• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/mm.h>
30 #include <linux/vmacache.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/tracehook.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/pipe_fs_i.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/tlb.h>
70 
71 #include <trace/events/task.h>
72 #include "internal.h"
73 
74 #include <trace/events/sched.h>
75 
76 int suid_dumpable = 0;
77 
78 static LIST_HEAD(formats);
79 static DEFINE_RWLOCK(binfmt_lock);
80 
__register_binfmt(struct linux_binfmt * fmt,int insert)81 void __register_binfmt(struct linux_binfmt * fmt, int insert)
82 {
83 	BUG_ON(!fmt);
84 	if (WARN_ON(!fmt->load_binary))
85 		return;
86 	write_lock(&binfmt_lock);
87 	insert ? list_add(&fmt->lh, &formats) :
88 		 list_add_tail(&fmt->lh, &formats);
89 	write_unlock(&binfmt_lock);
90 }
91 
92 EXPORT_SYMBOL(__register_binfmt);
93 
unregister_binfmt(struct linux_binfmt * fmt)94 void unregister_binfmt(struct linux_binfmt * fmt)
95 {
96 	write_lock(&binfmt_lock);
97 	list_del(&fmt->lh);
98 	write_unlock(&binfmt_lock);
99 }
100 
101 EXPORT_SYMBOL(unregister_binfmt);
102 
put_binfmt(struct linux_binfmt * fmt)103 static inline void put_binfmt(struct linux_binfmt * fmt)
104 {
105 	module_put(fmt->module);
106 }
107 
path_noexec(const struct path * path)108 bool path_noexec(const struct path *path)
109 {
110 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
111 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
112 }
113 
114 #ifdef CONFIG_USELIB
115 /*
116  * Note that a shared library must be both readable and executable due to
117  * security reasons.
118  *
119  * Also note that we take the address to load from from the file itself.
120  */
SYSCALL_DEFINE1(uselib,const char __user *,library)121 SYSCALL_DEFINE1(uselib, const char __user *, library)
122 {
123 	struct linux_binfmt *fmt;
124 	struct file *file;
125 	struct filename *tmp = getname(library);
126 	int error = PTR_ERR(tmp);
127 	static const struct open_flags uselib_flags = {
128 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
129 		.acc_mode = MAY_READ | MAY_EXEC,
130 		.intent = LOOKUP_OPEN,
131 		.lookup_flags = LOOKUP_FOLLOW,
132 	};
133 
134 	if (IS_ERR(tmp))
135 		goto out;
136 
137 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
138 	putname(tmp);
139 	error = PTR_ERR(file);
140 	if (IS_ERR(file))
141 		goto out;
142 
143 	error = -EINVAL;
144 	if (!S_ISREG(file_inode(file)->i_mode))
145 		goto exit;
146 
147 	error = -EACCES;
148 	if (path_noexec(&file->f_path))
149 		goto exit;
150 
151 	fsnotify_open(file);
152 
153 	error = -ENOEXEC;
154 
155 	read_lock(&binfmt_lock);
156 	list_for_each_entry(fmt, &formats, lh) {
157 		if (!fmt->load_shlib)
158 			continue;
159 		if (!try_module_get(fmt->module))
160 			continue;
161 		read_unlock(&binfmt_lock);
162 		error = fmt->load_shlib(file);
163 		read_lock(&binfmt_lock);
164 		put_binfmt(fmt);
165 		if (error != -ENOEXEC)
166 			break;
167 	}
168 	read_unlock(&binfmt_lock);
169 exit:
170 	fput(file);
171 out:
172   	return error;
173 }
174 #endif /* #ifdef CONFIG_USELIB */
175 
176 #ifdef CONFIG_MMU
177 /*
178  * The nascent bprm->mm is not visible until exec_mmap() but it can
179  * use a lot of memory, account these pages in current->mm temporary
180  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
181  * change the counter back via acct_arg_size(0).
182  */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)183 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
184 {
185 	struct mm_struct *mm = current->mm;
186 	long diff = (long)(pages - bprm->vma_pages);
187 
188 	if (!mm || !diff)
189 		return;
190 
191 	bprm->vma_pages = pages;
192 	add_mm_counter(mm, MM_ANONPAGES, diff);
193 }
194 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)195 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
196 		int write)
197 {
198 	struct page *page;
199 	int ret;
200 	unsigned int gup_flags = FOLL_FORCE;
201 
202 #ifdef CONFIG_STACK_GROWSUP
203 	if (write) {
204 		ret = expand_downwards(bprm->vma, pos);
205 		if (ret < 0)
206 			return NULL;
207 	}
208 #endif
209 
210 	if (write)
211 		gup_flags |= FOLL_WRITE;
212 
213 	/*
214 	 * We are doing an exec().  'current' is the process
215 	 * doing the exec and bprm->mm is the new process's mm.
216 	 */
217 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
218 			&page, NULL, NULL);
219 	if (ret <= 0)
220 		return NULL;
221 
222 	if (write)
223 		acct_arg_size(bprm, vma_pages(bprm->vma));
224 
225 	return page;
226 }
227 
put_arg_page(struct page * page)228 static void put_arg_page(struct page *page)
229 {
230 	put_page(page);
231 }
232 
free_arg_pages(struct linux_binprm * bprm)233 static void free_arg_pages(struct linux_binprm *bprm)
234 {
235 }
236 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)237 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
238 		struct page *page)
239 {
240 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
241 }
242 
__bprm_mm_init(struct linux_binprm * bprm)243 static int __bprm_mm_init(struct linux_binprm *bprm)
244 {
245 	int err;
246 	struct vm_area_struct *vma = NULL;
247 	struct mm_struct *mm = bprm->mm;
248 
249 	bprm->vma = vma = vm_area_alloc(mm);
250 	if (!vma)
251 		return -ENOMEM;
252 	vma_set_anonymous(vma);
253 
254 	if (down_write_killable(&mm->mmap_sem)) {
255 		err = -EINTR;
256 		goto err_free;
257 	}
258 
259 	/*
260 	 * Place the stack at the largest stack address the architecture
261 	 * supports. Later, we'll move this to an appropriate place. We don't
262 	 * use STACK_TOP because that can depend on attributes which aren't
263 	 * configured yet.
264 	 */
265 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 	vma->vm_end = STACK_TOP_MAX;
267 	vma->vm_start = vma->vm_end - PAGE_SIZE;
268 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270 
271 	err = insert_vm_struct(mm, vma);
272 	if (err)
273 		goto err;
274 
275 	mm->stack_vm = mm->total_vm = 1;
276 	arch_bprm_mm_init(mm, vma);
277 	up_write(&mm->mmap_sem);
278 	bprm->p = vma->vm_end - sizeof(void *);
279 	return 0;
280 err:
281 	up_write(&mm->mmap_sem);
282 err_free:
283 	bprm->vma = NULL;
284 	vm_area_free(vma);
285 	return err;
286 }
287 
valid_arg_len(struct linux_binprm * bprm,long len)288 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 {
290 	return len <= MAX_ARG_STRLEN;
291 }
292 
293 #else
294 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
296 {
297 }
298 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
300 		int write)
301 {
302 	struct page *page;
303 
304 	page = bprm->page[pos / PAGE_SIZE];
305 	if (!page && write) {
306 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
307 		if (!page)
308 			return NULL;
309 		bprm->page[pos / PAGE_SIZE] = page;
310 	}
311 
312 	return page;
313 }
314 
put_arg_page(struct page * page)315 static void put_arg_page(struct page *page)
316 {
317 }
318 
free_arg_page(struct linux_binprm * bprm,int i)319 static void free_arg_page(struct linux_binprm *bprm, int i)
320 {
321 	if (bprm->page[i]) {
322 		__free_page(bprm->page[i]);
323 		bprm->page[i] = NULL;
324 	}
325 }
326 
free_arg_pages(struct linux_binprm * bprm)327 static void free_arg_pages(struct linux_binprm *bprm)
328 {
329 	int i;
330 
331 	for (i = 0; i < MAX_ARG_PAGES; i++)
332 		free_arg_page(bprm, i);
333 }
334 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
336 		struct page *page)
337 {
338 }
339 
__bprm_mm_init(struct linux_binprm * bprm)340 static int __bprm_mm_init(struct linux_binprm *bprm)
341 {
342 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
343 	return 0;
344 }
345 
valid_arg_len(struct linux_binprm * bprm,long len)346 static bool valid_arg_len(struct linux_binprm *bprm, long len)
347 {
348 	return len <= bprm->p;
349 }
350 
351 #endif /* CONFIG_MMU */
352 
353 /*
354  * Create a new mm_struct and populate it with a temporary stack
355  * vm_area_struct.  We don't have enough context at this point to set the stack
356  * flags, permissions, and offset, so we use temporary values.  We'll update
357  * them later in setup_arg_pages().
358  */
bprm_mm_init(struct linux_binprm * bprm)359 static int bprm_mm_init(struct linux_binprm *bprm)
360 {
361 	int err;
362 	struct mm_struct *mm = NULL;
363 
364 	bprm->mm = mm = mm_alloc();
365 	err = -ENOMEM;
366 	if (!mm)
367 		goto err;
368 
369 	/* Save current stack limit for all calculations made during exec. */
370 	task_lock(current->group_leader);
371 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
372 	task_unlock(current->group_leader);
373 
374 	err = __bprm_mm_init(bprm);
375 	if (err)
376 		goto err;
377 
378 	return 0;
379 
380 err:
381 	if (mm) {
382 		bprm->mm = NULL;
383 		mmdrop(mm);
384 	}
385 
386 	return err;
387 }
388 
389 struct user_arg_ptr {
390 #ifdef CONFIG_COMPAT
391 	bool is_compat;
392 #endif
393 	union {
394 		const char __user *const __user *native;
395 #ifdef CONFIG_COMPAT
396 		const compat_uptr_t __user *compat;
397 #endif
398 	} ptr;
399 };
400 
get_user_arg_ptr(struct user_arg_ptr argv,int nr)401 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
402 {
403 	const char __user *native;
404 
405 #ifdef CONFIG_COMPAT
406 	if (unlikely(argv.is_compat)) {
407 		compat_uptr_t compat;
408 
409 		if (get_user(compat, argv.ptr.compat + nr))
410 			return ERR_PTR(-EFAULT);
411 
412 		return compat_ptr(compat);
413 	}
414 #endif
415 
416 	if (get_user(native, argv.ptr.native + nr))
417 		return ERR_PTR(-EFAULT);
418 
419 	return native;
420 }
421 
422 /*
423  * count() counts the number of strings in array ARGV.
424  */
count(struct user_arg_ptr argv,int max)425 static int count(struct user_arg_ptr argv, int max)
426 {
427 	int i = 0;
428 
429 	if (argv.ptr.native != NULL) {
430 		for (;;) {
431 			const char __user *p = get_user_arg_ptr(argv, i);
432 
433 			if (!p)
434 				break;
435 
436 			if (IS_ERR(p))
437 				return -EFAULT;
438 
439 			if (i >= max)
440 				return -E2BIG;
441 			++i;
442 
443 			if (fatal_signal_pending(current))
444 				return -ERESTARTNOHAND;
445 			cond_resched();
446 		}
447 	}
448 	return i;
449 }
450 
prepare_arg_pages(struct linux_binprm * bprm,struct user_arg_ptr argv,struct user_arg_ptr envp)451 static int prepare_arg_pages(struct linux_binprm *bprm,
452 			struct user_arg_ptr argv, struct user_arg_ptr envp)
453 {
454 	unsigned long limit, ptr_size;
455 
456 	bprm->argc = count(argv, MAX_ARG_STRINGS);
457 	if (bprm->argc == 0)
458 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
459 			     current->comm, bprm->filename);
460 	if (bprm->argc < 0)
461 		return bprm->argc;
462 
463 	bprm->envc = count(envp, MAX_ARG_STRINGS);
464 	if (bprm->envc < 0)
465 		return bprm->envc;
466 
467 	/*
468 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
469 	 * (whichever is smaller) for the argv+env strings.
470 	 * This ensures that:
471 	 *  - the remaining binfmt code will not run out of stack space,
472 	 *  - the program will have a reasonable amount of stack left
473 	 *    to work from.
474 	 */
475 	limit = _STK_LIM / 4 * 3;
476 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
477 	/*
478 	 * We've historically supported up to 32 pages (ARG_MAX)
479 	 * of argument strings even with small stacks
480 	 */
481 	limit = max_t(unsigned long, limit, ARG_MAX);
482 	/*
483 	 * We must account for the size of all the argv and envp pointers to
484 	 * the argv and envp strings, since they will also take up space in
485 	 * the stack. They aren't stored until much later when we can't
486 	 * signal to the parent that the child has run out of stack space.
487 	 * Instead, calculate it here so it's possible to fail gracefully.
488 	 *
489 	 * In the case of argc = 0, make sure there is space for adding a
490 	 * empty string (which will bump argc to 1), to ensure confused
491 	 * userspace programs don't start processing from argv[1], thinking
492 	 * argc can never be 0, to keep them from walking envp by accident.
493 	 * See do_execveat_common().
494 	 */
495 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
496 	if (limit <= ptr_size)
497 		return -E2BIG;
498 	limit -= ptr_size;
499 
500 	bprm->argmin = bprm->p - limit;
501 	return 0;
502 }
503 
504 /*
505  * 'copy_strings()' copies argument/environment strings from the old
506  * processes's memory to the new process's stack.  The call to get_user_pages()
507  * ensures the destination page is created and not swapped out.
508  */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)509 static int copy_strings(int argc, struct user_arg_ptr argv,
510 			struct linux_binprm *bprm)
511 {
512 	struct page *kmapped_page = NULL;
513 	char *kaddr = NULL;
514 	unsigned long kpos = 0;
515 	int ret;
516 
517 	while (argc-- > 0) {
518 		const char __user *str;
519 		int len;
520 		unsigned long pos;
521 
522 		ret = -EFAULT;
523 		str = get_user_arg_ptr(argv, argc);
524 		if (IS_ERR(str))
525 			goto out;
526 
527 		len = strnlen_user(str, MAX_ARG_STRLEN);
528 		if (!len)
529 			goto out;
530 
531 		ret = -E2BIG;
532 		if (!valid_arg_len(bprm, len))
533 			goto out;
534 
535 		/* We're going to work our way backwords. */
536 		pos = bprm->p;
537 		str += len;
538 		bprm->p -= len;
539 #ifdef CONFIG_MMU
540 		if (bprm->p < bprm->argmin)
541 			goto out;
542 #endif
543 
544 		while (len > 0) {
545 			int offset, bytes_to_copy;
546 
547 			if (fatal_signal_pending(current)) {
548 				ret = -ERESTARTNOHAND;
549 				goto out;
550 			}
551 			cond_resched();
552 
553 			offset = pos % PAGE_SIZE;
554 			if (offset == 0)
555 				offset = PAGE_SIZE;
556 
557 			bytes_to_copy = offset;
558 			if (bytes_to_copy > len)
559 				bytes_to_copy = len;
560 
561 			offset -= bytes_to_copy;
562 			pos -= bytes_to_copy;
563 			str -= bytes_to_copy;
564 			len -= bytes_to_copy;
565 
566 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
567 				struct page *page;
568 
569 				page = get_arg_page(bprm, pos, 1);
570 				if (!page) {
571 					ret = -E2BIG;
572 					goto out;
573 				}
574 
575 				if (kmapped_page) {
576 					flush_kernel_dcache_page(kmapped_page);
577 					kunmap(kmapped_page);
578 					put_arg_page(kmapped_page);
579 				}
580 				kmapped_page = page;
581 				kaddr = kmap(kmapped_page);
582 				kpos = pos & PAGE_MASK;
583 				flush_arg_page(bprm, kpos, kmapped_page);
584 			}
585 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
586 				ret = -EFAULT;
587 				goto out;
588 			}
589 		}
590 	}
591 	ret = 0;
592 out:
593 	if (kmapped_page) {
594 		flush_kernel_dcache_page(kmapped_page);
595 		kunmap(kmapped_page);
596 		put_arg_page(kmapped_page);
597 	}
598 	return ret;
599 }
600 
601 /*
602  * Like copy_strings, but get argv and its values from kernel memory.
603  */
copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)604 int copy_strings_kernel(int argc, const char *const *__argv,
605 			struct linux_binprm *bprm)
606 {
607 	int r;
608 	mm_segment_t oldfs = get_fs();
609 	struct user_arg_ptr argv = {
610 		.ptr.native = (const char __user *const  __user *)__argv,
611 	};
612 
613 	set_fs(KERNEL_DS);
614 	r = copy_strings(argc, argv, bprm);
615 	set_fs(oldfs);
616 
617 	return r;
618 }
619 EXPORT_SYMBOL(copy_strings_kernel);
620 
621 #ifdef CONFIG_MMU
622 
623 /*
624  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
625  * the binfmt code determines where the new stack should reside, we shift it to
626  * its final location.  The process proceeds as follows:
627  *
628  * 1) Use shift to calculate the new vma endpoints.
629  * 2) Extend vma to cover both the old and new ranges.  This ensures the
630  *    arguments passed to subsequent functions are consistent.
631  * 3) Move vma's page tables to the new range.
632  * 4) Free up any cleared pgd range.
633  * 5) Shrink the vma to cover only the new range.
634  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)635 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
636 {
637 	struct mm_struct *mm = vma->vm_mm;
638 	unsigned long old_start = vma->vm_start;
639 	unsigned long old_end = vma->vm_end;
640 	unsigned long length = old_end - old_start;
641 	unsigned long new_start = old_start - shift;
642 	unsigned long new_end = old_end - shift;
643 	struct mmu_gather tlb;
644 
645 	BUG_ON(new_start > new_end);
646 
647 	/*
648 	 * ensure there are no vmas between where we want to go
649 	 * and where we are
650 	 */
651 	if (vma != find_vma(mm, new_start))
652 		return -EFAULT;
653 
654 	/*
655 	 * cover the whole range: [new_start, old_end)
656 	 */
657 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
658 		return -ENOMEM;
659 
660 	/*
661 	 * move the page tables downwards, on failure we rely on
662 	 * process cleanup to remove whatever mess we made.
663 	 */
664 	if (length != move_page_tables(vma, old_start,
665 				       vma, new_start, length, false))
666 		return -ENOMEM;
667 
668 	lru_add_drain();
669 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
670 	if (new_end > old_start) {
671 		/*
672 		 * when the old and new regions overlap clear from new_end.
673 		 */
674 		free_pgd_range(&tlb, new_end, old_end, new_end,
675 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
676 	} else {
677 		/*
678 		 * otherwise, clean from old_start; this is done to not touch
679 		 * the address space in [new_end, old_start) some architectures
680 		 * have constraints on va-space that make this illegal (IA64) -
681 		 * for the others its just a little faster.
682 		 */
683 		free_pgd_range(&tlb, old_start, old_end, new_end,
684 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
685 	}
686 	tlb_finish_mmu(&tlb, old_start, old_end);
687 
688 	/*
689 	 * Shrink the vma to just the new range.  Always succeeds.
690 	 */
691 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
692 
693 	return 0;
694 }
695 
696 /*
697  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
698  * the stack is optionally relocated, and some extra space is added.
699  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)700 int setup_arg_pages(struct linux_binprm *bprm,
701 		    unsigned long stack_top,
702 		    int executable_stack)
703 {
704 	unsigned long ret;
705 	unsigned long stack_shift;
706 	struct mm_struct *mm = current->mm;
707 	struct vm_area_struct *vma = bprm->vma;
708 	struct vm_area_struct *prev = NULL;
709 	unsigned long vm_flags;
710 	unsigned long stack_base;
711 	unsigned long stack_size;
712 	unsigned long stack_expand;
713 	unsigned long rlim_stack;
714 
715 #ifdef CONFIG_STACK_GROWSUP
716 	/* Limit stack size */
717 	stack_base = bprm->rlim_stack.rlim_max;
718 	if (stack_base > STACK_SIZE_MAX)
719 		stack_base = STACK_SIZE_MAX;
720 
721 	/* Add space for stack randomization. */
722 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
723 
724 	/* Make sure we didn't let the argument array grow too large. */
725 	if (vma->vm_end - vma->vm_start > stack_base)
726 		return -ENOMEM;
727 
728 	stack_base = PAGE_ALIGN(stack_top - stack_base);
729 
730 	stack_shift = vma->vm_start - stack_base;
731 	mm->arg_start = bprm->p - stack_shift;
732 	bprm->p = vma->vm_end - stack_shift;
733 #else
734 	stack_top = arch_align_stack(stack_top);
735 	stack_top = PAGE_ALIGN(stack_top);
736 
737 	if (unlikely(stack_top < mmap_min_addr) ||
738 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
739 		return -ENOMEM;
740 
741 	stack_shift = vma->vm_end - stack_top;
742 
743 	bprm->p -= stack_shift;
744 	mm->arg_start = bprm->p;
745 #endif
746 
747 	if (bprm->loader)
748 		bprm->loader -= stack_shift;
749 	bprm->exec -= stack_shift;
750 
751 	if (down_write_killable(&mm->mmap_sem))
752 		return -EINTR;
753 
754 	vm_flags = VM_STACK_FLAGS;
755 
756 	/*
757 	 * Adjust stack execute permissions; explicitly enable for
758 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
759 	 * (arch default) otherwise.
760 	 */
761 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
762 		vm_flags |= VM_EXEC;
763 	else if (executable_stack == EXSTACK_DISABLE_X)
764 		vm_flags &= ~VM_EXEC;
765 	vm_flags |= mm->def_flags;
766 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
767 
768 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
769 			vm_flags);
770 	if (ret)
771 		goto out_unlock;
772 	BUG_ON(prev != vma);
773 
774 	/* Move stack pages down in memory. */
775 	if (stack_shift) {
776 		ret = shift_arg_pages(vma, stack_shift);
777 		if (ret)
778 			goto out_unlock;
779 	}
780 
781 	/* mprotect_fixup is overkill to remove the temporary stack flags */
782 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
783 
784 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
785 	stack_size = vma->vm_end - vma->vm_start;
786 	/*
787 	 * Align this down to a page boundary as expand_stack
788 	 * will align it up.
789 	 */
790 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
791 #ifdef CONFIG_STACK_GROWSUP
792 	if (stack_size + stack_expand > rlim_stack)
793 		stack_base = vma->vm_start + rlim_stack;
794 	else
795 		stack_base = vma->vm_end + stack_expand;
796 #else
797 	if (stack_size + stack_expand > rlim_stack)
798 		stack_base = vma->vm_end - rlim_stack;
799 	else
800 		stack_base = vma->vm_start - stack_expand;
801 #endif
802 	current->mm->start_stack = bprm->p;
803 	ret = expand_stack(vma, stack_base);
804 	if (ret)
805 		ret = -EFAULT;
806 
807 out_unlock:
808 	up_write(&mm->mmap_sem);
809 	return ret;
810 }
811 EXPORT_SYMBOL(setup_arg_pages);
812 
813 #else
814 
815 /*
816  * Transfer the program arguments and environment from the holding pages
817  * onto the stack. The provided stack pointer is adjusted accordingly.
818  */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)819 int transfer_args_to_stack(struct linux_binprm *bprm,
820 			   unsigned long *sp_location)
821 {
822 	unsigned long index, stop, sp;
823 	int ret = 0;
824 
825 	stop = bprm->p >> PAGE_SHIFT;
826 	sp = *sp_location;
827 
828 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
829 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
830 		char *src = kmap(bprm->page[index]) + offset;
831 		sp -= PAGE_SIZE - offset;
832 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
833 			ret = -EFAULT;
834 		kunmap(bprm->page[index]);
835 		if (ret)
836 			goto out;
837 	}
838 
839 	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
840 	*sp_location = sp;
841 
842 out:
843 	return ret;
844 }
845 EXPORT_SYMBOL(transfer_args_to_stack);
846 
847 #endif /* CONFIG_MMU */
848 
do_open_execat(int fd,struct filename * name,int flags)849 static struct file *do_open_execat(int fd, struct filename *name, int flags)
850 {
851 	struct file *file;
852 	int err;
853 	struct open_flags open_exec_flags = {
854 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
855 		.acc_mode = MAY_EXEC,
856 		.intent = LOOKUP_OPEN,
857 		.lookup_flags = LOOKUP_FOLLOW,
858 	};
859 
860 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
861 		return ERR_PTR(-EINVAL);
862 	if (flags & AT_SYMLINK_NOFOLLOW)
863 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
864 	if (flags & AT_EMPTY_PATH)
865 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
866 
867 	file = do_filp_open(fd, name, &open_exec_flags);
868 	if (IS_ERR(file))
869 		goto out;
870 
871 	err = -EACCES;
872 	if (!S_ISREG(file_inode(file)->i_mode))
873 		goto exit;
874 
875 	if (path_noexec(&file->f_path))
876 		goto exit;
877 
878 	err = deny_write_access(file);
879 	if (err)
880 		goto exit;
881 
882 	if (name->name[0] != '\0')
883 		fsnotify_open(file);
884 
885 out:
886 	return file;
887 
888 exit:
889 	fput(file);
890 	return ERR_PTR(err);
891 }
892 
open_exec(const char * name)893 struct file *open_exec(const char *name)
894 {
895 	struct filename *filename = getname_kernel(name);
896 	struct file *f = ERR_CAST(filename);
897 
898 	if (!IS_ERR(filename)) {
899 		f = do_open_execat(AT_FDCWD, filename, 0);
900 		putname(filename);
901 	}
902 	return f;
903 }
904 EXPORT_SYMBOL(open_exec);
905 
kernel_read_file(struct file * file,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)906 int kernel_read_file(struct file *file, void **buf, loff_t *size,
907 		     loff_t max_size, enum kernel_read_file_id id)
908 {
909 	loff_t i_size, pos;
910 	ssize_t bytes = 0;
911 	int ret;
912 
913 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
914 		return -EINVAL;
915 
916 	ret = deny_write_access(file);
917 	if (ret)
918 		return ret;
919 
920 	ret = security_kernel_read_file(file, id);
921 	if (ret)
922 		goto out;
923 
924 	i_size = i_size_read(file_inode(file));
925 	if (i_size <= 0) {
926 		ret = -EINVAL;
927 		goto out;
928 	}
929 	if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
930 		ret = -EFBIG;
931 		goto out;
932 	}
933 
934 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
935 		*buf = vmalloc(i_size);
936 	if (!*buf) {
937 		ret = -ENOMEM;
938 		goto out;
939 	}
940 
941 	pos = 0;
942 	while (pos < i_size) {
943 		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
944 		if (bytes < 0) {
945 			ret = bytes;
946 			goto out_free;
947 		}
948 
949 		if (bytes == 0)
950 			break;
951 	}
952 
953 	if (pos != i_size) {
954 		ret = -EIO;
955 		goto out_free;
956 	}
957 
958 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
959 	if (!ret)
960 		*size = pos;
961 
962 out_free:
963 	if (ret < 0) {
964 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
965 			vfree(*buf);
966 			*buf = NULL;
967 		}
968 	}
969 
970 out:
971 	allow_write_access(file);
972 	return ret;
973 }
974 EXPORT_SYMBOL_GPL(kernel_read_file);
975 
kernel_read_file_from_path(const char * path,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)976 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
977 			       loff_t max_size, enum kernel_read_file_id id)
978 {
979 	struct file *file;
980 	int ret;
981 
982 	if (!path || !*path)
983 		return -EINVAL;
984 
985 	file = filp_open(path, O_RDONLY, 0);
986 	if (IS_ERR(file))
987 		return PTR_ERR(file);
988 
989 	ret = kernel_read_file(file, buf, size, max_size, id);
990 	fput(file);
991 	return ret;
992 }
993 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
994 
kernel_read_file_from_fd(int fd,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)995 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
996 			     enum kernel_read_file_id id)
997 {
998 	struct fd f = fdget(fd);
999 	int ret = -EBADF;
1000 
1001 	if (!f.file || !(f.file->f_mode & FMODE_READ))
1002 		goto out;
1003 
1004 	ret = kernel_read_file(f.file, buf, size, max_size, id);
1005 out:
1006 	fdput(f);
1007 	return ret;
1008 }
1009 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1010 
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)1011 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1012 {
1013 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1014 	if (res > 0)
1015 		flush_icache_range(addr, addr + len);
1016 	return res;
1017 }
1018 EXPORT_SYMBOL(read_code);
1019 
exec_mmap(struct mm_struct * mm)1020 static int exec_mmap(struct mm_struct *mm)
1021 {
1022 	struct task_struct *tsk;
1023 	struct mm_struct *old_mm, *active_mm;
1024 
1025 	/* Notify parent that we're no longer interested in the old VM */
1026 	tsk = current;
1027 	old_mm = current->mm;
1028 	exec_mm_release(tsk, old_mm);
1029 
1030 	if (old_mm) {
1031 		sync_mm_rss(old_mm);
1032 		/*
1033 		 * Make sure that if there is a core dump in progress
1034 		 * for the old mm, we get out and die instead of going
1035 		 * through with the exec.  We must hold mmap_sem around
1036 		 * checking core_state and changing tsk->mm.
1037 		 */
1038 		down_read(&old_mm->mmap_sem);
1039 		if (unlikely(old_mm->core_state)) {
1040 			up_read(&old_mm->mmap_sem);
1041 			return -EINTR;
1042 		}
1043 	}
1044 	task_lock(tsk);
1045 	membarrier_exec_mmap(mm);
1046 
1047 	local_irq_disable();
1048 	active_mm = tsk->active_mm;
1049 	tsk->active_mm = mm;
1050 	tsk->mm = mm;
1051 	/*
1052 	 * This prevents preemption while active_mm is being loaded and
1053 	 * it and mm are being updated, which could cause problems for
1054 	 * lazy tlb mm refcounting when these are updated by context
1055 	 * switches. Not all architectures can handle irqs off over
1056 	 * activate_mm yet.
1057 	 */
1058 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1059 		local_irq_enable();
1060 	activate_mm(active_mm, mm);
1061 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1062 		local_irq_enable();
1063 	tsk->mm->vmacache_seqnum = 0;
1064 	vmacache_flush(tsk);
1065 	task_unlock(tsk);
1066 	if (old_mm) {
1067 		up_read(&old_mm->mmap_sem);
1068 		BUG_ON(active_mm != old_mm);
1069 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1070 		mm_update_next_owner(old_mm);
1071 		mmput(old_mm);
1072 		return 0;
1073 	}
1074 	mmdrop(active_mm);
1075 	return 0;
1076 }
1077 
1078 /*
1079  * This function makes sure the current process has its own signal table,
1080  * so that flush_signal_handlers can later reset the handlers without
1081  * disturbing other processes.  (Other processes might share the signal
1082  * table via the CLONE_SIGHAND option to clone().)
1083  */
de_thread(struct task_struct * tsk)1084 static int de_thread(struct task_struct *tsk)
1085 {
1086 	struct signal_struct *sig = tsk->signal;
1087 	struct sighand_struct *oldsighand = tsk->sighand;
1088 	spinlock_t *lock = &oldsighand->siglock;
1089 
1090 	if (thread_group_empty(tsk))
1091 		goto no_thread_group;
1092 
1093 	/*
1094 	 * Kill all other threads in the thread group.
1095 	 */
1096 	spin_lock_irq(lock);
1097 	if (signal_group_exit(sig)) {
1098 		/*
1099 		 * Another group action in progress, just
1100 		 * return so that the signal is processed.
1101 		 */
1102 		spin_unlock_irq(lock);
1103 		return -EAGAIN;
1104 	}
1105 
1106 	sig->group_exit_task = tsk;
1107 	sig->notify_count = zap_other_threads(tsk);
1108 	if (!thread_group_leader(tsk))
1109 		sig->notify_count--;
1110 
1111 	while (sig->notify_count) {
1112 		__set_current_state(TASK_KILLABLE);
1113 		spin_unlock_irq(lock);
1114 		schedule();
1115 		if (__fatal_signal_pending(tsk))
1116 			goto killed;
1117 		spin_lock_irq(lock);
1118 	}
1119 	spin_unlock_irq(lock);
1120 
1121 	/*
1122 	 * At this point all other threads have exited, all we have to
1123 	 * do is to wait for the thread group leader to become inactive,
1124 	 * and to assume its PID:
1125 	 */
1126 	if (!thread_group_leader(tsk)) {
1127 		struct task_struct *leader = tsk->group_leader;
1128 
1129 		for (;;) {
1130 			cgroup_threadgroup_change_begin(tsk);
1131 			write_lock_irq(&tasklist_lock);
1132 			/*
1133 			 * Do this under tasklist_lock to ensure that
1134 			 * exit_notify() can't miss ->group_exit_task
1135 			 */
1136 			sig->notify_count = -1;
1137 			if (likely(leader->exit_state))
1138 				break;
1139 			__set_current_state(TASK_KILLABLE);
1140 			write_unlock_irq(&tasklist_lock);
1141 			cgroup_threadgroup_change_end(tsk);
1142 			schedule();
1143 			if (__fatal_signal_pending(tsk))
1144 				goto killed;
1145 		}
1146 
1147 		/*
1148 		 * The only record we have of the real-time age of a
1149 		 * process, regardless of execs it's done, is start_time.
1150 		 * All the past CPU time is accumulated in signal_struct
1151 		 * from sister threads now dead.  But in this non-leader
1152 		 * exec, nothing survives from the original leader thread,
1153 		 * whose birth marks the true age of this process now.
1154 		 * When we take on its identity by switching to its PID, we
1155 		 * also take its birthdate (always earlier than our own).
1156 		 */
1157 		tsk->start_time = leader->start_time;
1158 		tsk->real_start_time = leader->real_start_time;
1159 
1160 		BUG_ON(!same_thread_group(leader, tsk));
1161 		BUG_ON(has_group_leader_pid(tsk));
1162 		/*
1163 		 * An exec() starts a new thread group with the
1164 		 * TGID of the previous thread group. Rehash the
1165 		 * two threads with a switched PID, and release
1166 		 * the former thread group leader:
1167 		 */
1168 
1169 		/* Become a process group leader with the old leader's pid.
1170 		 * The old leader becomes a thread of the this thread group.
1171 		 * Note: The old leader also uses this pid until release_task
1172 		 *       is called.  Odd but simple and correct.
1173 		 */
1174 		tsk->pid = leader->pid;
1175 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1176 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1177 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1178 		transfer_pid(leader, tsk, PIDTYPE_SID);
1179 
1180 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1181 		list_replace_init(&leader->sibling, &tsk->sibling);
1182 
1183 		tsk->group_leader = tsk;
1184 		leader->group_leader = tsk;
1185 
1186 		tsk->exit_signal = SIGCHLD;
1187 		leader->exit_signal = -1;
1188 
1189 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1190 		leader->exit_state = EXIT_DEAD;
1191 
1192 		/*
1193 		 * We are going to release_task()->ptrace_unlink() silently,
1194 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1195 		 * the tracer wont't block again waiting for this thread.
1196 		 */
1197 		if (unlikely(leader->ptrace))
1198 			__wake_up_parent(leader, leader->parent);
1199 		write_unlock_irq(&tasklist_lock);
1200 		cgroup_threadgroup_change_end(tsk);
1201 
1202 		release_task(leader);
1203 	}
1204 
1205 	sig->group_exit_task = NULL;
1206 	sig->notify_count = 0;
1207 
1208 no_thread_group:
1209 	/* we have changed execution domain */
1210 	tsk->exit_signal = SIGCHLD;
1211 
1212 #ifdef CONFIG_POSIX_TIMERS
1213 	exit_itimers(sig);
1214 	flush_itimer_signals();
1215 #endif
1216 
1217 	if (refcount_read(&oldsighand->count) != 1) {
1218 		struct sighand_struct *newsighand;
1219 		/*
1220 		 * This ->sighand is shared with the CLONE_SIGHAND
1221 		 * but not CLONE_THREAD task, switch to the new one.
1222 		 */
1223 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1224 		if (!newsighand)
1225 			return -ENOMEM;
1226 
1227 		refcount_set(&newsighand->count, 1);
1228 		memcpy(newsighand->action, oldsighand->action,
1229 		       sizeof(newsighand->action));
1230 
1231 		write_lock_irq(&tasklist_lock);
1232 		spin_lock(&oldsighand->siglock);
1233 		rcu_assign_pointer(tsk->sighand, newsighand);
1234 		spin_unlock(&oldsighand->siglock);
1235 		write_unlock_irq(&tasklist_lock);
1236 
1237 		__cleanup_sighand(oldsighand);
1238 	}
1239 
1240 	BUG_ON(!thread_group_leader(tsk));
1241 	return 0;
1242 
1243 killed:
1244 	/* protects against exit_notify() and __exit_signal() */
1245 	read_lock(&tasklist_lock);
1246 	sig->group_exit_task = NULL;
1247 	sig->notify_count = 0;
1248 	read_unlock(&tasklist_lock);
1249 	return -EAGAIN;
1250 }
1251 
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1252 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1253 {
1254 	task_lock(tsk);
1255 	strncpy(buf, tsk->comm, buf_size);
1256 	task_unlock(tsk);
1257 	return buf;
1258 }
1259 EXPORT_SYMBOL_GPL(__get_task_comm);
1260 
1261 /*
1262  * These functions flushes out all traces of the currently running executable
1263  * so that a new one can be started
1264  */
1265 
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1266 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1267 {
1268 	task_lock(tsk);
1269 	trace_task_rename(tsk, buf);
1270 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1271 	task_unlock(tsk);
1272 	perf_event_comm(tsk, exec);
1273 }
1274 
1275 /*
1276  * Calling this is the point of no return. None of the failures will be
1277  * seen by userspace since either the process is already taking a fatal
1278  * signal (via de_thread() or coredump), or will have SEGV raised
1279  * (after exec_mmap()) by search_binary_handlers (see below).
1280  */
flush_old_exec(struct linux_binprm * bprm)1281 int flush_old_exec(struct linux_binprm * bprm)
1282 {
1283 	int retval;
1284 
1285 	/*
1286 	 * Make sure we have a private signal table and that
1287 	 * we are unassociated from the previous thread group.
1288 	 */
1289 	retval = de_thread(current);
1290 	if (retval)
1291 		goto out;
1292 
1293 	/*
1294 	 * Must be called _before_ exec_mmap() as bprm->mm is
1295 	 * not visibile until then. This also enables the update
1296 	 * to be lockless.
1297 	 */
1298 	set_mm_exe_file(bprm->mm, bprm->file);
1299 
1300 	would_dump(bprm, bprm->file);
1301 
1302 	/*
1303 	 * Release all of the old mmap stuff
1304 	 */
1305 	acct_arg_size(bprm, 0);
1306 	retval = exec_mmap(bprm->mm);
1307 	if (retval)
1308 		goto out;
1309 
1310 	/*
1311 	 * After clearing bprm->mm (to mark that current is using the
1312 	 * prepared mm now), we have nothing left of the original
1313 	 * process. If anything from here on returns an error, the check
1314 	 * in search_binary_handler() will SEGV current.
1315 	 */
1316 	bprm->mm = NULL;
1317 
1318 	set_fs(USER_DS);
1319 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1320 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1321 	flush_thread();
1322 	current->personality &= ~bprm->per_clear;
1323 
1324 	/*
1325 	 * We have to apply CLOEXEC before we change whether the process is
1326 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1327 	 * trying to access the should-be-closed file descriptors of a process
1328 	 * undergoing exec(2).
1329 	 */
1330 	do_close_on_exec(current->files);
1331 	return 0;
1332 
1333 out:
1334 	return retval;
1335 }
1336 EXPORT_SYMBOL(flush_old_exec);
1337 
would_dump(struct linux_binprm * bprm,struct file * file)1338 void would_dump(struct linux_binprm *bprm, struct file *file)
1339 {
1340 	struct inode *inode = file_inode(file);
1341 	if (inode_permission(inode, MAY_READ) < 0) {
1342 		struct user_namespace *old, *user_ns;
1343 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1344 
1345 		/* Ensure mm->user_ns contains the executable */
1346 		user_ns = old = bprm->mm->user_ns;
1347 		while ((user_ns != &init_user_ns) &&
1348 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1349 			user_ns = user_ns->parent;
1350 
1351 		if (old != user_ns) {
1352 			bprm->mm->user_ns = get_user_ns(user_ns);
1353 			put_user_ns(old);
1354 		}
1355 	}
1356 }
1357 EXPORT_SYMBOL(would_dump);
1358 
setup_new_exec(struct linux_binprm * bprm)1359 void setup_new_exec(struct linux_binprm * bprm)
1360 {
1361 	/*
1362 	 * Once here, prepare_binrpm() will not be called any more, so
1363 	 * the final state of setuid/setgid/fscaps can be merged into the
1364 	 * secureexec flag.
1365 	 */
1366 	bprm->secureexec |= bprm->cap_elevated;
1367 
1368 	if (bprm->secureexec) {
1369 		/* Make sure parent cannot signal privileged process. */
1370 		current->pdeath_signal = 0;
1371 
1372 		/*
1373 		 * For secureexec, reset the stack limit to sane default to
1374 		 * avoid bad behavior from the prior rlimits. This has to
1375 		 * happen before arch_pick_mmap_layout(), which examines
1376 		 * RLIMIT_STACK, but after the point of no return to avoid
1377 		 * needing to clean up the change on failure.
1378 		 */
1379 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1380 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1381 	}
1382 
1383 	arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1384 
1385 	current->sas_ss_sp = current->sas_ss_size = 0;
1386 
1387 	/*
1388 	 * Figure out dumpability. Note that this checking only of current
1389 	 * is wrong, but userspace depends on it. This should be testing
1390 	 * bprm->secureexec instead.
1391 	 */
1392 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1393 	    !(uid_eq(current_euid(), current_uid()) &&
1394 	      gid_eq(current_egid(), current_gid())))
1395 		set_dumpable(current->mm, suid_dumpable);
1396 	else
1397 		set_dumpable(current->mm, SUID_DUMP_USER);
1398 
1399 	arch_setup_new_exec();
1400 	perf_event_exec();
1401 	__set_task_comm(current, kbasename(bprm->filename), true);
1402 
1403 	/* Set the new mm task size. We have to do that late because it may
1404 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1405 	 * some architectures like powerpc
1406 	 */
1407 	current->mm->task_size = TASK_SIZE;
1408 
1409 	/* An exec changes our domain. We are no longer part of the thread
1410 	   group */
1411 	WRITE_ONCE(current->self_exec_id, current->self_exec_id + 1);
1412 	flush_signal_handlers(current, 0);
1413 }
1414 EXPORT_SYMBOL(setup_new_exec);
1415 
1416 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1417 void finalize_exec(struct linux_binprm *bprm)
1418 {
1419 	/* Store any stack rlimit changes before starting thread. */
1420 	task_lock(current->group_leader);
1421 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1422 	task_unlock(current->group_leader);
1423 }
1424 EXPORT_SYMBOL(finalize_exec);
1425 
1426 /*
1427  * Prepare credentials and lock ->cred_guard_mutex.
1428  * install_exec_creds() commits the new creds and drops the lock.
1429  * Or, if exec fails before, free_bprm() should release ->cred and
1430  * and unlock.
1431  */
prepare_bprm_creds(struct linux_binprm * bprm)1432 static int prepare_bprm_creds(struct linux_binprm *bprm)
1433 {
1434 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1435 		return -ERESTARTNOINTR;
1436 
1437 	bprm->cred = prepare_exec_creds();
1438 	if (likely(bprm->cred))
1439 		return 0;
1440 
1441 	mutex_unlock(&current->signal->cred_guard_mutex);
1442 	return -ENOMEM;
1443 }
1444 
free_bprm(struct linux_binprm * bprm)1445 static void free_bprm(struct linux_binprm *bprm)
1446 {
1447 	free_arg_pages(bprm);
1448 	if (bprm->cred) {
1449 		mutex_unlock(&current->signal->cred_guard_mutex);
1450 		abort_creds(bprm->cred);
1451 	}
1452 	if (bprm->file) {
1453 		allow_write_access(bprm->file);
1454 		fput(bprm->file);
1455 	}
1456 	/* If a binfmt changed the interp, free it. */
1457 	if (bprm->interp != bprm->filename)
1458 		kfree(bprm->interp);
1459 	kfree(bprm);
1460 }
1461 
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1462 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1463 {
1464 	/* If a binfmt changed the interp, free it first. */
1465 	if (bprm->interp != bprm->filename)
1466 		kfree(bprm->interp);
1467 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1468 	if (!bprm->interp)
1469 		return -ENOMEM;
1470 	return 0;
1471 }
1472 EXPORT_SYMBOL(bprm_change_interp);
1473 
1474 /*
1475  * install the new credentials for this executable
1476  */
install_exec_creds(struct linux_binprm * bprm)1477 void install_exec_creds(struct linux_binprm *bprm)
1478 {
1479 	security_bprm_committing_creds(bprm);
1480 
1481 	commit_creds(bprm->cred);
1482 	bprm->cred = NULL;
1483 
1484 	/*
1485 	 * Disable monitoring for regular users
1486 	 * when executing setuid binaries. Must
1487 	 * wait until new credentials are committed
1488 	 * by commit_creds() above
1489 	 */
1490 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1491 		perf_event_exit_task(current);
1492 	/*
1493 	 * cred_guard_mutex must be held at least to this point to prevent
1494 	 * ptrace_attach() from altering our determination of the task's
1495 	 * credentials; any time after this it may be unlocked.
1496 	 */
1497 	security_bprm_committed_creds(bprm);
1498 	mutex_unlock(&current->signal->cred_guard_mutex);
1499 }
1500 EXPORT_SYMBOL(install_exec_creds);
1501 
1502 /*
1503  * determine how safe it is to execute the proposed program
1504  * - the caller must hold ->cred_guard_mutex to protect against
1505  *   PTRACE_ATTACH or seccomp thread-sync
1506  */
check_unsafe_exec(struct linux_binprm * bprm)1507 static void check_unsafe_exec(struct linux_binprm *bprm)
1508 {
1509 	struct task_struct *p = current, *t;
1510 	unsigned n_fs;
1511 
1512 	if (p->ptrace)
1513 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1514 
1515 	/*
1516 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1517 	 * mess up.
1518 	 */
1519 	if (task_no_new_privs(current))
1520 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1521 
1522 	t = p;
1523 	n_fs = 1;
1524 	spin_lock(&p->fs->lock);
1525 	rcu_read_lock();
1526 	while_each_thread(p, t) {
1527 		if (t->fs == p->fs)
1528 			n_fs++;
1529 	}
1530 	rcu_read_unlock();
1531 
1532 	if (p->fs->users > n_fs)
1533 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1534 	else
1535 		p->fs->in_exec = 1;
1536 	spin_unlock(&p->fs->lock);
1537 }
1538 
bprm_fill_uid(struct linux_binprm * bprm)1539 static void bprm_fill_uid(struct linux_binprm *bprm)
1540 {
1541 	struct inode *inode;
1542 	unsigned int mode;
1543 	kuid_t uid;
1544 	kgid_t gid;
1545 
1546 	/*
1547 	 * Since this can be called multiple times (via prepare_binprm),
1548 	 * we must clear any previous work done when setting set[ug]id
1549 	 * bits from any earlier bprm->file uses (for example when run
1550 	 * first for a setuid script then again for its interpreter).
1551 	 */
1552 	bprm->cred->euid = current_euid();
1553 	bprm->cred->egid = current_egid();
1554 
1555 	if (!mnt_may_suid(bprm->file->f_path.mnt))
1556 		return;
1557 
1558 	if (task_no_new_privs(current))
1559 		return;
1560 
1561 	inode = bprm->file->f_path.dentry->d_inode;
1562 	mode = READ_ONCE(inode->i_mode);
1563 	if (!(mode & (S_ISUID|S_ISGID)))
1564 		return;
1565 
1566 	/* Be careful if suid/sgid is set */
1567 	inode_lock(inode);
1568 
1569 	/* reload atomically mode/uid/gid now that lock held */
1570 	mode = inode->i_mode;
1571 	uid = inode->i_uid;
1572 	gid = inode->i_gid;
1573 	inode_unlock(inode);
1574 
1575 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1576 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1577 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1578 		return;
1579 
1580 	if (mode & S_ISUID) {
1581 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1582 		bprm->cred->euid = uid;
1583 	}
1584 
1585 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1586 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1587 		bprm->cred->egid = gid;
1588 	}
1589 }
1590 
1591 /*
1592  * Fill the binprm structure from the inode.
1593  * Check permissions, then read the first BINPRM_BUF_SIZE bytes
1594  *
1595  * This may be called multiple times for binary chains (scripts for example).
1596  */
prepare_binprm(struct linux_binprm * bprm)1597 int prepare_binprm(struct linux_binprm *bprm)
1598 {
1599 	int retval;
1600 	loff_t pos = 0;
1601 
1602 	bprm_fill_uid(bprm);
1603 
1604 	/* fill in binprm security blob */
1605 	retval = security_bprm_set_creds(bprm);
1606 	if (retval)
1607 		return retval;
1608 	bprm->called_set_creds = 1;
1609 
1610 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1611 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1612 }
1613 
1614 EXPORT_SYMBOL(prepare_binprm);
1615 
1616 /*
1617  * Arguments are '\0' separated strings found at the location bprm->p
1618  * points to; chop off the first by relocating brpm->p to right after
1619  * the first '\0' encountered.
1620  */
remove_arg_zero(struct linux_binprm * bprm)1621 int remove_arg_zero(struct linux_binprm *bprm)
1622 {
1623 	int ret = 0;
1624 	unsigned long offset;
1625 	char *kaddr;
1626 	struct page *page;
1627 
1628 	if (!bprm->argc)
1629 		return 0;
1630 
1631 	do {
1632 		offset = bprm->p & ~PAGE_MASK;
1633 		page = get_arg_page(bprm, bprm->p, 0);
1634 		if (!page) {
1635 			ret = -EFAULT;
1636 			goto out;
1637 		}
1638 		kaddr = kmap_atomic(page);
1639 
1640 		for (; offset < PAGE_SIZE && kaddr[offset];
1641 				offset++, bprm->p++)
1642 			;
1643 
1644 		kunmap_atomic(kaddr);
1645 		put_arg_page(page);
1646 	} while (offset == PAGE_SIZE);
1647 
1648 	bprm->p++;
1649 	bprm->argc--;
1650 	ret = 0;
1651 
1652 out:
1653 	return ret;
1654 }
1655 EXPORT_SYMBOL(remove_arg_zero);
1656 
1657 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1658 /*
1659  * cycle the list of binary formats handler, until one recognizes the image
1660  */
search_binary_handler(struct linux_binprm * bprm)1661 int search_binary_handler(struct linux_binprm *bprm)
1662 {
1663 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1664 	struct linux_binfmt *fmt;
1665 	int retval;
1666 
1667 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1668 	if (bprm->recursion_depth > 5)
1669 		return -ELOOP;
1670 
1671 	retval = security_bprm_check(bprm);
1672 	if (retval)
1673 		return retval;
1674 
1675 	retval = -ENOENT;
1676  retry:
1677 	read_lock(&binfmt_lock);
1678 	list_for_each_entry(fmt, &formats, lh) {
1679 		if (!try_module_get(fmt->module))
1680 			continue;
1681 		read_unlock(&binfmt_lock);
1682 
1683 		bprm->recursion_depth++;
1684 		retval = fmt->load_binary(bprm);
1685 		bprm->recursion_depth--;
1686 
1687 		read_lock(&binfmt_lock);
1688 		put_binfmt(fmt);
1689 		if (retval < 0 && !bprm->mm) {
1690 			/* we got to flush_old_exec() and failed after it */
1691 			read_unlock(&binfmt_lock);
1692 			force_sigsegv(SIGSEGV);
1693 			return retval;
1694 		}
1695 		if (retval != -ENOEXEC || !bprm->file) {
1696 			read_unlock(&binfmt_lock);
1697 			return retval;
1698 		}
1699 	}
1700 	read_unlock(&binfmt_lock);
1701 
1702 	if (need_retry) {
1703 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1704 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1705 			return retval;
1706 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1707 			return retval;
1708 		need_retry = false;
1709 		goto retry;
1710 	}
1711 
1712 	return retval;
1713 }
1714 EXPORT_SYMBOL(search_binary_handler);
1715 
exec_binprm(struct linux_binprm * bprm)1716 static int exec_binprm(struct linux_binprm *bprm)
1717 {
1718 	pid_t old_pid, old_vpid;
1719 	int ret;
1720 
1721 	/* Need to fetch pid before load_binary changes it */
1722 	old_pid = current->pid;
1723 	rcu_read_lock();
1724 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1725 	rcu_read_unlock();
1726 
1727 	ret = search_binary_handler(bprm);
1728 	if (ret >= 0) {
1729 		audit_bprm(bprm);
1730 		trace_sched_process_exec(current, old_pid, bprm);
1731 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1732 		proc_exec_connector(current);
1733 	}
1734 
1735 	return ret;
1736 }
1737 
1738 /*
1739  * sys_execve() executes a new program.
1740  */
__do_execve_file(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags,struct file * file)1741 static int __do_execve_file(int fd, struct filename *filename,
1742 			    struct user_arg_ptr argv,
1743 			    struct user_arg_ptr envp,
1744 			    int flags, struct file *file)
1745 {
1746 	char *pathbuf = NULL;
1747 	struct linux_binprm *bprm;
1748 	struct files_struct *displaced;
1749 	int retval;
1750 
1751 	if (IS_ERR(filename))
1752 		return PTR_ERR(filename);
1753 
1754 	/*
1755 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1756 	 * set*uid() to execve() because too many poorly written programs
1757 	 * don't check setuid() return code.  Here we additionally recheck
1758 	 * whether NPROC limit is still exceeded.
1759 	 */
1760 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1761 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1762 		retval = -EAGAIN;
1763 		goto out_ret;
1764 	}
1765 
1766 	/* We're below the limit (still or again), so we don't want to make
1767 	 * further execve() calls fail. */
1768 	current->flags &= ~PF_NPROC_EXCEEDED;
1769 
1770 	retval = unshare_files(&displaced);
1771 	if (retval)
1772 		goto out_ret;
1773 
1774 	retval = -ENOMEM;
1775 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1776 	if (!bprm)
1777 		goto out_files;
1778 
1779 	retval = prepare_bprm_creds(bprm);
1780 	if (retval)
1781 		goto out_free;
1782 
1783 	check_unsafe_exec(bprm);
1784 	current->in_execve = 1;
1785 
1786 	if (!file)
1787 		file = do_open_execat(fd, filename, flags);
1788 	retval = PTR_ERR(file);
1789 	if (IS_ERR(file))
1790 		goto out_unmark;
1791 
1792 	sched_exec();
1793 
1794 	bprm->file = file;
1795 	if (!filename) {
1796 		bprm->filename = "none";
1797 	} else if (fd == AT_FDCWD || filename->name[0] == '/') {
1798 		bprm->filename = filename->name;
1799 	} else {
1800 		if (filename->name[0] == '\0')
1801 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1802 		else
1803 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1804 					    fd, filename->name);
1805 		if (!pathbuf) {
1806 			retval = -ENOMEM;
1807 			goto out_unmark;
1808 		}
1809 		/*
1810 		 * Record that a name derived from an O_CLOEXEC fd will be
1811 		 * inaccessible after exec. Relies on having exclusive access to
1812 		 * current->files (due to unshare_files above).
1813 		 */
1814 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1815 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1816 		bprm->filename = pathbuf;
1817 	}
1818 	bprm->interp = bprm->filename;
1819 
1820 	retval = bprm_mm_init(bprm);
1821 	if (retval)
1822 		goto out_unmark;
1823 
1824 	retval = prepare_arg_pages(bprm, argv, envp);
1825 	if (retval < 0)
1826 		goto out;
1827 
1828 	retval = prepare_binprm(bprm);
1829 	if (retval < 0)
1830 		goto out;
1831 
1832 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1833 	if (retval < 0)
1834 		goto out;
1835 
1836 	bprm->exec = bprm->p;
1837 	retval = copy_strings(bprm->envc, envp, bprm);
1838 	if (retval < 0)
1839 		goto out;
1840 
1841 	retval = copy_strings(bprm->argc, argv, bprm);
1842 	if (retval < 0)
1843 		goto out;
1844 
1845 	/*
1846 	 * When argv is empty, add an empty string ("") as argv[0] to
1847 	 * ensure confused userspace programs that start processing
1848 	 * from argv[1] won't end up walking envp. See also
1849 	 * bprm_stack_limits().
1850 	 */
1851 	if (bprm->argc == 0) {
1852 		const char *argv[] = { "", NULL };
1853 		retval = copy_strings_kernel(1, argv, bprm);
1854 		if (retval < 0)
1855 			goto out;
1856 		bprm->argc = 1;
1857 	}
1858 
1859 	retval = exec_binprm(bprm);
1860 	if (retval < 0)
1861 		goto out;
1862 
1863 	/* execve succeeded */
1864 	current->fs->in_exec = 0;
1865 	current->in_execve = 0;
1866 	rseq_execve(current);
1867 	acct_update_integrals(current);
1868 	task_numa_free(current, false);
1869 	free_bprm(bprm);
1870 	kfree(pathbuf);
1871 	if (filename)
1872 		putname(filename);
1873 	if (displaced)
1874 		put_files_struct(displaced);
1875 	return retval;
1876 
1877 out:
1878 	if (bprm->mm) {
1879 		acct_arg_size(bprm, 0);
1880 		mmput(bprm->mm);
1881 	}
1882 
1883 out_unmark:
1884 	current->fs->in_exec = 0;
1885 	current->in_execve = 0;
1886 
1887 out_free:
1888 	free_bprm(bprm);
1889 	kfree(pathbuf);
1890 
1891 out_files:
1892 	if (displaced)
1893 		reset_files_struct(displaced);
1894 out_ret:
1895 	if (filename)
1896 		putname(filename);
1897 	return retval;
1898 }
1899 
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1900 static int do_execveat_common(int fd, struct filename *filename,
1901 			      struct user_arg_ptr argv,
1902 			      struct user_arg_ptr envp,
1903 			      int flags)
1904 {
1905 	return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1906 }
1907 
do_execve_file(struct file * file,void * __argv,void * __envp)1908 int do_execve_file(struct file *file, void *__argv, void *__envp)
1909 {
1910 	struct user_arg_ptr argv = { .ptr.native = __argv };
1911 	struct user_arg_ptr envp = { .ptr.native = __envp };
1912 
1913 	return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1914 }
1915 
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1916 int do_execve(struct filename *filename,
1917 	const char __user *const __user *__argv,
1918 	const char __user *const __user *__envp)
1919 {
1920 	struct user_arg_ptr argv = { .ptr.native = __argv };
1921 	struct user_arg_ptr envp = { .ptr.native = __envp };
1922 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1923 }
1924 
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)1925 int do_execveat(int fd, struct filename *filename,
1926 		const char __user *const __user *__argv,
1927 		const char __user *const __user *__envp,
1928 		int flags)
1929 {
1930 	struct user_arg_ptr argv = { .ptr.native = __argv };
1931 	struct user_arg_ptr envp = { .ptr.native = __envp };
1932 
1933 	return do_execveat_common(fd, filename, argv, envp, flags);
1934 }
1935 
1936 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1937 static int compat_do_execve(struct filename *filename,
1938 	const compat_uptr_t __user *__argv,
1939 	const compat_uptr_t __user *__envp)
1940 {
1941 	struct user_arg_ptr argv = {
1942 		.is_compat = true,
1943 		.ptr.compat = __argv,
1944 	};
1945 	struct user_arg_ptr envp = {
1946 		.is_compat = true,
1947 		.ptr.compat = __envp,
1948 	};
1949 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1950 }
1951 
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)1952 static int compat_do_execveat(int fd, struct filename *filename,
1953 			      const compat_uptr_t __user *__argv,
1954 			      const compat_uptr_t __user *__envp,
1955 			      int flags)
1956 {
1957 	struct user_arg_ptr argv = {
1958 		.is_compat = true,
1959 		.ptr.compat = __argv,
1960 	};
1961 	struct user_arg_ptr envp = {
1962 		.is_compat = true,
1963 		.ptr.compat = __envp,
1964 	};
1965 	return do_execveat_common(fd, filename, argv, envp, flags);
1966 }
1967 #endif
1968 
set_binfmt(struct linux_binfmt * new)1969 void set_binfmt(struct linux_binfmt *new)
1970 {
1971 	struct mm_struct *mm = current->mm;
1972 
1973 	if (mm->binfmt)
1974 		module_put(mm->binfmt->module);
1975 
1976 	mm->binfmt = new;
1977 	if (new)
1978 		__module_get(new->module);
1979 }
1980 EXPORT_SYMBOL(set_binfmt);
1981 
1982 /*
1983  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1984  */
set_dumpable(struct mm_struct * mm,int value)1985 void set_dumpable(struct mm_struct *mm, int value)
1986 {
1987 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1988 		return;
1989 
1990 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
1991 }
1992 
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)1993 SYSCALL_DEFINE3(execve,
1994 		const char __user *, filename,
1995 		const char __user *const __user *, argv,
1996 		const char __user *const __user *, envp)
1997 {
1998 	return do_execve(getname(filename), argv, envp);
1999 }
2000 
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2001 SYSCALL_DEFINE5(execveat,
2002 		int, fd, const char __user *, filename,
2003 		const char __user *const __user *, argv,
2004 		const char __user *const __user *, envp,
2005 		int, flags)
2006 {
2007 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2008 
2009 	return do_execveat(fd,
2010 			   getname_flags(filename, lookup_flags, NULL),
2011 			   argv, envp, flags);
2012 }
2013 
2014 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2015 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2016 	const compat_uptr_t __user *, argv,
2017 	const compat_uptr_t __user *, envp)
2018 {
2019 	return compat_do_execve(getname(filename), argv, envp);
2020 }
2021 
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2022 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2023 		       const char __user *, filename,
2024 		       const compat_uptr_t __user *, argv,
2025 		       const compat_uptr_t __user *, envp,
2026 		       int,  flags)
2027 {
2028 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2029 
2030 	return compat_do_execveat(fd,
2031 				  getname_flags(filename, lookup_flags, NULL),
2032 				  argv, envp, flags);
2033 }
2034 #endif
2035