	}
379 
380 	return 0;
381 }
382 
383 /*
384  * Find the master key, then set up the inode's actual encryption key.
385  *
386  * If the master key is found in the filesystem-level keyring, then the
387  * corresponding 'struct key' is returned in *master_key_ret with
388  * ->mk_secret_sem read-locked.  This is needed to ensure that only one task
389  * links the fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race
390  * to create an fscrypt_info for the same inode), and to synchronize the master
391  * key being removed with a new inode starting to use it.
392  */
setup_file_encryption_key(struct fscrypt_info * ci,struct key ** master_key_ret)393 static int setup_file_encryption_key(struct fscrypt_info *ci,
394 				     struct key **master_key_ret)
395 {
396 	struct key *key;
397 	struct fscrypt_master_key *mk = NULL;
398 	struct fscrypt_key_specifier mk_spec;
399 	int err;
400 
401 	switch (ci->ci_policy.version) {
402 	case FSCRYPT_POLICY_V1:
403 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
404 		memcpy(mk_spec.u.descriptor,
405 		       ci->ci_policy.v1.master_key_descriptor,
406 		       FSCRYPT_KEY_DESCRIPTOR_SIZE);
407 		break;
408 	case FSCRYPT_POLICY_V2:
409 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
410 		memcpy(mk_spec.u.identifier,
411 		       ci->ci_policy.v2.master_key_identifier,
412 		       FSCRYPT_KEY_IDENTIFIER_SIZE);
413 		break;
414 	default:
415 		WARN_ON(1);
416 		return -EINVAL;
417 	}
418 
419 	key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
420 	if (IS_ERR(key)) {
421 		if (key != ERR_PTR(-ENOKEY) ||
422 		    ci->ci_policy.version != FSCRYPT_POLICY_V1)
423 			return PTR_ERR(key);
424 
425 		err = fscrypt_select_encryption_impl(ci, false);
426 		if (err)
427 			return err;
428 
429 		/*
430 		 * As a legacy fallback for v1 policies, search for the key in
431 		 * the current task's subscribed keyrings too.  Don't move this
432 		 * to before the search of ->s_master_keys, since users
433 		 * shouldn't be able to override filesystem-level keys.
434 		 */
435 		return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
436 	}
437 
438 	mk = key->payload.data[0];
439 	down_read(&mk->mk_secret_sem);
440 
441 	/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
442 	if (!is_master_key_secret_present(&mk->mk_secret)) {
443 		err = -ENOKEY;
444 		goto out_release_key;
445 	}
446 
447 	/*
448 	 * Require that the master key be at least as long as the derived key.
449 	 * Otherwise, the derived key cannot possibly contain as much entropy as
450 	 * that required by the encryption mode it will be used for.  For v1
451 	 * policies it's also required for the KDF to work at all.
452 	 */
453 	if (mk->mk_secret.size < ci->ci_mode->keysize) {
454 		fscrypt_warn(NULL,
455 			     "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
456 			     master_key_spec_type(&mk_spec),
457 			     master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u,
458 			     mk->mk_secret.size, ci->ci_mode->keysize);
459 		err = -ENOKEY;
460 		goto out_release_key;
461 	}
462 
463 	err = fscrypt_select_encryption_impl(ci, mk->mk_secret.is_hw_wrapped);
464 	if (err)
465 		goto out_release_key;
466 
467 	switch (ci->ci_policy.version) {
468 	case FSCRYPT_POLICY_V1:
469 		err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
470 		break;
471 	case FSCRYPT_POLICY_V2:
472 		err = fscrypt_setup_v2_file_key(ci, mk);
473 		break;
474 	default:
475 		WARN_ON(1);
476 		err = -EINVAL;
477 		break;
478 	}
479 	if (err)
480 		goto out_release_key;
481 
482 	*master_key_ret = key;
483 	return 0;
484 
485 out_release_key:
486 	up_read(&mk->mk_secret_sem);
487 	key_put(key);
488 	return err;
489 }
490 
put_crypt_info(struct fscrypt_info * ci)491 static void put_crypt_info(struct fscrypt_info *ci)
492 {
493 	struct key *key;
494 
495 	if (!ci)
496 		return;
497 
498 	if (ci->ci_direct_key)
499 		fscrypt_put_direct_key(ci->ci_direct_key);
500 	else if (ci->ci_owns_key)
501 		fscrypt_destroy_prepared_key(&ci->ci_key);
502 
503 	key = ci->ci_master_key;
504 	if (key) {
505 		struct fscrypt_master_key *mk = key->payload.data[0];
506 
507 		/*
508 		 * Remove this inode from the list of inodes that were unlocked
509 		 * with the master key.
510 		 *
511 		 * In addition, if we're removing the last inode from a key that
512 		 * already had its secret removed, invalidate the key so that it
513 		 * gets removed from ->s_master_keys.
514 		 */
515 		spin_lock(&mk->mk_decrypted_inodes_lock);
516 		list_del(&ci->ci_master_key_link);
517 		spin_unlock(&mk->mk_decrypted_inodes_lock);
518 		if (refcount_dec_and_test(&mk->mk_refcount))
519 			key_invalidate(key);
520 		key_put(key);
521 	}
522 	memzero_explicit(ci, sizeof(*ci));
523 	kmem_cache_free(fscrypt_info_cachep, ci);
524 }
525 
fscrypt_get_encryption_info(struct inode * inode)526 int fscrypt_get_encryption_info(struct inode *inode)
527 {
528 	struct fscrypt_info *crypt_info;
529 	union fscrypt_context ctx;
530 	struct fscrypt_mode *mode;
531 	struct key *master_key = NULL;
532 	int res;
533 
534 	if (fscrypt_has_encryption_key(inode))
535 		return 0;
536 
537 	res = fscrypt_initialize(inode->i_sb->s_cop->flags);
538 	if (res)
539 		return res;
540 
541 	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
542 	if (res < 0) {
543 		const union fscrypt_context *dummy_ctx =
544 			fscrypt_get_dummy_context(inode->i_sb);
545 
546 		if (IS_ENCRYPTED(inode) || !dummy_ctx) {
547 			fscrypt_warn(inode,
548 				     "Error %d getting encryption context",
549 				     res);
550 			return res;
551 		}
552 		/* Fake up a context for an unencrypted directory */
553 		res = fscrypt_context_size(dummy_ctx);
554 		memcpy(&ctx, dummy_ctx, res);
555 	}
556 
557 	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS);
558 	if (!crypt_info)
559 		return -ENOMEM;
560 
561 	crypt_info->ci_inode = inode;
562 
563 	res = fscrypt_policy_from_context(&crypt_info->ci_policy, &ctx, res);
564 	if (res) {
565 		fscrypt_warn(inode,
566 			     "Unrecognized or corrupt encryption context");
567 		goto out;
568 	}
569 
570 	memcpy(crypt_info->ci_nonce, fscrypt_context_nonce(&ctx),
571 	       FSCRYPT_FILE_NONCE_SIZE);
572 
573 	if (!fscrypt_supported_policy(&crypt_info->ci_policy, inode)) {
574 		res = -EINVAL;
575 		goto out;
576 	}
577 
578 	mode = select_encryption_mode(&crypt_info->ci_policy, inode);
579 	if (IS_ERR(mode)) {
580 		res = PTR_ERR(mode);
581 		goto out;
582 	}
583 	WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
584 	crypt_info->ci_mode = mode;
585 
586 	res = setup_file_encryption_key(crypt_info, &master_key);
587 	if (res)
588 		goto out;
589 
590 	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
591 		if (master_key) {
592 			struct fscrypt_master_key *mk =
593 				master_key->payload.data[0];
594 
595 			refcount_inc(&mk->mk_refcount);
596 			crypt_info->ci_master_key = key_get(master_key);
597 			spin_lock(&mk->mk_decrypted_inodes_lock);
598 			list_add(&crypt_info->ci_master_key_link,
599 				 &mk->mk_decrypted_inodes);
600 			spin_unlock(&mk->mk_decrypted_inodes_lock);
601 		}
602 		crypt_info = NULL;
603 	}
604 	res = 0;
605 out:
606 	if (master_key) {
607 		struct fscrypt_master_key *mk = master_key->payload.data[0];
608 
609 		up_read(&mk->mk_secret_sem);
610 		key_put(master_key);
611 	}
612 	if (res == -ENOKEY)
613 		res = 0;
614 	put_crypt_info(crypt_info);
615 	return res;
616 }
617 EXPORT_SYMBOL(fscrypt_get_encryption_info);
618 
619 /**
620  * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
621  * @inode: an inode being evicted
622  *
623  * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
624  * being evicted.  An RCU grace period need not have elapsed yet.
625  */
fscrypt_put_encryption_info(struct inode * inode)626 void fscrypt_put_encryption_info(struct inode *inode)
627 {
628 	put_crypt_info(inode->i_crypt_info);
629 	inode->i_crypt_info = NULL;
630 }
631 EXPORT_SYMBOL(fscrypt_put_encryption_info);
632 
633 /**
634  * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
635  * @inode: an inode being freed
636  *
637  * Free the inode's cached decrypted symlink target, if any.  Filesystems must
638  * call this after an RCU grace period, just before they free the inode.
639  */
fscrypt_free_inode(struct inode * inode)640 void fscrypt_free_inode(struct inode *inode)
641 {
642 	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
643 		kfree(inode->i_link);
644 		inode->i_link = NULL;
645 	}
646 }
647 EXPORT_SYMBOL(fscrypt_free_inode);
648 
649 /**
650  * fscrypt_drop_inode() - check whether the inode's master key has been removed
651  * @inode: an inode being considered for eviction
652  *
653  * Filesystems supporting fscrypt must call this from their ->drop_inode()
654  * method so that encrypted inodes are evicted as soon as they're no longer in
655  * use and their master key has been removed.
656  *
657  * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
658  */
fscrypt_drop_inode(struct inode * inode)659 int fscrypt_drop_inode(struct inode *inode)
660 {
661 	const struct fscrypt_info *ci = READ_ONCE(inode->i_crypt_info);
662 	const struct fscrypt_master_key *mk;
663 
664 	/*
665 	 * If ci is NULL, then the inode doesn't have an encryption key set up
666 	 * so it's irrelevant.  If ci_master_key is NULL, then the master key
667 	 * was provided via the legacy mechanism of the process-subscribed
668 	 * keyrings, so we don't know whether it's been removed or not.
669 	 */
670 	if (!ci || !ci->ci_master_key)
671 		return 0;
672 	mk = ci->ci_master_key->payload.data[0];
673 
674 	/*
675 	 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
676 	 * protected by the key were cleaned by sync_filesystem().  But if
677 	 * userspace is still using the files, inodes can be dirtied between
678 	 * then and now.  We mustn't lose any writes, so skip dirty inodes here.
679 	 */
680 	if (inode->i_state & I_DIRTY_ALL)
681 		return 0;
682 
683 	/*
684 	 * Note: since we aren't holding ->mk_secret_sem, the result here can
685 	 * immediately become outdated.  But there's no correctness problem with
686 	 * unnecessarily evicting.  Nor is there a correctness problem with not
687 	 * evicting while iput() is racing with the key being removed, since
688 	 * then the thread removing the key will either evict the inode itself
689 	 * or will correctly detect that it wasn't evicted due to the race.
690 	 */
691 	return !is_master_key_secret_present(&mk->mk_secret);
692 }
693 EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
694