1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/freezer.h>
33 #include <linux/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/mman.h>
36 #include <linux/atomic.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/compat.h>
40 #include <linux/rculist.h>
41 #include <net/busy_poll.h>
42
43 /*
44 * LOCKING:
45 * There are three level of locking required by epoll :
46 *
47 * 1) epmutex (mutex)
48 * 2) ep->mtx (mutex)
49 * 3) ep->lock (rwlock)
50 *
51 * The acquire order is the one listed above, from 1 to 3.
52 * We need a rwlock (ep->lock) because we manipulate objects
53 * from inside the poll callback, that might be triggered from
54 * a wake_up() that in turn might be called from IRQ context.
55 * So we can't sleep inside the poll callback and hence we need
56 * a spinlock. During the event transfer loop (from kernel to
57 * user space) we could end up sleeping due a copy_to_user(), so
58 * we need a lock that will allow us to sleep. This lock is a
59 * mutex (ep->mtx). It is acquired during the event transfer loop,
60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61 * Then we also need a global mutex to serialize eventpoll_release_file()
62 * and ep_free().
63 * This mutex is acquired by ep_free() during the epoll file
64 * cleanup path and it is also acquired by eventpoll_release_file()
65 * if a file has been pushed inside an epoll set and it is then
66 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
67 * It is also acquired when inserting an epoll fd onto another epoll
68 * fd. We do this so that we walk the epoll tree and ensure that this
69 * insertion does not create a cycle of epoll file descriptors, which
70 * could lead to deadlock. We need a global mutex to prevent two
71 * simultaneous inserts (A into B and B into A) from racing and
72 * constructing a cycle without either insert observing that it is
73 * going to.
74 * It is necessary to acquire multiple "ep->mtx"es at once in the
75 * case when one epoll fd is added to another. In this case, we
76 * always acquire the locks in the order of nesting (i.e. after
77 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
78 * before e2->mtx). Since we disallow cycles of epoll file
79 * descriptors, this ensures that the mutexes are well-ordered. In
80 * order to communicate this nesting to lockdep, when walking a tree
81 * of epoll file descriptors, we use the current recursion depth as
82 * the lockdep subkey.
83 * It is possible to drop the "ep->mtx" and to use the global
84 * mutex "epmutex" (together with "ep->lock") to have it working,
85 * but having "ep->mtx" will make the interface more scalable.
86 * Events that require holding "epmutex" are very rare, while for
87 * normal operations the epoll private "ep->mtx" will guarantee
88 * a better scalability.
89 */
90
91 /* Epoll private bits inside the event mask */
92 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
93
94 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
95
96 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
97 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
98
99 /* Maximum number of nesting allowed inside epoll sets */
100 #define EP_MAX_NESTS 4
101
102 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
103
104 #define EP_UNACTIVE_PTR ((void *) -1L)
105
106 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
107
108 struct epoll_filefd {
109 struct file *file;
110 int fd;
111 } __packed;
112
113 /*
114 * Structure used to track possible nested calls, for too deep recursions
115 * and loop cycles.
116 */
117 struct nested_call_node {
118 struct list_head llink;
119 void *cookie;
120 void *ctx;
121 };
122
123 /*
124 * This structure is used as collector for nested calls, to check for
125 * maximum recursion dept and loop cycles.
126 */
127 struct nested_calls {
128 struct list_head tasks_call_list;
129 spinlock_t lock;
130 };
131
132 /*
133 * Each file descriptor added to the eventpoll interface will
134 * have an entry of this type linked to the "rbr" RB tree.
135 * Avoid increasing the size of this struct, there can be many thousands
136 * of these on a server and we do not want this to take another cache line.
137 */
138 struct epitem {
139 union {
140 /* RB tree node links this structure to the eventpoll RB tree */
141 struct rb_node rbn;
142 /* Used to free the struct epitem */
143 struct rcu_head rcu;
144 };
145
146 /* List header used to link this structure to the eventpoll ready list */
147 struct list_head rdllink;
148
149 /*
150 * Works together "struct eventpoll"->ovflist in keeping the
151 * single linked chain of items.
152 */
153 struct epitem *next;
154
155 /* The file descriptor information this item refers to */
156 struct epoll_filefd ffd;
157
158 /* Number of active wait queue attached to poll operations */
159 int nwait;
160
161 /* List containing poll wait queues */
162 struct list_head pwqlist;
163
164 /* The "container" of this item */
165 struct eventpoll *ep;
166
167 /* List header used to link this item to the "struct file" items list */
168 struct list_head fllink;
169
170 /* wakeup_source used when EPOLLWAKEUP is set */
171 struct wakeup_source __rcu *ws;
172
173 /* The structure that describe the interested events and the source fd */
174 struct epoll_event event;
175 };
176
177 /*
178 * This structure is stored inside the "private_data" member of the file
179 * structure and represents the main data structure for the eventpoll
180 * interface.
181 */
182 struct eventpoll {
183 /*
184 * This mutex is used to ensure that files are not removed
185 * while epoll is using them. This is held during the event
186 * collection loop, the file cleanup path, the epoll file exit
187 * code and the ctl operations.
188 */
189 struct mutex mtx;
190
191 /* Wait queue used by sys_epoll_wait() */
192 wait_queue_head_t wq;
193
194 /* Wait queue used by file->poll() */
195 wait_queue_head_t poll_wait;
196
197 /* List of ready file descriptors */
198 struct list_head rdllist;
199
200 /* Lock which protects rdllist and ovflist */
201 rwlock_t lock;
202
203 /* RB tree root used to store monitored fd structs */
204 struct rb_root_cached rbr;
205
206 /*
207 * This is a single linked list that chains all the "struct epitem" that
208 * happened while transferring ready events to userspace w/out
209 * holding ->lock.
210 */
211 struct epitem *ovflist;
212
213 /* wakeup_source used when ep_scan_ready_list is running */
214 struct wakeup_source *ws;
215
216 /* The user that created the eventpoll descriptor */
217 struct user_struct *user;
218
219 struct file *file;
220
221 /* used to optimize loop detection check */
222 u64 gen;
223
224 #ifdef CONFIG_NET_RX_BUSY_POLL
225 /* used to track busy poll napi_id */
226 unsigned int napi_id;
227 #endif
228 };
229
230 /* Wait structure used by the poll hooks */
231 struct eppoll_entry {
232 /* List header used to link this structure to the "struct epitem" */
233 struct list_head llink;
234
235 /* The "base" pointer is set to the container "struct epitem" */
236 struct epitem *base;
237
238 /*
239 * Wait queue item that will be linked to the target file wait
240 * queue head.
241 */
242 wait_queue_entry_t wait;
243
244 /* The wait queue head that linked the "wait" wait queue item */
245 wait_queue_head_t *whead;
246 };
247
248 /* Wrapper struct used by poll queueing */
249 struct ep_pqueue {
250 poll_table pt;
251 struct epitem *epi;
252 };
253
254 /* Used by the ep_send_events() function as callback private data */
255 struct ep_send_events_data {
256 int maxevents;
257 struct epoll_event __user *events;
258 int res;
259 };
260
261 /*
262 * Configuration options available inside /proc/sys/fs/epoll/
263 */
264 /* Maximum number of epoll watched descriptors, per user */
265 static long max_user_watches __read_mostly;
266
267 /*
268 * This mutex is used to serialize ep_free() and eventpoll_release_file().
269 */
270 static DEFINE_MUTEX(epmutex);
271
272 static u64 loop_check_gen = 0;
273
274 /* Used to check for epoll file descriptor inclusion loops */
275 static struct nested_calls poll_loop_ncalls;
276
277 /* Slab cache used to allocate "struct epitem" */
278 static struct kmem_cache *epi_cache __read_mostly;
279
280 /* Slab cache used to allocate "struct eppoll_entry" */
281 static struct kmem_cache *pwq_cache __read_mostly;
282
283 /*
284 * List of files with newly added links, where we may need to limit the number
285 * of emanating paths. Protected by the epmutex.
286 */
287 static LIST_HEAD(tfile_check_list);
288
289 #ifdef CONFIG_SYSCTL
290
291 #include <linux/sysctl.h>
292
293 static long long_zero;
294 static long long_max = LONG_MAX;
295
296 struct ctl_table epoll_table[] = {
297 {
298 .procname = "max_user_watches",
299 .data = &max_user_watches,
300 .maxlen = sizeof(max_user_watches),
301 .mode = 0644,
302 .proc_handler = proc_doulongvec_minmax,
303 .extra1 = &long_zero,
304 .extra2 = &long_max,
305 },
306 { }
307 };
308 #endif /* CONFIG_SYSCTL */
309
310 static const struct file_operations eventpoll_fops;
311
is_file_epoll(struct file * f)312 static inline int is_file_epoll(struct file *f)
313 {
314 return f->f_op == &eventpoll_fops;
315 }
316
317 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)318 static inline void ep_set_ffd(struct epoll_filefd *ffd,
319 struct file *file, int fd)
320 {
321 ffd->file = file;
322 ffd->fd = fd;
323 }
324
325 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)326 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
327 struct epoll_filefd *p2)
328 {
329 return (p1->file > p2->file ? +1:
330 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
331 }
332
333 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)334 static inline int ep_is_linked(struct epitem *epi)
335 {
336 return !list_empty(&epi->rdllink);
337 }
338
ep_pwq_from_wait(wait_queue_entry_t * p)339 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
340 {
341 return container_of(p, struct eppoll_entry, wait);
342 }
343
344 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)345 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
346 {
347 return container_of(p, struct eppoll_entry, wait)->base;
348 }
349
350 /* Get the "struct epitem" from an epoll queue wrapper */
ep_item_from_epqueue(poll_table * p)351 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
352 {
353 return container_of(p, struct ep_pqueue, pt)->epi;
354 }
355
356 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
ep_op_has_event(int op)357 static inline int ep_op_has_event(int op)
358 {
359 return op != EPOLL_CTL_DEL;
360 }
361
362 /* Initialize the poll safe wake up structure */
ep_nested_calls_init(struct nested_calls * ncalls)363 static void ep_nested_calls_init(struct nested_calls *ncalls)
364 {
365 INIT_LIST_HEAD(&ncalls->tasks_call_list);
366 spin_lock_init(&ncalls->lock);
367 }
368
369 /**
370 * ep_events_available - Checks if ready events might be available.
371 *
372 * @ep: Pointer to the eventpoll context.
373 *
374 * Returns: Returns a value different than zero if ready events are available,
375 * or zero otherwise.
376 */
ep_events_available(struct eventpoll * ep)377 static inline int ep_events_available(struct eventpoll *ep)
378 {
379 return !list_empty_careful(&ep->rdllist) ||
380 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
381 }
382
383 #ifdef CONFIG_NET_RX_BUSY_POLL
ep_busy_loop_end(void * p,unsigned long start_time)384 static bool ep_busy_loop_end(void *p, unsigned long start_time)
385 {
386 struct eventpoll *ep = p;
387
388 return ep_events_available(ep) || busy_loop_timeout(start_time);
389 }
390
391 /*
392 * Busy poll if globally on and supporting sockets found && no events,
393 * busy loop will return if need_resched or ep_events_available.
394 *
395 * we must do our busy polling with irqs enabled
396 */
ep_busy_loop(struct eventpoll * ep,int nonblock)397 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
398 {
399 unsigned int napi_id = READ_ONCE(ep->napi_id);
400
401 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
402 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
403 }
404
ep_reset_busy_poll_napi_id(struct eventpoll * ep)405 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
406 {
407 if (ep->napi_id)
408 ep->napi_id = 0;
409 }
410
411 /*
412 * Set epoll busy poll NAPI ID from sk.
413 */
ep_set_busy_poll_napi_id(struct epitem * epi)414 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
415 {
416 struct eventpoll *ep;
417 unsigned int napi_id;
418 struct socket *sock;
419 struct sock *sk;
420 int err;
421
422 if (!net_busy_loop_on())
423 return;
424
425 sock = sock_from_file(epi->ffd.file, &err);
426 if (!sock)
427 return;
428
429 sk = sock->sk;
430 if (!sk)
431 return;
432
433 napi_id = READ_ONCE(sk->sk_napi_id);
434 ep = epi->ep;
435
436 /* Non-NAPI IDs can be rejected
437 * or
438 * Nothing to do if we already have this ID
439 */
440 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
441 return;
442
443 /* record NAPI ID for use in next busy poll */
444 ep->napi_id = napi_id;
445 }
446
447 #else
448
ep_busy_loop(struct eventpoll * ep,int nonblock)449 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
450 {
451 }
452
ep_reset_busy_poll_napi_id(struct eventpoll * ep)453 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
454 {
455 }
456
ep_set_busy_poll_napi_id(struct epitem * epi)457 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
458 {
459 }
460
461 #endif /* CONFIG_NET_RX_BUSY_POLL */
462
463 /**
464 * ep_call_nested - Perform a bound (possibly) nested call, by checking
465 * that the recursion limit is not exceeded, and that
466 * the same nested call (by the meaning of same cookie) is
467 * no re-entered.
468 *
469 * @ncalls: Pointer to the nested_calls structure to be used for this call.
470 * @nproc: Nested call core function pointer.
471 * @priv: Opaque data to be passed to the @nproc callback.
472 * @cookie: Cookie to be used to identify this nested call.
473 * @ctx: This instance context.
474 *
475 * Returns: Returns the code returned by the @nproc callback, or -1 if
476 * the maximum recursion limit has been exceeded.
477 */
ep_call_nested(struct nested_calls * ncalls,int (* nproc)(void *,void *,int),void * priv,void * cookie,void * ctx)478 static int ep_call_nested(struct nested_calls *ncalls,
479 int (*nproc)(void *, void *, int), void *priv,
480 void *cookie, void *ctx)
481 {
482 int error, call_nests = 0;
483 unsigned long flags;
484 struct list_head *lsthead = &ncalls->tasks_call_list;
485 struct nested_call_node *tncur;
486 struct nested_call_node tnode;
487
488 spin_lock_irqsave(&ncalls->lock, flags);
489
490 /*
491 * Try to see if the current task is already inside this wakeup call.
492 * We use a list here, since the population inside this set is always
493 * very much limited.
494 */
495 list_for_each_entry(tncur, lsthead, llink) {
496 if (tncur->ctx == ctx &&
497 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
498 /*
499 * Ops ... loop detected or maximum nest level reached.
500 * We abort this wake by breaking the cycle itself.
501 */
502 error = -1;
503 goto out_unlock;
504 }
505 }
506
507 /* Add the current task and cookie to the list */
508 tnode.ctx = ctx;
509 tnode.cookie = cookie;
510 list_add(&tnode.llink, lsthead);
511
512 spin_unlock_irqrestore(&ncalls->lock, flags);
513
514 /* Call the nested function */
515 error = (*nproc)(priv, cookie, call_nests);
516
517 /* Remove the current task from the list */
518 spin_lock_irqsave(&ncalls->lock, flags);
519 list_del(&tnode.llink);
520 out_unlock:
521 spin_unlock_irqrestore(&ncalls->lock, flags);
522
523 return error;
524 }
525
526 /*
527 * As described in commit 0ccf831cb lockdep: annotate epoll
528 * the use of wait queues used by epoll is done in a very controlled
529 * manner. Wake ups can nest inside each other, but are never done
530 * with the same locking. For example:
531 *
532 * dfd = socket(...);
533 * efd1 = epoll_create();
534 * efd2 = epoll_create();
535 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
536 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
537 *
538 * When a packet arrives to the device underneath "dfd", the net code will
539 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
540 * callback wakeup entry on that queue, and the wake_up() performed by the
541 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
542 * (efd1) notices that it may have some event ready, so it needs to wake up
543 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
544 * that ends up in another wake_up(), after having checked about the
545 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
546 * avoid stack blasting.
547 *
548 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
549 * this special case of epoll.
550 */
551 #ifdef CONFIG_DEBUG_LOCK_ALLOC
552
553 static struct nested_calls poll_safewake_ncalls;
554
ep_poll_wakeup_proc(void * priv,void * cookie,int call_nests)555 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
556 {
557 unsigned long flags;
558 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
559
560 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
561 wake_up_locked_poll(wqueue, EPOLLIN);
562 spin_unlock_irqrestore(&wqueue->lock, flags);
563
564 return 0;
565 }
566
ep_poll_safewake(wait_queue_head_t * wq)567 static void ep_poll_safewake(wait_queue_head_t *wq)
568 {
569 int this_cpu = get_cpu();
570
571 ep_call_nested(&poll_safewake_ncalls,
572 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
573
574 put_cpu();
575 }
576
577 #else
578
ep_poll_safewake(wait_queue_head_t * wq)579 static void ep_poll_safewake(wait_queue_head_t *wq)
580 {
581 wake_up_poll(wq, EPOLLIN);
582 }
583
584 #endif
585
ep_remove_wait_queue(struct eppoll_entry * pwq)586 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
587 {
588 wait_queue_head_t *whead;
589
590 rcu_read_lock();
591 /*
592 * If it is cleared by POLLFREE, it should be rcu-safe.
593 * If we read NULL we need a barrier paired with
594 * smp_store_release() in ep_poll_callback(), otherwise
595 * we rely on whead->lock.
596 */
597 whead = smp_load_acquire(&pwq->whead);
598 if (whead)
599 remove_wait_queue(whead, &pwq->wait);
600 rcu_read_unlock();
601 }
602
603 /*
604 * This function unregisters poll callbacks from the associated file
605 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
606 * ep_free).
607 */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)608 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
609 {
610 struct list_head *lsthead = &epi->pwqlist;
611 struct eppoll_entry *pwq;
612
613 while (!list_empty(lsthead)) {
614 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
615
616 list_del(&pwq->llink);
617 ep_remove_wait_queue(pwq);
618 kmem_cache_free(pwq_cache, pwq);
619 }
620 }
621
622 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)623 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
624 {
625 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
626 }
627
628 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)629 static inline void ep_pm_stay_awake(struct epitem *epi)
630 {
631 struct wakeup_source *ws = ep_wakeup_source(epi);
632
633 if (ws)
634 __pm_stay_awake(ws);
635 }
636
ep_has_wakeup_source(struct epitem * epi)637 static inline bool ep_has_wakeup_source(struct epitem *epi)
638 {
639 return rcu_access_pointer(epi->ws) ? true : false;
640 }
641
642 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)643 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
644 {
645 struct wakeup_source *ws;
646
647 rcu_read_lock();
648 ws = rcu_dereference(epi->ws);
649 if (ws)
650 __pm_stay_awake(ws);
651 rcu_read_unlock();
652 }
653
654 /**
655 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
656 * the scan code, to call f_op->poll(). Also allows for
657 * O(NumReady) performance.
658 *
659 * @ep: Pointer to the epoll private data structure.
660 * @sproc: Pointer to the scan callback.
661 * @priv: Private opaque data passed to the @sproc callback.
662 * @depth: The current depth of recursive f_op->poll calls.
663 * @ep_locked: caller already holds ep->mtx
664 *
665 * Returns: The same integer error code returned by the @sproc callback.
666 */
ep_scan_ready_list(struct eventpoll * ep,__poll_t (* sproc)(struct eventpoll *,struct list_head *,void *),void * priv,int depth,bool ep_locked)667 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
668 __poll_t (*sproc)(struct eventpoll *,
669 struct list_head *, void *),
670 void *priv, int depth, bool ep_locked)
671 {
672 __poll_t res;
673 int pwake = 0;
674 struct epitem *epi, *nepi;
675 LIST_HEAD(txlist);
676
677 lockdep_assert_irqs_enabled();
678
679 /*
680 * We need to lock this because we could be hit by
681 * eventpoll_release_file() and epoll_ctl().
682 */
683
684 if (!ep_locked)
685 mutex_lock_nested(&ep->mtx, depth);
686
687 /*
688 * Steal the ready list, and re-init the original one to the
689 * empty list. Also, set ep->ovflist to NULL so that events
690 * happening while looping w/out locks, are not lost. We cannot
691 * have the poll callback to queue directly on ep->rdllist,
692 * because we want the "sproc" callback to be able to do it
693 * in a lockless way.
694 */
695 write_lock_irq(&ep->lock);
696 list_splice_init(&ep->rdllist, &txlist);
697 WRITE_ONCE(ep->ovflist, NULL);
698 write_unlock_irq(&ep->lock);
699
700 /*
701 * Now call the callback function.
702 */
703 res = (*sproc)(ep, &txlist, priv);
704
705 write_lock_irq(&ep->lock);
706 /*
707 * During the time we spent inside the "sproc" callback, some
708 * other events might have been queued by the poll callback.
709 * We re-insert them inside the main ready-list here.
710 */
711 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
712 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
713 /*
714 * We need to check if the item is already in the list.
715 * During the "sproc" callback execution time, items are
716 * queued into ->ovflist but the "txlist" might already
717 * contain them, and the list_splice() below takes care of them.
718 */
719 if (!ep_is_linked(epi)) {
720 /*
721 * ->ovflist is LIFO, so we have to reverse it in order
722 * to keep in FIFO.
723 */
724 list_add(&epi->rdllink, &ep->rdllist);
725 ep_pm_stay_awake(epi);
726 }
727 }
728 /*
729 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
730 * releasing the lock, events will be queued in the normal way inside
731 * ep->rdllist.
732 */
733 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
734
735 /*
736 * Quickly re-inject items left on "txlist".
737 */
738 list_splice(&txlist, &ep->rdllist);
739 __pm_relax(ep->ws);
740
741 if (!list_empty(&ep->rdllist)) {
742 /*
743 * Wake up (if active) both the eventpoll wait list and
744 * the ->poll() wait list (delayed after we release the lock).
745 */
746 if (waitqueue_active(&ep->wq))
747 wake_up(&ep->wq);
748 if (waitqueue_active(&ep->poll_wait))
749 pwake++;
750 }
751 write_unlock_irq(&ep->lock);
752
753 if (!ep_locked)
754 mutex_unlock(&ep->mtx);
755
756 /* We have to call this outside the lock */
757 if (pwake)
758 ep_poll_safewake(&ep->poll_wait);
759
760 return res;
761 }
762
epi_rcu_free(struct rcu_head * head)763 static void epi_rcu_free(struct rcu_head *head)
764 {
765 struct epitem *epi = container_of(head, struct epitem, rcu);
766 kmem_cache_free(epi_cache, epi);
767 }
768
769 /*
770 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
771 * all the associated resources. Must be called with "mtx" held.
772 */
ep_remove(struct eventpoll * ep,struct epitem * epi)773 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
774 {
775 struct file *file = epi->ffd.file;
776
777 lockdep_assert_irqs_enabled();
778
779 /*
780 * Removes poll wait queue hooks.
781 */
782 ep_unregister_pollwait(ep, epi);
783
784 /* Remove the current item from the list of epoll hooks */
785 spin_lock(&file->f_lock);
786 list_del_rcu(&epi->fllink);
787 spin_unlock(&file->f_lock);
788
789 rb_erase_cached(&epi->rbn, &ep->rbr);
790
791 write_lock_irq(&ep->lock);
792 if (ep_is_linked(epi))
793 list_del_init(&epi->rdllink);
794 write_unlock_irq(&ep->lock);
795
796 wakeup_source_unregister(ep_wakeup_source(epi));
797 /*
798 * At this point it is safe to free the eventpoll item. Use the union
799 * field epi->rcu, since we are trying to minimize the size of
800 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
801 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
802 * use of the rbn field.
803 */
804 call_rcu(&epi->rcu, epi_rcu_free);
805
806 atomic_long_dec(&ep->user->epoll_watches);
807
808 return 0;
809 }
810
ep_free(struct eventpoll * ep)811 static void ep_free(struct eventpoll *ep)
812 {
813 struct rb_node *rbp;
814 struct epitem *epi;
815
816 /* We need to release all tasks waiting for these file */
817 if (waitqueue_active(&ep->poll_wait))
818 ep_poll_safewake(&ep->poll_wait);
819
820 /*
821 * We need to lock this because we could be hit by
822 * eventpoll_release_file() while we're freeing the "struct eventpoll".
823 * We do not need to hold "ep->mtx" here because the epoll file
824 * is on the way to be removed and no one has references to it
825 * anymore. The only hit might come from eventpoll_release_file() but
826 * holding "epmutex" is sufficient here.
827 */
828 mutex_lock(&epmutex);
829
830 /*
831 * Walks through the whole tree by unregistering poll callbacks.
832 */
833 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
834 epi = rb_entry(rbp, struct epitem, rbn);
835
836 ep_unregister_pollwait(ep, epi);
837 cond_resched();
838 }
839
840 /*
841 * Walks through the whole tree by freeing each "struct epitem". At this
842 * point we are sure no poll callbacks will be lingering around, and also by
843 * holding "epmutex" we can be sure that no file cleanup code will hit
844 * us during this operation. So we can avoid the lock on "ep->lock".
845 * We do not need to lock ep->mtx, either, we only do it to prevent
846 * a lockdep warning.
847 */
848 mutex_lock(&ep->mtx);
849 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
850 epi = rb_entry(rbp, struct epitem, rbn);
851 ep_remove(ep, epi);
852 cond_resched();
853 }
854 mutex_unlock(&ep->mtx);
855
856 mutex_unlock(&epmutex);
857 mutex_destroy(&ep->mtx);
858 free_uid(ep->user);
859 wakeup_source_unregister(ep->ws);
860 kfree(ep);
861 }
862
ep_eventpoll_release(struct inode * inode,struct file * file)863 static int ep_eventpoll_release(struct inode *inode, struct file *file)
864 {
865 struct eventpoll *ep = file->private_data;
866
867 if (ep)
868 ep_free(ep);
869
870 return 0;
871 }
872
873 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
874 void *priv);
875 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
876 poll_table *pt);
877
878 /*
879 * Differs from ep_eventpoll_poll() in that internal callers already have
880 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
881 * is correctly annotated.
882 */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)883 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
884 int depth)
885 {
886 struct eventpoll *ep;
887 bool locked;
888
889 pt->_key = epi->event.events;
890 if (!is_file_epoll(epi->ffd.file))
891 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
892
893 ep = epi->ffd.file->private_data;
894 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
895 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
896
897 return ep_scan_ready_list(epi->ffd.file->private_data,
898 ep_read_events_proc, &depth, depth,
899 locked) & epi->event.events;
900 }
901
ep_read_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)902 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
903 void *priv)
904 {
905 struct epitem *epi, *tmp;
906 poll_table pt;
907 int depth = *(int *)priv;
908
909 init_poll_funcptr(&pt, NULL);
910 depth++;
911
912 list_for_each_entry_safe(epi, tmp, head, rdllink) {
913 if (ep_item_poll(epi, &pt, depth)) {
914 return EPOLLIN | EPOLLRDNORM;
915 } else {
916 /*
917 * Item has been dropped into the ready list by the poll
918 * callback, but it's not actually ready, as far as
919 * caller requested events goes. We can remove it here.
920 */
921 __pm_relax(ep_wakeup_source(epi));
922 list_del_init(&epi->rdllink);
923 }
924 }
925
926 return 0;
927 }
928
ep_eventpoll_poll(struct file * file,poll_table * wait)929 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
930 {
931 struct eventpoll *ep = file->private_data;
932 int depth = 0;
933
934 /* Insert inside our poll wait queue */
935 poll_wait(file, &ep->poll_wait, wait);
936
937 /*
938 * Proceed to find out if wanted events are really available inside
939 * the ready list.
940 */
941 return ep_scan_ready_list(ep, ep_read_events_proc,
942 &depth, depth, false);
943 }
944
945 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)946 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
947 {
948 struct eventpoll *ep = f->private_data;
949 struct rb_node *rbp;
950
951 mutex_lock(&ep->mtx);
952 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
953 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
954 struct inode *inode = file_inode(epi->ffd.file);
955
956 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
957 " pos:%lli ino:%lx sdev:%x\n",
958 epi->ffd.fd, epi->event.events,
959 (long long)epi->event.data,
960 (long long)epi->ffd.file->f_pos,
961 inode->i_ino, inode->i_sb->s_dev);
962 if (seq_has_overflowed(m))
963 break;
964 }
965 mutex_unlock(&ep->mtx);
966 }
967 #endif
968
969 /* File callbacks that implement the eventpoll file behaviour */
970 static const struct file_operations eventpoll_fops = {
971 #ifdef CONFIG_PROC_FS
972 .show_fdinfo = ep_show_fdinfo,
973 #endif
974 .release = ep_eventpoll_release,
975 .poll = ep_eventpoll_poll,
976 .llseek = noop_llseek,
977 };
978
979 /*
980 * This is called from eventpoll_release() to unlink files from the eventpoll
981 * interface. We need to have this facility to cleanup correctly files that are
982 * closed without being removed from the eventpoll interface.
983 */
eventpoll_release_file(struct file * file)984 void eventpoll_release_file(struct file *file)
985 {
986 struct eventpoll *ep;
987 struct epitem *epi, *next;
988
989 /*
990 * We don't want to get "file->f_lock" because it is not
991 * necessary. It is not necessary because we're in the "struct file"
992 * cleanup path, and this means that no one is using this file anymore.
993 * So, for example, epoll_ctl() cannot hit here since if we reach this
994 * point, the file counter already went to zero and fget() would fail.
995 * The only hit might come from ep_free() but by holding the mutex
996 * will correctly serialize the operation. We do need to acquire
997 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
998 * from anywhere but ep_free().
999 *
1000 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1001 */
1002 mutex_lock(&epmutex);
1003 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1004 ep = epi->ep;
1005 mutex_lock_nested(&ep->mtx, 0);
1006 ep_remove(ep, epi);
1007 mutex_unlock(&ep->mtx);
1008 }
1009 mutex_unlock(&epmutex);
1010 }
1011
ep_alloc(struct eventpoll ** pep)1012 static int ep_alloc(struct eventpoll **pep)
1013 {
1014 int error;
1015 struct user_struct *user;
1016 struct eventpoll *ep;
1017
1018 user = get_current_user();
1019 error = -ENOMEM;
1020 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1021 if (unlikely(!ep))
1022 goto free_uid;
1023
1024 mutex_init(&ep->mtx);
1025 rwlock_init(&ep->lock);
1026 init_waitqueue_head(&ep->wq);
1027 init_waitqueue_head(&ep->poll_wait);
1028 INIT_LIST_HEAD(&ep->rdllist);
1029 ep->rbr = RB_ROOT_CACHED;
1030 ep->ovflist = EP_UNACTIVE_PTR;
1031 ep->user = user;
1032
1033 *pep = ep;
1034
1035 return 0;
1036
1037 free_uid:
1038 free_uid(user);
1039 return error;
1040 }
1041
1042 /*
1043 * Search the file inside the eventpoll tree. The RB tree operations
1044 * are protected by the "mtx" mutex, and ep_find() must be called with
1045 * "mtx" held.
1046 */
ep_find(struct eventpoll * ep,struct file * file,int fd)1047 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1048 {
1049 int kcmp;
1050 struct rb_node *rbp;
1051 struct epitem *epi, *epir = NULL;
1052 struct epoll_filefd ffd;
1053
1054 ep_set_ffd(&ffd, file, fd);
1055 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1056 epi = rb_entry(rbp, struct epitem, rbn);
1057 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1058 if (kcmp > 0)
1059 rbp = rbp->rb_right;
1060 else if (kcmp < 0)
1061 rbp = rbp->rb_left;
1062 else {
1063 epir = epi;
1064 break;
1065 }
1066 }
1067
1068 return epir;
1069 }
1070
1071 #ifdef CONFIG_CHECKPOINT_RESTORE
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1072 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1073 {
1074 struct rb_node *rbp;
1075 struct epitem *epi;
1076
1077 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1078 epi = rb_entry(rbp, struct epitem, rbn);
1079 if (epi->ffd.fd == tfd) {
1080 if (toff == 0)
1081 return epi;
1082 else
1083 toff--;
1084 }
1085 cond_resched();
1086 }
1087
1088 return NULL;
1089 }
1090
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1091 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1092 unsigned long toff)
1093 {
1094 struct file *file_raw;
1095 struct eventpoll *ep;
1096 struct epitem *epi;
1097
1098 if (!is_file_epoll(file))
1099 return ERR_PTR(-EINVAL);
1100
1101 ep = file->private_data;
1102
1103 mutex_lock(&ep->mtx);
1104 epi = ep_find_tfd(ep, tfd, toff);
1105 if (epi)
1106 file_raw = epi->ffd.file;
1107 else
1108 file_raw = ERR_PTR(-ENOENT);
1109 mutex_unlock(&ep->mtx);
1110
1111 return file_raw;
1112 }
1113 #endif /* CONFIG_CHECKPOINT_RESTORE */
1114
1115 /**
1116 * Adds a new entry to the tail of the list in a lockless way, i.e.
1117 * multiple CPUs are allowed to call this function concurrently.
1118 *
1119 * Beware: it is necessary to prevent any other modifications of the
1120 * existing list until all changes are completed, in other words
1121 * concurrent list_add_tail_lockless() calls should be protected
1122 * with a read lock, where write lock acts as a barrier which
1123 * makes sure all list_add_tail_lockless() calls are fully
1124 * completed.
1125 *
1126 * Also an element can be locklessly added to the list only in one
1127 * direction i.e. either to the tail either to the head, otherwise
1128 * concurrent access will corrupt the list.
1129 *
1130 * Returns %false if element has been already added to the list, %true
1131 * otherwise.
1132 */
list_add_tail_lockless(struct list_head * new,struct list_head * head)1133 static inline bool list_add_tail_lockless(struct list_head *new,
1134 struct list_head *head)
1135 {
1136 struct list_head *prev;
1137
1138 /*
1139 * This is simple 'new->next = head' operation, but cmpxchg()
1140 * is used in order to detect that same element has been just
1141 * added to the list from another CPU: the winner observes
1142 * new->next == new.
1143 */
1144 if (cmpxchg(&new->next, new, head) != new)
1145 return false;
1146
1147 /*
1148 * Initially ->next of a new element must be updated with the head
1149 * (we are inserting to the tail) and only then pointers are atomically
1150 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1151 * updated before pointers are actually swapped and pointers are
1152 * swapped before prev->next is updated.
1153 */
1154
1155 prev = xchg(&head->prev, new);
1156
1157 /*
1158 * It is safe to modify prev->next and new->prev, because a new element
1159 * is added only to the tail and new->next is updated before XCHG.
1160 */
1161
1162 prev->next = new;
1163 new->prev = prev;
1164
1165 return true;
1166 }
1167
1168 /**
1169 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1170 * i.e. multiple CPUs are allowed to call this function concurrently.
1171 *
1172 * Returns %false if epi element has been already chained, %true otherwise.
1173 */
chain_epi_lockless(struct epitem * epi)1174 static inline bool chain_epi_lockless(struct epitem *epi)
1175 {
1176 struct eventpoll *ep = epi->ep;
1177
1178 /* Fast preliminary check */
1179 if (epi->next != EP_UNACTIVE_PTR)
1180 return false;
1181
1182 /* Check that the same epi has not been just chained from another CPU */
1183 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1184 return false;
1185
1186 /* Atomically exchange tail */
1187 epi->next = xchg(&ep->ovflist, epi);
1188
1189 return true;
1190 }
1191
1192 /*
1193 * This is the callback that is passed to the wait queue wakeup
1194 * mechanism. It is called by the stored file descriptors when they
1195 * have events to report.
1196 *
1197 * This callback takes a read lock in order not to content with concurrent
1198 * events from another file descriptors, thus all modifications to ->rdllist
1199 * or ->ovflist are lockless. Read lock is paired with the write lock from
1200 * ep_scan_ready_list(), which stops all list modifications and guarantees
1201 * that lists state is seen correctly.
1202 *
1203 * Another thing worth to mention is that ep_poll_callback() can be called
1204 * concurrently for the same @epi from different CPUs if poll table was inited
1205 * with several wait queues entries. Plural wakeup from different CPUs of a
1206 * single wait queue is serialized by wq.lock, but the case when multiple wait
1207 * queues are used should be detected accordingly. This is detected using
1208 * cmpxchg() operation.
1209 */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1210 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1211 {
1212 int pwake = 0;
1213 struct epitem *epi = ep_item_from_wait(wait);
1214 struct eventpoll *ep = epi->ep;
1215 __poll_t pollflags = key_to_poll(key);
1216 unsigned long flags;
1217 int ewake = 0;
1218
1219 read_lock_irqsave(&ep->lock, flags);
1220
1221 ep_set_busy_poll_napi_id(epi);
1222
1223 /*
1224 * If the event mask does not contain any poll(2) event, we consider the
1225 * descriptor to be disabled. This condition is likely the effect of the
1226 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1227 * until the next EPOLL_CTL_MOD will be issued.
1228 */
1229 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1230 goto out_unlock;
1231
1232 /*
1233 * Check the events coming with the callback. At this stage, not
1234 * every device reports the events in the "key" parameter of the
1235 * callback. We need to be able to handle both cases here, hence the
1236 * test for "key" != NULL before the event match test.
1237 */
1238 if (pollflags && !(pollflags & epi->event.events))
1239 goto out_unlock;
1240
1241 /*
1242 * If we are transferring events to userspace, we can hold no locks
1243 * (because we're accessing user memory, and because of linux f_op->poll()
1244 * semantics). All the events that happen during that period of time are
1245 * chained in ep->ovflist and requeued later on.
1246 */
1247 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1248 if (chain_epi_lockless(epi))
1249 ep_pm_stay_awake_rcu(epi);
1250 } else if (!ep_is_linked(epi)) {
1251 /* In the usual case, add event to ready list. */
1252 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1253 ep_pm_stay_awake_rcu(epi);
1254 }
1255
1256 /*
1257 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1258 * wait list.
1259 */
1260 if (waitqueue_active(&ep->wq)) {
1261 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1262 !(pollflags & POLLFREE)) {
1263 switch (pollflags & EPOLLINOUT_BITS) {
1264 case EPOLLIN:
1265 if (epi->event.events & EPOLLIN)
1266 ewake = 1;
1267 break;
1268 case EPOLLOUT:
1269 if (epi->event.events & EPOLLOUT)
1270 ewake = 1;
1271 break;
1272 case 0:
1273 ewake = 1;
1274 break;
1275 }
1276 }
1277 wake_up(&ep->wq);
1278 }
1279 if (waitqueue_active(&ep->poll_wait))
1280 pwake++;
1281
1282 out_unlock:
1283 read_unlock_irqrestore(&ep->lock, flags);
1284
1285 /* We have to call this outside the lock */
1286 if (pwake)
1287 ep_poll_safewake(&ep->poll_wait);
1288
1289 if (!(epi->event.events & EPOLLEXCLUSIVE))
1290 ewake = 1;
1291
1292 if (pollflags & POLLFREE) {
1293 /*
1294 * If we race with ep_remove_wait_queue() it can miss
1295 * ->whead = NULL and do another remove_wait_queue() after
1296 * us, so we can't use __remove_wait_queue().
1297 */
1298 list_del_init(&wait->entry);
1299 /*
1300 * ->whead != NULL protects us from the race with ep_free()
1301 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1302 * held by the caller. Once we nullify it, nothing protects
1303 * ep/epi or even wait.
1304 */
1305 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1306 }
1307
1308 return ewake;
1309 }
1310
1311 /*
1312 * This is the callback that is used to add our wait queue to the
1313 * target file wakeup lists.
1314 */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1315 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1316 poll_table *pt)
1317 {
1318 struct epitem *epi = ep_item_from_epqueue(pt);
1319 struct eppoll_entry *pwq;
1320
1321 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1322 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1323 pwq->whead = whead;
1324 pwq->base = epi;
1325 if (epi->event.events & EPOLLEXCLUSIVE)
1326 add_wait_queue_exclusive(whead, &pwq->wait);
1327 else
1328 add_wait_queue(whead, &pwq->wait);
1329 list_add_tail(&pwq->llink, &epi->pwqlist);
1330 epi->nwait++;
1331 } else {
1332 /* We have to signal that an error occurred */
1333 epi->nwait = -1;
1334 }
1335 }
1336
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1337 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1338 {
1339 int kcmp;
1340 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1341 struct epitem *epic;
1342 bool leftmost = true;
1343
1344 while (*p) {
1345 parent = *p;
1346 epic = rb_entry(parent, struct epitem, rbn);
1347 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1348 if (kcmp > 0) {
1349 p = &parent->rb_right;
1350 leftmost = false;
1351 } else
1352 p = &parent->rb_left;
1353 }
1354 rb_link_node(&epi->rbn, parent, p);
1355 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1356 }
1357
1358
1359
1360 #define PATH_ARR_SIZE 5
1361 /*
1362 * These are the number paths of length 1 to 5, that we are allowing to emanate
1363 * from a single file of interest. For example, we allow 1000 paths of length
1364 * 1, to emanate from each file of interest. This essentially represents the
1365 * potential wakeup paths, which need to be limited in order to avoid massive
1366 * uncontrolled wakeup storms. The common use case should be a single ep which
1367 * is connected to n file sources. In this case each file source has 1 path
1368 * of length 1. Thus, the numbers below should be more than sufficient. These
1369 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1370 * and delete can't add additional paths. Protected by the epmutex.
1371 */
1372 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1373 static int path_count[PATH_ARR_SIZE];
1374
path_count_inc(int nests)1375 static int path_count_inc(int nests)
1376 {
1377 /* Allow an arbitrary number of depth 1 paths */
1378 if (nests == 0)
1379 return 0;
1380
1381 if (++path_count[nests] > path_limits[nests])
1382 return -1;
1383 return 0;
1384 }
1385
path_count_init(void)1386 static void path_count_init(void)
1387 {
1388 int i;
1389
1390 for (i = 0; i < PATH_ARR_SIZE; i++)
1391 path_count[i] = 0;
1392 }
1393
reverse_path_check_proc(void * priv,void * cookie,int call_nests)1394 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1395 {
1396 int error = 0;
1397 struct file *file = priv;
1398 struct file *child_file;
1399 struct epitem *epi;
1400
1401 /* CTL_DEL can remove links here, but that can't increase our count */
1402 rcu_read_lock();
1403 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1404 child_file = epi->ep->file;
1405 if (is_file_epoll(child_file)) {
1406 if (list_empty(&child_file->f_ep_links)) {
1407 if (path_count_inc(call_nests)) {
1408 error = -1;
1409 break;
1410 }
1411 } else {
1412 error = ep_call_nested(&poll_loop_ncalls,
1413 reverse_path_check_proc,
1414 child_file, child_file,
1415 current);
1416 }
1417 if (error != 0)
1418 break;
1419 } else {
1420 printk(KERN_ERR "reverse_path_check_proc: "
1421 "file is not an ep!\n");
1422 }
1423 }
1424 rcu_read_unlock();
1425 return error;
1426 }
1427
1428 /**
1429 * reverse_path_check - The tfile_check_list is list of file *, which have
1430 * links that are proposed to be newly added. We need to
1431 * make sure that those added links don't add too many
1432 * paths such that we will spend all our time waking up
1433 * eventpoll objects.
1434 *
1435 * Returns: Returns zero if the proposed links don't create too many paths,
1436 * -1 otherwise.
1437 */
reverse_path_check(void)1438 static int reverse_path_check(void)
1439 {
1440 int error = 0;
1441 struct file *current_file;
1442
1443 /* let's call this for all tfiles */
1444 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1445 path_count_init();
1446 error = ep_call_nested(&poll_loop_ncalls,
1447 reverse_path_check_proc, current_file,
1448 current_file, current);
1449 if (error)
1450 break;
1451 }
1452 return error;
1453 }
1454
ep_create_wakeup_source(struct epitem * epi)1455 static int ep_create_wakeup_source(struct epitem *epi)
1456 {
1457 struct name_snapshot n;
1458 struct wakeup_source *ws;
1459
1460 if (!epi->ep->ws) {
1461 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1462 if (!epi->ep->ws)
1463 return -ENOMEM;
1464 }
1465
1466 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1467 ws = wakeup_source_register(NULL, n.name.name);
1468 release_dentry_name_snapshot(&n);
1469
1470 if (!ws)
1471 return -ENOMEM;
1472 rcu_assign_pointer(epi->ws, ws);
1473
1474 return 0;
1475 }
1476
1477 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1478 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1479 {
1480 struct wakeup_source *ws = ep_wakeup_source(epi);
1481
1482 RCU_INIT_POINTER(epi->ws, NULL);
1483
1484 /*
1485 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1486 * used internally by wakeup_source_remove, too (called by
1487 * wakeup_source_unregister), so we cannot use call_rcu
1488 */
1489 synchronize_rcu();
1490 wakeup_source_unregister(ws);
1491 }
1492
1493 /*
1494 * Must be called with "mtx" held.
1495 */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1496 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1497 struct file *tfile, int fd, int full_check)
1498 {
1499 int error, pwake = 0;
1500 __poll_t revents;
1501 long user_watches;
1502 struct epitem *epi;
1503 struct ep_pqueue epq;
1504
1505 lockdep_assert_irqs_enabled();
1506
1507 user_watches = atomic_long_read(&ep->user->epoll_watches);
1508 if (unlikely(user_watches >= max_user_watches))
1509 return -ENOSPC;
1510 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1511 return -ENOMEM;
1512
1513 /* Item initialization follow here ... */
1514 INIT_LIST_HEAD(&epi->rdllink);
1515 INIT_LIST_HEAD(&epi->fllink);
1516 INIT_LIST_HEAD(&epi->pwqlist);
1517 epi->ep = ep;
1518 ep_set_ffd(&epi->ffd, tfile, fd);
1519 epi->event = *event;
1520 epi->nwait = 0;
1521 epi->next = EP_UNACTIVE_PTR;
1522 if (epi->event.events & EPOLLWAKEUP) {
1523 error = ep_create_wakeup_source(epi);
1524 if (error)
1525 goto error_create_wakeup_source;
1526 } else {
1527 RCU_INIT_POINTER(epi->ws, NULL);
1528 }
1529
1530 /* Add the current item to the list of active epoll hook for this file */
1531 spin_lock(&tfile->f_lock);
1532 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1533 spin_unlock(&tfile->f_lock);
1534
1535 /*
1536 * Add the current item to the RB tree. All RB tree operations are
1537 * protected by "mtx", and ep_insert() is called with "mtx" held.
1538 */
1539 ep_rbtree_insert(ep, epi);
1540
1541 /* now check if we've created too many backpaths */
1542 error = -EINVAL;
1543 if (full_check && reverse_path_check())
1544 goto error_remove_epi;
1545
1546 /* Initialize the poll table using the queue callback */
1547 epq.epi = epi;
1548 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1549
1550 /*
1551 * Attach the item to the poll hooks and get current event bits.
1552 * We can safely use the file* here because its usage count has
1553 * been increased by the caller of this function. Note that after
1554 * this operation completes, the poll callback can start hitting
1555 * the new item.
1556 */
1557 revents = ep_item_poll(epi, &epq.pt, 1);
1558
1559 /*
1560 * We have to check if something went wrong during the poll wait queue
1561 * install process. Namely an allocation for a wait queue failed due
1562 * high memory pressure.
1563 */
1564 error = -ENOMEM;
1565 if (epi->nwait < 0)
1566 goto error_unregister;
1567
1568 /* We have to drop the new item inside our item list to keep track of it */
1569 write_lock_irq(&ep->lock);
1570
1571 /* record NAPI ID of new item if present */
1572 ep_set_busy_poll_napi_id(epi);
1573
1574 /* If the file is already "ready" we drop it inside the ready list */
1575 if (revents && !ep_is_linked(epi)) {
1576 list_add_tail(&epi->rdllink, &ep->rdllist);
1577 ep_pm_stay_awake(epi);
1578
1579 /* Notify waiting tasks that events are available */
1580 if (waitqueue_active(&ep->wq))
1581 wake_up(&ep->wq);
1582 if (waitqueue_active(&ep->poll_wait))
1583 pwake++;
1584 }
1585
1586 write_unlock_irq(&ep->lock);
1587
1588 atomic_long_inc(&ep->user->epoll_watches);
1589
1590 /* We have to call this outside the lock */
1591 if (pwake)
1592 ep_poll_safewake(&ep->poll_wait);
1593
1594 return 0;
1595
1596 error_unregister:
1597 ep_unregister_pollwait(ep, epi);
1598 error_remove_epi:
1599 spin_lock(&tfile->f_lock);
1600 list_del_rcu(&epi->fllink);
1601 spin_unlock(&tfile->f_lock);
1602
1603 rb_erase_cached(&epi->rbn, &ep->rbr);
1604
1605 /*
1606 * We need to do this because an event could have been arrived on some
1607 * allocated wait queue. Note that we don't care about the ep->ovflist
1608 * list, since that is used/cleaned only inside a section bound by "mtx".
1609 * And ep_insert() is called with "mtx" held.
1610 */
1611 write_lock_irq(&ep->lock);
1612 if (ep_is_linked(epi))
1613 list_del_init(&epi->rdllink);
1614 write_unlock_irq(&ep->lock);
1615
1616 wakeup_source_unregister(ep_wakeup_source(epi));
1617
1618 error_create_wakeup_source:
1619 kmem_cache_free(epi_cache, epi);
1620
1621 return error;
1622 }
1623
1624 /*
1625 * Modify the interest event mask by dropping an event if the new mask
1626 * has a match in the current file status. Must be called with "mtx" held.
1627 */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1628 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1629 const struct epoll_event *event)
1630 {
1631 int pwake = 0;
1632 poll_table pt;
1633
1634 lockdep_assert_irqs_enabled();
1635
1636 init_poll_funcptr(&pt, NULL);
1637
1638 /*
1639 * Set the new event interest mask before calling f_op->poll();
1640 * otherwise we might miss an event that happens between the
1641 * f_op->poll() call and the new event set registering.
1642 */
1643 epi->event.events = event->events; /* need barrier below */
1644 epi->event.data = event->data; /* protected by mtx */
1645 if (epi->event.events & EPOLLWAKEUP) {
1646 if (!ep_has_wakeup_source(epi))
1647 ep_create_wakeup_source(epi);
1648 } else if (ep_has_wakeup_source(epi)) {
1649 ep_destroy_wakeup_source(epi);
1650 }
1651
1652 /*
1653 * The following barrier has two effects:
1654 *
1655 * 1) Flush epi changes above to other CPUs. This ensures
1656 * we do not miss events from ep_poll_callback if an
1657 * event occurs immediately after we call f_op->poll().
1658 * We need this because we did not take ep->lock while
1659 * changing epi above (but ep_poll_callback does take
1660 * ep->lock).
1661 *
1662 * 2) We also need to ensure we do not miss _past_ events
1663 * when calling f_op->poll(). This barrier also
1664 * pairs with the barrier in wq_has_sleeper (see
1665 * comments for wq_has_sleeper).
1666 *
1667 * This barrier will now guarantee ep_poll_callback or f_op->poll
1668 * (or both) will notice the readiness of an item.
1669 */
1670 smp_mb();
1671
1672 /*
1673 * Get current event bits. We can safely use the file* here because
1674 * its usage count has been increased by the caller of this function.
1675 * If the item is "hot" and it is not registered inside the ready
1676 * list, push it inside.
1677 */
1678 if (ep_item_poll(epi, &pt, 1)) {
1679 write_lock_irq(&ep->lock);
1680 if (!ep_is_linked(epi)) {
1681 list_add_tail(&epi->rdllink, &ep->rdllist);
1682 ep_pm_stay_awake(epi);
1683
1684 /* Notify waiting tasks that events are available */
1685 if (waitqueue_active(&ep->wq))
1686 wake_up(&ep->wq);
1687 if (waitqueue_active(&ep->poll_wait))
1688 pwake++;
1689 }
1690 write_unlock_irq(&ep->lock);
1691 }
1692
1693 /* We have to call this outside the lock */
1694 if (pwake)
1695 ep_poll_safewake(&ep->poll_wait);
1696
1697 return 0;
1698 }
1699
ep_send_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)1700 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1701 void *priv)
1702 {
1703 struct ep_send_events_data *esed = priv;
1704 __poll_t revents;
1705 struct epitem *epi, *tmp;
1706 struct epoll_event __user *uevent = esed->events;
1707 struct wakeup_source *ws;
1708 poll_table pt;
1709
1710 init_poll_funcptr(&pt, NULL);
1711 esed->res = 0;
1712
1713 /*
1714 * We can loop without lock because we are passed a task private list.
1715 * Items cannot vanish during the loop because ep_scan_ready_list() is
1716 * holding "mtx" during this call.
1717 */
1718 lockdep_assert_held(&ep->mtx);
1719
1720 list_for_each_entry_safe(epi, tmp, head, rdllink) {
1721 if (esed->res >= esed->maxevents)
1722 break;
1723
1724 /*
1725 * Activate ep->ws before deactivating epi->ws to prevent
1726 * triggering auto-suspend here (in case we reactive epi->ws
1727 * below).
1728 *
1729 * This could be rearranged to delay the deactivation of epi->ws
1730 * instead, but then epi->ws would temporarily be out of sync
1731 * with ep_is_linked().
1732 */
1733 ws = ep_wakeup_source(epi);
1734 if (ws) {
1735 if (ws->active)
1736 __pm_stay_awake(ep->ws);
1737 __pm_relax(ws);
1738 }
1739
1740 list_del_init(&epi->rdllink);
1741
1742 /*
1743 * If the event mask intersect the caller-requested one,
1744 * deliver the event to userspace. Again, ep_scan_ready_list()
1745 * is holding ep->mtx, so no operations coming from userspace
1746 * can change the item.
1747 */
1748 revents = ep_item_poll(epi, &pt, 1);
1749 if (!revents)
1750 continue;
1751
1752 if (__put_user(revents, &uevent->events) ||
1753 __put_user(epi->event.data, &uevent->data)) {
1754 list_add(&epi->rdllink, head);
1755 ep_pm_stay_awake(epi);
1756 if (!esed->res)
1757 esed->res = -EFAULT;
1758 return 0;
1759 }
1760 esed->res++;
1761 uevent++;
1762 if (epi->event.events & EPOLLONESHOT)
1763 epi->event.events &= EP_PRIVATE_BITS;
1764 else if (!(epi->event.events & EPOLLET)) {
1765 /*
1766 * If this file has been added with Level
1767 * Trigger mode, we need to insert back inside
1768 * the ready list, so that the next call to
1769 * epoll_wait() will check again the events
1770 * availability. At this point, no one can insert
1771 * into ep->rdllist besides us. The epoll_ctl()
1772 * callers are locked out by
1773 * ep_scan_ready_list() holding "mtx" and the
1774 * poll callback will queue them in ep->ovflist.
1775 */
1776 list_add_tail(&epi->rdllink, &ep->rdllist);
1777 ep_pm_stay_awake(epi);
1778 }
1779 }
1780
1781 return 0;
1782 }
1783
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1784 static int ep_send_events(struct eventpoll *ep,
1785 struct epoll_event __user *events, int maxevents)
1786 {
1787 struct ep_send_events_data esed;
1788
1789 esed.maxevents = maxevents;
1790 esed.events = events;
1791
1792 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1793 return esed.res;
1794 }
1795
ep_set_mstimeout(long ms)1796 static inline struct timespec64 ep_set_mstimeout(long ms)
1797 {
1798 struct timespec64 now, ts = {
1799 .tv_sec = ms / MSEC_PER_SEC,
1800 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1801 };
1802
1803 ktime_get_ts64(&now);
1804 return timespec64_add_safe(now, ts);
1805 }
1806
1807 /*
1808 * autoremove_wake_function, but remove even on failure to wake up, because we
1809 * know that default_wake_function/ttwu will only fail if the thread is already
1810 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1811 * try to reuse it.
1812 */
ep_autoremove_wake_function(struct wait_queue_entry * wq_entry,unsigned int mode,int sync,void * key)1813 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1814 unsigned int mode, int sync, void *key)
1815 {
1816 int ret = default_wake_function(wq_entry, mode, sync, key);
1817
1818 /*
1819 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1820 * iterations see the cause of this wakeup.
1821 */
1822 list_del_init_careful(&wq_entry->entry);
1823 return ret;
1824 }
1825
1826 /**
1827 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1828 * event buffer.
1829 *
1830 * @ep: Pointer to the eventpoll context.
1831 * @events: Pointer to the userspace buffer where the ready events should be
1832 * stored.
1833 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1834 * @timeout: Maximum timeout for the ready events fetch operation, in
1835 * milliseconds. If the @timeout is zero, the function will not block,
1836 * while if the @timeout is less than zero, the function will block
1837 * until at least one event has been retrieved (or an error
1838 * occurred).
1839 *
1840 * Returns: Returns the number of ready events which have been fetched, or an
1841 * error code, in case of error.
1842 */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,long timeout)1843 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1844 int maxevents, long timeout)
1845 {
1846 int res = 0, eavail, timed_out = 0;
1847 u64 slack = 0;
1848 wait_queue_entry_t wait;
1849 ktime_t expires, *to = NULL;
1850
1851 lockdep_assert_irqs_enabled();
1852
1853 if (timeout > 0) {
1854 struct timespec64 end_time = ep_set_mstimeout(timeout);
1855
1856 slack = select_estimate_accuracy(&end_time);
1857 to = &expires;
1858 *to = timespec64_to_ktime(end_time);
1859 } else if (timeout == 0) {
1860 /*
1861 * Avoid the unnecessary trip to the wait queue loop, if the
1862 * caller specified a non blocking operation. We still need
1863 * lock because we could race and not see an epi being added
1864 * to the ready list while in irq callback. Thus incorrectly
1865 * returning 0 back to userspace.
1866 */
1867 timed_out = 1;
1868
1869 write_lock_irq(&ep->lock);
1870 eavail = ep_events_available(ep);
1871 write_unlock_irq(&ep->lock);
1872
1873 goto send_events;
1874 }
1875
1876 fetch_events:
1877
1878 if (!ep_events_available(ep))
1879 ep_busy_loop(ep, timed_out);
1880
1881 eavail = ep_events_available(ep);
1882 if (eavail)
1883 goto send_events;
1884
1885 /*
1886 * Busy poll timed out. Drop NAPI ID for now, we can add
1887 * it back in when we have moved a socket with a valid NAPI
1888 * ID onto the ready list.
1889 */
1890 ep_reset_busy_poll_napi_id(ep);
1891
1892 do {
1893 /*
1894 * Internally init_wait() uses autoremove_wake_function(),
1895 * thus wait entry is removed from the wait queue on each
1896 * wakeup. Why it is important? In case of several waiters
1897 * each new wakeup will hit the next waiter, giving it the
1898 * chance to harvest new event. Otherwise wakeup can be
1899 * lost. This is also good performance-wise, because on
1900 * normal wakeup path no need to call __remove_wait_queue()
1901 * explicitly, thus ep->lock is not taken, which halts the
1902 * event delivery.
1903 *
1904 * In fact, we now use an even more aggressive function that
1905 * unconditionally removes, because we don't reuse the wait
1906 * entry between loop iterations. This lets us also avoid the
1907 * performance issue if a process is killed, causing all of its
1908 * threads to wake up without being removed normally.
1909 */
1910 init_wait(&wait);
1911 wait.func = ep_autoremove_wake_function;
1912 write_lock_irq(&ep->lock);
1913 /*
1914 * Barrierless variant, waitqueue_active() is called under
1915 * the same lock on wakeup ep_poll_callback() side, so it
1916 * is safe to avoid an explicit barrier.
1917 */
1918 __set_current_state(TASK_INTERRUPTIBLE);
1919
1920 /*
1921 * Do the final check under the lock. ep_scan_ready_list()
1922 * plays with two lists (->rdllist and ->ovflist) and there
1923 * is always a race when both lists are empty for short
1924 * period of time although events are pending, so lock is
1925 * important.
1926 */
1927 eavail = ep_events_available(ep);
1928 if (!eavail) {
1929 if (signal_pending(current))
1930 res = -EINTR;
1931 else
1932 __add_wait_queue_exclusive(&ep->wq, &wait);
1933 }
1934 write_unlock_irq(&ep->lock);
1935
1936 if (!eavail && !res)
1937 timed_out = !freezable_schedule_hrtimeout_range(to, slack,
1938 HRTIMER_MODE_ABS);
1939
1940 /*
1941 * We were woken up, thus go and try to harvest some events.
1942 * If timed out and still on the wait queue, recheck eavail
1943 * carefully under lock, below.
1944 */
1945 eavail = 1;
1946 } while (0);
1947
1948 __set_current_state(TASK_RUNNING);
1949
1950 if (!list_empty_careful(&wait.entry)) {
1951 write_lock_irq(&ep->lock);
1952 /*
1953 * If the thread timed out and is not on the wait queue, it
1954 * means that the thread was woken up after its timeout expired
1955 * before it could reacquire the lock. Thus, when wait.entry is
1956 * empty, it needs to harvest events.
1957 */
1958 if (timed_out)
1959 eavail = list_empty(&wait.entry);
1960 __remove_wait_queue(&ep->wq, &wait);
1961 write_unlock_irq(&ep->lock);
1962 }
1963
1964 send_events:
1965 if (fatal_signal_pending(current)) {
1966 /*
1967 * Always short-circuit for fatal signals to allow
1968 * threads to make a timely exit without the chance of
1969 * finding more events available and fetching
1970 * repeatedly.
1971 */
1972 res = -EINTR;
1973 }
1974 /*
1975 * Try to transfer events to user space. In case we get 0 events and
1976 * there's still timeout left over, we go trying again in search of
1977 * more luck.
1978 */
1979 if (!res && eavail &&
1980 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1981 goto fetch_events;
1982
1983 return res;
1984 }
1985
1986 /**
1987 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1988 * API, to verify that adding an epoll file inside another
1989 * epoll structure, does not violate the constraints, in
1990 * terms of closed loops, or too deep chains (which can
1991 * result in excessive stack usage).
1992 *
1993 * @priv: Pointer to the epoll file to be currently checked.
1994 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1995 * data structure pointer.
1996 * @call_nests: Current dept of the @ep_call_nested() call stack.
1997 *
1998 * Returns: Returns zero if adding the epoll @file inside current epoll
1999 * structure @ep does not violate the constraints, or -1 otherwise.
2000 */
ep_loop_check_proc(void * priv,void * cookie,int call_nests)2001 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
2002 {
2003 int error = 0;
2004 struct file *file = priv;
2005 struct eventpoll *ep = file->private_data;
2006 struct eventpoll *ep_tovisit;
2007 struct rb_node *rbp;
2008 struct epitem *epi;
2009
2010 mutex_lock_nested(&ep->mtx, call_nests + 1);
2011 ep->gen = loop_check_gen;
2012 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2013 epi = rb_entry(rbp, struct epitem, rbn);
2014 if (unlikely(is_file_epoll(epi->ffd.file))) {
2015 ep_tovisit = epi->ffd.file->private_data;
2016 if (ep_tovisit->gen == loop_check_gen)
2017 continue;
2018 error = ep_call_nested(&poll_loop_ncalls,
2019 ep_loop_check_proc, epi->ffd.file,
2020 ep_tovisit, current);
2021 if (error != 0)
2022 break;
2023 } else {
2024 /*
2025 * If we've reached a file that is not associated with
2026 * an ep, then we need to check if the newly added
2027 * links are going to add too many wakeup paths. We do
2028 * this by adding it to the tfile_check_list, if it's
2029 * not already there, and calling reverse_path_check()
2030 * during ep_insert().
2031 */
2032 if (list_empty(&epi->ffd.file->f_tfile_llink)) {
2033 if (get_file_rcu(epi->ffd.file))
2034 list_add(&epi->ffd.file->f_tfile_llink,
2035 &tfile_check_list);
2036 }
2037 }
2038 }
2039 mutex_unlock(&ep->mtx);
2040
2041 return error;
2042 }
2043
2044 /**
2045 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2046 * another epoll file (represented by @ep) does not create
2047 * closed loops or too deep chains.
2048 *
2049 * @ep: Pointer to the epoll private data structure.
2050 * @file: Pointer to the epoll file to be checked.
2051 *
2052 * Returns: Returns zero if adding the epoll @file inside current epoll
2053 * structure @ep does not violate the constraints, or -1 otherwise.
2054 */
ep_loop_check(struct eventpoll * ep,struct file * file)2055 static int ep_loop_check(struct eventpoll *ep, struct file *file)
2056 {
2057 return ep_call_nested(&poll_loop_ncalls,
2058 ep_loop_check_proc, file, ep, current);
2059 }
2060
clear_tfile_check_list(void)2061 static void clear_tfile_check_list(void)
2062 {
2063 struct file *file;
2064
2065 /* first clear the tfile_check_list */
2066 while (!list_empty(&tfile_check_list)) {
2067 file = list_first_entry(&tfile_check_list, struct file,
2068 f_tfile_llink);
2069 list_del_init(&file->f_tfile_llink);
2070 fput(file);
2071 }
2072 INIT_LIST_HEAD(&tfile_check_list);
2073 }
2074
2075 /*
2076 * Open an eventpoll file descriptor.
2077 */
do_epoll_create(int flags)2078 static int do_epoll_create(int flags)
2079 {
2080 int error, fd;
2081 struct eventpoll *ep = NULL;
2082 struct file *file;
2083
2084 /* Check the EPOLL_* constant for consistency. */
2085 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2086
2087 if (flags & ~EPOLL_CLOEXEC)
2088 return -EINVAL;
2089 /*
2090 * Create the internal data structure ("struct eventpoll").
2091 */
2092 error = ep_alloc(&ep);
2093 if (error < 0)
2094 return error;
2095 /*
2096 * Creates all the items needed to setup an eventpoll file. That is,
2097 * a file structure and a free file descriptor.
2098 */
2099 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2100 if (fd < 0) {
2101 error = fd;
2102 goto out_free_ep;
2103 }
2104 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2105 O_RDWR | (flags & O_CLOEXEC));
2106 if (IS_ERR(file)) {
2107 error = PTR_ERR(file);
2108 goto out_free_fd;
2109 }
2110 ep->file = file;
2111 fd_install(fd, file);
2112 return fd;
2113
2114 out_free_fd:
2115 put_unused_fd(fd);
2116 out_free_ep:
2117 ep_free(ep);
2118 return error;
2119 }
2120
SYSCALL_DEFINE1(epoll_create1,int,flags)2121 SYSCALL_DEFINE1(epoll_create1, int, flags)
2122 {
2123 return do_epoll_create(flags);
2124 }
2125
SYSCALL_DEFINE1(epoll_create,int,size)2126 SYSCALL_DEFINE1(epoll_create, int, size)
2127 {
2128 if (size <= 0)
2129 return -EINVAL;
2130
2131 return do_epoll_create(0);
2132 }
2133
2134 /*
2135 * The following function implements the controller interface for
2136 * the eventpoll file that enables the insertion/removal/change of
2137 * file descriptors inside the interest set.
2138 */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)2139 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2140 struct epoll_event __user *, event)
2141 {
2142 int error;
2143 int full_check = 0;
2144 struct fd f, tf;
2145 struct eventpoll *ep;
2146 struct epitem *epi;
2147 struct epoll_event epds;
2148 struct eventpoll *tep = NULL;
2149
2150 error = -EFAULT;
2151 if (ep_op_has_event(op) &&
2152 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2153 goto error_return;
2154
2155 error = -EBADF;
2156 f = fdget(epfd);
2157 if (!f.file)
2158 goto error_return;
2159
2160 /* Get the "struct file *" for the target file */
2161 tf = fdget(fd);
2162 if (!tf.file)
2163 goto error_fput;
2164
2165 /* The target file descriptor must support poll */
2166 error = -EPERM;
2167 if (!file_can_poll(tf.file))
2168 goto error_tgt_fput;
2169
2170 /* Check if EPOLLWAKEUP is allowed */
2171 if (ep_op_has_event(op))
2172 ep_take_care_of_epollwakeup(&epds);
2173
2174 /*
2175 * We have to check that the file structure underneath the file descriptor
2176 * the user passed to us _is_ an eventpoll file. And also we do not permit
2177 * adding an epoll file descriptor inside itself.
2178 */
2179 error = -EINVAL;
2180 if (f.file == tf.file || !is_file_epoll(f.file))
2181 goto error_tgt_fput;
2182
2183 /*
2184 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2185 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2186 * Also, we do not currently supported nested exclusive wakeups.
2187 */
2188 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2189 if (op == EPOLL_CTL_MOD)
2190 goto error_tgt_fput;
2191 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2192 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2193 goto error_tgt_fput;
2194 }
2195
2196 /*
2197 * At this point it is safe to assume that the "private_data" contains
2198 * our own data structure.
2199 */
2200 ep = f.file->private_data;
2201
2202 /*
2203 * When we insert an epoll file descriptor, inside another epoll file
2204 * descriptor, there is the change of creating closed loops, which are
2205 * better be handled here, than in more critical paths. While we are
2206 * checking for loops we also determine the list of files reachable
2207 * and hang them on the tfile_check_list, so we can check that we
2208 * haven't created too many possible wakeup paths.
2209 *
2210 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2211 * the epoll file descriptor is attaching directly to a wakeup source,
2212 * unless the epoll file descriptor is nested. The purpose of taking the
2213 * 'epmutex' on add is to prevent complex toplogies such as loops and
2214 * deep wakeup paths from forming in parallel through multiple
2215 * EPOLL_CTL_ADD operations.
2216 */
2217 mutex_lock_nested(&ep->mtx, 0);
2218 if (op == EPOLL_CTL_ADD) {
2219 if (!list_empty(&f.file->f_ep_links) ||
2220 ep->gen == loop_check_gen ||
2221 is_file_epoll(tf.file)) {
2222 full_check = 1;
2223 mutex_unlock(&ep->mtx);
2224 mutex_lock(&epmutex);
2225 if (is_file_epoll(tf.file)) {
2226 error = -ELOOP;
2227 if (ep_loop_check(ep, tf.file) != 0)
2228 goto error_tgt_fput;
2229 } else {
2230 get_file(tf.file);
2231 list_add(&tf.file->f_tfile_llink,
2232 &tfile_check_list);
2233 }
2234 mutex_lock_nested(&ep->mtx, 0);
2235 if (is_file_epoll(tf.file)) {
2236 tep = tf.file->private_data;
2237 mutex_lock_nested(&tep->mtx, 1);
2238 }
2239 }
2240 }
2241
2242 /*
2243 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2244 * above, we can be sure to be able to use the item looked up by
2245 * ep_find() till we release the mutex.
2246 */
2247 epi = ep_find(ep, tf.file, fd);
2248
2249 error = -EINVAL;
2250 switch (op) {
2251 case EPOLL_CTL_ADD:
2252 if (!epi) {
2253 epds.events |= EPOLLERR | EPOLLHUP;
2254 error = ep_insert(ep, &epds, tf.file, fd, full_check);
2255 } else
2256 error = -EEXIST;
2257 break;
2258 case EPOLL_CTL_DEL:
2259 if (epi)
2260 error = ep_remove(ep, epi);
2261 else
2262 error = -ENOENT;
2263 break;
2264 case EPOLL_CTL_MOD:
2265 if (epi) {
2266 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2267 epds.events |= EPOLLERR | EPOLLHUP;
2268 error = ep_modify(ep, epi, &epds);
2269 }
2270 } else
2271 error = -ENOENT;
2272 break;
2273 }
2274 if (tep != NULL)
2275 mutex_unlock(&tep->mtx);
2276 mutex_unlock(&ep->mtx);
2277
2278 error_tgt_fput:
2279 if (full_check) {
2280 clear_tfile_check_list();
2281 loop_check_gen++;
2282 mutex_unlock(&epmutex);
2283 }
2284
2285 fdput(tf);
2286 error_fput:
2287 fdput(f);
2288 error_return:
2289
2290 return error;
2291 }
2292
2293 /*
2294 * Implement the event wait interface for the eventpoll file. It is the kernel
2295 * part of the user space epoll_wait(2).
2296 */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,int timeout)2297 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2298 int maxevents, int timeout)
2299 {
2300 int error;
2301 struct fd f;
2302 struct eventpoll *ep;
2303
2304 /* The maximum number of event must be greater than zero */
2305 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2306 return -EINVAL;
2307
2308 /* Verify that the area passed by the user is writeable */
2309 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2310 return -EFAULT;
2311
2312 /* Get the "struct file *" for the eventpoll file */
2313 f = fdget(epfd);
2314 if (!f.file)
2315 return -EBADF;
2316
2317 /*
2318 * We have to check that the file structure underneath the fd
2319 * the user passed to us _is_ an eventpoll file.
2320 */
2321 error = -EINVAL;
2322 if (!is_file_epoll(f.file))
2323 goto error_fput;
2324
2325 /*
2326 * At this point it is safe to assume that the "private_data" contains
2327 * our own data structure.
2328 */
2329 ep = f.file->private_data;
2330
2331 /* Time to fish for events ... */
2332 error = ep_poll(ep, events, maxevents, timeout);
2333
2334 error_fput:
2335 fdput(f);
2336 return error;
2337 }
2338
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2339 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2340 int, maxevents, int, timeout)
2341 {
2342 return do_epoll_wait(epfd, events, maxevents, timeout);
2343 }
2344
2345 /*
2346 * Implement the event wait interface for the eventpoll file. It is the kernel
2347 * part of the user space epoll_pwait(2).
2348 */
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2349 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2350 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2351 size_t, sigsetsize)
2352 {
2353 int error;
2354
2355 /*
2356 * If the caller wants a certain signal mask to be set during the wait,
2357 * we apply it here.
2358 */
2359 error = set_user_sigmask(sigmask, sigsetsize);
2360 if (error)
2361 return error;
2362
2363 error = do_epoll_wait(epfd, events, maxevents, timeout);
2364 restore_saved_sigmask_unless(error == -EINTR);
2365
2366 return error;
2367 }
2368
2369 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2370 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2371 struct epoll_event __user *, events,
2372 int, maxevents, int, timeout,
2373 const compat_sigset_t __user *, sigmask,
2374 compat_size_t, sigsetsize)
2375 {
2376 long err;
2377
2378 /*
2379 * If the caller wants a certain signal mask to be set during the wait,
2380 * we apply it here.
2381 */
2382 err = set_compat_user_sigmask(sigmask, sigsetsize);
2383 if (err)
2384 return err;
2385
2386 err = do_epoll_wait(epfd, events, maxevents, timeout);
2387 restore_saved_sigmask_unless(err == -EINTR);
2388
2389 return err;
2390 }
2391 #endif
2392
eventpoll_init(void)2393 static int __init eventpoll_init(void)
2394 {
2395 struct sysinfo si;
2396
2397 si_meminfo(&si);
2398 /*
2399 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2400 */
2401 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2402 EP_ITEM_COST;
2403 BUG_ON(max_user_watches < 0);
2404
2405 /*
2406 * Initialize the structure used to perform epoll file descriptor
2407 * inclusion loops checks.
2408 */
2409 ep_nested_calls_init(&poll_loop_ncalls);
2410
2411 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2412 /* Initialize the structure used to perform safe poll wait head wake ups */
2413 ep_nested_calls_init(&poll_safewake_ncalls);
2414 #endif
2415
2416 /*
2417 * We can have many thousands of epitems, so prevent this from
2418 * using an extra cache line on 64-bit (and smaller) CPUs
2419 */
2420 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2421
2422 /* Allocates slab cache used to allocate "struct epitem" items */
2423 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2424 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2425
2426 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2427 pwq_cache = kmem_cache_create("eventpoll_pwq",
2428 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2429
2430 return 0;
2431 }
2432 fs_initcall(eventpoll_init);
2433