• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/page-io.c
4  *
5  * This contains the new page_io functions for ext4
6  *
7  * Written by Theodore Ts'o, 2010.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/backing-dev.h>
28 
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32 
33 static struct kmem_cache *io_end_cachep;
34 
ext4_init_pageio(void)35 int __init ext4_init_pageio(void)
36 {
37 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
38 	if (io_end_cachep == NULL)
39 		return -ENOMEM;
40 	return 0;
41 }
42 
ext4_exit_pageio(void)43 void ext4_exit_pageio(void)
44 {
45 	kmem_cache_destroy(io_end_cachep);
46 }
47 
48 /*
49  * Print an buffer I/O error compatible with the fs/buffer.c.  This
50  * provides compatibility with dmesg scrapers that look for a specific
51  * buffer I/O error message.  We really need a unified error reporting
52  * structure to userspace ala Digital Unix's uerf system, but it's
53  * probably not going to happen in my lifetime, due to LKML politics...
54  */
buffer_io_error(struct buffer_head * bh)55 static void buffer_io_error(struct buffer_head *bh)
56 {
57 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
58 		       bh->b_bdev,
59 			(unsigned long long)bh->b_blocknr);
60 }
61 
ext4_finish_bio(struct bio * bio)62 static void ext4_finish_bio(struct bio *bio)
63 {
64 	struct bio_vec *bvec;
65 	struct bvec_iter_all iter_all;
66 
67 	bio_for_each_segment_all(bvec, bio, iter_all) {
68 		struct page *page = bvec->bv_page;
69 		struct page *bounce_page = NULL;
70 		struct buffer_head *bh, *head;
71 		unsigned bio_start = bvec->bv_offset;
72 		unsigned bio_end = bio_start + bvec->bv_len;
73 		unsigned under_io = 0;
74 		unsigned long flags;
75 
76 		if (!page)
77 			continue;
78 
79 		if (fscrypt_is_bounce_page(page)) {
80 			bounce_page = page;
81 			page = fscrypt_pagecache_page(bounce_page);
82 		}
83 
84 		if (bio->bi_status) {
85 			SetPageError(page);
86 			mapping_set_error(page->mapping, -EIO);
87 		}
88 		bh = head = page_buffers(page);
89 		/*
90 		 * We check all buffers in the page under BH_Uptodate_Lock
91 		 * to avoid races with other end io clearing async_write flags
92 		 */
93 		local_irq_save(flags);
94 		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
95 		do {
96 			if (bh_offset(bh) < bio_start ||
97 			    bh_offset(bh) + bh->b_size > bio_end) {
98 				if (buffer_async_write(bh))
99 					under_io++;
100 				continue;
101 			}
102 			clear_buffer_async_write(bh);
103 			if (bio->bi_status) {
104 				set_buffer_write_io_error(bh);
105 				buffer_io_error(bh);
106 			}
107 		} while ((bh = bh->b_this_page) != head);
108 		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
109 		local_irq_restore(flags);
110 		if (!under_io) {
111 			fscrypt_free_bounce_page(bounce_page);
112 			end_page_writeback(page);
113 		}
114 	}
115 }
116 
ext4_release_io_end(ext4_io_end_t * io_end)117 static void ext4_release_io_end(ext4_io_end_t *io_end)
118 {
119 	struct bio *bio, *next_bio;
120 
121 	BUG_ON(!list_empty(&io_end->list));
122 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
123 	WARN_ON(io_end->handle);
124 
125 	for (bio = io_end->bio; bio; bio = next_bio) {
126 		next_bio = bio->bi_private;
127 		ext4_finish_bio(bio);
128 		bio_put(bio);
129 	}
130 	kmem_cache_free(io_end_cachep, io_end);
131 }
132 
133 /*
134  * Check a range of space and convert unwritten extents to written. Note that
135  * we are protected from truncate touching same part of extent tree by the
136  * fact that truncate code waits for all DIO to finish (thus exclusion from
137  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
138  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
139  * completed (happens from ext4_free_ioend()).
140  */
ext4_end_io(ext4_io_end_t * io)141 static int ext4_end_io(ext4_io_end_t *io)
142 {
143 	struct inode *inode = io->inode;
144 	loff_t offset = io->offset;
145 	ssize_t size = io->size;
146 	handle_t *handle = io->handle;
147 	int ret = 0;
148 
149 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
150 		   "list->prev 0x%p\n",
151 		   io, inode->i_ino, io->list.next, io->list.prev);
152 
153 	io->handle = NULL;	/* Following call will use up the handle */
154 	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
155 	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
156 		ext4_msg(inode->i_sb, KERN_EMERG,
157 			 "failed to convert unwritten extents to written "
158 			 "extents -- potential data loss!  "
159 			 "(inode %lu, offset %llu, size %zd, error %d)",
160 			 inode->i_ino, offset, size, ret);
161 	}
162 	ext4_clear_io_unwritten_flag(io);
163 	ext4_release_io_end(io);
164 	return ret;
165 }
166 
dump_completed_IO(struct inode * inode,struct list_head * head)167 static void dump_completed_IO(struct inode *inode, struct list_head *head)
168 {
169 #ifdef	EXT4FS_DEBUG
170 	struct list_head *cur, *before, *after;
171 	ext4_io_end_t *io, *io0, *io1;
172 
173 	if (list_empty(head))
174 		return;
175 
176 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
177 	list_for_each_entry(io, head, list) {
178 		cur = &io->list;
179 		before = cur->prev;
180 		io0 = container_of(before, ext4_io_end_t, list);
181 		after = cur->next;
182 		io1 = container_of(after, ext4_io_end_t, list);
183 
184 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
185 			    io, inode->i_ino, io0, io1);
186 	}
187 #endif
188 }
189 
190 /* Add the io_end to per-inode completed end_io list. */
ext4_add_complete_io(ext4_io_end_t * io_end)191 static void ext4_add_complete_io(ext4_io_end_t *io_end)
192 {
193 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
194 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
195 	struct workqueue_struct *wq;
196 	unsigned long flags;
197 
198 	/* Only reserved conversions from writeback should enter here */
199 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
200 	WARN_ON(!io_end->handle && sbi->s_journal);
201 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
202 	wq = sbi->rsv_conversion_wq;
203 	if (list_empty(&ei->i_rsv_conversion_list))
204 		queue_work(wq, &ei->i_rsv_conversion_work);
205 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
206 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
207 }
208 
ext4_do_flush_completed_IO(struct inode * inode,struct list_head * head)209 static int ext4_do_flush_completed_IO(struct inode *inode,
210 				      struct list_head *head)
211 {
212 	ext4_io_end_t *io;
213 	struct list_head unwritten;
214 	unsigned long flags;
215 	struct ext4_inode_info *ei = EXT4_I(inode);
216 	int err, ret = 0;
217 
218 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
219 	dump_completed_IO(inode, head);
220 	list_replace_init(head, &unwritten);
221 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
222 
223 	while (!list_empty(&unwritten)) {
224 		io = list_entry(unwritten.next, ext4_io_end_t, list);
225 		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
226 		list_del_init(&io->list);
227 
228 		err = ext4_end_io(io);
229 		if (unlikely(!ret && err))
230 			ret = err;
231 	}
232 	return ret;
233 }
234 
235 /*
236  * work on completed IO, to convert unwritten extents to extents
237  */
ext4_end_io_rsv_work(struct work_struct * work)238 void ext4_end_io_rsv_work(struct work_struct *work)
239 {
240 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
241 						  i_rsv_conversion_work);
242 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
243 }
244 
ext4_init_io_end(struct inode * inode,gfp_t flags)245 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
246 {
247 	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
248 	if (io) {
249 		io->inode = inode;
250 		INIT_LIST_HEAD(&io->list);
251 		atomic_set(&io->count, 1);
252 	}
253 	return io;
254 }
255 
ext4_put_io_end_defer(ext4_io_end_t * io_end)256 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
257 {
258 	if (atomic_dec_and_test(&io_end->count)) {
259 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
260 			ext4_release_io_end(io_end);
261 			return;
262 		}
263 		ext4_add_complete_io(io_end);
264 	}
265 }
266 
ext4_put_io_end(ext4_io_end_t * io_end)267 int ext4_put_io_end(ext4_io_end_t *io_end)
268 {
269 	int err = 0;
270 
271 	if (atomic_dec_and_test(&io_end->count)) {
272 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
273 			err = ext4_convert_unwritten_extents(io_end->handle,
274 						io_end->inode, io_end->offset,
275 						io_end->size);
276 			io_end->handle = NULL;
277 			ext4_clear_io_unwritten_flag(io_end);
278 		}
279 		ext4_release_io_end(io_end);
280 	}
281 	return err;
282 }
283 
ext4_get_io_end(ext4_io_end_t * io_end)284 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
285 {
286 	atomic_inc(&io_end->count);
287 	return io_end;
288 }
289 
290 /* BIO completion function for page writeback */
ext4_end_bio(struct bio * bio)291 static void ext4_end_bio(struct bio *bio)
292 {
293 	ext4_io_end_t *io_end = bio->bi_private;
294 	sector_t bi_sector = bio->bi_iter.bi_sector;
295 	char b[BDEVNAME_SIZE];
296 
297 	if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
298 		      bio_devname(bio, b),
299 		      (long long) bio->bi_iter.bi_sector,
300 		      (unsigned) bio_sectors(bio),
301 		      bio->bi_status)) {
302 		ext4_finish_bio(bio);
303 		bio_put(bio);
304 		return;
305 	}
306 	bio->bi_end_io = NULL;
307 
308 	if (bio->bi_status) {
309 		struct inode *inode = io_end->inode;
310 
311 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
312 			     "(offset %llu size %ld starting block %llu)",
313 			     bio->bi_status, inode->i_ino,
314 			     (unsigned long long) io_end->offset,
315 			     (long) io_end->size,
316 			     (unsigned long long)
317 			     bi_sector >> (inode->i_blkbits - 9));
318 		mapping_set_error(inode->i_mapping,
319 				blk_status_to_errno(bio->bi_status));
320 	}
321 
322 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
323 		/*
324 		 * Link bio into list hanging from io_end. We have to do it
325 		 * atomically as bio completions can be racing against each
326 		 * other.
327 		 */
328 		bio->bi_private = xchg(&io_end->bio, bio);
329 		ext4_put_io_end_defer(io_end);
330 	} else {
331 		/*
332 		 * Drop io_end reference early. Inode can get freed once
333 		 * we finish the bio.
334 		 */
335 		ext4_put_io_end_defer(io_end);
336 		ext4_finish_bio(bio);
337 		bio_put(bio);
338 	}
339 }
340 
ext4_io_submit(struct ext4_io_submit * io)341 void ext4_io_submit(struct ext4_io_submit *io)
342 {
343 	struct bio *bio = io->io_bio;
344 
345 	if (bio) {
346 		int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
347 				  REQ_SYNC : 0;
348 		io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
349 		bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
350 		submit_bio(io->io_bio);
351 	}
352 	io->io_bio = NULL;
353 }
354 
ext4_io_submit_init(struct ext4_io_submit * io,struct writeback_control * wbc)355 void ext4_io_submit_init(struct ext4_io_submit *io,
356 			 struct writeback_control *wbc)
357 {
358 	io->io_wbc = wbc;
359 	io->io_bio = NULL;
360 	io->io_end = NULL;
361 }
362 
io_submit_init_bio(struct ext4_io_submit * io,struct buffer_head * bh)363 static int io_submit_init_bio(struct ext4_io_submit *io,
364 			      struct buffer_head *bh)
365 {
366 	struct bio *bio;
367 
368 	bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
369 	if (!bio)
370 		return -ENOMEM;
371 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
372 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
373 	bio_set_dev(bio, bh->b_bdev);
374 	bio->bi_end_io = ext4_end_bio;
375 	bio->bi_private = ext4_get_io_end(io->io_end);
376 	io->io_bio = bio;
377 	io->io_next_block = bh->b_blocknr;
378 	wbc_init_bio(io->io_wbc, bio);
379 	return 0;
380 }
381 
io_submit_add_bh(struct ext4_io_submit * io,struct inode * inode,struct page * pagecache_page,struct page * bounce_page,struct buffer_head * bh)382 static int io_submit_add_bh(struct ext4_io_submit *io,
383 			    struct inode *inode,
384 			    struct page *pagecache_page,
385 			    struct page *bounce_page,
386 			    struct buffer_head *bh)
387 {
388 	int ret;
389 
390 	if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
391 			   !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
392 submit_and_retry:
393 		ext4_io_submit(io);
394 	}
395 	if (io->io_bio == NULL) {
396 		ret = io_submit_init_bio(io, bh);
397 		if (ret)
398 			return ret;
399 		io->io_bio->bi_write_hint = inode->i_write_hint;
400 	}
401 	ret = bio_add_page(io->io_bio, bounce_page ?: pagecache_page,
402 			   bh->b_size, bh_offset(bh));
403 	if (ret != bh->b_size)
404 		goto submit_and_retry;
405 	wbc_account_cgroup_owner(io->io_wbc, pagecache_page, bh->b_size);
406 	io->io_next_block++;
407 	return 0;
408 }
409 
ext4_bio_write_page(struct ext4_io_submit * io,struct page * page,int len,struct writeback_control * wbc,bool keep_towrite)410 int ext4_bio_write_page(struct ext4_io_submit *io,
411 			struct page *page,
412 			int len,
413 			struct writeback_control *wbc,
414 			bool keep_towrite)
415 {
416 	struct page *bounce_page = NULL;
417 	struct inode *inode = page->mapping->host;
418 	unsigned block_start;
419 	struct buffer_head *bh, *head;
420 	int ret = 0;
421 	int nr_submitted = 0;
422 	int nr_to_submit = 0;
423 
424 	BUG_ON(!PageLocked(page));
425 	BUG_ON(PageWriteback(page));
426 
427 	if (keep_towrite)
428 		set_page_writeback_keepwrite(page);
429 	else
430 		set_page_writeback(page);
431 	ClearPageError(page);
432 
433 	/*
434 	 * Comments copied from block_write_full_page:
435 	 *
436 	 * The page straddles i_size.  It must be zeroed out on each and every
437 	 * writepage invocation because it may be mmapped.  "A file is mapped
438 	 * in multiples of the page size.  For a file that is not a multiple of
439 	 * the page size, the remaining memory is zeroed when mapped, and
440 	 * writes to that region are not written out to the file."
441 	 */
442 	if (len < PAGE_SIZE)
443 		zero_user_segment(page, len, PAGE_SIZE);
444 	/*
445 	 * In the first loop we prepare and mark buffers to submit. We have to
446 	 * mark all buffers in the page before submitting so that
447 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
448 	 * on the first buffer finishes and we are still working on submitting
449 	 * the second buffer.
450 	 */
451 	bh = head = page_buffers(page);
452 	do {
453 		block_start = bh_offset(bh);
454 		if (block_start >= len) {
455 			clear_buffer_dirty(bh);
456 			set_buffer_uptodate(bh);
457 			continue;
458 		}
459 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
460 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
461 			/* A hole? We can safely clear the dirty bit */
462 			if (!buffer_mapped(bh))
463 				clear_buffer_dirty(bh);
464 			if (io->io_bio)
465 				ext4_io_submit(io);
466 			continue;
467 		}
468 		if (buffer_new(bh))
469 			clear_buffer_new(bh);
470 		set_buffer_async_write(bh);
471 		nr_to_submit++;
472 	} while ((bh = bh->b_this_page) != head);
473 
474 	bh = head = page_buffers(page);
475 
476 	/*
477 	 * If any blocks are being written to an encrypted file, encrypt them
478 	 * into a bounce page.  For simplicity, just encrypt until the last
479 	 * block which might be needed.  This may cause some unneeded blocks
480 	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
481 	 * can't happen in the common case of blocksize == PAGE_SIZE.
482 	 */
483 	if (fscrypt_inode_uses_fs_layer_crypto(inode) && nr_to_submit) {
484 		gfp_t gfp_flags = GFP_NOFS;
485 		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
486 
487 		/*
488 		 * Since bounce page allocation uses a mempool, we can only use
489 		 * a waiting mask (i.e. request guaranteed allocation) on the
490 		 * first page of the bio.  Otherwise it can deadlock.
491 		 */
492 		if (io->io_bio)
493 			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
494 	retry_encrypt:
495 		bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
496 							       0, gfp_flags);
497 		if (IS_ERR(bounce_page)) {
498 			ret = PTR_ERR(bounce_page);
499 			if (ret == -ENOMEM &&
500 			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
501 				gfp_flags = GFP_NOFS;
502 				if (io->io_bio)
503 					ext4_io_submit(io);
504 				else
505 					gfp_flags |= __GFP_NOFAIL;
506 				congestion_wait(BLK_RW_ASYNC, HZ/50);
507 				goto retry_encrypt;
508 			}
509 			bounce_page = NULL;
510 			goto out;
511 		}
512 	}
513 
514 	/* Now submit buffers to write */
515 	do {
516 		if (!buffer_async_write(bh))
517 			continue;
518 		ret = io_submit_add_bh(io, inode, page, bounce_page, bh);
519 		if (ret) {
520 			/*
521 			 * We only get here on ENOMEM.  Not much else
522 			 * we can do but mark the page as dirty, and
523 			 * better luck next time.
524 			 */
525 			break;
526 		}
527 		nr_submitted++;
528 		clear_buffer_dirty(bh);
529 	} while ((bh = bh->b_this_page) != head);
530 
531 	/* Error stopped previous loop? Clean up buffers... */
532 	if (ret) {
533 	out:
534 		fscrypt_free_bounce_page(bounce_page);
535 		printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
536 		redirty_page_for_writepage(wbc, page);
537 		do {
538 			clear_buffer_async_write(bh);
539 			bh = bh->b_this_page;
540 		} while (bh != head);
541 	}
542 	unlock_page(page);
543 	/* Nothing submitted - we have to end page writeback */
544 	if (!nr_submitted)
545 		end_page_writeback(page);
546 	return ret;
547 }
548