1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/pipe_fs_i.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/tlb.h>
70
71 #include <trace/events/task.h>
72 #include "internal.h"
73
74 #include <trace/events/sched.h>
75
76 int suid_dumpable = 0;
77
78 static LIST_HEAD(formats);
79 static DEFINE_RWLOCK(binfmt_lock);
80
__register_binfmt(struct linux_binfmt * fmt,int insert)81 void __register_binfmt(struct linux_binfmt * fmt, int insert)
82 {
83 BUG_ON(!fmt);
84 if (WARN_ON(!fmt->load_binary))
85 return;
86 write_lock(&binfmt_lock);
87 insert ? list_add(&fmt->lh, &formats) :
88 list_add_tail(&fmt->lh, &formats);
89 write_unlock(&binfmt_lock);
90 }
91
92 EXPORT_SYMBOL(__register_binfmt);
93
unregister_binfmt(struct linux_binfmt * fmt)94 void unregister_binfmt(struct linux_binfmt * fmt)
95 {
96 write_lock(&binfmt_lock);
97 list_del(&fmt->lh);
98 write_unlock(&binfmt_lock);
99 }
100
101 EXPORT_SYMBOL(unregister_binfmt);
102
put_binfmt(struct linux_binfmt * fmt)103 static inline void put_binfmt(struct linux_binfmt * fmt)
104 {
105 module_put(fmt->module);
106 }
107
path_noexec(const struct path * path)108 bool path_noexec(const struct path *path)
109 {
110 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
111 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
112 }
113
114 #ifdef CONFIG_USELIB
115 /*
116 * Note that a shared library must be both readable and executable due to
117 * security reasons.
118 *
119 * Also note that we take the address to load from from the file itself.
120 */
SYSCALL_DEFINE1(uselib,const char __user *,library)121 SYSCALL_DEFINE1(uselib, const char __user *, library)
122 {
123 struct linux_binfmt *fmt;
124 struct file *file;
125 struct filename *tmp = getname(library);
126 int error = PTR_ERR(tmp);
127 static const struct open_flags uselib_flags = {
128 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
129 .acc_mode = MAY_READ | MAY_EXEC,
130 .intent = LOOKUP_OPEN,
131 .lookup_flags = LOOKUP_FOLLOW,
132 };
133
134 if (IS_ERR(tmp))
135 goto out;
136
137 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
138 putname(tmp);
139 error = PTR_ERR(file);
140 if (IS_ERR(file))
141 goto out;
142
143 error = -EINVAL;
144 if (!S_ISREG(file_inode(file)->i_mode))
145 goto exit;
146
147 error = -EACCES;
148 if (path_noexec(&file->f_path))
149 goto exit;
150
151 fsnotify_open(file);
152
153 error = -ENOEXEC;
154
155 read_lock(&binfmt_lock);
156 list_for_each_entry(fmt, &formats, lh) {
157 if (!fmt->load_shlib)
158 continue;
159 if (!try_module_get(fmt->module))
160 continue;
161 read_unlock(&binfmt_lock);
162 error = fmt->load_shlib(file);
163 read_lock(&binfmt_lock);
164 put_binfmt(fmt);
165 if (error != -ENOEXEC)
166 break;
167 }
168 read_unlock(&binfmt_lock);
169 exit:
170 fput(file);
171 out:
172 return error;
173 }
174 #endif /* #ifdef CONFIG_USELIB */
175
176 #ifdef CONFIG_MMU
177 /*
178 * The nascent bprm->mm is not visible until exec_mmap() but it can
179 * use a lot of memory, account these pages in current->mm temporary
180 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
181 * change the counter back via acct_arg_size(0).
182 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)183 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
184 {
185 struct mm_struct *mm = current->mm;
186 long diff = (long)(pages - bprm->vma_pages);
187
188 if (!mm || !diff)
189 return;
190
191 bprm->vma_pages = pages;
192 add_mm_counter(mm, MM_ANONPAGES, diff);
193 }
194
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)195 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
196 int write)
197 {
198 struct page *page;
199 int ret;
200 unsigned int gup_flags = FOLL_FORCE;
201
202 #ifdef CONFIG_STACK_GROWSUP
203 if (write) {
204 ret = expand_downwards(bprm->vma, pos);
205 if (ret < 0)
206 return NULL;
207 }
208 #endif
209
210 if (write)
211 gup_flags |= FOLL_WRITE;
212
213 /*
214 * We are doing an exec(). 'current' is the process
215 * doing the exec and bprm->mm is the new process's mm.
216 */
217 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
218 &page, NULL, NULL);
219 if (ret <= 0)
220 return NULL;
221
222 if (write)
223 acct_arg_size(bprm, vma_pages(bprm->vma));
224
225 return page;
226 }
227
put_arg_page(struct page * page)228 static void put_arg_page(struct page *page)
229 {
230 put_page(page);
231 }
232
free_arg_pages(struct linux_binprm * bprm)233 static void free_arg_pages(struct linux_binprm *bprm)
234 {
235 }
236
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)237 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
238 struct page *page)
239 {
240 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
241 }
242
__bprm_mm_init(struct linux_binprm * bprm)243 static int __bprm_mm_init(struct linux_binprm *bprm)
244 {
245 int err;
246 struct vm_area_struct *vma = NULL;
247 struct mm_struct *mm = bprm->mm;
248
249 bprm->vma = vma = vm_area_alloc(mm);
250 if (!vma)
251 return -ENOMEM;
252 vma_set_anonymous(vma);
253
254 if (down_write_killable(&mm->mmap_sem)) {
255 err = -EINTR;
256 goto err_free;
257 }
258
259 /*
260 * Place the stack at the largest stack address the architecture
261 * supports. Later, we'll move this to an appropriate place. We don't
262 * use STACK_TOP because that can depend on attributes which aren't
263 * configured yet.
264 */
265 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 vma->vm_end = STACK_TOP_MAX;
267 vma->vm_start = vma->vm_end - PAGE_SIZE;
268 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270
271 err = insert_vm_struct(mm, vma);
272 if (err)
273 goto err;
274
275 mm->stack_vm = mm->total_vm = 1;
276 arch_bprm_mm_init(mm, vma);
277 up_write(&mm->mmap_sem);
278 bprm->p = vma->vm_end - sizeof(void *);
279 return 0;
280 err:
281 up_write(&mm->mmap_sem);
282 err_free:
283 bprm->vma = NULL;
284 vm_area_free(vma);
285 return err;
286 }
287
valid_arg_len(struct linux_binprm * bprm,long len)288 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 {
290 return len <= MAX_ARG_STRLEN;
291 }
292
293 #else
294
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
296 {
297 }
298
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
300 int write)
301 {
302 struct page *page;
303
304 page = bprm->page[pos / PAGE_SIZE];
305 if (!page && write) {
306 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
307 if (!page)
308 return NULL;
309 bprm->page[pos / PAGE_SIZE] = page;
310 }
311
312 return page;
313 }
314
put_arg_page(struct page * page)315 static void put_arg_page(struct page *page)
316 {
317 }
318
free_arg_page(struct linux_binprm * bprm,int i)319 static void free_arg_page(struct linux_binprm *bprm, int i)
320 {
321 if (bprm->page[i]) {
322 __free_page(bprm->page[i]);
323 bprm->page[i] = NULL;
324 }
325 }
326
free_arg_pages(struct linux_binprm * bprm)327 static void free_arg_pages(struct linux_binprm *bprm)
328 {
329 int i;
330
331 for (i = 0; i < MAX_ARG_PAGES; i++)
332 free_arg_page(bprm, i);
333 }
334
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
336 struct page *page)
337 {
338 }
339
__bprm_mm_init(struct linux_binprm * bprm)340 static int __bprm_mm_init(struct linux_binprm *bprm)
341 {
342 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
343 return 0;
344 }
345
valid_arg_len(struct linux_binprm * bprm,long len)346 static bool valid_arg_len(struct linux_binprm *bprm, long len)
347 {
348 return len <= bprm->p;
349 }
350
351 #endif /* CONFIG_MMU */
352
353 /*
354 * Create a new mm_struct and populate it with a temporary stack
355 * vm_area_struct. We don't have enough context at this point to set the stack
356 * flags, permissions, and offset, so we use temporary values. We'll update
357 * them later in setup_arg_pages().
358 */
bprm_mm_init(struct linux_binprm * bprm)359 static int bprm_mm_init(struct linux_binprm *bprm)
360 {
361 int err;
362 struct mm_struct *mm = NULL;
363
364 bprm->mm = mm = mm_alloc();
365 err = -ENOMEM;
366 if (!mm)
367 goto err;
368
369 /* Save current stack limit for all calculations made during exec. */
370 task_lock(current->group_leader);
371 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
372 task_unlock(current->group_leader);
373
374 err = __bprm_mm_init(bprm);
375 if (err)
376 goto err;
377
378 return 0;
379
380 err:
381 if (mm) {
382 bprm->mm = NULL;
383 mmdrop(mm);
384 }
385
386 return err;
387 }
388
389 struct user_arg_ptr {
390 #ifdef CONFIG_COMPAT
391 bool is_compat;
392 #endif
393 union {
394 const char __user *const __user *native;
395 #ifdef CONFIG_COMPAT
396 const compat_uptr_t __user *compat;
397 #endif
398 } ptr;
399 };
400
get_user_arg_ptr(struct user_arg_ptr argv,int nr)401 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
402 {
403 const char __user *native;
404
405 #ifdef CONFIG_COMPAT
406 if (unlikely(argv.is_compat)) {
407 compat_uptr_t compat;
408
409 if (get_user(compat, argv.ptr.compat + nr))
410 return ERR_PTR(-EFAULT);
411
412 return compat_ptr(compat);
413 }
414 #endif
415
416 if (get_user(native, argv.ptr.native + nr))
417 return ERR_PTR(-EFAULT);
418
419 return native;
420 }
421
422 /*
423 * count() counts the number of strings in array ARGV.
424 */
count(struct user_arg_ptr argv,int max)425 static int count(struct user_arg_ptr argv, int max)
426 {
427 int i = 0;
428
429 if (argv.ptr.native != NULL) {
430 for (;;) {
431 const char __user *p = get_user_arg_ptr(argv, i);
432
433 if (!p)
434 break;
435
436 if (IS_ERR(p))
437 return -EFAULT;
438
439 if (i >= max)
440 return -E2BIG;
441 ++i;
442
443 if (fatal_signal_pending(current))
444 return -ERESTARTNOHAND;
445 cond_resched();
446 }
447 }
448 return i;
449 }
450
prepare_arg_pages(struct linux_binprm * bprm,struct user_arg_ptr argv,struct user_arg_ptr envp)451 static int prepare_arg_pages(struct linux_binprm *bprm,
452 struct user_arg_ptr argv, struct user_arg_ptr envp)
453 {
454 unsigned long limit, ptr_size;
455
456 bprm->argc = count(argv, MAX_ARG_STRINGS);
457 if (bprm->argc == 0)
458 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
459 current->comm, bprm->filename);
460 if (bprm->argc < 0)
461 return bprm->argc;
462
463 bprm->envc = count(envp, MAX_ARG_STRINGS);
464 if (bprm->envc < 0)
465 return bprm->envc;
466
467 /*
468 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
469 * (whichever is smaller) for the argv+env strings.
470 * This ensures that:
471 * - the remaining binfmt code will not run out of stack space,
472 * - the program will have a reasonable amount of stack left
473 * to work from.
474 */
475 limit = _STK_LIM / 4 * 3;
476 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
477 /*
478 * We've historically supported up to 32 pages (ARG_MAX)
479 * of argument strings even with small stacks
480 */
481 limit = max_t(unsigned long, limit, ARG_MAX);
482 /*
483 * We must account for the size of all the argv and envp pointers to
484 * the argv and envp strings, since they will also take up space in
485 * the stack. They aren't stored until much later when we can't
486 * signal to the parent that the child has run out of stack space.
487 * Instead, calculate it here so it's possible to fail gracefully.
488 *
489 * In the case of argc = 0, make sure there is space for adding a
490 * empty string (which will bump argc to 1), to ensure confused
491 * userspace programs don't start processing from argv[1], thinking
492 * argc can never be 0, to keep them from walking envp by accident.
493 * See do_execveat_common().
494 */
495 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
496 if (limit <= ptr_size)
497 return -E2BIG;
498 limit -= ptr_size;
499
500 bprm->argmin = bprm->p - limit;
501 return 0;
502 }
503
504 /*
505 * 'copy_strings()' copies argument/environment strings from the old
506 * processes's memory to the new process's stack. The call to get_user_pages()
507 * ensures the destination page is created and not swapped out.
508 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)509 static int copy_strings(int argc, struct user_arg_ptr argv,
510 struct linux_binprm *bprm)
511 {
512 struct page *kmapped_page = NULL;
513 char *kaddr = NULL;
514 unsigned long kpos = 0;
515 int ret;
516
517 while (argc-- > 0) {
518 const char __user *str;
519 int len;
520 unsigned long pos;
521
522 ret = -EFAULT;
523 str = get_user_arg_ptr(argv, argc);
524 if (IS_ERR(str))
525 goto out;
526
527 len = strnlen_user(str, MAX_ARG_STRLEN);
528 if (!len)
529 goto out;
530
531 ret = -E2BIG;
532 if (!valid_arg_len(bprm, len))
533 goto out;
534
535 /* We're going to work our way backwords. */
536 pos = bprm->p;
537 str += len;
538 bprm->p -= len;
539 #ifdef CONFIG_MMU
540 if (bprm->p < bprm->argmin)
541 goto out;
542 #endif
543
544 while (len > 0) {
545 int offset, bytes_to_copy;
546
547 if (fatal_signal_pending(current)) {
548 ret = -ERESTARTNOHAND;
549 goto out;
550 }
551 cond_resched();
552
553 offset = pos % PAGE_SIZE;
554 if (offset == 0)
555 offset = PAGE_SIZE;
556
557 bytes_to_copy = offset;
558 if (bytes_to_copy > len)
559 bytes_to_copy = len;
560
561 offset -= bytes_to_copy;
562 pos -= bytes_to_copy;
563 str -= bytes_to_copy;
564 len -= bytes_to_copy;
565
566 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
567 struct page *page;
568
569 page = get_arg_page(bprm, pos, 1);
570 if (!page) {
571 ret = -E2BIG;
572 goto out;
573 }
574
575 if (kmapped_page) {
576 flush_kernel_dcache_page(kmapped_page);
577 kunmap(kmapped_page);
578 put_arg_page(kmapped_page);
579 }
580 kmapped_page = page;
581 kaddr = kmap(kmapped_page);
582 kpos = pos & PAGE_MASK;
583 flush_arg_page(bprm, kpos, kmapped_page);
584 }
585 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
586 ret = -EFAULT;
587 goto out;
588 }
589 }
590 }
591 ret = 0;
592 out:
593 if (kmapped_page) {
594 flush_kernel_dcache_page(kmapped_page);
595 kunmap(kmapped_page);
596 put_arg_page(kmapped_page);
597 }
598 return ret;
599 }
600
601 /*
602 * Like copy_strings, but get argv and its values from kernel memory.
603 */
copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)604 int copy_strings_kernel(int argc, const char *const *__argv,
605 struct linux_binprm *bprm)
606 {
607 int r;
608 mm_segment_t oldfs = get_fs();
609 struct user_arg_ptr argv = {
610 .ptr.native = (const char __user *const __user *)__argv,
611 };
612
613 set_fs(KERNEL_DS);
614 r = copy_strings(argc, argv, bprm);
615 set_fs(oldfs);
616
617 return r;
618 }
619 EXPORT_SYMBOL(copy_strings_kernel);
620
621 #ifdef CONFIG_MMU
622
623 /*
624 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
625 * the binfmt code determines where the new stack should reside, we shift it to
626 * its final location. The process proceeds as follows:
627 *
628 * 1) Use shift to calculate the new vma endpoints.
629 * 2) Extend vma to cover both the old and new ranges. This ensures the
630 * arguments passed to subsequent functions are consistent.
631 * 3) Move vma's page tables to the new range.
632 * 4) Free up any cleared pgd range.
633 * 5) Shrink the vma to cover only the new range.
634 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)635 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
636 {
637 struct mm_struct *mm = vma->vm_mm;
638 unsigned long old_start = vma->vm_start;
639 unsigned long old_end = vma->vm_end;
640 unsigned long length = old_end - old_start;
641 unsigned long new_start = old_start - shift;
642 unsigned long new_end = old_end - shift;
643 struct mmu_gather tlb;
644
645 BUG_ON(new_start > new_end);
646
647 /*
648 * ensure there are no vmas between where we want to go
649 * and where we are
650 */
651 if (vma != find_vma(mm, new_start))
652 return -EFAULT;
653
654 /*
655 * cover the whole range: [new_start, old_end)
656 */
657 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
658 return -ENOMEM;
659
660 /*
661 * move the page tables downwards, on failure we rely on
662 * process cleanup to remove whatever mess we made.
663 */
664 if (length != move_page_tables(vma, old_start,
665 vma, new_start, length, false))
666 return -ENOMEM;
667
668 lru_add_drain();
669 tlb_gather_mmu(&tlb, mm, old_start, old_end);
670 if (new_end > old_start) {
671 /*
672 * when the old and new regions overlap clear from new_end.
673 */
674 free_pgd_range(&tlb, new_end, old_end, new_end,
675 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
676 } else {
677 /*
678 * otherwise, clean from old_start; this is done to not touch
679 * the address space in [new_end, old_start) some architectures
680 * have constraints on va-space that make this illegal (IA64) -
681 * for the others its just a little faster.
682 */
683 free_pgd_range(&tlb, old_start, old_end, new_end,
684 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
685 }
686 tlb_finish_mmu(&tlb, old_start, old_end);
687
688 /*
689 * Shrink the vma to just the new range. Always succeeds.
690 */
691 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
692
693 return 0;
694 }
695
696 /*
697 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
698 * the stack is optionally relocated, and some extra space is added.
699 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)700 int setup_arg_pages(struct linux_binprm *bprm,
701 unsigned long stack_top,
702 int executable_stack)
703 {
704 unsigned long ret;
705 unsigned long stack_shift;
706 struct mm_struct *mm = current->mm;
707 struct vm_area_struct *vma = bprm->vma;
708 struct vm_area_struct *prev = NULL;
709 unsigned long vm_flags;
710 unsigned long stack_base;
711 unsigned long stack_size;
712 unsigned long stack_expand;
713 unsigned long rlim_stack;
714
715 #ifdef CONFIG_STACK_GROWSUP
716 /* Limit stack size */
717 stack_base = bprm->rlim_stack.rlim_max;
718 if (stack_base > STACK_SIZE_MAX)
719 stack_base = STACK_SIZE_MAX;
720
721 /* Add space for stack randomization. */
722 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
723
724 /* Make sure we didn't let the argument array grow too large. */
725 if (vma->vm_end - vma->vm_start > stack_base)
726 return -ENOMEM;
727
728 stack_base = PAGE_ALIGN(stack_top - stack_base);
729
730 stack_shift = vma->vm_start - stack_base;
731 mm->arg_start = bprm->p - stack_shift;
732 bprm->p = vma->vm_end - stack_shift;
733 #else
734 stack_top = arch_align_stack(stack_top);
735 stack_top = PAGE_ALIGN(stack_top);
736
737 if (unlikely(stack_top < mmap_min_addr) ||
738 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
739 return -ENOMEM;
740
741 stack_shift = vma->vm_end - stack_top;
742
743 bprm->p -= stack_shift;
744 mm->arg_start = bprm->p;
745 #endif
746
747 if (bprm->loader)
748 bprm->loader -= stack_shift;
749 bprm->exec -= stack_shift;
750
751 if (down_write_killable(&mm->mmap_sem))
752 return -EINTR;
753
754 vm_flags = VM_STACK_FLAGS;
755
756 /*
757 * Adjust stack execute permissions; explicitly enable for
758 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
759 * (arch default) otherwise.
760 */
761 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
762 vm_flags |= VM_EXEC;
763 else if (executable_stack == EXSTACK_DISABLE_X)
764 vm_flags &= ~VM_EXEC;
765 vm_flags |= mm->def_flags;
766 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
767
768 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
769 vm_flags);
770 if (ret)
771 goto out_unlock;
772 BUG_ON(prev != vma);
773
774 /* Move stack pages down in memory. */
775 if (stack_shift) {
776 ret = shift_arg_pages(vma, stack_shift);
777 if (ret)
778 goto out_unlock;
779 }
780
781 /* mprotect_fixup is overkill to remove the temporary stack flags */
782 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
783
784 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
785 stack_size = vma->vm_end - vma->vm_start;
786 /*
787 * Align this down to a page boundary as expand_stack
788 * will align it up.
789 */
790 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
791 #ifdef CONFIG_STACK_GROWSUP
792 if (stack_size + stack_expand > rlim_stack)
793 stack_base = vma->vm_start + rlim_stack;
794 else
795 stack_base = vma->vm_end + stack_expand;
796 #else
797 if (stack_size + stack_expand > rlim_stack)
798 stack_base = vma->vm_end - rlim_stack;
799 else
800 stack_base = vma->vm_start - stack_expand;
801 #endif
802 current->mm->start_stack = bprm->p;
803 ret = expand_stack(vma, stack_base);
804 if (ret)
805 ret = -EFAULT;
806
807 out_unlock:
808 up_write(&mm->mmap_sem);
809 return ret;
810 }
811 EXPORT_SYMBOL(setup_arg_pages);
812
813 #else
814
815 /*
816 * Transfer the program arguments and environment from the holding pages
817 * onto the stack. The provided stack pointer is adjusted accordingly.
818 */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)819 int transfer_args_to_stack(struct linux_binprm *bprm,
820 unsigned long *sp_location)
821 {
822 unsigned long index, stop, sp;
823 int ret = 0;
824
825 stop = bprm->p >> PAGE_SHIFT;
826 sp = *sp_location;
827
828 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
829 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
830 char *src = kmap(bprm->page[index]) + offset;
831 sp -= PAGE_SIZE - offset;
832 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
833 ret = -EFAULT;
834 kunmap(bprm->page[index]);
835 if (ret)
836 goto out;
837 }
838
839 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
840 *sp_location = sp;
841
842 out:
843 return ret;
844 }
845 EXPORT_SYMBOL(transfer_args_to_stack);
846
847 #endif /* CONFIG_MMU */
848
do_open_execat(int fd,struct filename * name,int flags)849 static struct file *do_open_execat(int fd, struct filename *name, int flags)
850 {
851 struct file *file;
852 int err;
853 struct open_flags open_exec_flags = {
854 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
855 .acc_mode = MAY_EXEC,
856 .intent = LOOKUP_OPEN,
857 .lookup_flags = LOOKUP_FOLLOW,
858 };
859
860 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
861 return ERR_PTR(-EINVAL);
862 if (flags & AT_SYMLINK_NOFOLLOW)
863 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
864 if (flags & AT_EMPTY_PATH)
865 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
866
867 file = do_filp_open(fd, name, &open_exec_flags);
868 if (IS_ERR(file))
869 goto out;
870
871 err = -EACCES;
872 if (!S_ISREG(file_inode(file)->i_mode))
873 goto exit;
874
875 if (path_noexec(&file->f_path))
876 goto exit;
877
878 err = deny_write_access(file);
879 if (err)
880 goto exit;
881
882 if (name->name[0] != '\0')
883 fsnotify_open(file);
884
885 out:
886 return file;
887
888 exit:
889 fput(file);
890 return ERR_PTR(err);
891 }
892
open_exec(const char * name)893 struct file *open_exec(const char *name)
894 {
895 struct filename *filename = getname_kernel(name);
896 struct file *f = ERR_CAST(filename);
897
898 if (!IS_ERR(filename)) {
899 f = do_open_execat(AT_FDCWD, filename, 0);
900 putname(filename);
901 }
902 return f;
903 }
904 EXPORT_SYMBOL(open_exec);
905
kernel_read_file(struct file * file,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)906 int kernel_read_file(struct file *file, void **buf, loff_t *size,
907 loff_t max_size, enum kernel_read_file_id id)
908 {
909 loff_t i_size, pos;
910 ssize_t bytes = 0;
911 int ret;
912
913 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
914 return -EINVAL;
915
916 ret = deny_write_access(file);
917 if (ret)
918 return ret;
919
920 ret = security_kernel_read_file(file, id);
921 if (ret)
922 goto out;
923
924 i_size = i_size_read(file_inode(file));
925 if (i_size <= 0) {
926 ret = -EINVAL;
927 goto out;
928 }
929 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
930 ret = -EFBIG;
931 goto out;
932 }
933
934 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
935 *buf = vmalloc(i_size);
936 if (!*buf) {
937 ret = -ENOMEM;
938 goto out;
939 }
940
941 pos = 0;
942 while (pos < i_size) {
943 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
944 if (bytes < 0) {
945 ret = bytes;
946 goto out_free;
947 }
948
949 if (bytes == 0)
950 break;
951 }
952
953 if (pos != i_size) {
954 ret = -EIO;
955 goto out_free;
956 }
957
958 ret = security_kernel_post_read_file(file, *buf, i_size, id);
959 if (!ret)
960 *size = pos;
961
962 out_free:
963 if (ret < 0) {
964 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
965 vfree(*buf);
966 *buf = NULL;
967 }
968 }
969
970 out:
971 allow_write_access(file);
972 return ret;
973 }
974 EXPORT_SYMBOL_GPL(kernel_read_file);
975
kernel_read_file_from_path(const char * path,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)976 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
977 loff_t max_size, enum kernel_read_file_id id)
978 {
979 struct file *file;
980 int ret;
981
982 if (!path || !*path)
983 return -EINVAL;
984
985 file = filp_open(path, O_RDONLY, 0);
986 if (IS_ERR(file))
987 return PTR_ERR(file);
988
989 ret = kernel_read_file(file, buf, size, max_size, id);
990 fput(file);
991 return ret;
992 }
993 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
994
kernel_read_file_from_fd(int fd,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)995 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
996 enum kernel_read_file_id id)
997 {
998 struct fd f = fdget(fd);
999 int ret = -EBADF;
1000
1001 if (!f.file || !(f.file->f_mode & FMODE_READ))
1002 goto out;
1003
1004 ret = kernel_read_file(f.file, buf, size, max_size, id);
1005 out:
1006 fdput(f);
1007 return ret;
1008 }
1009 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1010
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)1011 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1012 {
1013 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1014 if (res > 0)
1015 flush_icache_range(addr, addr + len);
1016 return res;
1017 }
1018 EXPORT_SYMBOL(read_code);
1019
exec_mmap(struct mm_struct * mm)1020 static int exec_mmap(struct mm_struct *mm)
1021 {
1022 struct task_struct *tsk;
1023 struct mm_struct *old_mm, *active_mm;
1024
1025 /* Notify parent that we're no longer interested in the old VM */
1026 tsk = current;
1027 old_mm = current->mm;
1028 exec_mm_release(tsk, old_mm);
1029
1030 if (old_mm) {
1031 sync_mm_rss(old_mm);
1032 /*
1033 * Make sure that if there is a core dump in progress
1034 * for the old mm, we get out and die instead of going
1035 * through with the exec. We must hold mmap_sem around
1036 * checking core_state and changing tsk->mm.
1037 */
1038 down_read(&old_mm->mmap_sem);
1039 if (unlikely(old_mm->core_state)) {
1040 up_read(&old_mm->mmap_sem);
1041 return -EINTR;
1042 }
1043 }
1044 task_lock(tsk);
1045 membarrier_exec_mmap(mm);
1046
1047 local_irq_disable();
1048 active_mm = tsk->active_mm;
1049 tsk->active_mm = mm;
1050 tsk->mm = mm;
1051 /*
1052 * This prevents preemption while active_mm is being loaded and
1053 * it and mm are being updated, which could cause problems for
1054 * lazy tlb mm refcounting when these are updated by context
1055 * switches. Not all architectures can handle irqs off over
1056 * activate_mm yet.
1057 */
1058 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1059 local_irq_enable();
1060 activate_mm(active_mm, mm);
1061 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1062 local_irq_enable();
1063 tsk->mm->vmacache_seqnum = 0;
1064 vmacache_flush(tsk);
1065 task_unlock(tsk);
1066 if (old_mm) {
1067 up_read(&old_mm->mmap_sem);
1068 BUG_ON(active_mm != old_mm);
1069 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1070 mm_update_next_owner(old_mm);
1071 mmput(old_mm);
1072 return 0;
1073 }
1074 mmdrop(active_mm);
1075 return 0;
1076 }
1077
1078 /*
1079 * This function makes sure the current process has its own signal table,
1080 * so that flush_signal_handlers can later reset the handlers without
1081 * disturbing other processes. (Other processes might share the signal
1082 * table via the CLONE_SIGHAND option to clone().)
1083 */
de_thread(struct task_struct * tsk)1084 static int de_thread(struct task_struct *tsk)
1085 {
1086 struct signal_struct *sig = tsk->signal;
1087 struct sighand_struct *oldsighand = tsk->sighand;
1088 spinlock_t *lock = &oldsighand->siglock;
1089
1090 if (thread_group_empty(tsk))
1091 goto no_thread_group;
1092
1093 /*
1094 * Kill all other threads in the thread group.
1095 */
1096 spin_lock_irq(lock);
1097 if (signal_group_exit(sig)) {
1098 /*
1099 * Another group action in progress, just
1100 * return so that the signal is processed.
1101 */
1102 spin_unlock_irq(lock);
1103 return -EAGAIN;
1104 }
1105
1106 sig->group_exit_task = tsk;
1107 sig->notify_count = zap_other_threads(tsk);
1108 if (!thread_group_leader(tsk))
1109 sig->notify_count--;
1110
1111 while (sig->notify_count) {
1112 __set_current_state(TASK_KILLABLE);
1113 spin_unlock_irq(lock);
1114 schedule();
1115 if (__fatal_signal_pending(tsk))
1116 goto killed;
1117 spin_lock_irq(lock);
1118 }
1119 spin_unlock_irq(lock);
1120
1121 /*
1122 * At this point all other threads have exited, all we have to
1123 * do is to wait for the thread group leader to become inactive,
1124 * and to assume its PID:
1125 */
1126 if (!thread_group_leader(tsk)) {
1127 struct task_struct *leader = tsk->group_leader;
1128
1129 for (;;) {
1130 cgroup_threadgroup_change_begin(tsk);
1131 write_lock_irq(&tasklist_lock);
1132 /*
1133 * Do this under tasklist_lock to ensure that
1134 * exit_notify() can't miss ->group_exit_task
1135 */
1136 sig->notify_count = -1;
1137 if (likely(leader->exit_state))
1138 break;
1139 __set_current_state(TASK_KILLABLE);
1140 write_unlock_irq(&tasklist_lock);
1141 cgroup_threadgroup_change_end(tsk);
1142 schedule();
1143 if (__fatal_signal_pending(tsk))
1144 goto killed;
1145 }
1146
1147 /*
1148 * The only record we have of the real-time age of a
1149 * process, regardless of execs it's done, is start_time.
1150 * All the past CPU time is accumulated in signal_struct
1151 * from sister threads now dead. But in this non-leader
1152 * exec, nothing survives from the original leader thread,
1153 * whose birth marks the true age of this process now.
1154 * When we take on its identity by switching to its PID, we
1155 * also take its birthdate (always earlier than our own).
1156 */
1157 tsk->start_time = leader->start_time;
1158 tsk->real_start_time = leader->real_start_time;
1159
1160 BUG_ON(!same_thread_group(leader, tsk));
1161 BUG_ON(has_group_leader_pid(tsk));
1162 /*
1163 * An exec() starts a new thread group with the
1164 * TGID of the previous thread group. Rehash the
1165 * two threads with a switched PID, and release
1166 * the former thread group leader:
1167 */
1168
1169 /* Become a process group leader with the old leader's pid.
1170 * The old leader becomes a thread of the this thread group.
1171 * Note: The old leader also uses this pid until release_task
1172 * is called. Odd but simple and correct.
1173 */
1174 tsk->pid = leader->pid;
1175 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1176 transfer_pid(leader, tsk, PIDTYPE_TGID);
1177 transfer_pid(leader, tsk, PIDTYPE_PGID);
1178 transfer_pid(leader, tsk, PIDTYPE_SID);
1179
1180 list_replace_rcu(&leader->tasks, &tsk->tasks);
1181 list_replace_init(&leader->sibling, &tsk->sibling);
1182
1183 tsk->group_leader = tsk;
1184 leader->group_leader = tsk;
1185
1186 tsk->exit_signal = SIGCHLD;
1187 leader->exit_signal = -1;
1188
1189 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1190 leader->exit_state = EXIT_DEAD;
1191
1192 /*
1193 * We are going to release_task()->ptrace_unlink() silently,
1194 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1195 * the tracer wont't block again waiting for this thread.
1196 */
1197 if (unlikely(leader->ptrace))
1198 __wake_up_parent(leader, leader->parent);
1199 write_unlock_irq(&tasklist_lock);
1200 cgroup_threadgroup_change_end(tsk);
1201
1202 release_task(leader);
1203 }
1204
1205 sig->group_exit_task = NULL;
1206 sig->notify_count = 0;
1207
1208 no_thread_group:
1209 /* we have changed execution domain */
1210 tsk->exit_signal = SIGCHLD;
1211
1212 #ifdef CONFIG_POSIX_TIMERS
1213 exit_itimers(sig);
1214 flush_itimer_signals();
1215 #endif
1216
1217 if (refcount_read(&oldsighand->count) != 1) {
1218 struct sighand_struct *newsighand;
1219 /*
1220 * This ->sighand is shared with the CLONE_SIGHAND
1221 * but not CLONE_THREAD task, switch to the new one.
1222 */
1223 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1224 if (!newsighand)
1225 return -ENOMEM;
1226
1227 refcount_set(&newsighand->count, 1);
1228 memcpy(newsighand->action, oldsighand->action,
1229 sizeof(newsighand->action));
1230
1231 write_lock_irq(&tasklist_lock);
1232 spin_lock(&oldsighand->siglock);
1233 rcu_assign_pointer(tsk->sighand, newsighand);
1234 spin_unlock(&oldsighand->siglock);
1235 write_unlock_irq(&tasklist_lock);
1236
1237 __cleanup_sighand(oldsighand);
1238 }
1239
1240 BUG_ON(!thread_group_leader(tsk));
1241 return 0;
1242
1243 killed:
1244 /* protects against exit_notify() and __exit_signal() */
1245 read_lock(&tasklist_lock);
1246 sig->group_exit_task = NULL;
1247 sig->notify_count = 0;
1248 read_unlock(&tasklist_lock);
1249 return -EAGAIN;
1250 }
1251
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1252 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1253 {
1254 task_lock(tsk);
1255 strncpy(buf, tsk->comm, buf_size);
1256 task_unlock(tsk);
1257 return buf;
1258 }
1259 EXPORT_SYMBOL_GPL(__get_task_comm);
1260
1261 /*
1262 * These functions flushes out all traces of the currently running executable
1263 * so that a new one can be started
1264 */
1265
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1266 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1267 {
1268 task_lock(tsk);
1269 trace_task_rename(tsk, buf);
1270 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1271 task_unlock(tsk);
1272 perf_event_comm(tsk, exec);
1273 }
1274
1275 /*
1276 * Calling this is the point of no return. None of the failures will be
1277 * seen by userspace since either the process is already taking a fatal
1278 * signal (via de_thread() or coredump), or will have SEGV raised
1279 * (after exec_mmap()) by search_binary_handlers (see below).
1280 */
flush_old_exec(struct linux_binprm * bprm)1281 int flush_old_exec(struct linux_binprm * bprm)
1282 {
1283 int retval;
1284
1285 /*
1286 * Make sure we have a private signal table and that
1287 * we are unassociated from the previous thread group.
1288 */
1289 retval = de_thread(current);
1290 if (retval)
1291 goto out;
1292
1293 /*
1294 * Must be called _before_ exec_mmap() as bprm->mm is
1295 * not visibile until then. This also enables the update
1296 * to be lockless.
1297 */
1298 set_mm_exe_file(bprm->mm, bprm->file);
1299
1300 would_dump(bprm, bprm->file);
1301
1302 /*
1303 * Release all of the old mmap stuff
1304 */
1305 acct_arg_size(bprm, 0);
1306 retval = exec_mmap(bprm->mm);
1307 if (retval)
1308 goto out;
1309
1310 /*
1311 * After clearing bprm->mm (to mark that current is using the
1312 * prepared mm now), we have nothing left of the original
1313 * process. If anything from here on returns an error, the check
1314 * in search_binary_handler() will SEGV current.
1315 */
1316 bprm->mm = NULL;
1317
1318 set_fs(USER_DS);
1319 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1320 PF_NOFREEZE | PF_NO_SETAFFINITY);
1321 flush_thread();
1322 current->personality &= ~bprm->per_clear;
1323
1324 /*
1325 * We have to apply CLOEXEC before we change whether the process is
1326 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1327 * trying to access the should-be-closed file descriptors of a process
1328 * undergoing exec(2).
1329 */
1330 do_close_on_exec(current->files);
1331 return 0;
1332
1333 out:
1334 return retval;
1335 }
1336 EXPORT_SYMBOL(flush_old_exec);
1337
would_dump(struct linux_binprm * bprm,struct file * file)1338 void would_dump(struct linux_binprm *bprm, struct file *file)
1339 {
1340 struct inode *inode = file_inode(file);
1341 if (inode_permission(inode, MAY_READ) < 0) {
1342 struct user_namespace *old, *user_ns;
1343 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1344
1345 /* Ensure mm->user_ns contains the executable */
1346 user_ns = old = bprm->mm->user_ns;
1347 while ((user_ns != &init_user_ns) &&
1348 !privileged_wrt_inode_uidgid(user_ns, inode))
1349 user_ns = user_ns->parent;
1350
1351 if (old != user_ns) {
1352 bprm->mm->user_ns = get_user_ns(user_ns);
1353 put_user_ns(old);
1354 }
1355 }
1356 }
1357 EXPORT_SYMBOL(would_dump);
1358
setup_new_exec(struct linux_binprm * bprm)1359 void setup_new_exec(struct linux_binprm * bprm)
1360 {
1361 /*
1362 * Once here, prepare_binrpm() will not be called any more, so
1363 * the final state of setuid/setgid/fscaps can be merged into the
1364 * secureexec flag.
1365 */
1366 bprm->secureexec |= bprm->cap_elevated;
1367
1368 if (bprm->secureexec) {
1369 /* Make sure parent cannot signal privileged process. */
1370 current->pdeath_signal = 0;
1371
1372 /*
1373 * For secureexec, reset the stack limit to sane default to
1374 * avoid bad behavior from the prior rlimits. This has to
1375 * happen before arch_pick_mmap_layout(), which examines
1376 * RLIMIT_STACK, but after the point of no return to avoid
1377 * needing to clean up the change on failure.
1378 */
1379 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1380 bprm->rlim_stack.rlim_cur = _STK_LIM;
1381 }
1382
1383 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1384
1385 current->sas_ss_sp = current->sas_ss_size = 0;
1386
1387 /*
1388 * Figure out dumpability. Note that this checking only of current
1389 * is wrong, but userspace depends on it. This should be testing
1390 * bprm->secureexec instead.
1391 */
1392 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1393 !(uid_eq(current_euid(), current_uid()) &&
1394 gid_eq(current_egid(), current_gid())))
1395 set_dumpable(current->mm, suid_dumpable);
1396 else
1397 set_dumpable(current->mm, SUID_DUMP_USER);
1398
1399 arch_setup_new_exec();
1400 perf_event_exec();
1401 __set_task_comm(current, kbasename(bprm->filename), true);
1402
1403 /* Set the new mm task size. We have to do that late because it may
1404 * depend on TIF_32BIT which is only updated in flush_thread() on
1405 * some architectures like powerpc
1406 */
1407 current->mm->task_size = TASK_SIZE;
1408
1409 /* An exec changes our domain. We are no longer part of the thread
1410 group */
1411 WRITE_ONCE(current->self_exec_id, current->self_exec_id + 1);
1412 flush_signal_handlers(current, 0);
1413 }
1414 EXPORT_SYMBOL(setup_new_exec);
1415
1416 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1417 void finalize_exec(struct linux_binprm *bprm)
1418 {
1419 /* Store any stack rlimit changes before starting thread. */
1420 task_lock(current->group_leader);
1421 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1422 task_unlock(current->group_leader);
1423 }
1424 EXPORT_SYMBOL(finalize_exec);
1425
1426 /*
1427 * Prepare credentials and lock ->cred_guard_mutex.
1428 * install_exec_creds() commits the new creds and drops the lock.
1429 * Or, if exec fails before, free_bprm() should release ->cred and
1430 * and unlock.
1431 */
prepare_bprm_creds(struct linux_binprm * bprm)1432 static int prepare_bprm_creds(struct linux_binprm *bprm)
1433 {
1434 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1435 return -ERESTARTNOINTR;
1436
1437 bprm->cred = prepare_exec_creds();
1438 if (likely(bprm->cred))
1439 return 0;
1440
1441 mutex_unlock(¤t->signal->cred_guard_mutex);
1442 return -ENOMEM;
1443 }
1444
free_bprm(struct linux_binprm * bprm)1445 static void free_bprm(struct linux_binprm *bprm)
1446 {
1447 free_arg_pages(bprm);
1448 if (bprm->cred) {
1449 mutex_unlock(¤t->signal->cred_guard_mutex);
1450 abort_creds(bprm->cred);
1451 }
1452 if (bprm->file) {
1453 allow_write_access(bprm->file);
1454 fput(bprm->file);
1455 }
1456 /* If a binfmt changed the interp, free it. */
1457 if (bprm->interp != bprm->filename)
1458 kfree(bprm->interp);
1459 kfree(bprm);
1460 }
1461
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1462 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1463 {
1464 /* If a binfmt changed the interp, free it first. */
1465 if (bprm->interp != bprm->filename)
1466 kfree(bprm->interp);
1467 bprm->interp = kstrdup(interp, GFP_KERNEL);
1468 if (!bprm->interp)
1469 return -ENOMEM;
1470 return 0;
1471 }
1472 EXPORT_SYMBOL(bprm_change_interp);
1473
1474 /*
1475 * install the new credentials for this executable
1476 */
install_exec_creds(struct linux_binprm * bprm)1477 void install_exec_creds(struct linux_binprm *bprm)
1478 {
1479 security_bprm_committing_creds(bprm);
1480
1481 commit_creds(bprm->cred);
1482 bprm->cred = NULL;
1483
1484 /*
1485 * Disable monitoring for regular users
1486 * when executing setuid binaries. Must
1487 * wait until new credentials are committed
1488 * by commit_creds() above
1489 */
1490 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1491 perf_event_exit_task(current);
1492 /*
1493 * cred_guard_mutex must be held at least to this point to prevent
1494 * ptrace_attach() from altering our determination of the task's
1495 * credentials; any time after this it may be unlocked.
1496 */
1497 security_bprm_committed_creds(bprm);
1498 mutex_unlock(¤t->signal->cred_guard_mutex);
1499 }
1500 EXPORT_SYMBOL(install_exec_creds);
1501
1502 /*
1503 * determine how safe it is to execute the proposed program
1504 * - the caller must hold ->cred_guard_mutex to protect against
1505 * PTRACE_ATTACH or seccomp thread-sync
1506 */
check_unsafe_exec(struct linux_binprm * bprm)1507 static void check_unsafe_exec(struct linux_binprm *bprm)
1508 {
1509 struct task_struct *p = current, *t;
1510 unsigned n_fs;
1511
1512 if (p->ptrace)
1513 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1514
1515 /*
1516 * This isn't strictly necessary, but it makes it harder for LSMs to
1517 * mess up.
1518 */
1519 if (task_no_new_privs(current))
1520 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1521
1522 t = p;
1523 n_fs = 1;
1524 spin_lock(&p->fs->lock);
1525 rcu_read_lock();
1526 while_each_thread(p, t) {
1527 if (t->fs == p->fs)
1528 n_fs++;
1529 }
1530 rcu_read_unlock();
1531
1532 if (p->fs->users > n_fs)
1533 bprm->unsafe |= LSM_UNSAFE_SHARE;
1534 else
1535 p->fs->in_exec = 1;
1536 spin_unlock(&p->fs->lock);
1537 }
1538
bprm_fill_uid(struct linux_binprm * bprm)1539 static void bprm_fill_uid(struct linux_binprm *bprm)
1540 {
1541 struct inode *inode;
1542 unsigned int mode;
1543 kuid_t uid;
1544 kgid_t gid;
1545
1546 /*
1547 * Since this can be called multiple times (via prepare_binprm),
1548 * we must clear any previous work done when setting set[ug]id
1549 * bits from any earlier bprm->file uses (for example when run
1550 * first for a setuid script then again for its interpreter).
1551 */
1552 bprm->cred->euid = current_euid();
1553 bprm->cred->egid = current_egid();
1554
1555 if (!mnt_may_suid(bprm->file->f_path.mnt))
1556 return;
1557
1558 if (task_no_new_privs(current))
1559 return;
1560
1561 inode = bprm->file->f_path.dentry->d_inode;
1562 mode = READ_ONCE(inode->i_mode);
1563 if (!(mode & (S_ISUID|S_ISGID)))
1564 return;
1565
1566 /* Be careful if suid/sgid is set */
1567 inode_lock(inode);
1568
1569 /* reload atomically mode/uid/gid now that lock held */
1570 mode = inode->i_mode;
1571 uid = inode->i_uid;
1572 gid = inode->i_gid;
1573 inode_unlock(inode);
1574
1575 /* We ignore suid/sgid if there are no mappings for them in the ns */
1576 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1577 !kgid_has_mapping(bprm->cred->user_ns, gid))
1578 return;
1579
1580 if (mode & S_ISUID) {
1581 bprm->per_clear |= PER_CLEAR_ON_SETID;
1582 bprm->cred->euid = uid;
1583 }
1584
1585 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1586 bprm->per_clear |= PER_CLEAR_ON_SETID;
1587 bprm->cred->egid = gid;
1588 }
1589 }
1590
1591 /*
1592 * Fill the binprm structure from the inode.
1593 * Check permissions, then read the first BINPRM_BUF_SIZE bytes
1594 *
1595 * This may be called multiple times for binary chains (scripts for example).
1596 */
prepare_binprm(struct linux_binprm * bprm)1597 int prepare_binprm(struct linux_binprm *bprm)
1598 {
1599 int retval;
1600 loff_t pos = 0;
1601
1602 bprm_fill_uid(bprm);
1603
1604 /* fill in binprm security blob */
1605 retval = security_bprm_set_creds(bprm);
1606 if (retval)
1607 return retval;
1608 bprm->called_set_creds = 1;
1609
1610 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1611 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1612 }
1613
1614 EXPORT_SYMBOL(prepare_binprm);
1615
1616 /*
1617 * Arguments are '\0' separated strings found at the location bprm->p
1618 * points to; chop off the first by relocating brpm->p to right after
1619 * the first '\0' encountered.
1620 */
remove_arg_zero(struct linux_binprm * bprm)1621 int remove_arg_zero(struct linux_binprm *bprm)
1622 {
1623 int ret = 0;
1624 unsigned long offset;
1625 char *kaddr;
1626 struct page *page;
1627
1628 if (!bprm->argc)
1629 return 0;
1630
1631 do {
1632 offset = bprm->p & ~PAGE_MASK;
1633 page = get_arg_page(bprm, bprm->p, 0);
1634 if (!page) {
1635 ret = -EFAULT;
1636 goto out;
1637 }
1638 kaddr = kmap_atomic(page);
1639
1640 for (; offset < PAGE_SIZE && kaddr[offset];
1641 offset++, bprm->p++)
1642 ;
1643
1644 kunmap_atomic(kaddr);
1645 put_arg_page(page);
1646 } while (offset == PAGE_SIZE);
1647
1648 bprm->p++;
1649 bprm->argc--;
1650 ret = 0;
1651
1652 out:
1653 return ret;
1654 }
1655 EXPORT_SYMBOL(remove_arg_zero);
1656
1657 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1658 /*
1659 * cycle the list of binary formats handler, until one recognizes the image
1660 */
search_binary_handler(struct linux_binprm * bprm)1661 int search_binary_handler(struct linux_binprm *bprm)
1662 {
1663 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1664 struct linux_binfmt *fmt;
1665 int retval;
1666
1667 /* This allows 4 levels of binfmt rewrites before failing hard. */
1668 if (bprm->recursion_depth > 5)
1669 return -ELOOP;
1670
1671 retval = security_bprm_check(bprm);
1672 if (retval)
1673 return retval;
1674
1675 retval = -ENOENT;
1676 retry:
1677 read_lock(&binfmt_lock);
1678 list_for_each_entry(fmt, &formats, lh) {
1679 if (!try_module_get(fmt->module))
1680 continue;
1681 read_unlock(&binfmt_lock);
1682
1683 bprm->recursion_depth++;
1684 retval = fmt->load_binary(bprm);
1685 bprm->recursion_depth--;
1686
1687 read_lock(&binfmt_lock);
1688 put_binfmt(fmt);
1689 if (retval < 0 && !bprm->mm) {
1690 /* we got to flush_old_exec() and failed after it */
1691 read_unlock(&binfmt_lock);
1692 force_sigsegv(SIGSEGV);
1693 return retval;
1694 }
1695 if (retval != -ENOEXEC || !bprm->file) {
1696 read_unlock(&binfmt_lock);
1697 return retval;
1698 }
1699 }
1700 read_unlock(&binfmt_lock);
1701
1702 if (need_retry) {
1703 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1704 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1705 return retval;
1706 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1707 return retval;
1708 need_retry = false;
1709 goto retry;
1710 }
1711
1712 return retval;
1713 }
1714 EXPORT_SYMBOL(search_binary_handler);
1715
exec_binprm(struct linux_binprm * bprm)1716 static int exec_binprm(struct linux_binprm *bprm)
1717 {
1718 pid_t old_pid, old_vpid;
1719 int ret;
1720
1721 /* Need to fetch pid before load_binary changes it */
1722 old_pid = current->pid;
1723 rcu_read_lock();
1724 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1725 rcu_read_unlock();
1726
1727 ret = search_binary_handler(bprm);
1728 if (ret >= 0) {
1729 audit_bprm(bprm);
1730 trace_sched_process_exec(current, old_pid, bprm);
1731 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1732 proc_exec_connector(current);
1733 }
1734
1735 return ret;
1736 }
1737
1738 /*
1739 * sys_execve() executes a new program.
1740 */
__do_execve_file(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags,struct file * file)1741 static int __do_execve_file(int fd, struct filename *filename,
1742 struct user_arg_ptr argv,
1743 struct user_arg_ptr envp,
1744 int flags, struct file *file)
1745 {
1746 char *pathbuf = NULL;
1747 struct linux_binprm *bprm;
1748 struct files_struct *displaced;
1749 int retval;
1750
1751 if (IS_ERR(filename))
1752 return PTR_ERR(filename);
1753
1754 /*
1755 * We move the actual failure in case of RLIMIT_NPROC excess from
1756 * set*uid() to execve() because too many poorly written programs
1757 * don't check setuid() return code. Here we additionally recheck
1758 * whether NPROC limit is still exceeded.
1759 */
1760 if ((current->flags & PF_NPROC_EXCEEDED) &&
1761 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1762 retval = -EAGAIN;
1763 goto out_ret;
1764 }
1765
1766 /* We're below the limit (still or again), so we don't want to make
1767 * further execve() calls fail. */
1768 current->flags &= ~PF_NPROC_EXCEEDED;
1769
1770 retval = unshare_files(&displaced);
1771 if (retval)
1772 goto out_ret;
1773
1774 retval = -ENOMEM;
1775 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1776 if (!bprm)
1777 goto out_files;
1778
1779 retval = prepare_bprm_creds(bprm);
1780 if (retval)
1781 goto out_free;
1782
1783 check_unsafe_exec(bprm);
1784 current->in_execve = 1;
1785
1786 if (!file)
1787 file = do_open_execat(fd, filename, flags);
1788 retval = PTR_ERR(file);
1789 if (IS_ERR(file))
1790 goto out_unmark;
1791
1792 sched_exec();
1793
1794 bprm->file = file;
1795 if (!filename) {
1796 bprm->filename = "none";
1797 } else if (fd == AT_FDCWD || filename->name[0] == '/') {
1798 bprm->filename = filename->name;
1799 } else {
1800 if (filename->name[0] == '\0')
1801 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1802 else
1803 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1804 fd, filename->name);
1805 if (!pathbuf) {
1806 retval = -ENOMEM;
1807 goto out_unmark;
1808 }
1809 /*
1810 * Record that a name derived from an O_CLOEXEC fd will be
1811 * inaccessible after exec. Relies on having exclusive access to
1812 * current->files (due to unshare_files above).
1813 */
1814 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1815 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1816 bprm->filename = pathbuf;
1817 }
1818 bprm->interp = bprm->filename;
1819
1820 retval = bprm_mm_init(bprm);
1821 if (retval)
1822 goto out_unmark;
1823
1824 retval = prepare_arg_pages(bprm, argv, envp);
1825 if (retval < 0)
1826 goto out;
1827
1828 retval = prepare_binprm(bprm);
1829 if (retval < 0)
1830 goto out;
1831
1832 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1833 if (retval < 0)
1834 goto out;
1835
1836 bprm->exec = bprm->p;
1837 retval = copy_strings(bprm->envc, envp, bprm);
1838 if (retval < 0)
1839 goto out;
1840
1841 retval = copy_strings(bprm->argc, argv, bprm);
1842 if (retval < 0)
1843 goto out;
1844
1845 /*
1846 * When argv is empty, add an empty string ("") as argv[0] to
1847 * ensure confused userspace programs that start processing
1848 * from argv[1] won't end up walking envp. See also
1849 * bprm_stack_limits().
1850 */
1851 if (bprm->argc == 0) {
1852 const char *argv[] = { "", NULL };
1853 retval = copy_strings_kernel(1, argv, bprm);
1854 if (retval < 0)
1855 goto out;
1856 bprm->argc = 1;
1857 }
1858
1859 retval = exec_binprm(bprm);
1860 if (retval < 0)
1861 goto out;
1862
1863 /* execve succeeded */
1864 current->fs->in_exec = 0;
1865 current->in_execve = 0;
1866 rseq_execve(current);
1867 acct_update_integrals(current);
1868 task_numa_free(current, false);
1869 free_bprm(bprm);
1870 kfree(pathbuf);
1871 if (filename)
1872 putname(filename);
1873 if (displaced)
1874 put_files_struct(displaced);
1875 return retval;
1876
1877 out:
1878 if (bprm->mm) {
1879 acct_arg_size(bprm, 0);
1880 mmput(bprm->mm);
1881 }
1882
1883 out_unmark:
1884 current->fs->in_exec = 0;
1885 current->in_execve = 0;
1886
1887 out_free:
1888 free_bprm(bprm);
1889 kfree(pathbuf);
1890
1891 out_files:
1892 if (displaced)
1893 reset_files_struct(displaced);
1894 out_ret:
1895 if (filename)
1896 putname(filename);
1897 return retval;
1898 }
1899
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1900 static int do_execveat_common(int fd, struct filename *filename,
1901 struct user_arg_ptr argv,
1902 struct user_arg_ptr envp,
1903 int flags)
1904 {
1905 return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1906 }
1907
do_execve_file(struct file * file,void * __argv,void * __envp)1908 int do_execve_file(struct file *file, void *__argv, void *__envp)
1909 {
1910 struct user_arg_ptr argv = { .ptr.native = __argv };
1911 struct user_arg_ptr envp = { .ptr.native = __envp };
1912
1913 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1914 }
1915
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1916 int do_execve(struct filename *filename,
1917 const char __user *const __user *__argv,
1918 const char __user *const __user *__envp)
1919 {
1920 struct user_arg_ptr argv = { .ptr.native = __argv };
1921 struct user_arg_ptr envp = { .ptr.native = __envp };
1922 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1923 }
1924
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)1925 int do_execveat(int fd, struct filename *filename,
1926 const char __user *const __user *__argv,
1927 const char __user *const __user *__envp,
1928 int flags)
1929 {
1930 struct user_arg_ptr argv = { .ptr.native = __argv };
1931 struct user_arg_ptr envp = { .ptr.native = __envp };
1932
1933 return do_execveat_common(fd, filename, argv, envp, flags);
1934 }
1935
1936 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1937 static int compat_do_execve(struct filename *filename,
1938 const compat_uptr_t __user *__argv,
1939 const compat_uptr_t __user *__envp)
1940 {
1941 struct user_arg_ptr argv = {
1942 .is_compat = true,
1943 .ptr.compat = __argv,
1944 };
1945 struct user_arg_ptr envp = {
1946 .is_compat = true,
1947 .ptr.compat = __envp,
1948 };
1949 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1950 }
1951
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)1952 static int compat_do_execveat(int fd, struct filename *filename,
1953 const compat_uptr_t __user *__argv,
1954 const compat_uptr_t __user *__envp,
1955 int flags)
1956 {
1957 struct user_arg_ptr argv = {
1958 .is_compat = true,
1959 .ptr.compat = __argv,
1960 };
1961 struct user_arg_ptr envp = {
1962 .is_compat = true,
1963 .ptr.compat = __envp,
1964 };
1965 return do_execveat_common(fd, filename, argv, envp, flags);
1966 }
1967 #endif
1968
set_binfmt(struct linux_binfmt * new)1969 void set_binfmt(struct linux_binfmt *new)
1970 {
1971 struct mm_struct *mm = current->mm;
1972
1973 if (mm->binfmt)
1974 module_put(mm->binfmt->module);
1975
1976 mm->binfmt = new;
1977 if (new)
1978 __module_get(new->module);
1979 }
1980 EXPORT_SYMBOL(set_binfmt);
1981
1982 /*
1983 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1984 */
set_dumpable(struct mm_struct * mm,int value)1985 void set_dumpable(struct mm_struct *mm, int value)
1986 {
1987 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1988 return;
1989
1990 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
1991 }
1992
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)1993 SYSCALL_DEFINE3(execve,
1994 const char __user *, filename,
1995 const char __user *const __user *, argv,
1996 const char __user *const __user *, envp)
1997 {
1998 return do_execve(getname(filename), argv, envp);
1999 }
2000
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2001 SYSCALL_DEFINE5(execveat,
2002 int, fd, const char __user *, filename,
2003 const char __user *const __user *, argv,
2004 const char __user *const __user *, envp,
2005 int, flags)
2006 {
2007 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2008
2009 return do_execveat(fd,
2010 getname_flags(filename, lookup_flags, NULL),
2011 argv, envp, flags);
2012 }
2013
2014 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2015 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2016 const compat_uptr_t __user *, argv,
2017 const compat_uptr_t __user *, envp)
2018 {
2019 return compat_do_execve(getname(filename), argv, envp);
2020 }
2021
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2022 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2023 const char __user *, filename,
2024 const compat_uptr_t __user *, argv,
2025 const compat_uptr_t __user *, envp,
2026 int, flags)
2027 {
2028 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2029
2030 return compat_do_execveat(fd,
2031 getname_flags(filename, lookup_flags, NULL),
2032 argv, envp, flags);
2033 }
2034 #endif
2035