1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26
27 /*
28 * Inode locking rules:
29 *
30 * inode->i_lock protects:
31 * inode->i_state, inode->i_hash, __iget()
32 * Inode LRU list locks protect:
33 * inode->i_sb->s_inode_lru, inode->i_lru
34 * inode->i_sb->s_inode_list_lock protects:
35 * inode->i_sb->s_inodes, inode->i_sb_list
36 * bdi->wb.list_lock protects:
37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38 * inode_hash_lock protects:
39 * inode_hashtable, inode->i_hash
40 *
41 * Lock ordering:
42 *
43 * inode->i_sb->s_inode_list_lock
44 * inode->i_lock
45 * Inode LRU list locks
46 *
47 * bdi->wb.list_lock
48 * inode->i_lock
49 *
50 * inode_hash_lock
51 * inode->i_sb->s_inode_list_lock
52 * inode->i_lock
53 *
54 * iunique_lock
55 * inode_hash_lock
56 */
57
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 static struct hlist_head *inode_hashtable __read_mostly;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62
63 /*
64 * Empty aops. Can be used for the cases where the user does not
65 * define any of the address_space operations.
66 */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70
71 /*
72 * Statistics gathering..
73 */
74 struct inodes_stat_t inodes_stat;
75
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78
79 static struct kmem_cache *inode_cachep __read_mostly;
80
get_nr_inodes(void)81 static long get_nr_inodes(void)
82 {
83 int i;
84 long sum = 0;
85 for_each_possible_cpu(i)
86 sum += per_cpu(nr_inodes, i);
87 return sum < 0 ? 0 : sum;
88 }
89
get_nr_inodes_unused(void)90 static inline long get_nr_inodes_unused(void)
91 {
92 int i;
93 long sum = 0;
94 for_each_possible_cpu(i)
95 sum += per_cpu(nr_unused, i);
96 return sum < 0 ? 0 : sum;
97 }
98
get_nr_dirty_inodes(void)99 long get_nr_dirty_inodes(void)
100 {
101 /* not actually dirty inodes, but a wild approximation */
102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 return nr_dirty > 0 ? nr_dirty : 0;
104 }
105
106 /*
107 * Handle nr_inode sysctl
108 */
109 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)110 int proc_nr_inodes(struct ctl_table *table, int write,
111 void __user *buffer, size_t *lenp, loff_t *ppos)
112 {
113 inodes_stat.nr_inodes = get_nr_inodes();
114 inodes_stat.nr_unused = get_nr_inodes_unused();
115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 #endif
118
no_open(struct inode * inode,struct file * file)119 static int no_open(struct inode *inode, struct file *file)
120 {
121 return -ENXIO;
122 }
123
124 /**
125 * inode_init_always - perform inode structure initialisation
126 * @sb: superblock inode belongs to
127 * @inode: inode to initialise
128 *
129 * These are initializations that need to be done on every inode
130 * allocation as the fields are not initialised by slab allocation.
131 */
inode_init_always(struct super_block * sb,struct inode * inode)132 int inode_init_always(struct super_block *sb, struct inode *inode)
133 {
134 static const struct inode_operations empty_iops;
135 static const struct file_operations no_open_fops = {.open = no_open};
136 struct address_space *const mapping = &inode->i_data;
137
138 inode->i_sb = sb;
139 inode->i_blkbits = sb->s_blocksize_bits;
140 inode->i_flags = 0;
141 atomic64_set(&inode->i_sequence, 0);
142 atomic_set(&inode->i_count, 1);
143 inode->i_op = &empty_iops;
144 inode->i_fop = &no_open_fops;
145 inode->__i_nlink = 1;
146 inode->i_opflags = 0;
147 if (sb->s_xattr)
148 inode->i_opflags |= IOP_XATTR;
149 i_uid_write(inode, 0);
150 i_gid_write(inode, 0);
151 atomic_set(&inode->i_writecount, 0);
152 inode->i_size = 0;
153 inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 inode->i_blocks = 0;
155 inode->i_bytes = 0;
156 inode->i_generation = 0;
157 inode->i_pipe = NULL;
158 inode->i_bdev = NULL;
159 inode->i_cdev = NULL;
160 inode->i_link = NULL;
161 inode->i_dir_seq = 0;
162 inode->i_rdev = 0;
163 inode->dirtied_when = 0;
164
165 #ifdef CONFIG_CGROUP_WRITEBACK
166 inode->i_wb_frn_winner = 0;
167 inode->i_wb_frn_avg_time = 0;
168 inode->i_wb_frn_history = 0;
169 #endif
170
171 spin_lock_init(&inode->i_lock);
172 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173
174 init_rwsem(&inode->i_rwsem);
175 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176
177 atomic_set(&inode->i_dio_count, 0);
178
179 mapping->a_ops = &empty_aops;
180 mapping->host = inode;
181 mapping->flags = 0;
182 mapping->wb_err = 0;
183 atomic_set(&mapping->i_mmap_writable, 0);
184 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
185 atomic_set(&mapping->nr_thps, 0);
186 #endif
187 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
188 mapping->private_data = NULL;
189 mapping->writeback_index = 0;
190 inode->i_private = NULL;
191 inode->i_mapping = mapping;
192 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
193 #ifdef CONFIG_FS_POSIX_ACL
194 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
195 #endif
196
197 #ifdef CONFIG_FSNOTIFY
198 inode->i_fsnotify_mask = 0;
199 #endif
200 inode->i_flctx = NULL;
201
202 if (unlikely(security_inode_alloc(inode)))
203 return -ENOMEM;
204 this_cpu_inc(nr_inodes);
205
206 return 0;
207 }
208 EXPORT_SYMBOL(inode_init_always);
209
free_inode_nonrcu(struct inode * inode)210 void free_inode_nonrcu(struct inode *inode)
211 {
212 kmem_cache_free(inode_cachep, inode);
213 }
214 EXPORT_SYMBOL(free_inode_nonrcu);
215
i_callback(struct rcu_head * head)216 static void i_callback(struct rcu_head *head)
217 {
218 struct inode *inode = container_of(head, struct inode, i_rcu);
219 if (inode->free_inode)
220 inode->free_inode(inode);
221 else
222 free_inode_nonrcu(inode);
223 }
224
alloc_inode(struct super_block * sb)225 static struct inode *alloc_inode(struct super_block *sb)
226 {
227 const struct super_operations *ops = sb->s_op;
228 struct inode *inode;
229
230 if (ops->alloc_inode)
231 inode = ops->alloc_inode(sb);
232 else
233 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
234
235 if (!inode)
236 return NULL;
237
238 if (unlikely(inode_init_always(sb, inode))) {
239 if (ops->destroy_inode) {
240 ops->destroy_inode(inode);
241 if (!ops->free_inode)
242 return NULL;
243 }
244 inode->free_inode = ops->free_inode;
245 i_callback(&inode->i_rcu);
246 return NULL;
247 }
248
249 return inode;
250 }
251
__destroy_inode(struct inode * inode)252 void __destroy_inode(struct inode *inode)
253 {
254 BUG_ON(inode_has_buffers(inode));
255 inode_detach_wb(inode);
256 security_inode_free(inode);
257 fsnotify_inode_delete(inode);
258 locks_free_lock_context(inode);
259 if (!inode->i_nlink) {
260 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
261 atomic_long_dec(&inode->i_sb->s_remove_count);
262 }
263
264 #ifdef CONFIG_FS_POSIX_ACL
265 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
266 posix_acl_release(inode->i_acl);
267 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
268 posix_acl_release(inode->i_default_acl);
269 #endif
270 this_cpu_dec(nr_inodes);
271 }
272 EXPORT_SYMBOL(__destroy_inode);
273
destroy_inode(struct inode * inode)274 static void destroy_inode(struct inode *inode)
275 {
276 const struct super_operations *ops = inode->i_sb->s_op;
277
278 BUG_ON(!list_empty(&inode->i_lru));
279 __destroy_inode(inode);
280 if (ops->destroy_inode) {
281 ops->destroy_inode(inode);
282 if (!ops->free_inode)
283 return;
284 }
285 inode->free_inode = ops->free_inode;
286 call_rcu(&inode->i_rcu, i_callback);
287 }
288
289 /**
290 * drop_nlink - directly drop an inode's link count
291 * @inode: inode
292 *
293 * This is a low-level filesystem helper to replace any
294 * direct filesystem manipulation of i_nlink. In cases
295 * where we are attempting to track writes to the
296 * filesystem, a decrement to zero means an imminent
297 * write when the file is truncated and actually unlinked
298 * on the filesystem.
299 */
drop_nlink(struct inode * inode)300 void drop_nlink(struct inode *inode)
301 {
302 WARN_ON(inode->i_nlink == 0);
303 inode->__i_nlink--;
304 if (!inode->i_nlink)
305 atomic_long_inc(&inode->i_sb->s_remove_count);
306 }
307 EXPORT_SYMBOL(drop_nlink);
308
309 /**
310 * clear_nlink - directly zero an inode's link count
311 * @inode: inode
312 *
313 * This is a low-level filesystem helper to replace any
314 * direct filesystem manipulation of i_nlink. See
315 * drop_nlink() for why we care about i_nlink hitting zero.
316 */
clear_nlink(struct inode * inode)317 void clear_nlink(struct inode *inode)
318 {
319 if (inode->i_nlink) {
320 inode->__i_nlink = 0;
321 atomic_long_inc(&inode->i_sb->s_remove_count);
322 }
323 }
324 EXPORT_SYMBOL(clear_nlink);
325
326 /**
327 * set_nlink - directly set an inode's link count
328 * @inode: inode
329 * @nlink: new nlink (should be non-zero)
330 *
331 * This is a low-level filesystem helper to replace any
332 * direct filesystem manipulation of i_nlink.
333 */
set_nlink(struct inode * inode,unsigned int nlink)334 void set_nlink(struct inode *inode, unsigned int nlink)
335 {
336 if (!nlink) {
337 clear_nlink(inode);
338 } else {
339 /* Yes, some filesystems do change nlink from zero to one */
340 if (inode->i_nlink == 0)
341 atomic_long_dec(&inode->i_sb->s_remove_count);
342
343 inode->__i_nlink = nlink;
344 }
345 }
346 EXPORT_SYMBOL(set_nlink);
347
348 /**
349 * inc_nlink - directly increment an inode's link count
350 * @inode: inode
351 *
352 * This is a low-level filesystem helper to replace any
353 * direct filesystem manipulation of i_nlink. Currently,
354 * it is only here for parity with dec_nlink().
355 */
inc_nlink(struct inode * inode)356 void inc_nlink(struct inode *inode)
357 {
358 if (unlikely(inode->i_nlink == 0)) {
359 WARN_ON(!(inode->i_state & I_LINKABLE));
360 atomic_long_dec(&inode->i_sb->s_remove_count);
361 }
362
363 inode->__i_nlink++;
364 }
365 EXPORT_SYMBOL(inc_nlink);
366
__address_space_init_once(struct address_space * mapping)367 static void __address_space_init_once(struct address_space *mapping)
368 {
369 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
370 init_rwsem(&mapping->i_mmap_rwsem);
371 INIT_LIST_HEAD(&mapping->private_list);
372 spin_lock_init(&mapping->private_lock);
373 mapping->i_mmap = RB_ROOT_CACHED;
374 }
375
address_space_init_once(struct address_space * mapping)376 void address_space_init_once(struct address_space *mapping)
377 {
378 memset(mapping, 0, sizeof(*mapping));
379 __address_space_init_once(mapping);
380 }
381 EXPORT_SYMBOL(address_space_init_once);
382
383 /*
384 * These are initializations that only need to be done
385 * once, because the fields are idempotent across use
386 * of the inode, so let the slab aware of that.
387 */
inode_init_once(struct inode * inode)388 void inode_init_once(struct inode *inode)
389 {
390 memset(inode, 0, sizeof(*inode));
391 INIT_HLIST_NODE(&inode->i_hash);
392 INIT_LIST_HEAD(&inode->i_devices);
393 INIT_LIST_HEAD(&inode->i_io_list);
394 INIT_LIST_HEAD(&inode->i_wb_list);
395 INIT_LIST_HEAD(&inode->i_lru);
396 __address_space_init_once(&inode->i_data);
397 i_size_ordered_init(inode);
398 }
399 EXPORT_SYMBOL(inode_init_once);
400
init_once(void * foo)401 static void init_once(void *foo)
402 {
403 struct inode *inode = (struct inode *) foo;
404
405 inode_init_once(inode);
406 }
407
408 /*
409 * inode->i_lock must be held
410 */
__iget(struct inode * inode)411 void __iget(struct inode *inode)
412 {
413 atomic_inc(&inode->i_count);
414 }
415
416 /*
417 * get additional reference to inode; caller must already hold one.
418 */
ihold(struct inode * inode)419 void ihold(struct inode *inode)
420 {
421 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
422 }
423 EXPORT_SYMBOL(ihold);
424
inode_lru_list_add(struct inode * inode)425 static void inode_lru_list_add(struct inode *inode)
426 {
427 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
428 this_cpu_inc(nr_unused);
429 else
430 inode->i_state |= I_REFERENCED;
431 }
432
433 /*
434 * Add inode to LRU if needed (inode is unused and clean).
435 *
436 * Needs inode->i_lock held.
437 */
inode_add_lru(struct inode * inode)438 void inode_add_lru(struct inode *inode)
439 {
440 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
441 I_FREEING | I_WILL_FREE)) &&
442 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
443 inode_lru_list_add(inode);
444 }
445
446
inode_lru_list_del(struct inode * inode)447 static void inode_lru_list_del(struct inode *inode)
448 {
449
450 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
451 this_cpu_dec(nr_unused);
452 }
453
454 /**
455 * inode_sb_list_add - add inode to the superblock list of inodes
456 * @inode: inode to add
457 */
inode_sb_list_add(struct inode * inode)458 void inode_sb_list_add(struct inode *inode)
459 {
460 spin_lock(&inode->i_sb->s_inode_list_lock);
461 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
462 spin_unlock(&inode->i_sb->s_inode_list_lock);
463 }
464 EXPORT_SYMBOL_GPL(inode_sb_list_add);
465
inode_sb_list_del(struct inode * inode)466 static inline void inode_sb_list_del(struct inode *inode)
467 {
468 if (!list_empty(&inode->i_sb_list)) {
469 spin_lock(&inode->i_sb->s_inode_list_lock);
470 list_del_init(&inode->i_sb_list);
471 spin_unlock(&inode->i_sb->s_inode_list_lock);
472 }
473 }
474
hash(struct super_block * sb,unsigned long hashval)475 static unsigned long hash(struct super_block *sb, unsigned long hashval)
476 {
477 unsigned long tmp;
478
479 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
480 L1_CACHE_BYTES;
481 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
482 return tmp & i_hash_mask;
483 }
484
485 /**
486 * __insert_inode_hash - hash an inode
487 * @inode: unhashed inode
488 * @hashval: unsigned long value used to locate this object in the
489 * inode_hashtable.
490 *
491 * Add an inode to the inode hash for this superblock.
492 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)493 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
494 {
495 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
496
497 spin_lock(&inode_hash_lock);
498 spin_lock(&inode->i_lock);
499 hlist_add_head(&inode->i_hash, b);
500 spin_unlock(&inode->i_lock);
501 spin_unlock(&inode_hash_lock);
502 }
503 EXPORT_SYMBOL(__insert_inode_hash);
504
505 /**
506 * __remove_inode_hash - remove an inode from the hash
507 * @inode: inode to unhash
508 *
509 * Remove an inode from the superblock.
510 */
__remove_inode_hash(struct inode * inode)511 void __remove_inode_hash(struct inode *inode)
512 {
513 spin_lock(&inode_hash_lock);
514 spin_lock(&inode->i_lock);
515 hlist_del_init(&inode->i_hash);
516 spin_unlock(&inode->i_lock);
517 spin_unlock(&inode_hash_lock);
518 }
519 EXPORT_SYMBOL(__remove_inode_hash);
520
clear_inode(struct inode * inode)521 void clear_inode(struct inode *inode)
522 {
523 /*
524 * We have to cycle the i_pages lock here because reclaim can be in the
525 * process of removing the last page (in __delete_from_page_cache())
526 * and we must not free the mapping under it.
527 */
528 xa_lock_irq(&inode->i_data.i_pages);
529 BUG_ON(inode->i_data.nrpages);
530 BUG_ON(inode->i_data.nrexceptional);
531 xa_unlock_irq(&inode->i_data.i_pages);
532 BUG_ON(!list_empty(&inode->i_data.private_list));
533 BUG_ON(!(inode->i_state & I_FREEING));
534 BUG_ON(inode->i_state & I_CLEAR);
535 BUG_ON(!list_empty(&inode->i_wb_list));
536 /* don't need i_lock here, no concurrent mods to i_state */
537 inode->i_state = I_FREEING | I_CLEAR;
538 }
539 EXPORT_SYMBOL(clear_inode);
540
541 /*
542 * Free the inode passed in, removing it from the lists it is still connected
543 * to. We remove any pages still attached to the inode and wait for any IO that
544 * is still in progress before finally destroying the inode.
545 *
546 * An inode must already be marked I_FREEING so that we avoid the inode being
547 * moved back onto lists if we race with other code that manipulates the lists
548 * (e.g. writeback_single_inode). The caller is responsible for setting this.
549 *
550 * An inode must already be removed from the LRU list before being evicted from
551 * the cache. This should occur atomically with setting the I_FREEING state
552 * flag, so no inodes here should ever be on the LRU when being evicted.
553 */
evict(struct inode * inode)554 static void evict(struct inode *inode)
555 {
556 const struct super_operations *op = inode->i_sb->s_op;
557
558 BUG_ON(!(inode->i_state & I_FREEING));
559 BUG_ON(!list_empty(&inode->i_lru));
560
561 if (!list_empty(&inode->i_io_list))
562 inode_io_list_del(inode);
563
564 inode_sb_list_del(inode);
565
566 /*
567 * Wait for flusher thread to be done with the inode so that filesystem
568 * does not start destroying it while writeback is still running. Since
569 * the inode has I_FREEING set, flusher thread won't start new work on
570 * the inode. We just have to wait for running writeback to finish.
571 */
572 inode_wait_for_writeback(inode);
573
574 if (op->evict_inode) {
575 op->evict_inode(inode);
576 } else {
577 truncate_inode_pages_final(&inode->i_data);
578 clear_inode(inode);
579 }
580 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
581 bd_forget(inode);
582 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
583 cd_forget(inode);
584
585 remove_inode_hash(inode);
586
587 spin_lock(&inode->i_lock);
588 wake_up_bit(&inode->i_state, __I_NEW);
589 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
590 spin_unlock(&inode->i_lock);
591
592 destroy_inode(inode);
593 }
594
595 /*
596 * dispose_list - dispose of the contents of a local list
597 * @head: the head of the list to free
598 *
599 * Dispose-list gets a local list with local inodes in it, so it doesn't
600 * need to worry about list corruption and SMP locks.
601 */
dispose_list(struct list_head * head)602 static void dispose_list(struct list_head *head)
603 {
604 while (!list_empty(head)) {
605 struct inode *inode;
606
607 inode = list_first_entry(head, struct inode, i_lru);
608 list_del_init(&inode->i_lru);
609
610 evict(inode);
611 cond_resched();
612 }
613 }
614
615 /**
616 * evict_inodes - evict all evictable inodes for a superblock
617 * @sb: superblock to operate on
618 *
619 * Make sure that no inodes with zero refcount are retained. This is
620 * called by superblock shutdown after having SB_ACTIVE flag removed,
621 * so any inode reaching zero refcount during or after that call will
622 * be immediately evicted.
623 */
evict_inodes(struct super_block * sb)624 void evict_inodes(struct super_block *sb)
625 {
626 struct inode *inode, *next;
627 LIST_HEAD(dispose);
628
629 again:
630 spin_lock(&sb->s_inode_list_lock);
631 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
632 if (atomic_read(&inode->i_count))
633 continue;
634
635 spin_lock(&inode->i_lock);
636 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
637 spin_unlock(&inode->i_lock);
638 continue;
639 }
640
641 inode->i_state |= I_FREEING;
642 inode_lru_list_del(inode);
643 spin_unlock(&inode->i_lock);
644 list_add(&inode->i_lru, &dispose);
645
646 /*
647 * We can have a ton of inodes to evict at unmount time given
648 * enough memory, check to see if we need to go to sleep for a
649 * bit so we don't livelock.
650 */
651 if (need_resched()) {
652 spin_unlock(&sb->s_inode_list_lock);
653 cond_resched();
654 dispose_list(&dispose);
655 goto again;
656 }
657 }
658 spin_unlock(&sb->s_inode_list_lock);
659
660 dispose_list(&dispose);
661 }
662 EXPORT_SYMBOL_GPL(evict_inodes);
663
664 /**
665 * invalidate_inodes - attempt to free all inodes on a superblock
666 * @sb: superblock to operate on
667 * @kill_dirty: flag to guide handling of dirty inodes
668 *
669 * Attempts to free all inodes for a given superblock. If there were any
670 * busy inodes return a non-zero value, else zero.
671 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
672 * them as busy.
673 */
invalidate_inodes(struct super_block * sb,bool kill_dirty)674 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
675 {
676 int busy = 0;
677 struct inode *inode, *next;
678 LIST_HEAD(dispose);
679
680 again:
681 spin_lock(&sb->s_inode_list_lock);
682 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
683 spin_lock(&inode->i_lock);
684 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
685 spin_unlock(&inode->i_lock);
686 continue;
687 }
688 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
689 spin_unlock(&inode->i_lock);
690 busy = 1;
691 continue;
692 }
693 if (atomic_read(&inode->i_count)) {
694 spin_unlock(&inode->i_lock);
695 busy = 1;
696 continue;
697 }
698
699 inode->i_state |= I_FREEING;
700 inode_lru_list_del(inode);
701 spin_unlock(&inode->i_lock);
702 list_add(&inode->i_lru, &dispose);
703 if (need_resched()) {
704 spin_unlock(&sb->s_inode_list_lock);
705 cond_resched();
706 dispose_list(&dispose);
707 goto again;
708 }
709 }
710 spin_unlock(&sb->s_inode_list_lock);
711
712 dispose_list(&dispose);
713
714 return busy;
715 }
716
717 /*
718 * Isolate the inode from the LRU in preparation for freeing it.
719 *
720 * Any inodes which are pinned purely because of attached pagecache have their
721 * pagecache removed. If the inode has metadata buffers attached to
722 * mapping->private_list then try to remove them.
723 *
724 * If the inode has the I_REFERENCED flag set, then it means that it has been
725 * used recently - the flag is set in iput_final(). When we encounter such an
726 * inode, clear the flag and move it to the back of the LRU so it gets another
727 * pass through the LRU before it gets reclaimed. This is necessary because of
728 * the fact we are doing lazy LRU updates to minimise lock contention so the
729 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
730 * with this flag set because they are the inodes that are out of order.
731 */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)732 static enum lru_status inode_lru_isolate(struct list_head *item,
733 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
734 {
735 struct list_head *freeable = arg;
736 struct inode *inode = container_of(item, struct inode, i_lru);
737
738 /*
739 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
740 * If we fail to get the lock, just skip it.
741 */
742 if (!spin_trylock(&inode->i_lock))
743 return LRU_SKIP;
744
745 /*
746 * Referenced or dirty inodes are still in use. Give them another pass
747 * through the LRU as we canot reclaim them now.
748 */
749 if (atomic_read(&inode->i_count) ||
750 (inode->i_state & ~I_REFERENCED)) {
751 list_lru_isolate(lru, &inode->i_lru);
752 spin_unlock(&inode->i_lock);
753 this_cpu_dec(nr_unused);
754 return LRU_REMOVED;
755 }
756
757 /* recently referenced inodes get one more pass */
758 if (inode->i_state & I_REFERENCED) {
759 inode->i_state &= ~I_REFERENCED;
760 spin_unlock(&inode->i_lock);
761 return LRU_ROTATE;
762 }
763
764 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
765 __iget(inode);
766 spin_unlock(&inode->i_lock);
767 spin_unlock(lru_lock);
768 if (remove_inode_buffers(inode)) {
769 unsigned long reap;
770 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
771 if (current_is_kswapd())
772 __count_vm_events(KSWAPD_INODESTEAL, reap);
773 else
774 __count_vm_events(PGINODESTEAL, reap);
775 if (current->reclaim_state)
776 current->reclaim_state->reclaimed_slab += reap;
777 }
778 iput(inode);
779 spin_lock(lru_lock);
780 return LRU_RETRY;
781 }
782
783 WARN_ON(inode->i_state & I_NEW);
784 inode->i_state |= I_FREEING;
785 list_lru_isolate_move(lru, &inode->i_lru, freeable);
786 spin_unlock(&inode->i_lock);
787
788 this_cpu_dec(nr_unused);
789 return LRU_REMOVED;
790 }
791
792 /*
793 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
794 * This is called from the superblock shrinker function with a number of inodes
795 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
796 * then are freed outside inode_lock by dispose_list().
797 */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)798 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
799 {
800 LIST_HEAD(freeable);
801 long freed;
802
803 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
804 inode_lru_isolate, &freeable);
805 dispose_list(&freeable);
806 return freed;
807 }
808
809 static void __wait_on_freeing_inode(struct inode *inode);
810 /*
811 * Called with the inode lock held.
812 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)813 static struct inode *find_inode(struct super_block *sb,
814 struct hlist_head *head,
815 int (*test)(struct inode *, void *),
816 void *data)
817 {
818 struct inode *inode = NULL;
819
820 repeat:
821 hlist_for_each_entry(inode, head, i_hash) {
822 if (inode->i_sb != sb)
823 continue;
824 if (!test(inode, data))
825 continue;
826 spin_lock(&inode->i_lock);
827 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
828 __wait_on_freeing_inode(inode);
829 goto repeat;
830 }
831 if (unlikely(inode->i_state & I_CREATING)) {
832 spin_unlock(&inode->i_lock);
833 return ERR_PTR(-ESTALE);
834 }
835 __iget(inode);
836 spin_unlock(&inode->i_lock);
837 return inode;
838 }
839 return NULL;
840 }
841
842 /*
843 * find_inode_fast is the fast path version of find_inode, see the comment at
844 * iget_locked for details.
845 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)846 static struct inode *find_inode_fast(struct super_block *sb,
847 struct hlist_head *head, unsigned long ino)
848 {
849 struct inode *inode = NULL;
850
851 repeat:
852 hlist_for_each_entry(inode, head, i_hash) {
853 if (inode->i_ino != ino)
854 continue;
855 if (inode->i_sb != sb)
856 continue;
857 spin_lock(&inode->i_lock);
858 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
859 __wait_on_freeing_inode(inode);
860 goto repeat;
861 }
862 if (unlikely(inode->i_state & I_CREATING)) {
863 spin_unlock(&inode->i_lock);
864 return ERR_PTR(-ESTALE);
865 }
866 __iget(inode);
867 spin_unlock(&inode->i_lock);
868 return inode;
869 }
870 return NULL;
871 }
872
873 /*
874 * Each cpu owns a range of LAST_INO_BATCH numbers.
875 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
876 * to renew the exhausted range.
877 *
878 * This does not significantly increase overflow rate because every CPU can
879 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
880 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
881 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
882 * overflow rate by 2x, which does not seem too significant.
883 *
884 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
885 * error if st_ino won't fit in target struct field. Use 32bit counter
886 * here to attempt to avoid that.
887 */
888 #define LAST_INO_BATCH 1024
889 static DEFINE_PER_CPU(unsigned int, last_ino);
890
get_next_ino(void)891 unsigned int get_next_ino(void)
892 {
893 unsigned int *p = &get_cpu_var(last_ino);
894 unsigned int res = *p;
895
896 #ifdef CONFIG_SMP
897 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
898 static atomic_t shared_last_ino;
899 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
900
901 res = next - LAST_INO_BATCH;
902 }
903 #endif
904
905 res++;
906 /* get_next_ino should not provide a 0 inode number */
907 if (unlikely(!res))
908 res++;
909 *p = res;
910 put_cpu_var(last_ino);
911 return res;
912 }
913 EXPORT_SYMBOL(get_next_ino);
914
915 /**
916 * new_inode_pseudo - obtain an inode
917 * @sb: superblock
918 *
919 * Allocates a new inode for given superblock.
920 * Inode wont be chained in superblock s_inodes list
921 * This means :
922 * - fs can't be unmount
923 * - quotas, fsnotify, writeback can't work
924 */
new_inode_pseudo(struct super_block * sb)925 struct inode *new_inode_pseudo(struct super_block *sb)
926 {
927 struct inode *inode = alloc_inode(sb);
928
929 if (inode) {
930 spin_lock(&inode->i_lock);
931 inode->i_state = 0;
932 spin_unlock(&inode->i_lock);
933 INIT_LIST_HEAD(&inode->i_sb_list);
934 }
935 return inode;
936 }
937
938 /**
939 * new_inode - obtain an inode
940 * @sb: superblock
941 *
942 * Allocates a new inode for given superblock. The default gfp_mask
943 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
944 * If HIGHMEM pages are unsuitable or it is known that pages allocated
945 * for the page cache are not reclaimable or migratable,
946 * mapping_set_gfp_mask() must be called with suitable flags on the
947 * newly created inode's mapping
948 *
949 */
new_inode(struct super_block * sb)950 struct inode *new_inode(struct super_block *sb)
951 {
952 struct inode *inode;
953
954 spin_lock_prefetch(&sb->s_inode_list_lock);
955
956 inode = new_inode_pseudo(sb);
957 if (inode)
958 inode_sb_list_add(inode);
959 return inode;
960 }
961 EXPORT_SYMBOL(new_inode);
962
963 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)964 void lockdep_annotate_inode_mutex_key(struct inode *inode)
965 {
966 if (S_ISDIR(inode->i_mode)) {
967 struct file_system_type *type = inode->i_sb->s_type;
968
969 /* Set new key only if filesystem hasn't already changed it */
970 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
971 /*
972 * ensure nobody is actually holding i_mutex
973 */
974 // mutex_destroy(&inode->i_mutex);
975 init_rwsem(&inode->i_rwsem);
976 lockdep_set_class(&inode->i_rwsem,
977 &type->i_mutex_dir_key);
978 }
979 }
980 }
981 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
982 #endif
983
984 /**
985 * unlock_new_inode - clear the I_NEW state and wake up any waiters
986 * @inode: new inode to unlock
987 *
988 * Called when the inode is fully initialised to clear the new state of the
989 * inode and wake up anyone waiting for the inode to finish initialisation.
990 */
unlock_new_inode(struct inode * inode)991 void unlock_new_inode(struct inode *inode)
992 {
993 lockdep_annotate_inode_mutex_key(inode);
994 spin_lock(&inode->i_lock);
995 WARN_ON(!(inode->i_state & I_NEW));
996 inode->i_state &= ~I_NEW & ~I_CREATING;
997 smp_mb();
998 wake_up_bit(&inode->i_state, __I_NEW);
999 spin_unlock(&inode->i_lock);
1000 }
1001 EXPORT_SYMBOL(unlock_new_inode);
1002
discard_new_inode(struct inode * inode)1003 void discard_new_inode(struct inode *inode)
1004 {
1005 lockdep_annotate_inode_mutex_key(inode);
1006 spin_lock(&inode->i_lock);
1007 WARN_ON(!(inode->i_state & I_NEW));
1008 inode->i_state &= ~I_NEW;
1009 smp_mb();
1010 wake_up_bit(&inode->i_state, __I_NEW);
1011 spin_unlock(&inode->i_lock);
1012 iput(inode);
1013 }
1014 EXPORT_SYMBOL(discard_new_inode);
1015
1016 /**
1017 * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1018 *
1019 * Lock any non-NULL argument. The caller must make sure that if he is passing
1020 * in two directories, one is not ancestor of the other. Zero, one or two
1021 * objects may be locked by this function.
1022 *
1023 * @inode1: first inode to lock
1024 * @inode2: second inode to lock
1025 * @subclass1: inode lock subclass for the first lock obtained
1026 * @subclass2: inode lock subclass for the second lock obtained
1027 */
lock_two_inodes(struct inode * inode1,struct inode * inode2,unsigned subclass1,unsigned subclass2)1028 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1029 unsigned subclass1, unsigned subclass2)
1030 {
1031 if (!inode1 || !inode2) {
1032 /*
1033 * Make sure @subclass1 will be used for the acquired lock.
1034 * This is not strictly necessary (no current caller cares) but
1035 * let's keep things consistent.
1036 */
1037 if (!inode1)
1038 swap(inode1, inode2);
1039 goto lock;
1040 }
1041
1042 /*
1043 * If one object is directory and the other is not, we must make sure
1044 * to lock directory first as the other object may be its child.
1045 */
1046 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1047 if (inode1 > inode2)
1048 swap(inode1, inode2);
1049 } else if (!S_ISDIR(inode1->i_mode))
1050 swap(inode1, inode2);
1051 lock:
1052 if (inode1)
1053 inode_lock_nested(inode1, subclass1);
1054 if (inode2 && inode2 != inode1)
1055 inode_lock_nested(inode2, subclass2);
1056 }
1057
1058 /**
1059 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1060 *
1061 * Lock any non-NULL argument that is not a directory.
1062 * Zero, one or two objects may be locked by this function.
1063 *
1064 * @inode1: first inode to lock
1065 * @inode2: second inode to lock
1066 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1067 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1068 {
1069 if (inode1 > inode2)
1070 swap(inode1, inode2);
1071
1072 if (inode1 && !S_ISDIR(inode1->i_mode))
1073 inode_lock(inode1);
1074 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1075 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1076 }
1077 EXPORT_SYMBOL(lock_two_nondirectories);
1078
1079 /**
1080 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1081 * @inode1: first inode to unlock
1082 * @inode2: second inode to unlock
1083 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1084 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1085 {
1086 if (inode1 && !S_ISDIR(inode1->i_mode))
1087 inode_unlock(inode1);
1088 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1089 inode_unlock(inode2);
1090 }
1091 EXPORT_SYMBOL(unlock_two_nondirectories);
1092
1093 /**
1094 * inode_insert5 - obtain an inode from a mounted file system
1095 * @inode: pre-allocated inode to use for insert to cache
1096 * @hashval: hash value (usually inode number) to get
1097 * @test: callback used for comparisons between inodes
1098 * @set: callback used to initialize a new struct inode
1099 * @data: opaque data pointer to pass to @test and @set
1100 *
1101 * Search for the inode specified by @hashval and @data in the inode cache,
1102 * and if present it is return it with an increased reference count. This is
1103 * a variant of iget5_locked() for callers that don't want to fail on memory
1104 * allocation of inode.
1105 *
1106 * If the inode is not in cache, insert the pre-allocated inode to cache and
1107 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1108 * to fill it in before unlocking it via unlock_new_inode().
1109 *
1110 * Note both @test and @set are called with the inode_hash_lock held, so can't
1111 * sleep.
1112 */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1113 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1114 int (*test)(struct inode *, void *),
1115 int (*set)(struct inode *, void *), void *data)
1116 {
1117 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1118 struct inode *old;
1119 bool creating = inode->i_state & I_CREATING;
1120
1121 again:
1122 spin_lock(&inode_hash_lock);
1123 old = find_inode(inode->i_sb, head, test, data);
1124 if (unlikely(old)) {
1125 /*
1126 * Uhhuh, somebody else created the same inode under us.
1127 * Use the old inode instead of the preallocated one.
1128 */
1129 spin_unlock(&inode_hash_lock);
1130 if (IS_ERR(old))
1131 return NULL;
1132 wait_on_inode(old);
1133 if (unlikely(inode_unhashed(old))) {
1134 iput(old);
1135 goto again;
1136 }
1137 return old;
1138 }
1139
1140 if (set && unlikely(set(inode, data))) {
1141 inode = NULL;
1142 goto unlock;
1143 }
1144
1145 /*
1146 * Return the locked inode with I_NEW set, the
1147 * caller is responsible for filling in the contents
1148 */
1149 spin_lock(&inode->i_lock);
1150 inode->i_state |= I_NEW;
1151 hlist_add_head(&inode->i_hash, head);
1152 spin_unlock(&inode->i_lock);
1153 if (!creating)
1154 inode_sb_list_add(inode);
1155 unlock:
1156 spin_unlock(&inode_hash_lock);
1157
1158 return inode;
1159 }
1160 EXPORT_SYMBOL(inode_insert5);
1161
1162 /**
1163 * iget5_locked - obtain an inode from a mounted file system
1164 * @sb: super block of file system
1165 * @hashval: hash value (usually inode number) to get
1166 * @test: callback used for comparisons between inodes
1167 * @set: callback used to initialize a new struct inode
1168 * @data: opaque data pointer to pass to @test and @set
1169 *
1170 * Search for the inode specified by @hashval and @data in the inode cache,
1171 * and if present it is return it with an increased reference count. This is
1172 * a generalized version of iget_locked() for file systems where the inode
1173 * number is not sufficient for unique identification of an inode.
1174 *
1175 * If the inode is not in cache, allocate a new inode and return it locked,
1176 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1177 * before unlocking it via unlock_new_inode().
1178 *
1179 * Note both @test and @set are called with the inode_hash_lock held, so can't
1180 * sleep.
1181 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1182 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1183 int (*test)(struct inode *, void *),
1184 int (*set)(struct inode *, void *), void *data)
1185 {
1186 struct inode *inode = ilookup5(sb, hashval, test, data);
1187
1188 if (!inode) {
1189 struct inode *new = alloc_inode(sb);
1190
1191 if (new) {
1192 new->i_state = 0;
1193 inode = inode_insert5(new, hashval, test, set, data);
1194 if (unlikely(inode != new))
1195 destroy_inode(new);
1196 }
1197 }
1198 return inode;
1199 }
1200 EXPORT_SYMBOL(iget5_locked);
1201
1202 /**
1203 * iget_locked - obtain an inode from a mounted file system
1204 * @sb: super block of file system
1205 * @ino: inode number to get
1206 *
1207 * Search for the inode specified by @ino in the inode cache and if present
1208 * return it with an increased reference count. This is for file systems
1209 * where the inode number is sufficient for unique identification of an inode.
1210 *
1211 * If the inode is not in cache, allocate a new inode and return it locked,
1212 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1213 * before unlocking it via unlock_new_inode().
1214 */
iget_locked(struct super_block * sb,unsigned long ino)1215 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1216 {
1217 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1218 struct inode *inode;
1219 again:
1220 spin_lock(&inode_hash_lock);
1221 inode = find_inode_fast(sb, head, ino);
1222 spin_unlock(&inode_hash_lock);
1223 if (inode) {
1224 if (IS_ERR(inode))
1225 return NULL;
1226 wait_on_inode(inode);
1227 if (unlikely(inode_unhashed(inode))) {
1228 iput(inode);
1229 goto again;
1230 }
1231 return inode;
1232 }
1233
1234 inode = alloc_inode(sb);
1235 if (inode) {
1236 struct inode *old;
1237
1238 spin_lock(&inode_hash_lock);
1239 /* We released the lock, so.. */
1240 old = find_inode_fast(sb, head, ino);
1241 if (!old) {
1242 inode->i_ino = ino;
1243 spin_lock(&inode->i_lock);
1244 inode->i_state = I_NEW;
1245 hlist_add_head(&inode->i_hash, head);
1246 spin_unlock(&inode->i_lock);
1247 inode_sb_list_add(inode);
1248 spin_unlock(&inode_hash_lock);
1249
1250 /* Return the locked inode with I_NEW set, the
1251 * caller is responsible for filling in the contents
1252 */
1253 return inode;
1254 }
1255
1256 /*
1257 * Uhhuh, somebody else created the same inode under
1258 * us. Use the old inode instead of the one we just
1259 * allocated.
1260 */
1261 spin_unlock(&inode_hash_lock);
1262 destroy_inode(inode);
1263 if (IS_ERR(old))
1264 return NULL;
1265 inode = old;
1266 wait_on_inode(inode);
1267 if (unlikely(inode_unhashed(inode))) {
1268 iput(inode);
1269 goto again;
1270 }
1271 }
1272 return inode;
1273 }
1274 EXPORT_SYMBOL(iget_locked);
1275
1276 /*
1277 * search the inode cache for a matching inode number.
1278 * If we find one, then the inode number we are trying to
1279 * allocate is not unique and so we should not use it.
1280 *
1281 * Returns 1 if the inode number is unique, 0 if it is not.
1282 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1283 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1284 {
1285 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1286 struct inode *inode;
1287
1288 spin_lock(&inode_hash_lock);
1289 hlist_for_each_entry(inode, b, i_hash) {
1290 if (inode->i_ino == ino && inode->i_sb == sb) {
1291 spin_unlock(&inode_hash_lock);
1292 return 0;
1293 }
1294 }
1295 spin_unlock(&inode_hash_lock);
1296
1297 return 1;
1298 }
1299
1300 /**
1301 * iunique - get a unique inode number
1302 * @sb: superblock
1303 * @max_reserved: highest reserved inode number
1304 *
1305 * Obtain an inode number that is unique on the system for a given
1306 * superblock. This is used by file systems that have no natural
1307 * permanent inode numbering system. An inode number is returned that
1308 * is higher than the reserved limit but unique.
1309 *
1310 * BUGS:
1311 * With a large number of inodes live on the file system this function
1312 * currently becomes quite slow.
1313 */
iunique(struct super_block * sb,ino_t max_reserved)1314 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1315 {
1316 /*
1317 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1318 * error if st_ino won't fit in target struct field. Use 32bit counter
1319 * here to attempt to avoid that.
1320 */
1321 static DEFINE_SPINLOCK(iunique_lock);
1322 static unsigned int counter;
1323 ino_t res;
1324
1325 spin_lock(&iunique_lock);
1326 do {
1327 if (counter <= max_reserved)
1328 counter = max_reserved + 1;
1329 res = counter++;
1330 } while (!test_inode_iunique(sb, res));
1331 spin_unlock(&iunique_lock);
1332
1333 return res;
1334 }
1335 EXPORT_SYMBOL(iunique);
1336
igrab(struct inode * inode)1337 struct inode *igrab(struct inode *inode)
1338 {
1339 spin_lock(&inode->i_lock);
1340 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1341 __iget(inode);
1342 spin_unlock(&inode->i_lock);
1343 } else {
1344 spin_unlock(&inode->i_lock);
1345 /*
1346 * Handle the case where s_op->clear_inode is not been
1347 * called yet, and somebody is calling igrab
1348 * while the inode is getting freed.
1349 */
1350 inode = NULL;
1351 }
1352 return inode;
1353 }
1354 EXPORT_SYMBOL(igrab);
1355
1356 /**
1357 * ilookup5_nowait - search for an inode in the inode cache
1358 * @sb: super block of file system to search
1359 * @hashval: hash value (usually inode number) to search for
1360 * @test: callback used for comparisons between inodes
1361 * @data: opaque data pointer to pass to @test
1362 *
1363 * Search for the inode specified by @hashval and @data in the inode cache.
1364 * If the inode is in the cache, the inode is returned with an incremented
1365 * reference count.
1366 *
1367 * Note: I_NEW is not waited upon so you have to be very careful what you do
1368 * with the returned inode. You probably should be using ilookup5() instead.
1369 *
1370 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1371 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1372 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1373 int (*test)(struct inode *, void *), void *data)
1374 {
1375 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1376 struct inode *inode;
1377
1378 spin_lock(&inode_hash_lock);
1379 inode = find_inode(sb, head, test, data);
1380 spin_unlock(&inode_hash_lock);
1381
1382 return IS_ERR(inode) ? NULL : inode;
1383 }
1384 EXPORT_SYMBOL(ilookup5_nowait);
1385
1386 /**
1387 * ilookup5 - search for an inode in the inode cache
1388 * @sb: super block of file system to search
1389 * @hashval: hash value (usually inode number) to search for
1390 * @test: callback used for comparisons between inodes
1391 * @data: opaque data pointer to pass to @test
1392 *
1393 * Search for the inode specified by @hashval and @data in the inode cache,
1394 * and if the inode is in the cache, return the inode with an incremented
1395 * reference count. Waits on I_NEW before returning the inode.
1396 * returned with an incremented reference count.
1397 *
1398 * This is a generalized version of ilookup() for file systems where the
1399 * inode number is not sufficient for unique identification of an inode.
1400 *
1401 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1402 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1403 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1404 int (*test)(struct inode *, void *), void *data)
1405 {
1406 struct inode *inode;
1407 again:
1408 inode = ilookup5_nowait(sb, hashval, test, data);
1409 if (inode) {
1410 wait_on_inode(inode);
1411 if (unlikely(inode_unhashed(inode))) {
1412 iput(inode);
1413 goto again;
1414 }
1415 }
1416 return inode;
1417 }
1418 EXPORT_SYMBOL(ilookup5);
1419
1420 /**
1421 * ilookup - search for an inode in the inode cache
1422 * @sb: super block of file system to search
1423 * @ino: inode number to search for
1424 *
1425 * Search for the inode @ino in the inode cache, and if the inode is in the
1426 * cache, the inode is returned with an incremented reference count.
1427 */
ilookup(struct super_block * sb,unsigned long ino)1428 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1429 {
1430 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1431 struct inode *inode;
1432 again:
1433 spin_lock(&inode_hash_lock);
1434 inode = find_inode_fast(sb, head, ino);
1435 spin_unlock(&inode_hash_lock);
1436
1437 if (inode) {
1438 if (IS_ERR(inode))
1439 return NULL;
1440 wait_on_inode(inode);
1441 if (unlikely(inode_unhashed(inode))) {
1442 iput(inode);
1443 goto again;
1444 }
1445 }
1446 return inode;
1447 }
1448 EXPORT_SYMBOL(ilookup);
1449
1450 /**
1451 * find_inode_nowait - find an inode in the inode cache
1452 * @sb: super block of file system to search
1453 * @hashval: hash value (usually inode number) to search for
1454 * @match: callback used for comparisons between inodes
1455 * @data: opaque data pointer to pass to @match
1456 *
1457 * Search for the inode specified by @hashval and @data in the inode
1458 * cache, where the helper function @match will return 0 if the inode
1459 * does not match, 1 if the inode does match, and -1 if the search
1460 * should be stopped. The @match function must be responsible for
1461 * taking the i_lock spin_lock and checking i_state for an inode being
1462 * freed or being initialized, and incrementing the reference count
1463 * before returning 1. It also must not sleep, since it is called with
1464 * the inode_hash_lock spinlock held.
1465 *
1466 * This is a even more generalized version of ilookup5() when the
1467 * function must never block --- find_inode() can block in
1468 * __wait_on_freeing_inode() --- or when the caller can not increment
1469 * the reference count because the resulting iput() might cause an
1470 * inode eviction. The tradeoff is that the @match funtion must be
1471 * very carefully implemented.
1472 */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1473 struct inode *find_inode_nowait(struct super_block *sb,
1474 unsigned long hashval,
1475 int (*match)(struct inode *, unsigned long,
1476 void *),
1477 void *data)
1478 {
1479 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1480 struct inode *inode, *ret_inode = NULL;
1481 int mval;
1482
1483 spin_lock(&inode_hash_lock);
1484 hlist_for_each_entry(inode, head, i_hash) {
1485 if (inode->i_sb != sb)
1486 continue;
1487 mval = match(inode, hashval, data);
1488 if (mval == 0)
1489 continue;
1490 if (mval == 1)
1491 ret_inode = inode;
1492 goto out;
1493 }
1494 out:
1495 spin_unlock(&inode_hash_lock);
1496 return ret_inode;
1497 }
1498 EXPORT_SYMBOL(find_inode_nowait);
1499
insert_inode_locked(struct inode * inode)1500 int insert_inode_locked(struct inode *inode)
1501 {
1502 struct super_block *sb = inode->i_sb;
1503 ino_t ino = inode->i_ino;
1504 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1505
1506 while (1) {
1507 struct inode *old = NULL;
1508 spin_lock(&inode_hash_lock);
1509 hlist_for_each_entry(old, head, i_hash) {
1510 if (old->i_ino != ino)
1511 continue;
1512 if (old->i_sb != sb)
1513 continue;
1514 spin_lock(&old->i_lock);
1515 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1516 spin_unlock(&old->i_lock);
1517 continue;
1518 }
1519 break;
1520 }
1521 if (likely(!old)) {
1522 spin_lock(&inode->i_lock);
1523 inode->i_state |= I_NEW | I_CREATING;
1524 hlist_add_head(&inode->i_hash, head);
1525 spin_unlock(&inode->i_lock);
1526 spin_unlock(&inode_hash_lock);
1527 return 0;
1528 }
1529 if (unlikely(old->i_state & I_CREATING)) {
1530 spin_unlock(&old->i_lock);
1531 spin_unlock(&inode_hash_lock);
1532 return -EBUSY;
1533 }
1534 __iget(old);
1535 spin_unlock(&old->i_lock);
1536 spin_unlock(&inode_hash_lock);
1537 wait_on_inode(old);
1538 if (unlikely(!inode_unhashed(old))) {
1539 iput(old);
1540 return -EBUSY;
1541 }
1542 iput(old);
1543 }
1544 }
1545 EXPORT_SYMBOL(insert_inode_locked);
1546
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1547 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1548 int (*test)(struct inode *, void *), void *data)
1549 {
1550 struct inode *old;
1551
1552 inode->i_state |= I_CREATING;
1553 old = inode_insert5(inode, hashval, test, NULL, data);
1554
1555 if (old != inode) {
1556 iput(old);
1557 return -EBUSY;
1558 }
1559 return 0;
1560 }
1561 EXPORT_SYMBOL(insert_inode_locked4);
1562
1563
generic_delete_inode(struct inode * inode)1564 int generic_delete_inode(struct inode *inode)
1565 {
1566 return 1;
1567 }
1568 EXPORT_SYMBOL(generic_delete_inode);
1569
1570 /*
1571 * Called when we're dropping the last reference
1572 * to an inode.
1573 *
1574 * Call the FS "drop_inode()" function, defaulting to
1575 * the legacy UNIX filesystem behaviour. If it tells
1576 * us to evict inode, do so. Otherwise, retain inode
1577 * in cache if fs is alive, sync and evict if fs is
1578 * shutting down.
1579 */
iput_final(struct inode * inode)1580 static void iput_final(struct inode *inode)
1581 {
1582 struct super_block *sb = inode->i_sb;
1583 const struct super_operations *op = inode->i_sb->s_op;
1584 int drop;
1585
1586 WARN_ON(inode->i_state & I_NEW);
1587
1588 if (op->drop_inode)
1589 drop = op->drop_inode(inode);
1590 else
1591 drop = generic_drop_inode(inode);
1592
1593 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1594 inode_add_lru(inode);
1595 spin_unlock(&inode->i_lock);
1596 return;
1597 }
1598
1599 if (!drop) {
1600 inode->i_state |= I_WILL_FREE;
1601 spin_unlock(&inode->i_lock);
1602 write_inode_now(inode, 1);
1603 spin_lock(&inode->i_lock);
1604 WARN_ON(inode->i_state & I_NEW);
1605 inode->i_state &= ~I_WILL_FREE;
1606 }
1607
1608 inode->i_state |= I_FREEING;
1609 if (!list_empty(&inode->i_lru))
1610 inode_lru_list_del(inode);
1611 spin_unlock(&inode->i_lock);
1612
1613 evict(inode);
1614 }
1615
1616 /**
1617 * iput - put an inode
1618 * @inode: inode to put
1619 *
1620 * Puts an inode, dropping its usage count. If the inode use count hits
1621 * zero, the inode is then freed and may also be destroyed.
1622 *
1623 * Consequently, iput() can sleep.
1624 */
iput(struct inode * inode)1625 void iput(struct inode *inode)
1626 {
1627 if (!inode)
1628 return;
1629 BUG_ON(inode->i_state & I_CLEAR);
1630 retry:
1631 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1632 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1633 atomic_inc(&inode->i_count);
1634 spin_unlock(&inode->i_lock);
1635 trace_writeback_lazytime_iput(inode);
1636 mark_inode_dirty_sync(inode);
1637 goto retry;
1638 }
1639 iput_final(inode);
1640 }
1641 }
1642 EXPORT_SYMBOL(iput);
1643
1644 /**
1645 * bmap - find a block number in a file
1646 * @inode: inode of file
1647 * @block: block to find
1648 *
1649 * Returns the block number on the device holding the inode that
1650 * is the disk block number for the block of the file requested.
1651 * That is, asked for block 4 of inode 1 the function will return the
1652 * disk block relative to the disk start that holds that block of the
1653 * file.
1654 */
bmap(struct inode * inode,sector_t block)1655 sector_t bmap(struct inode *inode, sector_t block)
1656 {
1657 sector_t res = 0;
1658 if (inode->i_mapping->a_ops->bmap)
1659 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1660 return res;
1661 }
1662 EXPORT_SYMBOL(bmap);
1663
1664 /*
1665 * With relative atime, only update atime if the previous atime is
1666 * earlier than either the ctime or mtime or if at least a day has
1667 * passed since the last atime update.
1668 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1669 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1670 struct timespec64 now)
1671 {
1672
1673 if (!(mnt->mnt_flags & MNT_RELATIME))
1674 return 1;
1675 /*
1676 * Is mtime younger than atime? If yes, update atime:
1677 */
1678 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1679 return 1;
1680 /*
1681 * Is ctime younger than atime? If yes, update atime:
1682 */
1683 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1684 return 1;
1685
1686 /*
1687 * Is the previous atime value older than a day? If yes,
1688 * update atime:
1689 */
1690 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1691 return 1;
1692 /*
1693 * Good, we can skip the atime update:
1694 */
1695 return 0;
1696 }
1697
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1698 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1699 {
1700 int iflags = I_DIRTY_TIME;
1701 bool dirty = false;
1702
1703 if (flags & S_ATIME)
1704 inode->i_atime = *time;
1705 if (flags & S_VERSION)
1706 dirty = inode_maybe_inc_iversion(inode, false);
1707 if (flags & S_CTIME)
1708 inode->i_ctime = *time;
1709 if (flags & S_MTIME)
1710 inode->i_mtime = *time;
1711 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1712 !(inode->i_sb->s_flags & SB_LAZYTIME))
1713 dirty = true;
1714
1715 if (dirty)
1716 iflags |= I_DIRTY_SYNC;
1717 __mark_inode_dirty(inode, iflags);
1718 return 0;
1719 }
1720 EXPORT_SYMBOL(generic_update_time);
1721
1722 /*
1723 * This does the actual work of updating an inodes time or version. Must have
1724 * had called mnt_want_write() before calling this.
1725 */
update_time(struct inode * inode,struct timespec64 * time,int flags)1726 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1727 {
1728 int (*update_time)(struct inode *, struct timespec64 *, int);
1729
1730 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1731 generic_update_time;
1732
1733 return update_time(inode, time, flags);
1734 }
1735
1736 /**
1737 * touch_atime - update the access time
1738 * @path: the &struct path to update
1739 * @inode: inode to update
1740 *
1741 * Update the accessed time on an inode and mark it for writeback.
1742 * This function automatically handles read only file systems and media,
1743 * as well as the "noatime" flag and inode specific "noatime" markers.
1744 */
atime_needs_update(const struct path * path,struct inode * inode)1745 bool atime_needs_update(const struct path *path, struct inode *inode)
1746 {
1747 struct vfsmount *mnt = path->mnt;
1748 struct timespec64 now;
1749
1750 if (inode->i_flags & S_NOATIME)
1751 return false;
1752
1753 /* Atime updates will likely cause i_uid and i_gid to be written
1754 * back improprely if their true value is unknown to the vfs.
1755 */
1756 if (HAS_UNMAPPED_ID(inode))
1757 return false;
1758
1759 if (IS_NOATIME(inode))
1760 return false;
1761 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1762 return false;
1763
1764 if (mnt->mnt_flags & MNT_NOATIME)
1765 return false;
1766 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1767 return false;
1768
1769 now = current_time(inode);
1770
1771 if (!relatime_need_update(mnt, inode, now))
1772 return false;
1773
1774 if (timespec64_equal(&inode->i_atime, &now))
1775 return false;
1776
1777 return true;
1778 }
1779
touch_atime(const struct path * path)1780 void touch_atime(const struct path *path)
1781 {
1782 struct vfsmount *mnt = path->mnt;
1783 struct inode *inode = d_inode(path->dentry);
1784 struct timespec64 now;
1785
1786 if (!atime_needs_update(path, inode))
1787 return;
1788
1789 if (!sb_start_write_trylock(inode->i_sb))
1790 return;
1791
1792 if (__mnt_want_write(mnt) != 0)
1793 goto skip_update;
1794 /*
1795 * File systems can error out when updating inodes if they need to
1796 * allocate new space to modify an inode (such is the case for
1797 * Btrfs), but since we touch atime while walking down the path we
1798 * really don't care if we failed to update the atime of the file,
1799 * so just ignore the return value.
1800 * We may also fail on filesystems that have the ability to make parts
1801 * of the fs read only, e.g. subvolumes in Btrfs.
1802 */
1803 now = current_time(inode);
1804 update_time(inode, &now, S_ATIME);
1805 __mnt_drop_write(mnt);
1806 skip_update:
1807 sb_end_write(inode->i_sb);
1808 }
1809 EXPORT_SYMBOL(touch_atime);
1810
1811 /*
1812 * The logic we want is
1813 *
1814 * if suid or (sgid and xgrp)
1815 * remove privs
1816 */
should_remove_suid(struct dentry * dentry)1817 int should_remove_suid(struct dentry *dentry)
1818 {
1819 umode_t mode = d_inode(dentry)->i_mode;
1820 int kill = 0;
1821
1822 /* suid always must be killed */
1823 if (unlikely(mode & S_ISUID))
1824 kill = ATTR_KILL_SUID;
1825
1826 /*
1827 * sgid without any exec bits is just a mandatory locking mark; leave
1828 * it alone. If some exec bits are set, it's a real sgid; kill it.
1829 */
1830 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1831 kill |= ATTR_KILL_SGID;
1832
1833 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1834 return kill;
1835
1836 return 0;
1837 }
1838 EXPORT_SYMBOL(should_remove_suid);
1839
1840 /*
1841 * Return mask of changes for notify_change() that need to be done as a
1842 * response to write or truncate. Return 0 if nothing has to be changed.
1843 * Negative value on error (change should be denied).
1844 */
dentry_needs_remove_privs(struct dentry * dentry)1845 int dentry_needs_remove_privs(struct dentry *dentry)
1846 {
1847 struct inode *inode = d_inode(dentry);
1848 int mask = 0;
1849 int ret;
1850
1851 if (IS_NOSEC(inode))
1852 return 0;
1853
1854 mask = should_remove_suid(dentry);
1855 ret = security_inode_need_killpriv(dentry);
1856 if (ret < 0)
1857 return ret;
1858 if (ret)
1859 mask |= ATTR_KILL_PRIV;
1860 return mask;
1861 }
1862
__remove_privs(struct dentry * dentry,int kill)1863 static int __remove_privs(struct dentry *dentry, int kill)
1864 {
1865 struct iattr newattrs;
1866
1867 newattrs.ia_valid = ATTR_FORCE | kill;
1868 /*
1869 * Note we call this on write, so notify_change will not
1870 * encounter any conflicting delegations:
1871 */
1872 return notify_change(dentry, &newattrs, NULL);
1873 }
1874
1875 /*
1876 * Remove special file priviledges (suid, capabilities) when file is written
1877 * to or truncated.
1878 */
file_remove_privs(struct file * file)1879 int file_remove_privs(struct file *file)
1880 {
1881 struct dentry *dentry = file_dentry(file);
1882 struct inode *inode = file_inode(file);
1883 int kill;
1884 int error = 0;
1885
1886 /*
1887 * Fast path for nothing security related.
1888 * As well for non-regular files, e.g. blkdev inodes.
1889 * For example, blkdev_write_iter() might get here
1890 * trying to remove privs which it is not allowed to.
1891 */
1892 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1893 return 0;
1894
1895 kill = dentry_needs_remove_privs(dentry);
1896 if (kill < 0)
1897 return kill;
1898 if (kill)
1899 error = __remove_privs(dentry, kill);
1900 if (!error)
1901 inode_has_no_xattr(inode);
1902
1903 return error;
1904 }
1905 EXPORT_SYMBOL(file_remove_privs);
1906
1907 /**
1908 * file_update_time - update mtime and ctime time
1909 * @file: file accessed
1910 *
1911 * Update the mtime and ctime members of an inode and mark the inode
1912 * for writeback. Note that this function is meant exclusively for
1913 * usage in the file write path of filesystems, and filesystems may
1914 * choose to explicitly ignore update via this function with the
1915 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1916 * timestamps are handled by the server. This can return an error for
1917 * file systems who need to allocate space in order to update an inode.
1918 */
1919
file_update_time(struct file * file)1920 int file_update_time(struct file *file)
1921 {
1922 struct inode *inode = file_inode(file);
1923 struct timespec64 now;
1924 int sync_it = 0;
1925 int ret;
1926
1927 /* First try to exhaust all avenues to not sync */
1928 if (IS_NOCMTIME(inode))
1929 return 0;
1930
1931 now = current_time(inode);
1932 if (!timespec64_equal(&inode->i_mtime, &now))
1933 sync_it = S_MTIME;
1934
1935 if (!timespec64_equal(&inode->i_ctime, &now))
1936 sync_it |= S_CTIME;
1937
1938 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1939 sync_it |= S_VERSION;
1940
1941 if (!sync_it)
1942 return 0;
1943
1944 /* Finally allowed to write? Takes lock. */
1945 if (__mnt_want_write_file(file))
1946 return 0;
1947
1948 ret = update_time(inode, &now, sync_it);
1949 __mnt_drop_write_file(file);
1950
1951 return ret;
1952 }
1953 EXPORT_SYMBOL(file_update_time);
1954
1955 /* Caller must hold the file's inode lock */
file_modified(struct file * file)1956 int file_modified(struct file *file)
1957 {
1958 int err;
1959
1960 /*
1961 * Clear the security bits if the process is not being run by root.
1962 * This keeps people from modifying setuid and setgid binaries.
1963 */
1964 err = file_remove_privs(file);
1965 if (err)
1966 return err;
1967
1968 if (unlikely(file->f_mode & FMODE_NOCMTIME))
1969 return 0;
1970
1971 return file_update_time(file);
1972 }
1973 EXPORT_SYMBOL(file_modified);
1974
inode_needs_sync(struct inode * inode)1975 int inode_needs_sync(struct inode *inode)
1976 {
1977 if (IS_SYNC(inode))
1978 return 1;
1979 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1980 return 1;
1981 return 0;
1982 }
1983 EXPORT_SYMBOL(inode_needs_sync);
1984
1985 /*
1986 * If we try to find an inode in the inode hash while it is being
1987 * deleted, we have to wait until the filesystem completes its
1988 * deletion before reporting that it isn't found. This function waits
1989 * until the deletion _might_ have completed. Callers are responsible
1990 * to recheck inode state.
1991 *
1992 * It doesn't matter if I_NEW is not set initially, a call to
1993 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1994 * will DTRT.
1995 */
__wait_on_freeing_inode(struct inode * inode)1996 static void __wait_on_freeing_inode(struct inode *inode)
1997 {
1998 wait_queue_head_t *wq;
1999 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2000 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2001 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2002 spin_unlock(&inode->i_lock);
2003 spin_unlock(&inode_hash_lock);
2004 schedule();
2005 finish_wait(wq, &wait.wq_entry);
2006 spin_lock(&inode_hash_lock);
2007 }
2008
2009 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2010 static int __init set_ihash_entries(char *str)
2011 {
2012 if (!str)
2013 return 0;
2014 ihash_entries = simple_strtoul(str, &str, 0);
2015 return 1;
2016 }
2017 __setup("ihash_entries=", set_ihash_entries);
2018
2019 /*
2020 * Initialize the waitqueues and inode hash table.
2021 */
inode_init_early(void)2022 void __init inode_init_early(void)
2023 {
2024 /* If hashes are distributed across NUMA nodes, defer
2025 * hash allocation until vmalloc space is available.
2026 */
2027 if (hashdist)
2028 return;
2029
2030 inode_hashtable =
2031 alloc_large_system_hash("Inode-cache",
2032 sizeof(struct hlist_head),
2033 ihash_entries,
2034 14,
2035 HASH_EARLY | HASH_ZERO,
2036 &i_hash_shift,
2037 &i_hash_mask,
2038 0,
2039 0);
2040 }
2041
inode_init(void)2042 void __init inode_init(void)
2043 {
2044 /* inode slab cache */
2045 inode_cachep = kmem_cache_create("inode_cache",
2046 sizeof(struct inode),
2047 0,
2048 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2049 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2050 init_once);
2051
2052 /* Hash may have been set up in inode_init_early */
2053 if (!hashdist)
2054 return;
2055
2056 inode_hashtable =
2057 alloc_large_system_hash("Inode-cache",
2058 sizeof(struct hlist_head),
2059 ihash_entries,
2060 14,
2061 HASH_ZERO,
2062 &i_hash_shift,
2063 &i_hash_mask,
2064 0,
2065 0);
2066 }
2067
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2068 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2069 {
2070 inode->i_mode = mode;
2071 if (S_ISCHR(mode)) {
2072 inode->i_fop = &def_chr_fops;
2073 inode->i_rdev = rdev;
2074 } else if (S_ISBLK(mode)) {
2075 inode->i_fop = &def_blk_fops;
2076 inode->i_rdev = rdev;
2077 } else if (S_ISFIFO(mode))
2078 inode->i_fop = &pipefifo_fops;
2079 else if (S_ISSOCK(mode))
2080 ; /* leave it no_open_fops */
2081 else
2082 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2083 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2084 inode->i_ino);
2085 }
2086 EXPORT_SYMBOL(init_special_inode);
2087
2088 /**
2089 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2090 * @inode: New inode
2091 * @dir: Directory inode
2092 * @mode: mode of the new inode
2093 */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)2094 void inode_init_owner(struct inode *inode, const struct inode *dir,
2095 umode_t mode)
2096 {
2097 inode->i_uid = current_fsuid();
2098 if (dir && dir->i_mode & S_ISGID) {
2099 inode->i_gid = dir->i_gid;
2100
2101 /* Directories are special, and always inherit S_ISGID */
2102 if (S_ISDIR(mode))
2103 mode |= S_ISGID;
2104 } else
2105 inode->i_gid = current_fsgid();
2106 inode->i_mode = mode;
2107 }
2108 EXPORT_SYMBOL(inode_init_owner);
2109
2110 /**
2111 * inode_owner_or_capable - check current task permissions to inode
2112 * @inode: inode being checked
2113 *
2114 * Return true if current either has CAP_FOWNER in a namespace with the
2115 * inode owner uid mapped, or owns the file.
2116 */
inode_owner_or_capable(const struct inode * inode)2117 bool inode_owner_or_capable(const struct inode *inode)
2118 {
2119 struct user_namespace *ns;
2120
2121 if (uid_eq(current_fsuid(), inode->i_uid))
2122 return true;
2123
2124 ns = current_user_ns();
2125 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2126 return true;
2127 return false;
2128 }
2129 EXPORT_SYMBOL(inode_owner_or_capable);
2130
2131 /*
2132 * Direct i/o helper functions
2133 */
__inode_dio_wait(struct inode * inode)2134 static void __inode_dio_wait(struct inode *inode)
2135 {
2136 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2137 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2138
2139 do {
2140 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2141 if (atomic_read(&inode->i_dio_count))
2142 schedule();
2143 } while (atomic_read(&inode->i_dio_count));
2144 finish_wait(wq, &q.wq_entry);
2145 }
2146
2147 /**
2148 * inode_dio_wait - wait for outstanding DIO requests to finish
2149 * @inode: inode to wait for
2150 *
2151 * Waits for all pending direct I/O requests to finish so that we can
2152 * proceed with a truncate or equivalent operation.
2153 *
2154 * Must be called under a lock that serializes taking new references
2155 * to i_dio_count, usually by inode->i_mutex.
2156 */
inode_dio_wait(struct inode * inode)2157 void inode_dio_wait(struct inode *inode)
2158 {
2159 if (atomic_read(&inode->i_dio_count))
2160 __inode_dio_wait(inode);
2161 }
2162 EXPORT_SYMBOL(inode_dio_wait);
2163
2164 /*
2165 * inode_set_flags - atomically set some inode flags
2166 *
2167 * Note: the caller should be holding i_mutex, or else be sure that
2168 * they have exclusive access to the inode structure (i.e., while the
2169 * inode is being instantiated). The reason for the cmpxchg() loop
2170 * --- which wouldn't be necessary if all code paths which modify
2171 * i_flags actually followed this rule, is that there is at least one
2172 * code path which doesn't today so we use cmpxchg() out of an abundance
2173 * of caution.
2174 *
2175 * In the long run, i_mutex is overkill, and we should probably look
2176 * at using the i_lock spinlock to protect i_flags, and then make sure
2177 * it is so documented in include/linux/fs.h and that all code follows
2178 * the locking convention!!
2179 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2180 void inode_set_flags(struct inode *inode, unsigned int flags,
2181 unsigned int mask)
2182 {
2183 WARN_ON_ONCE(flags & ~mask);
2184 set_mask_bits(&inode->i_flags, mask, flags);
2185 }
2186 EXPORT_SYMBOL(inode_set_flags);
2187
inode_nohighmem(struct inode * inode)2188 void inode_nohighmem(struct inode *inode)
2189 {
2190 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2191 }
2192 EXPORT_SYMBOL(inode_nohighmem);
2193
2194 /**
2195 * timespec64_trunc - Truncate timespec64 to a granularity
2196 * @t: Timespec64
2197 * @gran: Granularity in ns.
2198 *
2199 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2200 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2201 */
timespec64_trunc(struct timespec64 t,unsigned gran)2202 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2203 {
2204 /* Avoid division in the common cases 1 ns and 1 s. */
2205 if (gran == 1) {
2206 /* nothing */
2207 } else if (gran == NSEC_PER_SEC) {
2208 t.tv_nsec = 0;
2209 } else if (gran > 1 && gran < NSEC_PER_SEC) {
2210 t.tv_nsec -= t.tv_nsec % gran;
2211 } else {
2212 WARN(1, "illegal file time granularity: %u", gran);
2213 }
2214 return t;
2215 }
2216 EXPORT_SYMBOL(timespec64_trunc);
2217
2218 /**
2219 * timestamp_truncate - Truncate timespec to a granularity
2220 * @t: Timespec
2221 * @inode: inode being updated
2222 *
2223 * Truncate a timespec to the granularity supported by the fs
2224 * containing the inode. Always rounds down. gran must
2225 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2226 */
timestamp_truncate(struct timespec64 t,struct inode * inode)2227 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2228 {
2229 struct super_block *sb = inode->i_sb;
2230 unsigned int gran = sb->s_time_gran;
2231
2232 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2233 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2234 t.tv_nsec = 0;
2235
2236 /* Avoid division in the common cases 1 ns and 1 s. */
2237 if (gran == 1)
2238 ; /* nothing */
2239 else if (gran == NSEC_PER_SEC)
2240 t.tv_nsec = 0;
2241 else if (gran > 1 && gran < NSEC_PER_SEC)
2242 t.tv_nsec -= t.tv_nsec % gran;
2243 else
2244 WARN(1, "invalid file time granularity: %u", gran);
2245 return t;
2246 }
2247 EXPORT_SYMBOL(timestamp_truncate);
2248
2249 /**
2250 * current_time - Return FS time
2251 * @inode: inode.
2252 *
2253 * Return the current time truncated to the time granularity supported by
2254 * the fs.
2255 *
2256 * Note that inode and inode->sb cannot be NULL.
2257 * Otherwise, the function warns and returns time without truncation.
2258 */
current_time(struct inode * inode)2259 struct timespec64 current_time(struct inode *inode)
2260 {
2261 struct timespec64 now;
2262
2263 ktime_get_coarse_real_ts64(&now);
2264
2265 if (unlikely(!inode->i_sb)) {
2266 WARN(1, "current_time() called with uninitialized super_block in the inode");
2267 return now;
2268 }
2269
2270 return timestamp_truncate(now, inode);
2271 }
2272 EXPORT_SYMBOL(current_time);
2273
2274 /*
2275 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2276 * configurations.
2277 *
2278 * Note: the caller should be holding i_mutex, or else be sure that they have
2279 * exclusive access to the inode structure.
2280 */
vfs_ioc_setflags_prepare(struct inode * inode,unsigned int oldflags,unsigned int flags)2281 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2282 unsigned int flags)
2283 {
2284 /*
2285 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2286 * the relevant capability.
2287 *
2288 * This test looks nicer. Thanks to Pauline Middelink
2289 */
2290 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2291 !capable(CAP_LINUX_IMMUTABLE))
2292 return -EPERM;
2293
2294 return fscrypt_prepare_setflags(inode, oldflags, flags);
2295 }
2296 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2297
2298 /*
2299 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2300 * configurations.
2301 *
2302 * Note: the caller should be holding i_mutex, or else be sure that they have
2303 * exclusive access to the inode structure.
2304 */
vfs_ioc_fssetxattr_check(struct inode * inode,const struct fsxattr * old_fa,struct fsxattr * fa)2305 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2306 struct fsxattr *fa)
2307 {
2308 /*
2309 * Can't modify an immutable/append-only file unless we have
2310 * appropriate permission.
2311 */
2312 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2313 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2314 !capable(CAP_LINUX_IMMUTABLE))
2315 return -EPERM;
2316
2317 /*
2318 * Project Quota ID state is only allowed to change from within the init
2319 * namespace. Enforce that restriction only if we are trying to change
2320 * the quota ID state. Everything else is allowed in user namespaces.
2321 */
2322 if (current_user_ns() != &init_user_ns) {
2323 if (old_fa->fsx_projid != fa->fsx_projid)
2324 return -EINVAL;
2325 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2326 FS_XFLAG_PROJINHERIT)
2327 return -EINVAL;
2328 }
2329
2330 /* Check extent size hints. */
2331 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2332 return -EINVAL;
2333
2334 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2335 !S_ISDIR(inode->i_mode))
2336 return -EINVAL;
2337
2338 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2339 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2340 return -EINVAL;
2341
2342 /*
2343 * It is only valid to set the DAX flag on regular files and
2344 * directories on filesystems.
2345 */
2346 if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2347 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2348 return -EINVAL;
2349
2350 /* Extent size hints of zero turn off the flags. */
2351 if (fa->fsx_extsize == 0)
2352 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2353 if (fa->fsx_cowextsize == 0)
2354 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2355
2356 return 0;
2357 }
2358 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2359
2360 /**
2361 * mode_strip_sgid - handle the sgid bit for non-directories
2362 * @dir: parent directory inode
2363 * @mode: mode of the file to be created in @dir
2364 *
2365 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2366 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2367 * either in the group of the parent directory or they have CAP_FSETID
2368 * in their user namespace and are privileged over the parent directory.
2369 * In all other cases, strip the S_ISGID bit from @mode.
2370 *
2371 * Return: the new mode to use for the file
2372 */
mode_strip_sgid(const struct inode * dir,umode_t mode)2373 umode_t mode_strip_sgid(const struct inode *dir, umode_t mode)
2374 {
2375 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2376 return mode;
2377 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2378 return mode;
2379 if (in_group_p(dir->i_gid))
2380 return mode;
2381 if (capable_wrt_inode_uidgid(dir, CAP_FSETID))
2382 return mode;
2383
2384 return mode & ~S_ISGID;
2385 }
2386 EXPORT_SYMBOL(mode_strip_sgid);
2387