1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/ext4/extents_status.c
4 *
5 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6 * Modified by
7 * Allison Henderson <achender@linux.vnet.ibm.com>
8 * Hugh Dickins <hughd@google.com>
9 * Zheng Liu <wenqing.lz@taobao.com>
10 *
11 * Ext4 extents status tree core functions.
12 */
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17
18 #include <trace/events/ext4.h>
19
20 /*
21 * According to previous discussion in Ext4 Developer Workshop, we
22 * will introduce a new structure called io tree to track all extent
23 * status in order to solve some problems that we have met
24 * (e.g. Reservation space warning), and provide extent-level locking.
25 * Delay extent tree is the first step to achieve this goal. It is
26 * original built by Yongqiang Yang. At that time it is called delay
27 * extent tree, whose goal is only track delayed extents in memory to
28 * simplify the implementation of fiemap and bigalloc, and introduce
29 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
30 * delay extent tree at the first commit. But for better understand
31 * what it does, it has been rename to extent status tree.
32 *
33 * Step1:
34 * Currently the first step has been done. All delayed extents are
35 * tracked in the tree. It maintains the delayed extent when a delayed
36 * allocation is issued, and the delayed extent is written out or
37 * invalidated. Therefore the implementation of fiemap and bigalloc
38 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39 *
40 * The following comment describes the implemenmtation of extent
41 * status tree and future works.
42 *
43 * Step2:
44 * In this step all extent status are tracked by extent status tree.
45 * Thus, we can first try to lookup a block mapping in this tree before
46 * finding it in extent tree. Hence, single extent cache can be removed
47 * because extent status tree can do a better job. Extents in status
48 * tree are loaded on-demand. Therefore, the extent status tree may not
49 * contain all of the extents in a file. Meanwhile we define a shrinker
50 * to reclaim memory from extent status tree because fragmented extent
51 * tree will make status tree cost too much memory. written/unwritten/-
52 * hole extents in the tree will be reclaimed by this shrinker when we
53 * are under high memory pressure. Delayed extents will not be
54 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55 */
56
57 /*
58 * Extent status tree implementation for ext4.
59 *
60 *
61 * ==========================================================================
62 * Extent status tree tracks all extent status.
63 *
64 * 1. Why we need to implement extent status tree?
65 *
66 * Without extent status tree, ext4 identifies a delayed extent by looking
67 * up page cache, this has several deficiencies - complicated, buggy,
68 * and inefficient code.
69 *
70 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71 * block or a range of blocks are belonged to a delayed extent.
72 *
73 * Let us have a look at how they do without extent status tree.
74 * -- FIEMAP
75 * FIEMAP looks up page cache to identify delayed allocations from holes.
76 *
77 * -- SEEK_HOLE/DATA
78 * SEEK_HOLE/DATA has the same problem as FIEMAP.
79 *
80 * -- bigalloc
81 * bigalloc looks up page cache to figure out if a block is
82 * already under delayed allocation or not to determine whether
83 * quota reserving is needed for the cluster.
84 *
85 * -- writeout
86 * Writeout looks up whole page cache to see if a buffer is
87 * mapped, If there are not very many delayed buffers, then it is
88 * time consuming.
89 *
90 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91 * bigalloc and writeout can figure out if a block or a range of
92 * blocks is under delayed allocation(belonged to a delayed extent) or
93 * not by searching the extent tree.
94 *
95 *
96 * ==========================================================================
97 * 2. Ext4 extent status tree impelmentation
98 *
99 * -- extent
100 * A extent is a range of blocks which are contiguous logically and
101 * physically. Unlike extent in extent tree, this extent in ext4 is
102 * a in-memory struct, there is no corresponding on-disk data. There
103 * is no limit on length of extent, so an extent can contain as many
104 * blocks as they are contiguous logically and physically.
105 *
106 * -- extent status tree
107 * Every inode has an extent status tree and all allocation blocks
108 * are added to the tree with different status. The extent in the
109 * tree are ordered by logical block no.
110 *
111 * -- operations on a extent status tree
112 * There are three important operations on a delayed extent tree: find
113 * next extent, adding a extent(a range of blocks) and removing a extent.
114 *
115 * -- race on a extent status tree
116 * Extent status tree is protected by inode->i_es_lock.
117 *
118 * -- memory consumption
119 * Fragmented extent tree will make extent status tree cost too much
120 * memory. Hence, we will reclaim written/unwritten/hole extents from
121 * the tree under a heavy memory pressure.
122 *
123 *
124 * ==========================================================================
125 * 3. Performance analysis
126 *
127 * -- overhead
128 * 1. There is a cache extent for write access, so if writes are
129 * not very random, adding space operaions are in O(1) time.
130 *
131 * -- gain
132 * 2. Code is much simpler, more readable, more maintainable and
133 * more efficient.
134 *
135 *
136 * ==========================================================================
137 * 4. TODO list
138 *
139 * -- Refactor delayed space reservation
140 *
141 * -- Extent-level locking
142 */
143
144 static struct kmem_cache *ext4_es_cachep;
145 static struct kmem_cache *ext4_pending_cachep;
146
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
148 struct extent_status *prealloc);
149 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
150 ext4_lblk_t end, int *reserved,
151 struct extent_status *prealloc);
152 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
153 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
154 struct ext4_inode_info *locked_ei);
155 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
156 ext4_lblk_t len,
157 struct pending_reservation **prealloc);
158
ext4_init_es(void)159 int __init ext4_init_es(void)
160 {
161 ext4_es_cachep = kmem_cache_create("ext4_extent_status",
162 sizeof(struct extent_status),
163 0, (SLAB_RECLAIM_ACCOUNT), NULL);
164 if (ext4_es_cachep == NULL)
165 return -ENOMEM;
166 return 0;
167 }
168
ext4_exit_es(void)169 void ext4_exit_es(void)
170 {
171 kmem_cache_destroy(ext4_es_cachep);
172 }
173
ext4_es_init_tree(struct ext4_es_tree * tree)174 void ext4_es_init_tree(struct ext4_es_tree *tree)
175 {
176 tree->root = RB_ROOT;
177 tree->cache_es = NULL;
178 }
179
180 #ifdef ES_DEBUG__
ext4_es_print_tree(struct inode * inode)181 static void ext4_es_print_tree(struct inode *inode)
182 {
183 struct ext4_es_tree *tree;
184 struct rb_node *node;
185
186 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
187 tree = &EXT4_I(inode)->i_es_tree;
188 node = rb_first(&tree->root);
189 while (node) {
190 struct extent_status *es;
191 es = rb_entry(node, struct extent_status, rb_node);
192 printk(KERN_DEBUG " [%u/%u) %llu %x",
193 es->es_lblk, es->es_len,
194 ext4_es_pblock(es), ext4_es_status(es));
195 node = rb_next(node);
196 }
197 printk(KERN_DEBUG "\n");
198 }
199 #else
200 #define ext4_es_print_tree(inode)
201 #endif
202
ext4_es_end(struct extent_status * es)203 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
204 {
205 BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
206 return es->es_lblk + es->es_len - 1;
207 }
208
209 /*
210 * search through the tree for an delayed extent with a given offset. If
211 * it can't be found, try to find next extent.
212 */
__es_tree_search(struct rb_root * root,ext4_lblk_t lblk)213 static struct extent_status *__es_tree_search(struct rb_root *root,
214 ext4_lblk_t lblk)
215 {
216 struct rb_node *node = root->rb_node;
217 struct extent_status *es = NULL;
218
219 while (node) {
220 es = rb_entry(node, struct extent_status, rb_node);
221 if (lblk < es->es_lblk)
222 node = node->rb_left;
223 else if (lblk > ext4_es_end(es))
224 node = node->rb_right;
225 else
226 return es;
227 }
228
229 if (es && lblk < es->es_lblk)
230 return es;
231
232 if (es && lblk > ext4_es_end(es)) {
233 node = rb_next(&es->rb_node);
234 return node ? rb_entry(node, struct extent_status, rb_node) :
235 NULL;
236 }
237
238 return NULL;
239 }
240
241 /*
242 * ext4_es_find_extent_range - find extent with specified status within block
243 * range or next extent following block range in
244 * extents status tree
245 *
246 * @inode - file containing the range
247 * @matching_fn - pointer to function that matches extents with desired status
248 * @lblk - logical block defining start of range
249 * @end - logical block defining end of range
250 * @es - extent found, if any
251 *
252 * Find the first extent within the block range specified by @lblk and @end
253 * in the extents status tree that satisfies @matching_fn. If a match
254 * is found, it's returned in @es. If not, and a matching extent is found
255 * beyond the block range, it's returned in @es. If no match is found, an
256 * extent is returned in @es whose es_lblk, es_len, and es_pblk components
257 * are 0.
258 */
__es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)259 static void __es_find_extent_range(struct inode *inode,
260 int (*matching_fn)(struct extent_status *es),
261 ext4_lblk_t lblk, ext4_lblk_t end,
262 struct extent_status *es)
263 {
264 struct ext4_es_tree *tree = NULL;
265 struct extent_status *es1 = NULL;
266 struct rb_node *node;
267
268 WARN_ON(es == NULL);
269 WARN_ON(end < lblk);
270
271 tree = &EXT4_I(inode)->i_es_tree;
272
273 /* see if the extent has been cached */
274 es->es_lblk = es->es_len = es->es_pblk = 0;
275 es1 = READ_ONCE(tree->cache_es);
276 if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
277 es_debug("%u cached by [%u/%u) %llu %x\n",
278 lblk, es1->es_lblk, es1->es_len,
279 ext4_es_pblock(es1), ext4_es_status(es1));
280 goto out;
281 }
282
283 es1 = __es_tree_search(&tree->root, lblk);
284
285 out:
286 if (es1 && !matching_fn(es1)) {
287 while ((node = rb_next(&es1->rb_node)) != NULL) {
288 es1 = rb_entry(node, struct extent_status, rb_node);
289 if (es1->es_lblk > end) {
290 es1 = NULL;
291 break;
292 }
293 if (matching_fn(es1))
294 break;
295 }
296 }
297
298 if (es1 && matching_fn(es1)) {
299 WRITE_ONCE(tree->cache_es, es1);
300 es->es_lblk = es1->es_lblk;
301 es->es_len = es1->es_len;
302 es->es_pblk = es1->es_pblk;
303 }
304
305 }
306
307 /*
308 * Locking for __es_find_extent_range() for external use
309 */
ext4_es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)310 void ext4_es_find_extent_range(struct inode *inode,
311 int (*matching_fn)(struct extent_status *es),
312 ext4_lblk_t lblk, ext4_lblk_t end,
313 struct extent_status *es)
314 {
315 trace_ext4_es_find_extent_range_enter(inode, lblk);
316
317 read_lock(&EXT4_I(inode)->i_es_lock);
318 __es_find_extent_range(inode, matching_fn, lblk, end, es);
319 read_unlock(&EXT4_I(inode)->i_es_lock);
320
321 trace_ext4_es_find_extent_range_exit(inode, es);
322 }
323
324 /*
325 * __es_scan_range - search block range for block with specified status
326 * in extents status tree
327 *
328 * @inode - file containing the range
329 * @matching_fn - pointer to function that matches extents with desired status
330 * @lblk - logical block defining start of range
331 * @end - logical block defining end of range
332 *
333 * Returns true if at least one block in the specified block range satisfies
334 * the criterion specified by @matching_fn, and false if not. If at least
335 * one extent has the specified status, then there is at least one block
336 * in the cluster with that status. Should only be called by code that has
337 * taken i_es_lock.
338 */
__es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t start,ext4_lblk_t end)339 static bool __es_scan_range(struct inode *inode,
340 int (*matching_fn)(struct extent_status *es),
341 ext4_lblk_t start, ext4_lblk_t end)
342 {
343 struct extent_status es;
344
345 __es_find_extent_range(inode, matching_fn, start, end, &es);
346 if (es.es_len == 0)
347 return false; /* no matching extent in the tree */
348 else if (es.es_lblk <= start &&
349 start < es.es_lblk + es.es_len)
350 return true;
351 else if (start <= es.es_lblk && es.es_lblk <= end)
352 return true;
353 else
354 return false;
355 }
356 /*
357 * Locking for __es_scan_range() for external use
358 */
ext4_es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end)359 bool ext4_es_scan_range(struct inode *inode,
360 int (*matching_fn)(struct extent_status *es),
361 ext4_lblk_t lblk, ext4_lblk_t end)
362 {
363 bool ret;
364
365 read_lock(&EXT4_I(inode)->i_es_lock);
366 ret = __es_scan_range(inode, matching_fn, lblk, end);
367 read_unlock(&EXT4_I(inode)->i_es_lock);
368
369 return ret;
370 }
371
372 /*
373 * __es_scan_clu - search cluster for block with specified status in
374 * extents status tree
375 *
376 * @inode - file containing the cluster
377 * @matching_fn - pointer to function that matches extents with desired status
378 * @lblk - logical block in cluster to be searched
379 *
380 * Returns true if at least one extent in the cluster containing @lblk
381 * satisfies the criterion specified by @matching_fn, and false if not. If at
382 * least one extent has the specified status, then there is at least one block
383 * in the cluster with that status. Should only be called by code that has
384 * taken i_es_lock.
385 */
__es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)386 static bool __es_scan_clu(struct inode *inode,
387 int (*matching_fn)(struct extent_status *es),
388 ext4_lblk_t lblk)
389 {
390 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
391 ext4_lblk_t lblk_start, lblk_end;
392
393 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
394 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
395
396 return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
397 }
398
399 /*
400 * Locking for __es_scan_clu() for external use
401 */
ext4_es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)402 bool ext4_es_scan_clu(struct inode *inode,
403 int (*matching_fn)(struct extent_status *es),
404 ext4_lblk_t lblk)
405 {
406 bool ret;
407
408 read_lock(&EXT4_I(inode)->i_es_lock);
409 ret = __es_scan_clu(inode, matching_fn, lblk);
410 read_unlock(&EXT4_I(inode)->i_es_lock);
411
412 return ret;
413 }
414
ext4_es_list_add(struct inode * inode)415 static void ext4_es_list_add(struct inode *inode)
416 {
417 struct ext4_inode_info *ei = EXT4_I(inode);
418 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
419
420 if (!list_empty(&ei->i_es_list))
421 return;
422
423 spin_lock(&sbi->s_es_lock);
424 if (list_empty(&ei->i_es_list)) {
425 list_add_tail(&ei->i_es_list, &sbi->s_es_list);
426 sbi->s_es_nr_inode++;
427 }
428 spin_unlock(&sbi->s_es_lock);
429 }
430
ext4_es_list_del(struct inode * inode)431 static void ext4_es_list_del(struct inode *inode)
432 {
433 struct ext4_inode_info *ei = EXT4_I(inode);
434 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
435
436 spin_lock(&sbi->s_es_lock);
437 if (!list_empty(&ei->i_es_list)) {
438 list_del_init(&ei->i_es_list);
439 sbi->s_es_nr_inode--;
440 WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
441 }
442 spin_unlock(&sbi->s_es_lock);
443 }
444
__alloc_pending(bool nofail)445 static inline struct pending_reservation *__alloc_pending(bool nofail)
446 {
447 if (!nofail)
448 return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
449
450 return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL);
451 }
452
__free_pending(struct pending_reservation * pr)453 static inline void __free_pending(struct pending_reservation *pr)
454 {
455 kmem_cache_free(ext4_pending_cachep, pr);
456 }
457
458 /*
459 * Returns true if we cannot fail to allocate memory for this extent_status
460 * entry and cannot reclaim it until its status changes.
461 */
ext4_es_must_keep(struct extent_status * es)462 static inline bool ext4_es_must_keep(struct extent_status *es)
463 {
464 /* fiemap, bigalloc, and seek_data/hole need to use it. */
465 if (ext4_es_is_delayed(es))
466 return true;
467
468 return false;
469 }
470
__es_alloc_extent(bool nofail)471 static inline struct extent_status *__es_alloc_extent(bool nofail)
472 {
473 if (!nofail)
474 return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
475
476 return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
477 }
478
ext4_es_init_extent(struct inode * inode,struct extent_status * es,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk)479 static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
480 ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
481 {
482 es->es_lblk = lblk;
483 es->es_len = len;
484 es->es_pblk = pblk;
485
486 /* We never try to reclaim a must kept extent, so we don't count it. */
487 if (!ext4_es_must_keep(es)) {
488 if (!EXT4_I(inode)->i_es_shk_nr++)
489 ext4_es_list_add(inode);
490 percpu_counter_inc(&EXT4_SB(inode->i_sb)->
491 s_es_stats.es_stats_shk_cnt);
492 }
493
494 EXT4_I(inode)->i_es_all_nr++;
495 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
496 }
497
__es_free_extent(struct extent_status * es)498 static inline void __es_free_extent(struct extent_status *es)
499 {
500 kmem_cache_free(ext4_es_cachep, es);
501 }
502
ext4_es_free_extent(struct inode * inode,struct extent_status * es)503 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
504 {
505 EXT4_I(inode)->i_es_all_nr--;
506 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
507
508 /* Decrease the shrink counter when we can reclaim the extent. */
509 if (!ext4_es_must_keep(es)) {
510 BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
511 if (!--EXT4_I(inode)->i_es_shk_nr)
512 ext4_es_list_del(inode);
513 percpu_counter_dec(&EXT4_SB(inode->i_sb)->
514 s_es_stats.es_stats_shk_cnt);
515 }
516
517 __es_free_extent(es);
518 }
519
520 /*
521 * Check whether or not two extents can be merged
522 * Condition:
523 * - logical block number is contiguous
524 * - physical block number is contiguous
525 * - status is equal
526 */
ext4_es_can_be_merged(struct extent_status * es1,struct extent_status * es2)527 static int ext4_es_can_be_merged(struct extent_status *es1,
528 struct extent_status *es2)
529 {
530 if (ext4_es_type(es1) != ext4_es_type(es2))
531 return 0;
532
533 if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
534 pr_warn("ES assertion failed when merging extents. "
535 "The sum of lengths of es1 (%d) and es2 (%d) "
536 "is bigger than allowed file size (%d)\n",
537 es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
538 WARN_ON(1);
539 return 0;
540 }
541
542 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
543 return 0;
544
545 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
546 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
547 return 1;
548
549 if (ext4_es_is_hole(es1))
550 return 1;
551
552 /* we need to check delayed extent is without unwritten status */
553 if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
554 return 1;
555
556 return 0;
557 }
558
559 static struct extent_status *
ext4_es_try_to_merge_left(struct inode * inode,struct extent_status * es)560 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
561 {
562 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
563 struct extent_status *es1;
564 struct rb_node *node;
565
566 node = rb_prev(&es->rb_node);
567 if (!node)
568 return es;
569
570 es1 = rb_entry(node, struct extent_status, rb_node);
571 if (ext4_es_can_be_merged(es1, es)) {
572 es1->es_len += es->es_len;
573 if (ext4_es_is_referenced(es))
574 ext4_es_set_referenced(es1);
575 rb_erase(&es->rb_node, &tree->root);
576 ext4_es_free_extent(inode, es);
577 es = es1;
578 }
579
580 return es;
581 }
582
583 static struct extent_status *
ext4_es_try_to_merge_right(struct inode * inode,struct extent_status * es)584 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
585 {
586 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
587 struct extent_status *es1;
588 struct rb_node *node;
589
590 node = rb_next(&es->rb_node);
591 if (!node)
592 return es;
593
594 es1 = rb_entry(node, struct extent_status, rb_node);
595 if (ext4_es_can_be_merged(es, es1)) {
596 es->es_len += es1->es_len;
597 if (ext4_es_is_referenced(es1))
598 ext4_es_set_referenced(es);
599 rb_erase(node, &tree->root);
600 ext4_es_free_extent(inode, es1);
601 }
602
603 return es;
604 }
605
606 #ifdef ES_AGGRESSIVE_TEST
607 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */
608
ext4_es_insert_extent_ext_check(struct inode * inode,struct extent_status * es)609 static void ext4_es_insert_extent_ext_check(struct inode *inode,
610 struct extent_status *es)
611 {
612 struct ext4_ext_path *path = NULL;
613 struct ext4_extent *ex;
614 ext4_lblk_t ee_block;
615 ext4_fsblk_t ee_start;
616 unsigned short ee_len;
617 int depth, ee_status, es_status;
618
619 path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
620 if (IS_ERR(path))
621 return;
622
623 depth = ext_depth(inode);
624 ex = path[depth].p_ext;
625
626 if (ex) {
627
628 ee_block = le32_to_cpu(ex->ee_block);
629 ee_start = ext4_ext_pblock(ex);
630 ee_len = ext4_ext_get_actual_len(ex);
631
632 ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
633 es_status = ext4_es_is_unwritten(es) ? 1 : 0;
634
635 /*
636 * Make sure ex and es are not overlap when we try to insert
637 * a delayed/hole extent.
638 */
639 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
640 if (in_range(es->es_lblk, ee_block, ee_len)) {
641 pr_warn("ES insert assertion failed for "
642 "inode: %lu we can find an extent "
643 "at block [%d/%d/%llu/%c], but we "
644 "want to add a delayed/hole extent "
645 "[%d/%d/%llu/%x]\n",
646 inode->i_ino, ee_block, ee_len,
647 ee_start, ee_status ? 'u' : 'w',
648 es->es_lblk, es->es_len,
649 ext4_es_pblock(es), ext4_es_status(es));
650 }
651 goto out;
652 }
653
654 /*
655 * We don't check ee_block == es->es_lblk, etc. because es
656 * might be a part of whole extent, vice versa.
657 */
658 if (es->es_lblk < ee_block ||
659 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
660 pr_warn("ES insert assertion failed for inode: %lu "
661 "ex_status [%d/%d/%llu/%c] != "
662 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
663 ee_block, ee_len, ee_start,
664 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
665 ext4_es_pblock(es), es_status ? 'u' : 'w');
666 goto out;
667 }
668
669 if (ee_status ^ es_status) {
670 pr_warn("ES insert assertion failed for inode: %lu "
671 "ex_status [%d/%d/%llu/%c] != "
672 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
673 ee_block, ee_len, ee_start,
674 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
675 ext4_es_pblock(es), es_status ? 'u' : 'w');
676 }
677 } else {
678 /*
679 * We can't find an extent on disk. So we need to make sure
680 * that we don't want to add an written/unwritten extent.
681 */
682 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
683 pr_warn("ES insert assertion failed for inode: %lu "
684 "can't find an extent at block %d but we want "
685 "to add a written/unwritten extent "
686 "[%d/%d/%llu/%x]\n", inode->i_ino,
687 es->es_lblk, es->es_lblk, es->es_len,
688 ext4_es_pblock(es), ext4_es_status(es));
689 }
690 }
691 out:
692 ext4_ext_drop_refs(path);
693 kfree(path);
694 }
695
ext4_es_insert_extent_ind_check(struct inode * inode,struct extent_status * es)696 static void ext4_es_insert_extent_ind_check(struct inode *inode,
697 struct extent_status *es)
698 {
699 struct ext4_map_blocks map;
700 int retval;
701
702 /*
703 * Here we call ext4_ind_map_blocks to lookup a block mapping because
704 * 'Indirect' structure is defined in indirect.c. So we couldn't
705 * access direct/indirect tree from outside. It is too dirty to define
706 * this function in indirect.c file.
707 */
708
709 map.m_lblk = es->es_lblk;
710 map.m_len = es->es_len;
711
712 retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
713 if (retval > 0) {
714 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
715 /*
716 * We want to add a delayed/hole extent but this
717 * block has been allocated.
718 */
719 pr_warn("ES insert assertion failed for inode: %lu "
720 "We can find blocks but we want to add a "
721 "delayed/hole extent [%d/%d/%llu/%x]\n",
722 inode->i_ino, es->es_lblk, es->es_len,
723 ext4_es_pblock(es), ext4_es_status(es));
724 return;
725 } else if (ext4_es_is_written(es)) {
726 if (retval != es->es_len) {
727 pr_warn("ES insert assertion failed for "
728 "inode: %lu retval %d != es_len %d\n",
729 inode->i_ino, retval, es->es_len);
730 return;
731 }
732 if (map.m_pblk != ext4_es_pblock(es)) {
733 pr_warn("ES insert assertion failed for "
734 "inode: %lu m_pblk %llu != "
735 "es_pblk %llu\n",
736 inode->i_ino, map.m_pblk,
737 ext4_es_pblock(es));
738 return;
739 }
740 } else {
741 /*
742 * We don't need to check unwritten extent because
743 * indirect-based file doesn't have it.
744 */
745 BUG();
746 }
747 } else if (retval == 0) {
748 if (ext4_es_is_written(es)) {
749 pr_warn("ES insert assertion failed for inode: %lu "
750 "We can't find the block but we want to add "
751 "a written extent [%d/%d/%llu/%x]\n",
752 inode->i_ino, es->es_lblk, es->es_len,
753 ext4_es_pblock(es), ext4_es_status(es));
754 return;
755 }
756 }
757 }
758
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)759 static inline void ext4_es_insert_extent_check(struct inode *inode,
760 struct extent_status *es)
761 {
762 /*
763 * We don't need to worry about the race condition because
764 * caller takes i_data_sem locking.
765 */
766 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
767 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
768 ext4_es_insert_extent_ext_check(inode, es);
769 else
770 ext4_es_insert_extent_ind_check(inode, es);
771 }
772 #else
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)773 static inline void ext4_es_insert_extent_check(struct inode *inode,
774 struct extent_status *es)
775 {
776 }
777 #endif
778
__es_insert_extent(struct inode * inode,struct extent_status * newes,struct extent_status * prealloc)779 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
780 struct extent_status *prealloc)
781 {
782 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
783 struct rb_node **p = &tree->root.rb_node;
784 struct rb_node *parent = NULL;
785 struct extent_status *es;
786
787 while (*p) {
788 parent = *p;
789 es = rb_entry(parent, struct extent_status, rb_node);
790
791 if (newes->es_lblk < es->es_lblk) {
792 if (ext4_es_can_be_merged(newes, es)) {
793 /*
794 * Here we can modify es_lblk directly
795 * because it isn't overlapped.
796 */
797 es->es_lblk = newes->es_lblk;
798 es->es_len += newes->es_len;
799 if (ext4_es_is_written(es) ||
800 ext4_es_is_unwritten(es))
801 ext4_es_store_pblock(es,
802 newes->es_pblk);
803 es = ext4_es_try_to_merge_left(inode, es);
804 goto out;
805 }
806 p = &(*p)->rb_left;
807 } else if (newes->es_lblk > ext4_es_end(es)) {
808 if (ext4_es_can_be_merged(es, newes)) {
809 es->es_len += newes->es_len;
810 es = ext4_es_try_to_merge_right(inode, es);
811 goto out;
812 }
813 p = &(*p)->rb_right;
814 } else {
815 BUG();
816 return -EINVAL;
817 }
818 }
819
820 if (prealloc)
821 es = prealloc;
822 else
823 es = __es_alloc_extent(false);
824 if (!es)
825 return -ENOMEM;
826 ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
827 newes->es_pblk);
828
829 rb_link_node(&es->rb_node, parent, p);
830 rb_insert_color(&es->rb_node, &tree->root);
831
832 out:
833 tree->cache_es = es;
834 return 0;
835 }
836
837 /*
838 * ext4_es_insert_extent() adds information to an inode's extent
839 * status tree.
840 *
841 * Return 0 on success, error code on failure.
842 */
ext4_es_insert_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)843 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
844 ext4_lblk_t len, ext4_fsblk_t pblk,
845 unsigned int status)
846 {
847 struct extent_status newes;
848 ext4_lblk_t end = lblk + len - 1;
849 int err1 = 0, err2 = 0, err3 = 0;
850 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
851 struct extent_status *es1 = NULL;
852 struct extent_status *es2 = NULL;
853 struct pending_reservation *pr = NULL;
854 bool revise_pending = false;
855
856 es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
857 lblk, len, pblk, status, inode->i_ino);
858
859 if (!len)
860 return 0;
861
862 BUG_ON(end < lblk);
863
864 if ((status & EXTENT_STATUS_DELAYED) &&
865 (status & EXTENT_STATUS_WRITTEN)) {
866 ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
867 " delayed and written which can potentially "
868 " cause data loss.", lblk, len);
869 WARN_ON(1);
870 }
871
872 newes.es_lblk = lblk;
873 newes.es_len = len;
874 ext4_es_store_pblock_status(&newes, pblk, status);
875 trace_ext4_es_insert_extent(inode, &newes);
876
877 ext4_es_insert_extent_check(inode, &newes);
878
879 revise_pending = sbi->s_cluster_ratio > 1 &&
880 test_opt(inode->i_sb, DELALLOC) &&
881 (status & (EXTENT_STATUS_WRITTEN |
882 EXTENT_STATUS_UNWRITTEN));
883 retry:
884 if (err1 && !es1)
885 es1 = __es_alloc_extent(true);
886 if ((err1 || err2) && !es2)
887 es2 = __es_alloc_extent(true);
888 if ((err1 || err2 || err3) && revise_pending && !pr)
889 pr = __alloc_pending(true);
890 write_lock(&EXT4_I(inode)->i_es_lock);
891
892 err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
893 if (err1 != 0)
894 goto error;
895 /* Free preallocated extent if it didn't get used. */
896 if (es1) {
897 if (!es1->es_len)
898 __es_free_extent(es1);
899 es1 = NULL;
900 }
901
902 err2 = __es_insert_extent(inode, &newes, es2);
903 if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
904 err2 = 0;
905 if (err2 != 0)
906 goto error;
907 /* Free preallocated extent if it didn't get used. */
908 if (es2) {
909 if (!es2->es_len)
910 __es_free_extent(es2);
911 es2 = NULL;
912 }
913
914 if (revise_pending) {
915 err3 = __revise_pending(inode, lblk, len, &pr);
916 if (err3 != 0)
917 goto error;
918 if (pr) {
919 __free_pending(pr);
920 pr = NULL;
921 }
922 }
923 error:
924 write_unlock(&EXT4_I(inode)->i_es_lock);
925 if (err1 || err2 || err3)
926 goto retry;
927
928 ext4_es_print_tree(inode);
929 return 0;
930 }
931
932 /*
933 * ext4_es_cache_extent() inserts information into the extent status
934 * tree if and only if there isn't information about the range in
935 * question already.
936 */
ext4_es_cache_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)937 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
938 ext4_lblk_t len, ext4_fsblk_t pblk,
939 unsigned int status)
940 {
941 struct extent_status *es;
942 struct extent_status newes;
943 ext4_lblk_t end = lblk + len - 1;
944
945 newes.es_lblk = lblk;
946 newes.es_len = len;
947 ext4_es_store_pblock_status(&newes, pblk, status);
948 trace_ext4_es_cache_extent(inode, &newes);
949
950 if (!len)
951 return;
952
953 BUG_ON(end < lblk);
954
955 write_lock(&EXT4_I(inode)->i_es_lock);
956
957 es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
958 if (!es || es->es_lblk > end)
959 __es_insert_extent(inode, &newes, NULL);
960 write_unlock(&EXT4_I(inode)->i_es_lock);
961 }
962
963 /*
964 * ext4_es_lookup_extent() looks up an extent in extent status tree.
965 *
966 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
967 *
968 * Return: 1 on found, 0 on not
969 */
ext4_es_lookup_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t * next_lblk,struct extent_status * es)970 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
971 ext4_lblk_t *next_lblk,
972 struct extent_status *es)
973 {
974 struct ext4_es_tree *tree;
975 struct ext4_es_stats *stats;
976 struct extent_status *es1 = NULL;
977 struct rb_node *node;
978 int found = 0;
979
980 trace_ext4_es_lookup_extent_enter(inode, lblk);
981 es_debug("lookup extent in block %u\n", lblk);
982
983 tree = &EXT4_I(inode)->i_es_tree;
984 read_lock(&EXT4_I(inode)->i_es_lock);
985
986 /* find extent in cache firstly */
987 es->es_lblk = es->es_len = es->es_pblk = 0;
988 es1 = READ_ONCE(tree->cache_es);
989 if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
990 es_debug("%u cached by [%u/%u)\n",
991 lblk, es1->es_lblk, es1->es_len);
992 found = 1;
993 goto out;
994 }
995
996 node = tree->root.rb_node;
997 while (node) {
998 es1 = rb_entry(node, struct extent_status, rb_node);
999 if (lblk < es1->es_lblk)
1000 node = node->rb_left;
1001 else if (lblk > ext4_es_end(es1))
1002 node = node->rb_right;
1003 else {
1004 found = 1;
1005 break;
1006 }
1007 }
1008
1009 out:
1010 stats = &EXT4_SB(inode->i_sb)->s_es_stats;
1011 if (found) {
1012 BUG_ON(!es1);
1013 es->es_lblk = es1->es_lblk;
1014 es->es_len = es1->es_len;
1015 es->es_pblk = es1->es_pblk;
1016 if (!ext4_es_is_referenced(es1))
1017 ext4_es_set_referenced(es1);
1018 percpu_counter_inc(&stats->es_stats_cache_hits);
1019 if (next_lblk) {
1020 node = rb_next(&es1->rb_node);
1021 if (node) {
1022 es1 = rb_entry(node, struct extent_status,
1023 rb_node);
1024 *next_lblk = es1->es_lblk;
1025 } else
1026 *next_lblk = 0;
1027 }
1028 } else {
1029 percpu_counter_inc(&stats->es_stats_cache_misses);
1030 }
1031
1032 read_unlock(&EXT4_I(inode)->i_es_lock);
1033
1034 trace_ext4_es_lookup_extent_exit(inode, es, found);
1035 return found;
1036 }
1037
1038 struct rsvd_count {
1039 int ndelonly;
1040 bool first_do_lblk_found;
1041 ext4_lblk_t first_do_lblk;
1042 ext4_lblk_t last_do_lblk;
1043 struct extent_status *left_es;
1044 bool partial;
1045 ext4_lblk_t lclu;
1046 };
1047
1048 /*
1049 * init_rsvd - initialize reserved count data before removing block range
1050 * in file from extent status tree
1051 *
1052 * @inode - file containing range
1053 * @lblk - first block in range
1054 * @es - pointer to first extent in range
1055 * @rc - pointer to reserved count data
1056 *
1057 * Assumes es is not NULL
1058 */
init_rsvd(struct inode * inode,ext4_lblk_t lblk,struct extent_status * es,struct rsvd_count * rc)1059 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1060 struct extent_status *es, struct rsvd_count *rc)
1061 {
1062 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1063 struct rb_node *node;
1064
1065 rc->ndelonly = 0;
1066
1067 /*
1068 * for bigalloc, note the first delonly block in the range has not
1069 * been found, record the extent containing the block to the left of
1070 * the region to be removed, if any, and note that there's no partial
1071 * cluster to track
1072 */
1073 if (sbi->s_cluster_ratio > 1) {
1074 rc->first_do_lblk_found = false;
1075 if (lblk > es->es_lblk) {
1076 rc->left_es = es;
1077 } else {
1078 node = rb_prev(&es->rb_node);
1079 rc->left_es = node ? rb_entry(node,
1080 struct extent_status,
1081 rb_node) : NULL;
1082 }
1083 rc->partial = false;
1084 }
1085 }
1086
1087 /*
1088 * count_rsvd - count the clusters containing delayed and not unwritten
1089 * (delonly) blocks in a range within an extent and add to
1090 * the running tally in rsvd_count
1091 *
1092 * @inode - file containing extent
1093 * @lblk - first block in range
1094 * @len - length of range in blocks
1095 * @es - pointer to extent containing clusters to be counted
1096 * @rc - pointer to reserved count data
1097 *
1098 * Tracks partial clusters found at the beginning and end of extents so
1099 * they aren't overcounted when they span adjacent extents
1100 */
count_rsvd(struct inode * inode,ext4_lblk_t lblk,long len,struct extent_status * es,struct rsvd_count * rc)1101 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1102 struct extent_status *es, struct rsvd_count *rc)
1103 {
1104 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1105 ext4_lblk_t i, end, nclu;
1106
1107 if (!ext4_es_is_delonly(es))
1108 return;
1109
1110 WARN_ON(len <= 0);
1111
1112 if (sbi->s_cluster_ratio == 1) {
1113 rc->ndelonly += (int) len;
1114 return;
1115 }
1116
1117 /* bigalloc */
1118
1119 i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1120 end = lblk + (ext4_lblk_t) len - 1;
1121 end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1122
1123 /* record the first block of the first delonly extent seen */
1124 if (rc->first_do_lblk_found == false) {
1125 rc->first_do_lblk = i;
1126 rc->first_do_lblk_found = true;
1127 }
1128
1129 /* update the last lblk in the region seen so far */
1130 rc->last_do_lblk = end;
1131
1132 /*
1133 * if we're tracking a partial cluster and the current extent
1134 * doesn't start with it, count it and stop tracking
1135 */
1136 if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1137 rc->ndelonly++;
1138 rc->partial = false;
1139 }
1140
1141 /*
1142 * if the first cluster doesn't start on a cluster boundary but
1143 * ends on one, count it
1144 */
1145 if (EXT4_LBLK_COFF(sbi, i) != 0) {
1146 if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1147 rc->ndelonly++;
1148 rc->partial = false;
1149 i = EXT4_LBLK_CFILL(sbi, i) + 1;
1150 }
1151 }
1152
1153 /*
1154 * if the current cluster starts on a cluster boundary, count the
1155 * number of whole delonly clusters in the extent
1156 */
1157 if ((i + sbi->s_cluster_ratio - 1) <= end) {
1158 nclu = (end - i + 1) >> sbi->s_cluster_bits;
1159 rc->ndelonly += nclu;
1160 i += nclu << sbi->s_cluster_bits;
1161 }
1162
1163 /*
1164 * start tracking a partial cluster if there's a partial at the end
1165 * of the current extent and we're not already tracking one
1166 */
1167 if (!rc->partial && i <= end) {
1168 rc->partial = true;
1169 rc->lclu = EXT4_B2C(sbi, i);
1170 }
1171 }
1172
1173 /*
1174 * __pr_tree_search - search for a pending cluster reservation
1175 *
1176 * @root - root of pending reservation tree
1177 * @lclu - logical cluster to search for
1178 *
1179 * Returns the pending reservation for the cluster identified by @lclu
1180 * if found. If not, returns a reservation for the next cluster if any,
1181 * and if not, returns NULL.
1182 */
__pr_tree_search(struct rb_root * root,ext4_lblk_t lclu)1183 static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1184 ext4_lblk_t lclu)
1185 {
1186 struct rb_node *node = root->rb_node;
1187 struct pending_reservation *pr = NULL;
1188
1189 while (node) {
1190 pr = rb_entry(node, struct pending_reservation, rb_node);
1191 if (lclu < pr->lclu)
1192 node = node->rb_left;
1193 else if (lclu > pr->lclu)
1194 node = node->rb_right;
1195 else
1196 return pr;
1197 }
1198 if (pr && lclu < pr->lclu)
1199 return pr;
1200 if (pr && lclu > pr->lclu) {
1201 node = rb_next(&pr->rb_node);
1202 return node ? rb_entry(node, struct pending_reservation,
1203 rb_node) : NULL;
1204 }
1205 return NULL;
1206 }
1207
1208 /*
1209 * get_rsvd - calculates and returns the number of cluster reservations to be
1210 * released when removing a block range from the extent status tree
1211 * and releases any pending reservations within the range
1212 *
1213 * @inode - file containing block range
1214 * @end - last block in range
1215 * @right_es - pointer to extent containing next block beyond end or NULL
1216 * @rc - pointer to reserved count data
1217 *
1218 * The number of reservations to be released is equal to the number of
1219 * clusters containing delayed and not unwritten (delonly) blocks within
1220 * the range, minus the number of clusters still containing delonly blocks
1221 * at the ends of the range, and minus the number of pending reservations
1222 * within the range.
1223 */
get_rsvd(struct inode * inode,ext4_lblk_t end,struct extent_status * right_es,struct rsvd_count * rc)1224 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1225 struct extent_status *right_es,
1226 struct rsvd_count *rc)
1227 {
1228 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1229 struct pending_reservation *pr;
1230 struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1231 struct rb_node *node;
1232 ext4_lblk_t first_lclu, last_lclu;
1233 bool left_delonly, right_delonly, count_pending;
1234 struct extent_status *es;
1235
1236 if (sbi->s_cluster_ratio > 1) {
1237 /* count any remaining partial cluster */
1238 if (rc->partial)
1239 rc->ndelonly++;
1240
1241 if (rc->ndelonly == 0)
1242 return 0;
1243
1244 first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1245 last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1246
1247 /*
1248 * decrease the delonly count by the number of clusters at the
1249 * ends of the range that still contain delonly blocks -
1250 * these clusters still need to be reserved
1251 */
1252 left_delonly = right_delonly = false;
1253
1254 es = rc->left_es;
1255 while (es && ext4_es_end(es) >=
1256 EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1257 if (ext4_es_is_delonly(es)) {
1258 rc->ndelonly--;
1259 left_delonly = true;
1260 break;
1261 }
1262 node = rb_prev(&es->rb_node);
1263 if (!node)
1264 break;
1265 es = rb_entry(node, struct extent_status, rb_node);
1266 }
1267 if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1268 if (end < ext4_es_end(right_es)) {
1269 es = right_es;
1270 } else {
1271 node = rb_next(&right_es->rb_node);
1272 es = node ? rb_entry(node, struct extent_status,
1273 rb_node) : NULL;
1274 }
1275 while (es && es->es_lblk <=
1276 EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1277 if (ext4_es_is_delonly(es)) {
1278 rc->ndelonly--;
1279 right_delonly = true;
1280 break;
1281 }
1282 node = rb_next(&es->rb_node);
1283 if (!node)
1284 break;
1285 es = rb_entry(node, struct extent_status,
1286 rb_node);
1287 }
1288 }
1289
1290 /*
1291 * Determine the block range that should be searched for
1292 * pending reservations, if any. Clusters on the ends of the
1293 * original removed range containing delonly blocks are
1294 * excluded. They've already been accounted for and it's not
1295 * possible to determine if an associated pending reservation
1296 * should be released with the information available in the
1297 * extents status tree.
1298 */
1299 if (first_lclu == last_lclu) {
1300 if (left_delonly | right_delonly)
1301 count_pending = false;
1302 else
1303 count_pending = true;
1304 } else {
1305 if (left_delonly)
1306 first_lclu++;
1307 if (right_delonly)
1308 last_lclu--;
1309 if (first_lclu <= last_lclu)
1310 count_pending = true;
1311 else
1312 count_pending = false;
1313 }
1314
1315 /*
1316 * a pending reservation found between first_lclu and last_lclu
1317 * represents an allocated cluster that contained at least one
1318 * delonly block, so the delonly total must be reduced by one
1319 * for each pending reservation found and released
1320 */
1321 if (count_pending) {
1322 pr = __pr_tree_search(&tree->root, first_lclu);
1323 while (pr && pr->lclu <= last_lclu) {
1324 rc->ndelonly--;
1325 node = rb_next(&pr->rb_node);
1326 rb_erase(&pr->rb_node, &tree->root);
1327 __free_pending(pr);
1328 if (!node)
1329 break;
1330 pr = rb_entry(node, struct pending_reservation,
1331 rb_node);
1332 }
1333 }
1334 }
1335 return rc->ndelonly;
1336 }
1337
1338
1339 /*
1340 * __es_remove_extent - removes block range from extent status tree
1341 *
1342 * @inode - file containing range
1343 * @lblk - first block in range
1344 * @end - last block in range
1345 * @reserved - number of cluster reservations released
1346 * @prealloc - pre-allocated es to avoid memory allocation failures
1347 *
1348 * If @reserved is not NULL and delayed allocation is enabled, counts
1349 * block/cluster reservations freed by removing range and if bigalloc
1350 * enabled cancels pending reservations as needed. Returns 0 on success,
1351 * error code on failure.
1352 */
__es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t end,int * reserved,struct extent_status * prealloc)1353 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1354 ext4_lblk_t end, int *reserved,
1355 struct extent_status *prealloc)
1356 {
1357 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1358 struct rb_node *node;
1359 struct extent_status *es;
1360 struct extent_status orig_es;
1361 ext4_lblk_t len1, len2;
1362 ext4_fsblk_t block;
1363 int err = 0;
1364 bool count_reserved = true;
1365 struct rsvd_count rc;
1366
1367 if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1368 count_reserved = false;
1369
1370 es = __es_tree_search(&tree->root, lblk);
1371 if (!es)
1372 goto out;
1373 if (es->es_lblk > end)
1374 goto out;
1375
1376 /* Simply invalidate cache_es. */
1377 tree->cache_es = NULL;
1378 if (count_reserved)
1379 init_rsvd(inode, lblk, es, &rc);
1380
1381 orig_es.es_lblk = es->es_lblk;
1382 orig_es.es_len = es->es_len;
1383 orig_es.es_pblk = es->es_pblk;
1384
1385 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1386 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1387 if (len1 > 0)
1388 es->es_len = len1;
1389 if (len2 > 0) {
1390 if (len1 > 0) {
1391 struct extent_status newes;
1392
1393 newes.es_lblk = end + 1;
1394 newes.es_len = len2;
1395 block = 0x7FDEADBEEFULL;
1396 if (ext4_es_is_written(&orig_es) ||
1397 ext4_es_is_unwritten(&orig_es))
1398 block = ext4_es_pblock(&orig_es) +
1399 orig_es.es_len - len2;
1400 ext4_es_store_pblock_status(&newes, block,
1401 ext4_es_status(&orig_es));
1402 err = __es_insert_extent(inode, &newes, prealloc);
1403 if (err) {
1404 if (!ext4_es_must_keep(&newes))
1405 return 0;
1406
1407 es->es_lblk = orig_es.es_lblk;
1408 es->es_len = orig_es.es_len;
1409 goto out;
1410 }
1411 } else {
1412 es->es_lblk = end + 1;
1413 es->es_len = len2;
1414 if (ext4_es_is_written(es) ||
1415 ext4_es_is_unwritten(es)) {
1416 block = orig_es.es_pblk + orig_es.es_len - len2;
1417 ext4_es_store_pblock(es, block);
1418 }
1419 }
1420 if (count_reserved)
1421 count_rsvd(inode, orig_es.es_lblk + len1,
1422 orig_es.es_len - len1 - len2, &orig_es, &rc);
1423 goto out_get_reserved;
1424 }
1425
1426 if (len1 > 0) {
1427 if (count_reserved)
1428 count_rsvd(inode, lblk, orig_es.es_len - len1,
1429 &orig_es, &rc);
1430 node = rb_next(&es->rb_node);
1431 if (node)
1432 es = rb_entry(node, struct extent_status, rb_node);
1433 else
1434 es = NULL;
1435 }
1436
1437 while (es && ext4_es_end(es) <= end) {
1438 if (count_reserved)
1439 count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1440 node = rb_next(&es->rb_node);
1441 rb_erase(&es->rb_node, &tree->root);
1442 ext4_es_free_extent(inode, es);
1443 if (!node) {
1444 es = NULL;
1445 break;
1446 }
1447 es = rb_entry(node, struct extent_status, rb_node);
1448 }
1449
1450 if (es && es->es_lblk < end + 1) {
1451 ext4_lblk_t orig_len = es->es_len;
1452
1453 len1 = ext4_es_end(es) - end;
1454 if (count_reserved)
1455 count_rsvd(inode, es->es_lblk, orig_len - len1,
1456 es, &rc);
1457 es->es_lblk = end + 1;
1458 es->es_len = len1;
1459 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1460 block = es->es_pblk + orig_len - len1;
1461 ext4_es_store_pblock(es, block);
1462 }
1463 }
1464
1465 out_get_reserved:
1466 if (count_reserved)
1467 *reserved = get_rsvd(inode, end, es, &rc);
1468 out:
1469 return err;
1470 }
1471
1472 /*
1473 * ext4_es_remove_extent - removes block range from extent status tree
1474 *
1475 * @inode - file containing range
1476 * @lblk - first block in range
1477 * @len - number of blocks to remove
1478 *
1479 * Reduces block/cluster reservation count and for bigalloc cancels pending
1480 * reservations as needed. Returns 0 on success, error code on failure.
1481 */
ext4_es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1482 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1483 ext4_lblk_t len)
1484 {
1485 ext4_lblk_t end;
1486 int err = 0;
1487 int reserved = 0;
1488 struct extent_status *es = NULL;
1489
1490 trace_ext4_es_remove_extent(inode, lblk, len);
1491 es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1492 lblk, len, inode->i_ino);
1493
1494 if (!len)
1495 return err;
1496
1497 end = lblk + len - 1;
1498 BUG_ON(end < lblk);
1499
1500 retry:
1501 if (err && !es)
1502 es = __es_alloc_extent(true);
1503 /*
1504 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1505 * so that we are sure __es_shrink() is done with the inode before it
1506 * is reclaimed.
1507 */
1508 write_lock(&EXT4_I(inode)->i_es_lock);
1509 err = __es_remove_extent(inode, lblk, end, &reserved, es);
1510 /* Free preallocated extent if it didn't get used. */
1511 if (es) {
1512 if (!es->es_len)
1513 __es_free_extent(es);
1514 es = NULL;
1515 }
1516 write_unlock(&EXT4_I(inode)->i_es_lock);
1517 if (err)
1518 goto retry;
1519
1520 ext4_es_print_tree(inode);
1521 ext4_da_release_space(inode, reserved);
1522 return 0;
1523 }
1524
__es_shrink(struct ext4_sb_info * sbi,int nr_to_scan,struct ext4_inode_info * locked_ei)1525 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1526 struct ext4_inode_info *locked_ei)
1527 {
1528 struct ext4_inode_info *ei;
1529 struct ext4_es_stats *es_stats;
1530 ktime_t start_time;
1531 u64 scan_time;
1532 int nr_to_walk;
1533 int nr_shrunk = 0;
1534 int retried = 0, nr_skipped = 0;
1535
1536 es_stats = &sbi->s_es_stats;
1537 start_time = ktime_get();
1538
1539 retry:
1540 spin_lock(&sbi->s_es_lock);
1541 nr_to_walk = sbi->s_es_nr_inode;
1542 while (nr_to_walk-- > 0) {
1543 if (list_empty(&sbi->s_es_list)) {
1544 spin_unlock(&sbi->s_es_lock);
1545 goto out;
1546 }
1547 ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1548 i_es_list);
1549 /* Move the inode to the tail */
1550 list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1551
1552 /*
1553 * Normally we try hard to avoid shrinking precached inodes,
1554 * but we will as a last resort.
1555 */
1556 if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1557 EXT4_STATE_EXT_PRECACHED)) {
1558 nr_skipped++;
1559 continue;
1560 }
1561
1562 if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1563 nr_skipped++;
1564 continue;
1565 }
1566 /*
1567 * Now we hold i_es_lock which protects us from inode reclaim
1568 * freeing inode under us
1569 */
1570 spin_unlock(&sbi->s_es_lock);
1571
1572 nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1573 write_unlock(&ei->i_es_lock);
1574
1575 if (nr_to_scan <= 0)
1576 goto out;
1577 spin_lock(&sbi->s_es_lock);
1578 }
1579 spin_unlock(&sbi->s_es_lock);
1580
1581 /*
1582 * If we skipped any inodes, and we weren't able to make any
1583 * forward progress, try again to scan precached inodes.
1584 */
1585 if ((nr_shrunk == 0) && nr_skipped && !retried) {
1586 retried++;
1587 goto retry;
1588 }
1589
1590 if (locked_ei && nr_shrunk == 0)
1591 nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1592
1593 out:
1594 scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1595 if (likely(es_stats->es_stats_scan_time))
1596 es_stats->es_stats_scan_time = (scan_time +
1597 es_stats->es_stats_scan_time*3) / 4;
1598 else
1599 es_stats->es_stats_scan_time = scan_time;
1600 if (scan_time > es_stats->es_stats_max_scan_time)
1601 es_stats->es_stats_max_scan_time = scan_time;
1602 if (likely(es_stats->es_stats_shrunk))
1603 es_stats->es_stats_shrunk = (nr_shrunk +
1604 es_stats->es_stats_shrunk*3) / 4;
1605 else
1606 es_stats->es_stats_shrunk = nr_shrunk;
1607
1608 trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1609 nr_skipped, retried);
1610 return nr_shrunk;
1611 }
1612
ext4_es_count(struct shrinker * shrink,struct shrink_control * sc)1613 static unsigned long ext4_es_count(struct shrinker *shrink,
1614 struct shrink_control *sc)
1615 {
1616 unsigned long nr;
1617 struct ext4_sb_info *sbi;
1618
1619 sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1620 nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1621 trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1622 return nr;
1623 }
1624
ext4_es_scan(struct shrinker * shrink,struct shrink_control * sc)1625 static unsigned long ext4_es_scan(struct shrinker *shrink,
1626 struct shrink_control *sc)
1627 {
1628 struct ext4_sb_info *sbi = container_of(shrink,
1629 struct ext4_sb_info, s_es_shrinker);
1630 int nr_to_scan = sc->nr_to_scan;
1631 int ret, nr_shrunk;
1632
1633 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1634 trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1635
1636 nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1637
1638 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1639 trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1640 return nr_shrunk;
1641 }
1642
ext4_seq_es_shrinker_info_show(struct seq_file * seq,void * v)1643 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1644 {
1645 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1646 struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1647 struct ext4_inode_info *ei, *max = NULL;
1648 unsigned int inode_cnt = 0;
1649
1650 if (v != SEQ_START_TOKEN)
1651 return 0;
1652
1653 /* here we just find an inode that has the max nr. of objects */
1654 spin_lock(&sbi->s_es_lock);
1655 list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1656 inode_cnt++;
1657 if (max && max->i_es_all_nr < ei->i_es_all_nr)
1658 max = ei;
1659 else if (!max)
1660 max = ei;
1661 }
1662 spin_unlock(&sbi->s_es_lock);
1663
1664 seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n",
1665 percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1666 percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1667 seq_printf(seq, " %lld/%lld cache hits/misses\n",
1668 percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1669 percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1670 if (inode_cnt)
1671 seq_printf(seq, " %d inodes on list\n", inode_cnt);
1672
1673 seq_printf(seq, "average:\n %llu us scan time\n",
1674 div_u64(es_stats->es_stats_scan_time, 1000));
1675 seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk);
1676 if (inode_cnt)
1677 seq_printf(seq,
1678 "maximum:\n %lu inode (%u objects, %u reclaimable)\n"
1679 " %llu us max scan time\n",
1680 max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1681 div_u64(es_stats->es_stats_max_scan_time, 1000));
1682
1683 return 0;
1684 }
1685
ext4_es_register_shrinker(struct ext4_sb_info * sbi)1686 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1687 {
1688 int err;
1689
1690 /* Make sure we have enough bits for physical block number */
1691 BUILD_BUG_ON(ES_SHIFT < 48);
1692 INIT_LIST_HEAD(&sbi->s_es_list);
1693 sbi->s_es_nr_inode = 0;
1694 spin_lock_init(&sbi->s_es_lock);
1695 sbi->s_es_stats.es_stats_shrunk = 0;
1696 err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1697 GFP_KERNEL);
1698 if (err)
1699 return err;
1700 err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1701 GFP_KERNEL);
1702 if (err)
1703 goto err1;
1704 sbi->s_es_stats.es_stats_scan_time = 0;
1705 sbi->s_es_stats.es_stats_max_scan_time = 0;
1706 err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1707 if (err)
1708 goto err2;
1709 err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1710 if (err)
1711 goto err3;
1712
1713 sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1714 sbi->s_es_shrinker.count_objects = ext4_es_count;
1715 sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1716 err = register_shrinker(&sbi->s_es_shrinker);
1717 if (err)
1718 goto err4;
1719
1720 return 0;
1721 err4:
1722 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1723 err3:
1724 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1725 err2:
1726 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1727 err1:
1728 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1729 return err;
1730 }
1731
ext4_es_unregister_shrinker(struct ext4_sb_info * sbi)1732 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1733 {
1734 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1735 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1736 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1737 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1738 unregister_shrinker(&sbi->s_es_shrinker);
1739 }
1740
1741 /*
1742 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1743 * most *nr_to_scan extents, update *nr_to_scan accordingly.
1744 *
1745 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1746 * Increment *nr_shrunk by the number of reclaimed extents. Also update
1747 * ei->i_es_shrink_lblk to where we should continue scanning.
1748 */
es_do_reclaim_extents(struct ext4_inode_info * ei,ext4_lblk_t end,int * nr_to_scan,int * nr_shrunk)1749 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1750 int *nr_to_scan, int *nr_shrunk)
1751 {
1752 struct inode *inode = &ei->vfs_inode;
1753 struct ext4_es_tree *tree = &ei->i_es_tree;
1754 struct extent_status *es;
1755 struct rb_node *node;
1756
1757 es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1758 if (!es)
1759 goto out_wrap;
1760
1761 while (*nr_to_scan > 0) {
1762 if (es->es_lblk > end) {
1763 ei->i_es_shrink_lblk = end + 1;
1764 return 0;
1765 }
1766
1767 (*nr_to_scan)--;
1768 node = rb_next(&es->rb_node);
1769
1770 if (ext4_es_must_keep(es))
1771 goto next;
1772 if (ext4_es_is_referenced(es)) {
1773 ext4_es_clear_referenced(es);
1774 goto next;
1775 }
1776
1777 rb_erase(&es->rb_node, &tree->root);
1778 ext4_es_free_extent(inode, es);
1779 (*nr_shrunk)++;
1780 next:
1781 if (!node)
1782 goto out_wrap;
1783 es = rb_entry(node, struct extent_status, rb_node);
1784 }
1785 ei->i_es_shrink_lblk = es->es_lblk;
1786 return 1;
1787 out_wrap:
1788 ei->i_es_shrink_lblk = 0;
1789 return 0;
1790 }
1791
es_reclaim_extents(struct ext4_inode_info * ei,int * nr_to_scan)1792 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1793 {
1794 struct inode *inode = &ei->vfs_inode;
1795 int nr_shrunk = 0;
1796 ext4_lblk_t start = ei->i_es_shrink_lblk;
1797 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1798 DEFAULT_RATELIMIT_BURST);
1799
1800 if (ei->i_es_shk_nr == 0)
1801 return 0;
1802
1803 if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1804 __ratelimit(&_rs))
1805 ext4_warning(inode->i_sb, "forced shrink of precached extents");
1806
1807 if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1808 start != 0)
1809 es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1810
1811 ei->i_es_tree.cache_es = NULL;
1812 return nr_shrunk;
1813 }
1814
1815 /*
1816 * Called to support EXT4_IOC_CLEAR_ES_CACHE. We can only remove
1817 * discretionary entries from the extent status cache. (Some entries
1818 * must be present for proper operations.)
1819 */
ext4_clear_inode_es(struct inode * inode)1820 void ext4_clear_inode_es(struct inode *inode)
1821 {
1822 struct ext4_inode_info *ei = EXT4_I(inode);
1823 struct extent_status *es;
1824 struct ext4_es_tree *tree;
1825 struct rb_node *node;
1826
1827 write_lock(&ei->i_es_lock);
1828 tree = &EXT4_I(inode)->i_es_tree;
1829 tree->cache_es = NULL;
1830 node = rb_first(&tree->root);
1831 while (node) {
1832 es = rb_entry(node, struct extent_status, rb_node);
1833 node = rb_next(node);
1834 if (!ext4_es_must_keep(es)) {
1835 rb_erase(&es->rb_node, &tree->root);
1836 ext4_es_free_extent(inode, es);
1837 }
1838 }
1839 ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1840 write_unlock(&ei->i_es_lock);
1841 }
1842
1843 #ifdef ES_DEBUG__
ext4_print_pending_tree(struct inode * inode)1844 static void ext4_print_pending_tree(struct inode *inode)
1845 {
1846 struct ext4_pending_tree *tree;
1847 struct rb_node *node;
1848 struct pending_reservation *pr;
1849
1850 printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1851 tree = &EXT4_I(inode)->i_pending_tree;
1852 node = rb_first(&tree->root);
1853 while (node) {
1854 pr = rb_entry(node, struct pending_reservation, rb_node);
1855 printk(KERN_DEBUG " %u", pr->lclu);
1856 node = rb_next(node);
1857 }
1858 printk(KERN_DEBUG "\n");
1859 }
1860 #else
1861 #define ext4_print_pending_tree(inode)
1862 #endif
1863
ext4_init_pending(void)1864 int __init ext4_init_pending(void)
1865 {
1866 ext4_pending_cachep = kmem_cache_create("ext4_pending_reservation",
1867 sizeof(struct pending_reservation),
1868 0, (SLAB_RECLAIM_ACCOUNT), NULL);
1869 if (ext4_pending_cachep == NULL)
1870 return -ENOMEM;
1871 return 0;
1872 }
1873
ext4_exit_pending(void)1874 void ext4_exit_pending(void)
1875 {
1876 kmem_cache_destroy(ext4_pending_cachep);
1877 }
1878
ext4_init_pending_tree(struct ext4_pending_tree * tree)1879 void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1880 {
1881 tree->root = RB_ROOT;
1882 }
1883
1884 /*
1885 * __get_pending - retrieve a pointer to a pending reservation
1886 *
1887 * @inode - file containing the pending cluster reservation
1888 * @lclu - logical cluster of interest
1889 *
1890 * Returns a pointer to a pending reservation if it's a member of
1891 * the set, and NULL if not. Must be called holding i_es_lock.
1892 */
__get_pending(struct inode * inode,ext4_lblk_t lclu)1893 static struct pending_reservation *__get_pending(struct inode *inode,
1894 ext4_lblk_t lclu)
1895 {
1896 struct ext4_pending_tree *tree;
1897 struct rb_node *node;
1898 struct pending_reservation *pr = NULL;
1899
1900 tree = &EXT4_I(inode)->i_pending_tree;
1901 node = (&tree->root)->rb_node;
1902
1903 while (node) {
1904 pr = rb_entry(node, struct pending_reservation, rb_node);
1905 if (lclu < pr->lclu)
1906 node = node->rb_left;
1907 else if (lclu > pr->lclu)
1908 node = node->rb_right;
1909 else if (lclu == pr->lclu)
1910 return pr;
1911 }
1912 return NULL;
1913 }
1914
1915 /*
1916 * __insert_pending - adds a pending cluster reservation to the set of
1917 * pending reservations
1918 *
1919 * @inode - file containing the cluster
1920 * @lblk - logical block in the cluster to be added
1921 * @prealloc - preallocated pending entry
1922 *
1923 * Returns 0 on successful insertion and -ENOMEM on failure. If the
1924 * pending reservation is already in the set, returns successfully.
1925 */
__insert_pending(struct inode * inode,ext4_lblk_t lblk,struct pending_reservation ** prealloc)1926 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk,
1927 struct pending_reservation **prealloc)
1928 {
1929 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1930 struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1931 struct rb_node **p = &tree->root.rb_node;
1932 struct rb_node *parent = NULL;
1933 struct pending_reservation *pr;
1934 ext4_lblk_t lclu;
1935 int ret = 0;
1936
1937 lclu = EXT4_B2C(sbi, lblk);
1938 /* search to find parent for insertion */
1939 while (*p) {
1940 parent = *p;
1941 pr = rb_entry(parent, struct pending_reservation, rb_node);
1942
1943 if (lclu < pr->lclu) {
1944 p = &(*p)->rb_left;
1945 } else if (lclu > pr->lclu) {
1946 p = &(*p)->rb_right;
1947 } else {
1948 /* pending reservation already inserted */
1949 goto out;
1950 }
1951 }
1952
1953 if (likely(*prealloc == NULL)) {
1954 pr = __alloc_pending(false);
1955 if (!pr) {
1956 ret = -ENOMEM;
1957 goto out;
1958 }
1959 } else {
1960 pr = *prealloc;
1961 *prealloc = NULL;
1962 }
1963 pr->lclu = lclu;
1964
1965 rb_link_node(&pr->rb_node, parent, p);
1966 rb_insert_color(&pr->rb_node, &tree->root);
1967
1968 out:
1969 return ret;
1970 }
1971
1972 /*
1973 * __remove_pending - removes a pending cluster reservation from the set
1974 * of pending reservations
1975 *
1976 * @inode - file containing the cluster
1977 * @lblk - logical block in the pending cluster reservation to be removed
1978 *
1979 * Returns successfully if pending reservation is not a member of the set.
1980 */
__remove_pending(struct inode * inode,ext4_lblk_t lblk)1981 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
1982 {
1983 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1984 struct pending_reservation *pr;
1985 struct ext4_pending_tree *tree;
1986
1987 pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
1988 if (pr != NULL) {
1989 tree = &EXT4_I(inode)->i_pending_tree;
1990 rb_erase(&pr->rb_node, &tree->root);
1991 __free_pending(pr);
1992 }
1993 }
1994
1995 /*
1996 * ext4_remove_pending - removes a pending cluster reservation from the set
1997 * of pending reservations
1998 *
1999 * @inode - file containing the cluster
2000 * @lblk - logical block in the pending cluster reservation to be removed
2001 *
2002 * Locking for external use of __remove_pending.
2003 */
ext4_remove_pending(struct inode * inode,ext4_lblk_t lblk)2004 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
2005 {
2006 struct ext4_inode_info *ei = EXT4_I(inode);
2007
2008 write_lock(&ei->i_es_lock);
2009 __remove_pending(inode, lblk);
2010 write_unlock(&ei->i_es_lock);
2011 }
2012
2013 /*
2014 * ext4_is_pending - determine whether a cluster has a pending reservation
2015 * on it
2016 *
2017 * @inode - file containing the cluster
2018 * @lblk - logical block in the cluster
2019 *
2020 * Returns true if there's a pending reservation for the cluster in the
2021 * set of pending reservations, and false if not.
2022 */
ext4_is_pending(struct inode * inode,ext4_lblk_t lblk)2023 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
2024 {
2025 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2026 struct ext4_inode_info *ei = EXT4_I(inode);
2027 bool ret;
2028
2029 read_lock(&ei->i_es_lock);
2030 ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
2031 read_unlock(&ei->i_es_lock);
2032
2033 return ret;
2034 }
2035
2036 /*
2037 * ext4_es_insert_delayed_block - adds a delayed block to the extents status
2038 * tree, adding a pending reservation where
2039 * needed
2040 *
2041 * @inode - file containing the newly added block
2042 * @lblk - logical block to be added
2043 * @allocated - indicates whether a physical cluster has been allocated for
2044 * the logical cluster that contains the block
2045 *
2046 * Returns 0 on success, negative error code on failure.
2047 */
ext4_es_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk,bool allocated)2048 int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
2049 bool allocated)
2050 {
2051 struct extent_status newes;
2052 int err1 = 0, err2 = 0, err3 = 0;
2053 struct extent_status *es1 = NULL;
2054 struct extent_status *es2 = NULL;
2055 struct pending_reservation *pr = NULL;
2056
2057 es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
2058 lblk, inode->i_ino);
2059
2060 newes.es_lblk = lblk;
2061 newes.es_len = 1;
2062 ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2063 trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
2064
2065 ext4_es_insert_extent_check(inode, &newes);
2066
2067 retry:
2068 if (err1 && !es1)
2069 es1 = __es_alloc_extent(true);
2070 if ((err1 || err2) && !es2)
2071 es2 = __es_alloc_extent(true);
2072 if ((err1 || err2 || err3) && allocated && !pr)
2073 pr = __alloc_pending(true);
2074 write_lock(&EXT4_I(inode)->i_es_lock);
2075
2076 err1 = __es_remove_extent(inode, lblk, lblk, NULL, es1);
2077 if (err1 != 0)
2078 goto error;
2079 /* Free preallocated extent if it didn't get used. */
2080 if (es1) {
2081 if (!es1->es_len)
2082 __es_free_extent(es1);
2083 es1 = NULL;
2084 }
2085
2086 err2 = __es_insert_extent(inode, &newes, es2);
2087 if (err2 != 0)
2088 goto error;
2089 /* Free preallocated extent if it didn't get used. */
2090 if (es2) {
2091 if (!es2->es_len)
2092 __es_free_extent(es2);
2093 es2 = NULL;
2094 }
2095
2096 if (allocated) {
2097 err3 = __insert_pending(inode, lblk, &pr);
2098 if (err3 != 0)
2099 goto error;
2100 if (pr) {
2101 __free_pending(pr);
2102 pr = NULL;
2103 }
2104 }
2105 error:
2106 write_unlock(&EXT4_I(inode)->i_es_lock);
2107 if (err1 || err2 || err3)
2108 goto retry;
2109
2110 ext4_es_print_tree(inode);
2111 ext4_print_pending_tree(inode);
2112 return 0;
2113 }
2114
2115 /*
2116 * __es_delayed_clu - count number of clusters containing blocks that
2117 * are delayed only
2118 *
2119 * @inode - file containing block range
2120 * @start - logical block defining start of range
2121 * @end - logical block defining end of range
2122 *
2123 * Returns the number of clusters containing only delayed (not delayed
2124 * and unwritten) blocks in the range specified by @start and @end. Any
2125 * cluster or part of a cluster within the range and containing a delayed
2126 * and not unwritten block within the range is counted as a whole cluster.
2127 */
__es_delayed_clu(struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)2128 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2129 ext4_lblk_t end)
2130 {
2131 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2132 struct extent_status *es;
2133 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2134 struct rb_node *node;
2135 ext4_lblk_t first_lclu, last_lclu;
2136 unsigned long long last_counted_lclu;
2137 unsigned int n = 0;
2138
2139 /* guaranteed to be unequal to any ext4_lblk_t value */
2140 last_counted_lclu = ~0ULL;
2141
2142 es = __es_tree_search(&tree->root, start);
2143
2144 while (es && (es->es_lblk <= end)) {
2145 if (ext4_es_is_delonly(es)) {
2146 if (es->es_lblk <= start)
2147 first_lclu = EXT4_B2C(sbi, start);
2148 else
2149 first_lclu = EXT4_B2C(sbi, es->es_lblk);
2150
2151 if (ext4_es_end(es) >= end)
2152 last_lclu = EXT4_B2C(sbi, end);
2153 else
2154 last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2155
2156 if (first_lclu == last_counted_lclu)
2157 n += last_lclu - first_lclu;
2158 else
2159 n += last_lclu - first_lclu + 1;
2160 last_counted_lclu = last_lclu;
2161 }
2162 node = rb_next(&es->rb_node);
2163 if (!node)
2164 break;
2165 es = rb_entry(node, struct extent_status, rb_node);
2166 }
2167
2168 return n;
2169 }
2170
2171 /*
2172 * ext4_es_delayed_clu - count number of clusters containing blocks that
2173 * are both delayed and unwritten
2174 *
2175 * @inode - file containing block range
2176 * @lblk - logical block defining start of range
2177 * @len - number of blocks in range
2178 *
2179 * Locking for external use of __es_delayed_clu().
2180 */
ext4_es_delayed_clu(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)2181 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2182 ext4_lblk_t len)
2183 {
2184 struct ext4_inode_info *ei = EXT4_I(inode);
2185 ext4_lblk_t end;
2186 unsigned int n;
2187
2188 if (len == 0)
2189 return 0;
2190
2191 end = lblk + len - 1;
2192 WARN_ON(end < lblk);
2193
2194 read_lock(&ei->i_es_lock);
2195
2196 n = __es_delayed_clu(inode, lblk, end);
2197
2198 read_unlock(&ei->i_es_lock);
2199
2200 return n;
2201 }
2202
2203 /*
2204 * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2205 * reservations for a specified block range depending
2206 * upon the presence or absence of delayed blocks
2207 * outside the range within clusters at the ends of the
2208 * range
2209 *
2210 * @inode - file containing the range
2211 * @lblk - logical block defining the start of range
2212 * @len - length of range in blocks
2213 * @prealloc - preallocated pending entry
2214 *
2215 * Used after a newly allocated extent is added to the extents status tree.
2216 * Requires that the extents in the range have either written or unwritten
2217 * status. Must be called while holding i_es_lock.
2218 */
__revise_pending(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,struct pending_reservation ** prealloc)2219 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2220 ext4_lblk_t len,
2221 struct pending_reservation **prealloc)
2222 {
2223 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2224 ext4_lblk_t end = lblk + len - 1;
2225 ext4_lblk_t first, last;
2226 bool f_del = false, l_del = false;
2227 int ret = 0;
2228
2229 if (len == 0)
2230 return 0;
2231
2232 /*
2233 * Two cases - block range within single cluster and block range
2234 * spanning two or more clusters. Note that a cluster belonging
2235 * to a range starting and/or ending on a cluster boundary is treated
2236 * as if it does not contain a delayed extent. The new range may
2237 * have allocated space for previously delayed blocks out to the
2238 * cluster boundary, requiring that any pre-existing pending
2239 * reservation be canceled. Because this code only looks at blocks
2240 * outside the range, it should revise pending reservations
2241 * correctly even if the extent represented by the range can't be
2242 * inserted in the extents status tree due to ENOSPC.
2243 */
2244
2245 if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2246 first = EXT4_LBLK_CMASK(sbi, lblk);
2247 if (first != lblk)
2248 f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2249 first, lblk - 1);
2250 if (f_del) {
2251 ret = __insert_pending(inode, first, prealloc);
2252 if (ret < 0)
2253 goto out;
2254 } else {
2255 last = EXT4_LBLK_CMASK(sbi, end) +
2256 sbi->s_cluster_ratio - 1;
2257 if (last != end)
2258 l_del = __es_scan_range(inode,
2259 &ext4_es_is_delonly,
2260 end + 1, last);
2261 if (l_del) {
2262 ret = __insert_pending(inode, last, prealloc);
2263 if (ret < 0)
2264 goto out;
2265 } else
2266 __remove_pending(inode, last);
2267 }
2268 } else {
2269 first = EXT4_LBLK_CMASK(sbi, lblk);
2270 if (first != lblk)
2271 f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2272 first, lblk - 1);
2273 if (f_del) {
2274 ret = __insert_pending(inode, first, prealloc);
2275 if (ret < 0)
2276 goto out;
2277 } else
2278 __remove_pending(inode, first);
2279
2280 last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2281 if (last != end)
2282 l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2283 end + 1, last);
2284 if (l_del) {
2285 ret = __insert_pending(inode, last, prealloc);
2286 if (ret < 0)
2287 goto out;
2288 } else
2289 __remove_pending(inode, last);
2290 }
2291 out:
2292 return ret;
2293 }
2294