• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26 
27 /*
28  * Inode locking rules:
29  *
30  * inode->i_lock protects:
31  *   inode->i_state, inode->i_hash, __iget()
32  * Inode LRU list locks protect:
33  *   inode->i_sb->s_inode_lru, inode->i_lru
34  * inode->i_sb->s_inode_list_lock protects:
35  *   inode->i_sb->s_inodes, inode->i_sb_list
36  * bdi->wb.list_lock protects:
37  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38  * inode_hash_lock protects:
39  *   inode_hashtable, inode->i_hash
40  *
41  * Lock ordering:
42  *
43  * inode->i_sb->s_inode_list_lock
44  *   inode->i_lock
45  *     Inode LRU list locks
46  *
47  * bdi->wb.list_lock
48  *   inode->i_lock
49  *
50  * inode_hash_lock
51  *   inode->i_sb->s_inode_list_lock
52  *   inode->i_lock
53  *
54  * iunique_lock
55  *   inode_hash_lock
56  */
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 static struct hlist_head *inode_hashtable __read_mostly;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62 
63 /*
64  * Empty aops. Can be used for the cases where the user does not
65  * define any of the address_space operations.
66  */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70 
71 /*
72  * Statistics gathering..
73  */
74 struct inodes_stat_t inodes_stat;
75 
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78 
79 static struct kmem_cache *inode_cachep __read_mostly;
80 
get_nr_inodes(void)81 static long get_nr_inodes(void)
82 {
83 	int i;
84 	long sum = 0;
85 	for_each_possible_cpu(i)
86 		sum += per_cpu(nr_inodes, i);
87 	return sum < 0 ? 0 : sum;
88 }
89 
get_nr_inodes_unused(void)90 static inline long get_nr_inodes_unused(void)
91 {
92 	int i;
93 	long sum = 0;
94 	for_each_possible_cpu(i)
95 		sum += per_cpu(nr_unused, i);
96 	return sum < 0 ? 0 : sum;
97 }
98 
get_nr_dirty_inodes(void)99 long get_nr_dirty_inodes(void)
100 {
101 	/* not actually dirty inodes, but a wild approximation */
102 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 	return nr_dirty > 0 ? nr_dirty : 0;
104 }
105 
106 /*
107  * Handle nr_inode sysctl
108  */
109 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)110 int proc_nr_inodes(struct ctl_table *table, int write,
111 		   void __user *buffer, size_t *lenp, loff_t *ppos)
112 {
113 	inodes_stat.nr_inodes = get_nr_inodes();
114 	inodes_stat.nr_unused = get_nr_inodes_unused();
115 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 #endif
118 
no_open(struct inode * inode,struct file * file)119 static int no_open(struct inode *inode, struct file *file)
120 {
121 	return -ENXIO;
122 }
123 
124 /**
125  * inode_init_always - perform inode structure initialisation
126  * @sb: superblock inode belongs to
127  * @inode: inode to initialise
128  *
129  * These are initializations that need to be done on every inode
130  * allocation as the fields are not initialised by slab allocation.
131  */
inode_init_always(struct super_block * sb,struct inode * inode)132 int inode_init_always(struct super_block *sb, struct inode *inode)
133 {
134 	static const struct inode_operations empty_iops;
135 	static const struct file_operations no_open_fops = {.open = no_open};
136 	struct address_space *const mapping = &inode->i_data;
137 
138 	inode->i_sb = sb;
139 	inode->i_blkbits = sb->s_blocksize_bits;
140 	inode->i_flags = 0;
141 	atomic64_set(&inode->i_sequence, 0);
142 	atomic_set(&inode->i_count, 1);
143 	inode->i_op = &empty_iops;
144 	inode->i_fop = &no_open_fops;
145 	inode->__i_nlink = 1;
146 	inode->i_opflags = 0;
147 	if (sb->s_xattr)
148 		inode->i_opflags |= IOP_XATTR;
149 	i_uid_write(inode, 0);
150 	i_gid_write(inode, 0);
151 	atomic_set(&inode->i_writecount, 0);
152 	inode->i_size = 0;
153 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 	inode->i_blocks = 0;
155 	inode->i_bytes = 0;
156 	inode->i_generation = 0;
157 	inode->i_pipe = NULL;
158 	inode->i_bdev = NULL;
159 	inode->i_cdev = NULL;
160 	inode->i_link = NULL;
161 	inode->i_dir_seq = 0;
162 	inode->i_rdev = 0;
163 	inode->dirtied_when = 0;
164 
165 #ifdef CONFIG_CGROUP_WRITEBACK
166 	inode->i_wb_frn_winner = 0;
167 	inode->i_wb_frn_avg_time = 0;
168 	inode->i_wb_frn_history = 0;
169 #endif
170 
171 	spin_lock_init(&inode->i_lock);
172 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173 
174 	init_rwsem(&inode->i_rwsem);
175 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176 
177 	atomic_set(&inode->i_dio_count, 0);
178 
179 	mapping->a_ops = &empty_aops;
180 	mapping->host = inode;
181 	mapping->flags = 0;
182 	mapping->wb_err = 0;
183 	atomic_set(&mapping->i_mmap_writable, 0);
184 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
185 	atomic_set(&mapping->nr_thps, 0);
186 #endif
187 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
188 	mapping->private_data = NULL;
189 	mapping->writeback_index = 0;
190 	inode->i_private = NULL;
191 	inode->i_mapping = mapping;
192 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
193 #ifdef CONFIG_FS_POSIX_ACL
194 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
195 #endif
196 
197 #ifdef CONFIG_FSNOTIFY
198 	inode->i_fsnotify_mask = 0;
199 #endif
200 	inode->i_flctx = NULL;
201 
202 	if (unlikely(security_inode_alloc(inode)))
203 		return -ENOMEM;
204 	this_cpu_inc(nr_inodes);
205 
206 	return 0;
207 }
208 EXPORT_SYMBOL(inode_init_always);
209 
free_inode_nonrcu(struct inode * inode)210 void free_inode_nonrcu(struct inode *inode)
211 {
212 	kmem_cache_free(inode_cachep, inode);
213 }
214 EXPORT_SYMBOL(free_inode_nonrcu);
215 
i_callback(struct rcu_head * head)216 static void i_callback(struct rcu_head *head)
217 {
218 	struct inode *inode = container_of(head, struct inode, i_rcu);
219 	if (inode->free_inode)
220 		inode->free_inode(inode);
221 	else
222 		free_inode_nonrcu(inode);
223 }
224 
alloc_inode(struct super_block * sb)225 static struct inode *alloc_inode(struct super_block *sb)
226 {
227 	const struct super_operations *ops = sb->s_op;
228 	struct inode *inode;
229 
230 	if (ops->alloc_inode)
231 		inode = ops->alloc_inode(sb);
232 	else
233 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
234 
235 	if (!inode)
236 		return NULL;
237 
238 	if (unlikely(inode_init_always(sb, inode))) {
239 		if (ops->destroy_inode) {
240 			ops->destroy_inode(inode);
241 			if (!ops->free_inode)
242 				return NULL;
243 		}
244 		inode->free_inode = ops->free_inode;
245 		i_callback(&inode->i_rcu);
246 		return NULL;
247 	}
248 
249 	return inode;
250 }
251 
__destroy_inode(struct inode * inode)252 void __destroy_inode(struct inode *inode)
253 {
254 	BUG_ON(inode_has_buffers(inode));
255 	inode_detach_wb(inode);
256 	security_inode_free(inode);
257 	fsnotify_inode_delete(inode);
258 	locks_free_lock_context(inode);
259 	if (!inode->i_nlink) {
260 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
261 		atomic_long_dec(&inode->i_sb->s_remove_count);
262 	}
263 
264 #ifdef CONFIG_FS_POSIX_ACL
265 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
266 		posix_acl_release(inode->i_acl);
267 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
268 		posix_acl_release(inode->i_default_acl);
269 #endif
270 	this_cpu_dec(nr_inodes);
271 }
272 EXPORT_SYMBOL(__destroy_inode);
273 
destroy_inode(struct inode * inode)274 static void destroy_inode(struct inode *inode)
275 {
276 	const struct super_operations *ops = inode->i_sb->s_op;
277 
278 	BUG_ON(!list_empty(&inode->i_lru));
279 	__destroy_inode(inode);
280 	if (ops->destroy_inode) {
281 		ops->destroy_inode(inode);
282 		if (!ops->free_inode)
283 			return;
284 	}
285 	inode->free_inode = ops->free_inode;
286 	call_rcu(&inode->i_rcu, i_callback);
287 }
288 
289 /**
290  * drop_nlink - directly drop an inode's link count
291  * @inode: inode
292  *
293  * This is a low-level filesystem helper to replace any
294  * direct filesystem manipulation of i_nlink.  In cases
295  * where we are attempting to track writes to the
296  * filesystem, a decrement to zero means an imminent
297  * write when the file is truncated and actually unlinked
298  * on the filesystem.
299  */
drop_nlink(struct inode * inode)300 void drop_nlink(struct inode *inode)
301 {
302 	WARN_ON(inode->i_nlink == 0);
303 	inode->__i_nlink--;
304 	if (!inode->i_nlink)
305 		atomic_long_inc(&inode->i_sb->s_remove_count);
306 }
307 EXPORT_SYMBOL(drop_nlink);
308 
309 /**
310  * clear_nlink - directly zero an inode's link count
311  * @inode: inode
312  *
313  * This is a low-level filesystem helper to replace any
314  * direct filesystem manipulation of i_nlink.  See
315  * drop_nlink() for why we care about i_nlink hitting zero.
316  */
clear_nlink(struct inode * inode)317 void clear_nlink(struct inode *inode)
318 {
319 	if (inode->i_nlink) {
320 		inode->__i_nlink = 0;
321 		atomic_long_inc(&inode->i_sb->s_remove_count);
322 	}
323 }
324 EXPORT_SYMBOL(clear_nlink);
325 
326 /**
327  * set_nlink - directly set an inode's link count
328  * @inode: inode
329  * @nlink: new nlink (should be non-zero)
330  *
331  * This is a low-level filesystem helper to replace any
332  * direct filesystem manipulation of i_nlink.
333  */
set_nlink(struct inode * inode,unsigned int nlink)334 void set_nlink(struct inode *inode, unsigned int nlink)
335 {
336 	if (!nlink) {
337 		clear_nlink(inode);
338 	} else {
339 		/* Yes, some filesystems do change nlink from zero to one */
340 		if (inode->i_nlink == 0)
341 			atomic_long_dec(&inode->i_sb->s_remove_count);
342 
343 		inode->__i_nlink = nlink;
344 	}
345 }
346 EXPORT_SYMBOL(set_nlink);
347 
348 /**
349  * inc_nlink - directly increment an inode's link count
350  * @inode: inode
351  *
352  * This is a low-level filesystem helper to replace any
353  * direct filesystem manipulation of i_nlink.  Currently,
354  * it is only here for parity with dec_nlink().
355  */
inc_nlink(struct inode * inode)356 void inc_nlink(struct inode *inode)
357 {
358 	if (unlikely(inode->i_nlink == 0)) {
359 		WARN_ON(!(inode->i_state & I_LINKABLE));
360 		atomic_long_dec(&inode->i_sb->s_remove_count);
361 	}
362 
363 	inode->__i_nlink++;
364 }
365 EXPORT_SYMBOL(inc_nlink);
366 
__address_space_init_once(struct address_space * mapping)367 static void __address_space_init_once(struct address_space *mapping)
368 {
369 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
370 	init_rwsem(&mapping->i_mmap_rwsem);
371 	INIT_LIST_HEAD(&mapping->private_list);
372 	spin_lock_init(&mapping->private_lock);
373 	mapping->i_mmap = RB_ROOT_CACHED;
374 }
375 
address_space_init_once(struct address_space * mapping)376 void address_space_init_once(struct address_space *mapping)
377 {
378 	memset(mapping, 0, sizeof(*mapping));
379 	__address_space_init_once(mapping);
380 }
381 EXPORT_SYMBOL(address_space_init_once);
382 
383 /*
384  * These are initializations that only need to be done
385  * once, because the fields are idempotent across use
386  * of the inode, so let the slab aware of that.
387  */
inode_init_once(struct inode * inode)388 void inode_init_once(struct inode *inode)
389 {
390 	memset(inode, 0, sizeof(*inode));
391 	INIT_HLIST_NODE(&inode->i_hash);
392 	INIT_LIST_HEAD(&inode->i_devices);
393 	INIT_LIST_HEAD(&inode->i_io_list);
394 	INIT_LIST_HEAD(&inode->i_wb_list);
395 	INIT_LIST_HEAD(&inode->i_lru);
396 	__address_space_init_once(&inode->i_data);
397 	i_size_ordered_init(inode);
398 }
399 EXPORT_SYMBOL(inode_init_once);
400 
init_once(void * foo)401 static void init_once(void *foo)
402 {
403 	struct inode *inode = (struct inode *) foo;
404 
405 	inode_init_once(inode);
406 }
407 
408 /*
409  * inode->i_lock must be held
410  */
__iget(struct inode * inode)411 void __iget(struct inode *inode)
412 {
413 	atomic_inc(&inode->i_count);
414 }
415 
416 /*
417  * get additional reference to inode; caller must already hold one.
418  */
ihold(struct inode * inode)419 void ihold(struct inode *inode)
420 {
421 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
422 }
423 EXPORT_SYMBOL(ihold);
424 
inode_lru_list_add(struct inode * inode)425 static void inode_lru_list_add(struct inode *inode)
426 {
427 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
428 		this_cpu_inc(nr_unused);
429 	else
430 		inode->i_state |= I_REFERENCED;
431 }
432 
433 /*
434  * Add inode to LRU if needed (inode is unused and clean).
435  *
436  * Needs inode->i_lock held.
437  */
inode_add_lru(struct inode * inode)438 void inode_add_lru(struct inode *inode)
439 {
440 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
441 				I_FREEING | I_WILL_FREE)) &&
442 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
443 		inode_lru_list_add(inode);
444 }
445 
446 
inode_lru_list_del(struct inode * inode)447 static void inode_lru_list_del(struct inode *inode)
448 {
449 
450 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
451 		this_cpu_dec(nr_unused);
452 }
453 
454 /**
455  * inode_sb_list_add - add inode to the superblock list of inodes
456  * @inode: inode to add
457  */
inode_sb_list_add(struct inode * inode)458 void inode_sb_list_add(struct inode *inode)
459 {
460 	spin_lock(&inode->i_sb->s_inode_list_lock);
461 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
462 	spin_unlock(&inode->i_sb->s_inode_list_lock);
463 }
464 EXPORT_SYMBOL_GPL(inode_sb_list_add);
465 
inode_sb_list_del(struct inode * inode)466 static inline void inode_sb_list_del(struct inode *inode)
467 {
468 	if (!list_empty(&inode->i_sb_list)) {
469 		spin_lock(&inode->i_sb->s_inode_list_lock);
470 		list_del_init(&inode->i_sb_list);
471 		spin_unlock(&inode->i_sb->s_inode_list_lock);
472 	}
473 }
474 
hash(struct super_block * sb,unsigned long hashval)475 static unsigned long hash(struct super_block *sb, unsigned long hashval)
476 {
477 	unsigned long tmp;
478 
479 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
480 			L1_CACHE_BYTES;
481 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
482 	return tmp & i_hash_mask;
483 }
484 
485 /**
486  *	__insert_inode_hash - hash an inode
487  *	@inode: unhashed inode
488  *	@hashval: unsigned long value used to locate this object in the
489  *		inode_hashtable.
490  *
491  *	Add an inode to the inode hash for this superblock.
492  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)493 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
494 {
495 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
496 
497 	spin_lock(&inode_hash_lock);
498 	spin_lock(&inode->i_lock);
499 	hlist_add_head(&inode->i_hash, b);
500 	spin_unlock(&inode->i_lock);
501 	spin_unlock(&inode_hash_lock);
502 }
503 EXPORT_SYMBOL(__insert_inode_hash);
504 
505 /**
506  *	__remove_inode_hash - remove an inode from the hash
507  *	@inode: inode to unhash
508  *
509  *	Remove an inode from the superblock.
510  */
__remove_inode_hash(struct inode * inode)511 void __remove_inode_hash(struct inode *inode)
512 {
513 	spin_lock(&inode_hash_lock);
514 	spin_lock(&inode->i_lock);
515 	hlist_del_init(&inode->i_hash);
516 	spin_unlock(&inode->i_lock);
517 	spin_unlock(&inode_hash_lock);
518 }
519 EXPORT_SYMBOL(__remove_inode_hash);
520 
clear_inode(struct inode * inode)521 void clear_inode(struct inode *inode)
522 {
523 	/*
524 	 * We have to cycle the i_pages lock here because reclaim can be in the
525 	 * process of removing the last page (in __delete_from_page_cache())
526 	 * and we must not free the mapping under it.
527 	 */
528 	xa_lock_irq(&inode->i_data.i_pages);
529 	BUG_ON(inode->i_data.nrpages);
530 	BUG_ON(inode->i_data.nrexceptional);
531 	xa_unlock_irq(&inode->i_data.i_pages);
532 	BUG_ON(!list_empty(&inode->i_data.private_list));
533 	BUG_ON(!(inode->i_state & I_FREEING));
534 	BUG_ON(inode->i_state & I_CLEAR);
535 	BUG_ON(!list_empty(&inode->i_wb_list));
536 	/* don't need i_lock here, no concurrent mods to i_state */
537 	inode->i_state = I_FREEING | I_CLEAR;
538 }
539 EXPORT_SYMBOL(clear_inode);
540 
541 /*
542  * Free the inode passed in, removing it from the lists it is still connected
543  * to. We remove any pages still attached to the inode and wait for any IO that
544  * is still in progress before finally destroying the inode.
545  *
546  * An inode must already be marked I_FREEING so that we avoid the inode being
547  * moved back onto lists if we race with other code that manipulates the lists
548  * (e.g. writeback_single_inode). The caller is responsible for setting this.
549  *
550  * An inode must already be removed from the LRU list before being evicted from
551  * the cache. This should occur atomically with setting the I_FREEING state
552  * flag, so no inodes here should ever be on the LRU when being evicted.
553  */
evict(struct inode * inode)554 static void evict(struct inode *inode)
555 {
556 	const struct super_operations *op = inode->i_sb->s_op;
557 
558 	BUG_ON(!(inode->i_state & I_FREEING));
559 	BUG_ON(!list_empty(&inode->i_lru));
560 
561 	if (!list_empty(&inode->i_io_list))
562 		inode_io_list_del(inode);
563 
564 	inode_sb_list_del(inode);
565 
566 	/*
567 	 * Wait for flusher thread to be done with the inode so that filesystem
568 	 * does not start destroying it while writeback is still running. Since
569 	 * the inode has I_FREEING set, flusher thread won't start new work on
570 	 * the inode.  We just have to wait for running writeback to finish.
571 	 */
572 	inode_wait_for_writeback(inode);
573 
574 	if (op->evict_inode) {
575 		op->evict_inode(inode);
576 	} else {
577 		truncate_inode_pages_final(&inode->i_data);
578 		clear_inode(inode);
579 	}
580 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
581 		bd_forget(inode);
582 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
583 		cd_forget(inode);
584 
585 	remove_inode_hash(inode);
586 
587 	spin_lock(&inode->i_lock);
588 	wake_up_bit(&inode->i_state, __I_NEW);
589 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
590 	spin_unlock(&inode->i_lock);
591 
592 	destroy_inode(inode);
593 }
594 
595 /*
596  * dispose_list - dispose of the contents of a local list
597  * @head: the head of the list to free
598  *
599  * Dispose-list gets a local list with local inodes in it, so it doesn't
600  * need to worry about list corruption and SMP locks.
601  */
dispose_list(struct list_head * head)602 static void dispose_list(struct list_head *head)
603 {
604 	while (!list_empty(head)) {
605 		struct inode *inode;
606 
607 		inode = list_first_entry(head, struct inode, i_lru);
608 		list_del_init(&inode->i_lru);
609 
610 		evict(inode);
611 		cond_resched();
612 	}
613 }
614 
615 /**
616  * evict_inodes	- evict all evictable inodes for a superblock
617  * @sb:		superblock to operate on
618  *
619  * Make sure that no inodes with zero refcount are retained.  This is
620  * called by superblock shutdown after having SB_ACTIVE flag removed,
621  * so any inode reaching zero refcount during or after that call will
622  * be immediately evicted.
623  */
evict_inodes(struct super_block * sb)624 void evict_inodes(struct super_block *sb)
625 {
626 	struct inode *inode, *next;
627 	LIST_HEAD(dispose);
628 
629 again:
630 	spin_lock(&sb->s_inode_list_lock);
631 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
632 		if (atomic_read(&inode->i_count))
633 			continue;
634 
635 		spin_lock(&inode->i_lock);
636 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
637 			spin_unlock(&inode->i_lock);
638 			continue;
639 		}
640 
641 		inode->i_state |= I_FREEING;
642 		inode_lru_list_del(inode);
643 		spin_unlock(&inode->i_lock);
644 		list_add(&inode->i_lru, &dispose);
645 
646 		/*
647 		 * We can have a ton of inodes to evict at unmount time given
648 		 * enough memory, check to see if we need to go to sleep for a
649 		 * bit so we don't livelock.
650 		 */
651 		if (need_resched()) {
652 			spin_unlock(&sb->s_inode_list_lock);
653 			cond_resched();
654 			dispose_list(&dispose);
655 			goto again;
656 		}
657 	}
658 	spin_unlock(&sb->s_inode_list_lock);
659 
660 	dispose_list(&dispose);
661 }
662 EXPORT_SYMBOL_GPL(evict_inodes);
663 
664 /**
665  * invalidate_inodes	- attempt to free all inodes on a superblock
666  * @sb:		superblock to operate on
667  * @kill_dirty: flag to guide handling of dirty inodes
668  *
669  * Attempts to free all inodes for a given superblock.  If there were any
670  * busy inodes return a non-zero value, else zero.
671  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
672  * them as busy.
673  */
invalidate_inodes(struct super_block * sb,bool kill_dirty)674 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
675 {
676 	int busy = 0;
677 	struct inode *inode, *next;
678 	LIST_HEAD(dispose);
679 
680 again:
681 	spin_lock(&sb->s_inode_list_lock);
682 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
683 		spin_lock(&inode->i_lock);
684 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
685 			spin_unlock(&inode->i_lock);
686 			continue;
687 		}
688 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
689 			spin_unlock(&inode->i_lock);
690 			busy = 1;
691 			continue;
692 		}
693 		if (atomic_read(&inode->i_count)) {
694 			spin_unlock(&inode->i_lock);
695 			busy = 1;
696 			continue;
697 		}
698 
699 		inode->i_state |= I_FREEING;
700 		inode_lru_list_del(inode);
701 		spin_unlock(&inode->i_lock);
702 		list_add(&inode->i_lru, &dispose);
703 		if (need_resched()) {
704 			spin_unlock(&sb->s_inode_list_lock);
705 			cond_resched();
706 			dispose_list(&dispose);
707 			goto again;
708 		}
709 	}
710 	spin_unlock(&sb->s_inode_list_lock);
711 
712 	dispose_list(&dispose);
713 
714 	return busy;
715 }
716 
717 /*
718  * Isolate the inode from the LRU in preparation for freeing it.
719  *
720  * Any inodes which are pinned purely because of attached pagecache have their
721  * pagecache removed.  If the inode has metadata buffers attached to
722  * mapping->private_list then try to remove them.
723  *
724  * If the inode has the I_REFERENCED flag set, then it means that it has been
725  * used recently - the flag is set in iput_final(). When we encounter such an
726  * inode, clear the flag and move it to the back of the LRU so it gets another
727  * pass through the LRU before it gets reclaimed. This is necessary because of
728  * the fact we are doing lazy LRU updates to minimise lock contention so the
729  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
730  * with this flag set because they are the inodes that are out of order.
731  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)732 static enum lru_status inode_lru_isolate(struct list_head *item,
733 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
734 {
735 	struct list_head *freeable = arg;
736 	struct inode	*inode = container_of(item, struct inode, i_lru);
737 
738 	/*
739 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
740 	 * If we fail to get the lock, just skip it.
741 	 */
742 	if (!spin_trylock(&inode->i_lock))
743 		return LRU_SKIP;
744 
745 	/*
746 	 * Referenced or dirty inodes are still in use. Give them another pass
747 	 * through the LRU as we canot reclaim them now.
748 	 */
749 	if (atomic_read(&inode->i_count) ||
750 	    (inode->i_state & ~I_REFERENCED)) {
751 		list_lru_isolate(lru, &inode->i_lru);
752 		spin_unlock(&inode->i_lock);
753 		this_cpu_dec(nr_unused);
754 		return LRU_REMOVED;
755 	}
756 
757 	/* recently referenced inodes get one more pass */
758 	if (inode->i_state & I_REFERENCED) {
759 		inode->i_state &= ~I_REFERENCED;
760 		spin_unlock(&inode->i_lock);
761 		return LRU_ROTATE;
762 	}
763 
764 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
765 		__iget(inode);
766 		spin_unlock(&inode->i_lock);
767 		spin_unlock(lru_lock);
768 		if (remove_inode_buffers(inode)) {
769 			unsigned long reap;
770 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
771 			if (current_is_kswapd())
772 				__count_vm_events(KSWAPD_INODESTEAL, reap);
773 			else
774 				__count_vm_events(PGINODESTEAL, reap);
775 			if (current->reclaim_state)
776 				current->reclaim_state->reclaimed_slab += reap;
777 		}
778 		iput(inode);
779 		spin_lock(lru_lock);
780 		return LRU_RETRY;
781 	}
782 
783 	WARN_ON(inode->i_state & I_NEW);
784 	inode->i_state |= I_FREEING;
785 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
786 	spin_unlock(&inode->i_lock);
787 
788 	this_cpu_dec(nr_unused);
789 	return LRU_REMOVED;
790 }
791 
792 /*
793  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
794  * This is called from the superblock shrinker function with a number of inodes
795  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
796  * then are freed outside inode_lock by dispose_list().
797  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)798 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
799 {
800 	LIST_HEAD(freeable);
801 	long freed;
802 
803 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
804 				     inode_lru_isolate, &freeable);
805 	dispose_list(&freeable);
806 	return freed;
807 }
808 
809 static void __wait_on_freeing_inode(struct inode *inode);
810 /*
811  * Called with the inode lock held.
812  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)813 static struct inode *find_inode(struct super_block *sb,
814 				struct hlist_head *head,
815 				int (*test)(struct inode *, void *),
816 				void *data)
817 {
818 	struct inode *inode = NULL;
819 
820 repeat:
821 	hlist_for_each_entry(inode, head, i_hash) {
822 		if (inode->i_sb != sb)
823 			continue;
824 		if (!test(inode, data))
825 			continue;
826 		spin_lock(&inode->i_lock);
827 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
828 			__wait_on_freeing_inode(inode);
829 			goto repeat;
830 		}
831 		if (unlikely(inode->i_state & I_CREATING)) {
832 			spin_unlock(&inode->i_lock);
833 			return ERR_PTR(-ESTALE);
834 		}
835 		__iget(inode);
836 		spin_unlock(&inode->i_lock);
837 		return inode;
838 	}
839 	return NULL;
840 }
841 
842 /*
843  * find_inode_fast is the fast path version of find_inode, see the comment at
844  * iget_locked for details.
845  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)846 static struct inode *find_inode_fast(struct super_block *sb,
847 				struct hlist_head *head, unsigned long ino)
848 {
849 	struct inode *inode = NULL;
850 
851 repeat:
852 	hlist_for_each_entry(inode, head, i_hash) {
853 		if (inode->i_ino != ino)
854 			continue;
855 		if (inode->i_sb != sb)
856 			continue;
857 		spin_lock(&inode->i_lock);
858 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
859 			__wait_on_freeing_inode(inode);
860 			goto repeat;
861 		}
862 		if (unlikely(inode->i_state & I_CREATING)) {
863 			spin_unlock(&inode->i_lock);
864 			return ERR_PTR(-ESTALE);
865 		}
866 		__iget(inode);
867 		spin_unlock(&inode->i_lock);
868 		return inode;
869 	}
870 	return NULL;
871 }
872 
873 /*
874  * Each cpu owns a range of LAST_INO_BATCH numbers.
875  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
876  * to renew the exhausted range.
877  *
878  * This does not significantly increase overflow rate because every CPU can
879  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
880  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
881  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
882  * overflow rate by 2x, which does not seem too significant.
883  *
884  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
885  * error if st_ino won't fit in target struct field. Use 32bit counter
886  * here to attempt to avoid that.
887  */
888 #define LAST_INO_BATCH 1024
889 static DEFINE_PER_CPU(unsigned int, last_ino);
890 
get_next_ino(void)891 unsigned int get_next_ino(void)
892 {
893 	unsigned int *p = &get_cpu_var(last_ino);
894 	unsigned int res = *p;
895 
896 #ifdef CONFIG_SMP
897 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
898 		static atomic_t shared_last_ino;
899 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
900 
901 		res = next - LAST_INO_BATCH;
902 	}
903 #endif
904 
905 	res++;
906 	/* get_next_ino should not provide a 0 inode number */
907 	if (unlikely(!res))
908 		res++;
909 	*p = res;
910 	put_cpu_var(last_ino);
911 	return res;
912 }
913 EXPORT_SYMBOL(get_next_ino);
914 
915 /**
916  *	new_inode_pseudo 	- obtain an inode
917  *	@sb: superblock
918  *
919  *	Allocates a new inode for given superblock.
920  *	Inode wont be chained in superblock s_inodes list
921  *	This means :
922  *	- fs can't be unmount
923  *	- quotas, fsnotify, writeback can't work
924  */
new_inode_pseudo(struct super_block * sb)925 struct inode *new_inode_pseudo(struct super_block *sb)
926 {
927 	struct inode *inode = alloc_inode(sb);
928 
929 	if (inode) {
930 		spin_lock(&inode->i_lock);
931 		inode->i_state = 0;
932 		spin_unlock(&inode->i_lock);
933 		INIT_LIST_HEAD(&inode->i_sb_list);
934 	}
935 	return inode;
936 }
937 
938 /**
939  *	new_inode 	- obtain an inode
940  *	@sb: superblock
941  *
942  *	Allocates a new inode for given superblock. The default gfp_mask
943  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
944  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
945  *	for the page cache are not reclaimable or migratable,
946  *	mapping_set_gfp_mask() must be called with suitable flags on the
947  *	newly created inode's mapping
948  *
949  */
new_inode(struct super_block * sb)950 struct inode *new_inode(struct super_block *sb)
951 {
952 	struct inode *inode;
953 
954 	spin_lock_prefetch(&sb->s_inode_list_lock);
955 
956 	inode = new_inode_pseudo(sb);
957 	if (inode)
958 		inode_sb_list_add(inode);
959 	return inode;
960 }
961 EXPORT_SYMBOL(new_inode);
962 
963 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)964 void lockdep_annotate_inode_mutex_key(struct inode *inode)
965 {
966 	if (S_ISDIR(inode->i_mode)) {
967 		struct file_system_type *type = inode->i_sb->s_type;
968 
969 		/* Set new key only if filesystem hasn't already changed it */
970 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
971 			/*
972 			 * ensure nobody is actually holding i_mutex
973 			 */
974 			// mutex_destroy(&inode->i_mutex);
975 			init_rwsem(&inode->i_rwsem);
976 			lockdep_set_class(&inode->i_rwsem,
977 					  &type->i_mutex_dir_key);
978 		}
979 	}
980 }
981 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
982 #endif
983 
984 /**
985  * unlock_new_inode - clear the I_NEW state and wake up any waiters
986  * @inode:	new inode to unlock
987  *
988  * Called when the inode is fully initialised to clear the new state of the
989  * inode and wake up anyone waiting for the inode to finish initialisation.
990  */
unlock_new_inode(struct inode * inode)991 void unlock_new_inode(struct inode *inode)
992 {
993 	lockdep_annotate_inode_mutex_key(inode);
994 	spin_lock(&inode->i_lock);
995 	WARN_ON(!(inode->i_state & I_NEW));
996 	inode->i_state &= ~I_NEW & ~I_CREATING;
997 	smp_mb();
998 	wake_up_bit(&inode->i_state, __I_NEW);
999 	spin_unlock(&inode->i_lock);
1000 }
1001 EXPORT_SYMBOL(unlock_new_inode);
1002 
discard_new_inode(struct inode * inode)1003 void discard_new_inode(struct inode *inode)
1004 {
1005 	lockdep_annotate_inode_mutex_key(inode);
1006 	spin_lock(&inode->i_lock);
1007 	WARN_ON(!(inode->i_state & I_NEW));
1008 	inode->i_state &= ~I_NEW;
1009 	smp_mb();
1010 	wake_up_bit(&inode->i_state, __I_NEW);
1011 	spin_unlock(&inode->i_lock);
1012 	iput(inode);
1013 }
1014 EXPORT_SYMBOL(discard_new_inode);
1015 
1016 /**
1017  * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1018  *
1019  * Lock any non-NULL argument. The caller must make sure that if he is passing
1020  * in two directories, one is not ancestor of the other.  Zero, one or two
1021  * objects may be locked by this function.
1022  *
1023  * @inode1: first inode to lock
1024  * @inode2: second inode to lock
1025  * @subclass1: inode lock subclass for the first lock obtained
1026  * @subclass2: inode lock subclass for the second lock obtained
1027  */
lock_two_inodes(struct inode * inode1,struct inode * inode2,unsigned subclass1,unsigned subclass2)1028 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1029 		     unsigned subclass1, unsigned subclass2)
1030 {
1031 	if (!inode1 || !inode2) {
1032 		/*
1033 		 * Make sure @subclass1 will be used for the acquired lock.
1034 		 * This is not strictly necessary (no current caller cares) but
1035 		 * let's keep things consistent.
1036 		 */
1037 		if (!inode1)
1038 			swap(inode1, inode2);
1039 		goto lock;
1040 	}
1041 
1042 	/*
1043 	 * If one object is directory and the other is not, we must make sure
1044 	 * to lock directory first as the other object may be its child.
1045 	 */
1046 	if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1047 		if (inode1 > inode2)
1048 			swap(inode1, inode2);
1049 	} else if (!S_ISDIR(inode1->i_mode))
1050 		swap(inode1, inode2);
1051 lock:
1052 	if (inode1)
1053 		inode_lock_nested(inode1, subclass1);
1054 	if (inode2 && inode2 != inode1)
1055 		inode_lock_nested(inode2, subclass2);
1056 }
1057 
1058 /**
1059  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1060  *
1061  * Lock any non-NULL argument that is not a directory.
1062  * Zero, one or two objects may be locked by this function.
1063  *
1064  * @inode1: first inode to lock
1065  * @inode2: second inode to lock
1066  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1067 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1068 {
1069 	if (inode1 > inode2)
1070 		swap(inode1, inode2);
1071 
1072 	if (inode1 && !S_ISDIR(inode1->i_mode))
1073 		inode_lock(inode1);
1074 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1075 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1076 }
1077 EXPORT_SYMBOL(lock_two_nondirectories);
1078 
1079 /**
1080  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1081  * @inode1: first inode to unlock
1082  * @inode2: second inode to unlock
1083  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1084 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1085 {
1086 	if (inode1 && !S_ISDIR(inode1->i_mode))
1087 		inode_unlock(inode1);
1088 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1089 		inode_unlock(inode2);
1090 }
1091 EXPORT_SYMBOL(unlock_two_nondirectories);
1092 
1093 /**
1094  * inode_insert5 - obtain an inode from a mounted file system
1095  * @inode:	pre-allocated inode to use for insert to cache
1096  * @hashval:	hash value (usually inode number) to get
1097  * @test:	callback used for comparisons between inodes
1098  * @set:	callback used to initialize a new struct inode
1099  * @data:	opaque data pointer to pass to @test and @set
1100  *
1101  * Search for the inode specified by @hashval and @data in the inode cache,
1102  * and if present it is return it with an increased reference count. This is
1103  * a variant of iget5_locked() for callers that don't want to fail on memory
1104  * allocation of inode.
1105  *
1106  * If the inode is not in cache, insert the pre-allocated inode to cache and
1107  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1108  * to fill it in before unlocking it via unlock_new_inode().
1109  *
1110  * Note both @test and @set are called with the inode_hash_lock held, so can't
1111  * sleep.
1112  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1113 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1114 			    int (*test)(struct inode *, void *),
1115 			    int (*set)(struct inode *, void *), void *data)
1116 {
1117 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1118 	struct inode *old;
1119 	bool creating = inode->i_state & I_CREATING;
1120 
1121 again:
1122 	spin_lock(&inode_hash_lock);
1123 	old = find_inode(inode->i_sb, head, test, data);
1124 	if (unlikely(old)) {
1125 		/*
1126 		 * Uhhuh, somebody else created the same inode under us.
1127 		 * Use the old inode instead of the preallocated one.
1128 		 */
1129 		spin_unlock(&inode_hash_lock);
1130 		if (IS_ERR(old))
1131 			return NULL;
1132 		wait_on_inode(old);
1133 		if (unlikely(inode_unhashed(old))) {
1134 			iput(old);
1135 			goto again;
1136 		}
1137 		return old;
1138 	}
1139 
1140 	if (set && unlikely(set(inode, data))) {
1141 		inode = NULL;
1142 		goto unlock;
1143 	}
1144 
1145 	/*
1146 	 * Return the locked inode with I_NEW set, the
1147 	 * caller is responsible for filling in the contents
1148 	 */
1149 	spin_lock(&inode->i_lock);
1150 	inode->i_state |= I_NEW;
1151 	hlist_add_head(&inode->i_hash, head);
1152 	spin_unlock(&inode->i_lock);
1153 	if (!creating)
1154 		inode_sb_list_add(inode);
1155 unlock:
1156 	spin_unlock(&inode_hash_lock);
1157 
1158 	return inode;
1159 }
1160 EXPORT_SYMBOL(inode_insert5);
1161 
1162 /**
1163  * iget5_locked - obtain an inode from a mounted file system
1164  * @sb:		super block of file system
1165  * @hashval:	hash value (usually inode number) to get
1166  * @test:	callback used for comparisons between inodes
1167  * @set:	callback used to initialize a new struct inode
1168  * @data:	opaque data pointer to pass to @test and @set
1169  *
1170  * Search for the inode specified by @hashval and @data in the inode cache,
1171  * and if present it is return it with an increased reference count. This is
1172  * a generalized version of iget_locked() for file systems where the inode
1173  * number is not sufficient for unique identification of an inode.
1174  *
1175  * If the inode is not in cache, allocate a new inode and return it locked,
1176  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1177  * before unlocking it via unlock_new_inode().
1178  *
1179  * Note both @test and @set are called with the inode_hash_lock held, so can't
1180  * sleep.
1181  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1182 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1183 		int (*test)(struct inode *, void *),
1184 		int (*set)(struct inode *, void *), void *data)
1185 {
1186 	struct inode *inode = ilookup5(sb, hashval, test, data);
1187 
1188 	if (!inode) {
1189 		struct inode *new = alloc_inode(sb);
1190 
1191 		if (new) {
1192 			new->i_state = 0;
1193 			inode = inode_insert5(new, hashval, test, set, data);
1194 			if (unlikely(inode != new))
1195 				destroy_inode(new);
1196 		}
1197 	}
1198 	return inode;
1199 }
1200 EXPORT_SYMBOL(iget5_locked);
1201 
1202 /**
1203  * iget_locked - obtain an inode from a mounted file system
1204  * @sb:		super block of file system
1205  * @ino:	inode number to get
1206  *
1207  * Search for the inode specified by @ino in the inode cache and if present
1208  * return it with an increased reference count. This is for file systems
1209  * where the inode number is sufficient for unique identification of an inode.
1210  *
1211  * If the inode is not in cache, allocate a new inode and return it locked,
1212  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1213  * before unlocking it via unlock_new_inode().
1214  */
iget_locked(struct super_block * sb,unsigned long ino)1215 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1216 {
1217 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1218 	struct inode *inode;
1219 again:
1220 	spin_lock(&inode_hash_lock);
1221 	inode = find_inode_fast(sb, head, ino);
1222 	spin_unlock(&inode_hash_lock);
1223 	if (inode) {
1224 		if (IS_ERR(inode))
1225 			return NULL;
1226 		wait_on_inode(inode);
1227 		if (unlikely(inode_unhashed(inode))) {
1228 			iput(inode);
1229 			goto again;
1230 		}
1231 		return inode;
1232 	}
1233 
1234 	inode = alloc_inode(sb);
1235 	if (inode) {
1236 		struct inode *old;
1237 
1238 		spin_lock(&inode_hash_lock);
1239 		/* We released the lock, so.. */
1240 		old = find_inode_fast(sb, head, ino);
1241 		if (!old) {
1242 			inode->i_ino = ino;
1243 			spin_lock(&inode->i_lock);
1244 			inode->i_state = I_NEW;
1245 			hlist_add_head(&inode->i_hash, head);
1246 			spin_unlock(&inode->i_lock);
1247 			inode_sb_list_add(inode);
1248 			spin_unlock(&inode_hash_lock);
1249 
1250 			/* Return the locked inode with I_NEW set, the
1251 			 * caller is responsible for filling in the contents
1252 			 */
1253 			return inode;
1254 		}
1255 
1256 		/*
1257 		 * Uhhuh, somebody else created the same inode under
1258 		 * us. Use the old inode instead of the one we just
1259 		 * allocated.
1260 		 */
1261 		spin_unlock(&inode_hash_lock);
1262 		destroy_inode(inode);
1263 		if (IS_ERR(old))
1264 			return NULL;
1265 		inode = old;
1266 		wait_on_inode(inode);
1267 		if (unlikely(inode_unhashed(inode))) {
1268 			iput(inode);
1269 			goto again;
1270 		}
1271 	}
1272 	return inode;
1273 }
1274 EXPORT_SYMBOL(iget_locked);
1275 
1276 /*
1277  * search the inode cache for a matching inode number.
1278  * If we find one, then the inode number we are trying to
1279  * allocate is not unique and so we should not use it.
1280  *
1281  * Returns 1 if the inode number is unique, 0 if it is not.
1282  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1283 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1284 {
1285 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1286 	struct inode *inode;
1287 
1288 	spin_lock(&inode_hash_lock);
1289 	hlist_for_each_entry(inode, b, i_hash) {
1290 		if (inode->i_ino == ino && inode->i_sb == sb) {
1291 			spin_unlock(&inode_hash_lock);
1292 			return 0;
1293 		}
1294 	}
1295 	spin_unlock(&inode_hash_lock);
1296 
1297 	return 1;
1298 }
1299 
1300 /**
1301  *	iunique - get a unique inode number
1302  *	@sb: superblock
1303  *	@max_reserved: highest reserved inode number
1304  *
1305  *	Obtain an inode number that is unique on the system for a given
1306  *	superblock. This is used by file systems that have no natural
1307  *	permanent inode numbering system. An inode number is returned that
1308  *	is higher than the reserved limit but unique.
1309  *
1310  *	BUGS:
1311  *	With a large number of inodes live on the file system this function
1312  *	currently becomes quite slow.
1313  */
iunique(struct super_block * sb,ino_t max_reserved)1314 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1315 {
1316 	/*
1317 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1318 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1319 	 * here to attempt to avoid that.
1320 	 */
1321 	static DEFINE_SPINLOCK(iunique_lock);
1322 	static unsigned int counter;
1323 	ino_t res;
1324 
1325 	spin_lock(&iunique_lock);
1326 	do {
1327 		if (counter <= max_reserved)
1328 			counter = max_reserved + 1;
1329 		res = counter++;
1330 	} while (!test_inode_iunique(sb, res));
1331 	spin_unlock(&iunique_lock);
1332 
1333 	return res;
1334 }
1335 EXPORT_SYMBOL(iunique);
1336 
igrab(struct inode * inode)1337 struct inode *igrab(struct inode *inode)
1338 {
1339 	spin_lock(&inode->i_lock);
1340 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1341 		__iget(inode);
1342 		spin_unlock(&inode->i_lock);
1343 	} else {
1344 		spin_unlock(&inode->i_lock);
1345 		/*
1346 		 * Handle the case where s_op->clear_inode is not been
1347 		 * called yet, and somebody is calling igrab
1348 		 * while the inode is getting freed.
1349 		 */
1350 		inode = NULL;
1351 	}
1352 	return inode;
1353 }
1354 EXPORT_SYMBOL(igrab);
1355 
1356 /**
1357  * ilookup5_nowait - search for an inode in the inode cache
1358  * @sb:		super block of file system to search
1359  * @hashval:	hash value (usually inode number) to search for
1360  * @test:	callback used for comparisons between inodes
1361  * @data:	opaque data pointer to pass to @test
1362  *
1363  * Search for the inode specified by @hashval and @data in the inode cache.
1364  * If the inode is in the cache, the inode is returned with an incremented
1365  * reference count.
1366  *
1367  * Note: I_NEW is not waited upon so you have to be very careful what you do
1368  * with the returned inode.  You probably should be using ilookup5() instead.
1369  *
1370  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1371  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1372 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1373 		int (*test)(struct inode *, void *), void *data)
1374 {
1375 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1376 	struct inode *inode;
1377 
1378 	spin_lock(&inode_hash_lock);
1379 	inode = find_inode(sb, head, test, data);
1380 	spin_unlock(&inode_hash_lock);
1381 
1382 	return IS_ERR(inode) ? NULL : inode;
1383 }
1384 EXPORT_SYMBOL(ilookup5_nowait);
1385 
1386 /**
1387  * ilookup5 - search for an inode in the inode cache
1388  * @sb:		super block of file system to search
1389  * @hashval:	hash value (usually inode number) to search for
1390  * @test:	callback used for comparisons between inodes
1391  * @data:	opaque data pointer to pass to @test
1392  *
1393  * Search for the inode specified by @hashval and @data in the inode cache,
1394  * and if the inode is in the cache, return the inode with an incremented
1395  * reference count.  Waits on I_NEW before returning the inode.
1396  * returned with an incremented reference count.
1397  *
1398  * This is a generalized version of ilookup() for file systems where the
1399  * inode number is not sufficient for unique identification of an inode.
1400  *
1401  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1402  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1403 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1404 		int (*test)(struct inode *, void *), void *data)
1405 {
1406 	struct inode *inode;
1407 again:
1408 	inode = ilookup5_nowait(sb, hashval, test, data);
1409 	if (inode) {
1410 		wait_on_inode(inode);
1411 		if (unlikely(inode_unhashed(inode))) {
1412 			iput(inode);
1413 			goto again;
1414 		}
1415 	}
1416 	return inode;
1417 }
1418 EXPORT_SYMBOL(ilookup5);
1419 
1420 /**
1421  * ilookup - search for an inode in the inode cache
1422  * @sb:		super block of file system to search
1423  * @ino:	inode number to search for
1424  *
1425  * Search for the inode @ino in the inode cache, and if the inode is in the
1426  * cache, the inode is returned with an incremented reference count.
1427  */
ilookup(struct super_block * sb,unsigned long ino)1428 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1429 {
1430 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1431 	struct inode *inode;
1432 again:
1433 	spin_lock(&inode_hash_lock);
1434 	inode = find_inode_fast(sb, head, ino);
1435 	spin_unlock(&inode_hash_lock);
1436 
1437 	if (inode) {
1438 		if (IS_ERR(inode))
1439 			return NULL;
1440 		wait_on_inode(inode);
1441 		if (unlikely(inode_unhashed(inode))) {
1442 			iput(inode);
1443 			goto again;
1444 		}
1445 	}
1446 	return inode;
1447 }
1448 EXPORT_SYMBOL(ilookup);
1449 
1450 /**
1451  * find_inode_nowait - find an inode in the inode cache
1452  * @sb:		super block of file system to search
1453  * @hashval:	hash value (usually inode number) to search for
1454  * @match:	callback used for comparisons between inodes
1455  * @data:	opaque data pointer to pass to @match
1456  *
1457  * Search for the inode specified by @hashval and @data in the inode
1458  * cache, where the helper function @match will return 0 if the inode
1459  * does not match, 1 if the inode does match, and -1 if the search
1460  * should be stopped.  The @match function must be responsible for
1461  * taking the i_lock spin_lock and checking i_state for an inode being
1462  * freed or being initialized, and incrementing the reference count
1463  * before returning 1.  It also must not sleep, since it is called with
1464  * the inode_hash_lock spinlock held.
1465  *
1466  * This is a even more generalized version of ilookup5() when the
1467  * function must never block --- find_inode() can block in
1468  * __wait_on_freeing_inode() --- or when the caller can not increment
1469  * the reference count because the resulting iput() might cause an
1470  * inode eviction.  The tradeoff is that the @match funtion must be
1471  * very carefully implemented.
1472  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1473 struct inode *find_inode_nowait(struct super_block *sb,
1474 				unsigned long hashval,
1475 				int (*match)(struct inode *, unsigned long,
1476 					     void *),
1477 				void *data)
1478 {
1479 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1480 	struct inode *inode, *ret_inode = NULL;
1481 	int mval;
1482 
1483 	spin_lock(&inode_hash_lock);
1484 	hlist_for_each_entry(inode, head, i_hash) {
1485 		if (inode->i_sb != sb)
1486 			continue;
1487 		mval = match(inode, hashval, data);
1488 		if (mval == 0)
1489 			continue;
1490 		if (mval == 1)
1491 			ret_inode = inode;
1492 		goto out;
1493 	}
1494 out:
1495 	spin_unlock(&inode_hash_lock);
1496 	return ret_inode;
1497 }
1498 EXPORT_SYMBOL(find_inode_nowait);
1499 
insert_inode_locked(struct inode * inode)1500 int insert_inode_locked(struct inode *inode)
1501 {
1502 	struct super_block *sb = inode->i_sb;
1503 	ino_t ino = inode->i_ino;
1504 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1505 
1506 	while (1) {
1507 		struct inode *old = NULL;
1508 		spin_lock(&inode_hash_lock);
1509 		hlist_for_each_entry(old, head, i_hash) {
1510 			if (old->i_ino != ino)
1511 				continue;
1512 			if (old->i_sb != sb)
1513 				continue;
1514 			spin_lock(&old->i_lock);
1515 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1516 				spin_unlock(&old->i_lock);
1517 				continue;
1518 			}
1519 			break;
1520 		}
1521 		if (likely(!old)) {
1522 			spin_lock(&inode->i_lock);
1523 			inode->i_state |= I_NEW | I_CREATING;
1524 			hlist_add_head(&inode->i_hash, head);
1525 			spin_unlock(&inode->i_lock);
1526 			spin_unlock(&inode_hash_lock);
1527 			return 0;
1528 		}
1529 		if (unlikely(old->i_state & I_CREATING)) {
1530 			spin_unlock(&old->i_lock);
1531 			spin_unlock(&inode_hash_lock);
1532 			return -EBUSY;
1533 		}
1534 		__iget(old);
1535 		spin_unlock(&old->i_lock);
1536 		spin_unlock(&inode_hash_lock);
1537 		wait_on_inode(old);
1538 		if (unlikely(!inode_unhashed(old))) {
1539 			iput(old);
1540 			return -EBUSY;
1541 		}
1542 		iput(old);
1543 	}
1544 }
1545 EXPORT_SYMBOL(insert_inode_locked);
1546 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1547 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1548 		int (*test)(struct inode *, void *), void *data)
1549 {
1550 	struct inode *old;
1551 
1552 	inode->i_state |= I_CREATING;
1553 	old = inode_insert5(inode, hashval, test, NULL, data);
1554 
1555 	if (old != inode) {
1556 		iput(old);
1557 		return -EBUSY;
1558 	}
1559 	return 0;
1560 }
1561 EXPORT_SYMBOL(insert_inode_locked4);
1562 
1563 
generic_delete_inode(struct inode * inode)1564 int generic_delete_inode(struct inode *inode)
1565 {
1566 	return 1;
1567 }
1568 EXPORT_SYMBOL(generic_delete_inode);
1569 
1570 /*
1571  * Called when we're dropping the last reference
1572  * to an inode.
1573  *
1574  * Call the FS "drop_inode()" function, defaulting to
1575  * the legacy UNIX filesystem behaviour.  If it tells
1576  * us to evict inode, do so.  Otherwise, retain inode
1577  * in cache if fs is alive, sync and evict if fs is
1578  * shutting down.
1579  */
iput_final(struct inode * inode)1580 static void iput_final(struct inode *inode)
1581 {
1582 	struct super_block *sb = inode->i_sb;
1583 	const struct super_operations *op = inode->i_sb->s_op;
1584 	int drop;
1585 
1586 	WARN_ON(inode->i_state & I_NEW);
1587 
1588 	if (op->drop_inode)
1589 		drop = op->drop_inode(inode);
1590 	else
1591 		drop = generic_drop_inode(inode);
1592 
1593 	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1594 		inode_add_lru(inode);
1595 		spin_unlock(&inode->i_lock);
1596 		return;
1597 	}
1598 
1599 	if (!drop) {
1600 		inode->i_state |= I_WILL_FREE;
1601 		spin_unlock(&inode->i_lock);
1602 		write_inode_now(inode, 1);
1603 		spin_lock(&inode->i_lock);
1604 		WARN_ON(inode->i_state & I_NEW);
1605 		inode->i_state &= ~I_WILL_FREE;
1606 	}
1607 
1608 	inode->i_state |= I_FREEING;
1609 	if (!list_empty(&inode->i_lru))
1610 		inode_lru_list_del(inode);
1611 	spin_unlock(&inode->i_lock);
1612 
1613 	evict(inode);
1614 }
1615 
1616 /**
1617  *	iput	- put an inode
1618  *	@inode: inode to put
1619  *
1620  *	Puts an inode, dropping its usage count. If the inode use count hits
1621  *	zero, the inode is then freed and may also be destroyed.
1622  *
1623  *	Consequently, iput() can sleep.
1624  */
iput(struct inode * inode)1625 void iput(struct inode *inode)
1626 {
1627 	if (!inode)
1628 		return;
1629 	BUG_ON(inode->i_state & I_CLEAR);
1630 retry:
1631 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1632 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1633 			atomic_inc(&inode->i_count);
1634 			spin_unlock(&inode->i_lock);
1635 			trace_writeback_lazytime_iput(inode);
1636 			mark_inode_dirty_sync(inode);
1637 			goto retry;
1638 		}
1639 		iput_final(inode);
1640 	}
1641 }
1642 EXPORT_SYMBOL(iput);
1643 
1644 /**
1645  *	bmap	- find a block number in a file
1646  *	@inode: inode of file
1647  *	@block: block to find
1648  *
1649  *	Returns the block number on the device holding the inode that
1650  *	is the disk block number for the block of the file requested.
1651  *	That is, asked for block 4 of inode 1 the function will return the
1652  *	disk block relative to the disk start that holds that block of the
1653  *	file.
1654  */
bmap(struct inode * inode,sector_t block)1655 sector_t bmap(struct inode *inode, sector_t block)
1656 {
1657 	sector_t res = 0;
1658 	if (inode->i_mapping->a_ops->bmap)
1659 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1660 	return res;
1661 }
1662 EXPORT_SYMBOL(bmap);
1663 
1664 /*
1665  * With relative atime, only update atime if the previous atime is
1666  * earlier than either the ctime or mtime or if at least a day has
1667  * passed since the last atime update.
1668  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1669 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1670 			     struct timespec64 now)
1671 {
1672 
1673 	if (!(mnt->mnt_flags & MNT_RELATIME))
1674 		return 1;
1675 	/*
1676 	 * Is mtime younger than atime? If yes, update atime:
1677 	 */
1678 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1679 		return 1;
1680 	/*
1681 	 * Is ctime younger than atime? If yes, update atime:
1682 	 */
1683 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1684 		return 1;
1685 
1686 	/*
1687 	 * Is the previous atime value older than a day? If yes,
1688 	 * update atime:
1689 	 */
1690 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1691 		return 1;
1692 	/*
1693 	 * Good, we can skip the atime update:
1694 	 */
1695 	return 0;
1696 }
1697 
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1698 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1699 {
1700 	int iflags = I_DIRTY_TIME;
1701 	bool dirty = false;
1702 
1703 	if (flags & S_ATIME)
1704 		inode->i_atime = *time;
1705 	if (flags & S_VERSION)
1706 		dirty = inode_maybe_inc_iversion(inode, false);
1707 	if (flags & S_CTIME)
1708 		inode->i_ctime = *time;
1709 	if (flags & S_MTIME)
1710 		inode->i_mtime = *time;
1711 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1712 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1713 		dirty = true;
1714 
1715 	if (dirty)
1716 		iflags |= I_DIRTY_SYNC;
1717 	__mark_inode_dirty(inode, iflags);
1718 	return 0;
1719 }
1720 EXPORT_SYMBOL(generic_update_time);
1721 
1722 /*
1723  * This does the actual work of updating an inodes time or version.  Must have
1724  * had called mnt_want_write() before calling this.
1725  */
update_time(struct inode * inode,struct timespec64 * time,int flags)1726 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1727 {
1728 	int (*update_time)(struct inode *, struct timespec64 *, int);
1729 
1730 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1731 		generic_update_time;
1732 
1733 	return update_time(inode, time, flags);
1734 }
1735 
1736 /**
1737  *	touch_atime	-	update the access time
1738  *	@path: the &struct path to update
1739  *	@inode: inode to update
1740  *
1741  *	Update the accessed time on an inode and mark it for writeback.
1742  *	This function automatically handles read only file systems and media,
1743  *	as well as the "noatime" flag and inode specific "noatime" markers.
1744  */
atime_needs_update(const struct path * path,struct inode * inode)1745 bool atime_needs_update(const struct path *path, struct inode *inode)
1746 {
1747 	struct vfsmount *mnt = path->mnt;
1748 	struct timespec64 now;
1749 
1750 	if (inode->i_flags & S_NOATIME)
1751 		return false;
1752 
1753 	/* Atime updates will likely cause i_uid and i_gid to be written
1754 	 * back improprely if their true value is unknown to the vfs.
1755 	 */
1756 	if (HAS_UNMAPPED_ID(inode))
1757 		return false;
1758 
1759 	if (IS_NOATIME(inode))
1760 		return false;
1761 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1762 		return false;
1763 
1764 	if (mnt->mnt_flags & MNT_NOATIME)
1765 		return false;
1766 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1767 		return false;
1768 
1769 	now = current_time(inode);
1770 
1771 	if (!relatime_need_update(mnt, inode, now))
1772 		return false;
1773 
1774 	if (timespec64_equal(&inode->i_atime, &now))
1775 		return false;
1776 
1777 	return true;
1778 }
1779 
touch_atime(const struct path * path)1780 void touch_atime(const struct path *path)
1781 {
1782 	struct vfsmount *mnt = path->mnt;
1783 	struct inode *inode = d_inode(path->dentry);
1784 	struct timespec64 now;
1785 
1786 	if (!atime_needs_update(path, inode))
1787 		return;
1788 
1789 	if (!sb_start_write_trylock(inode->i_sb))
1790 		return;
1791 
1792 	if (__mnt_want_write(mnt) != 0)
1793 		goto skip_update;
1794 	/*
1795 	 * File systems can error out when updating inodes if they need to
1796 	 * allocate new space to modify an inode (such is the case for
1797 	 * Btrfs), but since we touch atime while walking down the path we
1798 	 * really don't care if we failed to update the atime of the file,
1799 	 * so just ignore the return value.
1800 	 * We may also fail on filesystems that have the ability to make parts
1801 	 * of the fs read only, e.g. subvolumes in Btrfs.
1802 	 */
1803 	now = current_time(inode);
1804 	update_time(inode, &now, S_ATIME);
1805 	__mnt_drop_write(mnt);
1806 skip_update:
1807 	sb_end_write(inode->i_sb);
1808 }
1809 EXPORT_SYMBOL(touch_atime);
1810 
1811 /*
1812  * The logic we want is
1813  *
1814  *	if suid or (sgid and xgrp)
1815  *		remove privs
1816  */
should_remove_suid(struct dentry * dentry)1817 int should_remove_suid(struct dentry *dentry)
1818 {
1819 	umode_t mode = d_inode(dentry)->i_mode;
1820 	int kill = 0;
1821 
1822 	/* suid always must be killed */
1823 	if (unlikely(mode & S_ISUID))
1824 		kill = ATTR_KILL_SUID;
1825 
1826 	/*
1827 	 * sgid without any exec bits is just a mandatory locking mark; leave
1828 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1829 	 */
1830 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1831 		kill |= ATTR_KILL_SGID;
1832 
1833 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1834 		return kill;
1835 
1836 	return 0;
1837 }
1838 EXPORT_SYMBOL(should_remove_suid);
1839 
1840 /*
1841  * Return mask of changes for notify_change() that need to be done as a
1842  * response to write or truncate. Return 0 if nothing has to be changed.
1843  * Negative value on error (change should be denied).
1844  */
dentry_needs_remove_privs(struct dentry * dentry)1845 int dentry_needs_remove_privs(struct dentry *dentry)
1846 {
1847 	struct inode *inode = d_inode(dentry);
1848 	int mask = 0;
1849 	int ret;
1850 
1851 	if (IS_NOSEC(inode))
1852 		return 0;
1853 
1854 	mask = should_remove_suid(dentry);
1855 	ret = security_inode_need_killpriv(dentry);
1856 	if (ret < 0)
1857 		return ret;
1858 	if (ret)
1859 		mask |= ATTR_KILL_PRIV;
1860 	return mask;
1861 }
1862 
__remove_privs(struct dentry * dentry,int kill)1863 static int __remove_privs(struct dentry *dentry, int kill)
1864 {
1865 	struct iattr newattrs;
1866 
1867 	newattrs.ia_valid = ATTR_FORCE | kill;
1868 	/*
1869 	 * Note we call this on write, so notify_change will not
1870 	 * encounter any conflicting delegations:
1871 	 */
1872 	return notify_change(dentry, &newattrs, NULL);
1873 }
1874 
1875 /*
1876  * Remove special file priviledges (suid, capabilities) when file is written
1877  * to or truncated.
1878  */
file_remove_privs(struct file * file)1879 int file_remove_privs(struct file *file)
1880 {
1881 	struct dentry *dentry = file_dentry(file);
1882 	struct inode *inode = file_inode(file);
1883 	int kill;
1884 	int error = 0;
1885 
1886 	/*
1887 	 * Fast path for nothing security related.
1888 	 * As well for non-regular files, e.g. blkdev inodes.
1889 	 * For example, blkdev_write_iter() might get here
1890 	 * trying to remove privs which it is not allowed to.
1891 	 */
1892 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1893 		return 0;
1894 
1895 	kill = dentry_needs_remove_privs(dentry);
1896 	if (kill < 0)
1897 		return kill;
1898 	if (kill)
1899 		error = __remove_privs(dentry, kill);
1900 	if (!error)
1901 		inode_has_no_xattr(inode);
1902 
1903 	return error;
1904 }
1905 EXPORT_SYMBOL(file_remove_privs);
1906 
1907 /**
1908  *	file_update_time	-	update mtime and ctime time
1909  *	@file: file accessed
1910  *
1911  *	Update the mtime and ctime members of an inode and mark the inode
1912  *	for writeback.  Note that this function is meant exclusively for
1913  *	usage in the file write path of filesystems, and filesystems may
1914  *	choose to explicitly ignore update via this function with the
1915  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1916  *	timestamps are handled by the server.  This can return an error for
1917  *	file systems who need to allocate space in order to update an inode.
1918  */
1919 
file_update_time(struct file * file)1920 int file_update_time(struct file *file)
1921 {
1922 	struct inode *inode = file_inode(file);
1923 	struct timespec64 now;
1924 	int sync_it = 0;
1925 	int ret;
1926 
1927 	/* First try to exhaust all avenues to not sync */
1928 	if (IS_NOCMTIME(inode))
1929 		return 0;
1930 
1931 	now = current_time(inode);
1932 	if (!timespec64_equal(&inode->i_mtime, &now))
1933 		sync_it = S_MTIME;
1934 
1935 	if (!timespec64_equal(&inode->i_ctime, &now))
1936 		sync_it |= S_CTIME;
1937 
1938 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1939 		sync_it |= S_VERSION;
1940 
1941 	if (!sync_it)
1942 		return 0;
1943 
1944 	/* Finally allowed to write? Takes lock. */
1945 	if (__mnt_want_write_file(file))
1946 		return 0;
1947 
1948 	ret = update_time(inode, &now, sync_it);
1949 	__mnt_drop_write_file(file);
1950 
1951 	return ret;
1952 }
1953 EXPORT_SYMBOL(file_update_time);
1954 
1955 /* Caller must hold the file's inode lock */
file_modified(struct file * file)1956 int file_modified(struct file *file)
1957 {
1958 	int err;
1959 
1960 	/*
1961 	 * Clear the security bits if the process is not being run by root.
1962 	 * This keeps people from modifying setuid and setgid binaries.
1963 	 */
1964 	err = file_remove_privs(file);
1965 	if (err)
1966 		return err;
1967 
1968 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
1969 		return 0;
1970 
1971 	return file_update_time(file);
1972 }
1973 EXPORT_SYMBOL(file_modified);
1974 
inode_needs_sync(struct inode * inode)1975 int inode_needs_sync(struct inode *inode)
1976 {
1977 	if (IS_SYNC(inode))
1978 		return 1;
1979 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1980 		return 1;
1981 	return 0;
1982 }
1983 EXPORT_SYMBOL(inode_needs_sync);
1984 
1985 /*
1986  * If we try to find an inode in the inode hash while it is being
1987  * deleted, we have to wait until the filesystem completes its
1988  * deletion before reporting that it isn't found.  This function waits
1989  * until the deletion _might_ have completed.  Callers are responsible
1990  * to recheck inode state.
1991  *
1992  * It doesn't matter if I_NEW is not set initially, a call to
1993  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1994  * will DTRT.
1995  */
__wait_on_freeing_inode(struct inode * inode)1996 static void __wait_on_freeing_inode(struct inode *inode)
1997 {
1998 	wait_queue_head_t *wq;
1999 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2000 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2001 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2002 	spin_unlock(&inode->i_lock);
2003 	spin_unlock(&inode_hash_lock);
2004 	schedule();
2005 	finish_wait(wq, &wait.wq_entry);
2006 	spin_lock(&inode_hash_lock);
2007 }
2008 
2009 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2010 static int __init set_ihash_entries(char *str)
2011 {
2012 	if (!str)
2013 		return 0;
2014 	ihash_entries = simple_strtoul(str, &str, 0);
2015 	return 1;
2016 }
2017 __setup("ihash_entries=", set_ihash_entries);
2018 
2019 /*
2020  * Initialize the waitqueues and inode hash table.
2021  */
inode_init_early(void)2022 void __init inode_init_early(void)
2023 {
2024 	/* If hashes are distributed across NUMA nodes, defer
2025 	 * hash allocation until vmalloc space is available.
2026 	 */
2027 	if (hashdist)
2028 		return;
2029 
2030 	inode_hashtable =
2031 		alloc_large_system_hash("Inode-cache",
2032 					sizeof(struct hlist_head),
2033 					ihash_entries,
2034 					14,
2035 					HASH_EARLY | HASH_ZERO,
2036 					&i_hash_shift,
2037 					&i_hash_mask,
2038 					0,
2039 					0);
2040 }
2041 
inode_init(void)2042 void __init inode_init(void)
2043 {
2044 	/* inode slab cache */
2045 	inode_cachep = kmem_cache_create("inode_cache",
2046 					 sizeof(struct inode),
2047 					 0,
2048 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2049 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2050 					 init_once);
2051 
2052 	/* Hash may have been set up in inode_init_early */
2053 	if (!hashdist)
2054 		return;
2055 
2056 	inode_hashtable =
2057 		alloc_large_system_hash("Inode-cache",
2058 					sizeof(struct hlist_head),
2059 					ihash_entries,
2060 					14,
2061 					HASH_ZERO,
2062 					&i_hash_shift,
2063 					&i_hash_mask,
2064 					0,
2065 					0);
2066 }
2067 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2068 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2069 {
2070 	inode->i_mode = mode;
2071 	if (S_ISCHR(mode)) {
2072 		inode->i_fop = &def_chr_fops;
2073 		inode->i_rdev = rdev;
2074 	} else if (S_ISBLK(mode)) {
2075 		inode->i_fop = &def_blk_fops;
2076 		inode->i_rdev = rdev;
2077 	} else if (S_ISFIFO(mode))
2078 		inode->i_fop = &pipefifo_fops;
2079 	else if (S_ISSOCK(mode))
2080 		;	/* leave it no_open_fops */
2081 	else
2082 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2083 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2084 				  inode->i_ino);
2085 }
2086 EXPORT_SYMBOL(init_special_inode);
2087 
2088 /**
2089  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2090  * @inode: New inode
2091  * @dir: Directory inode
2092  * @mode: mode of the new inode
2093  */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)2094 void inode_init_owner(struct inode *inode, const struct inode *dir,
2095 			umode_t mode)
2096 {
2097 	inode->i_uid = current_fsuid();
2098 	if (dir && dir->i_mode & S_ISGID) {
2099 		inode->i_gid = dir->i_gid;
2100 
2101 		/* Directories are special, and always inherit S_ISGID */
2102 		if (S_ISDIR(mode))
2103 			mode |= S_ISGID;
2104 	} else
2105 		inode->i_gid = current_fsgid();
2106 	inode->i_mode = mode;
2107 }
2108 EXPORT_SYMBOL(inode_init_owner);
2109 
2110 /**
2111  * inode_owner_or_capable - check current task permissions to inode
2112  * @inode: inode being checked
2113  *
2114  * Return true if current either has CAP_FOWNER in a namespace with the
2115  * inode owner uid mapped, or owns the file.
2116  */
inode_owner_or_capable(const struct inode * inode)2117 bool inode_owner_or_capable(const struct inode *inode)
2118 {
2119 	struct user_namespace *ns;
2120 
2121 	if (uid_eq(current_fsuid(), inode->i_uid))
2122 		return true;
2123 
2124 	ns = current_user_ns();
2125 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2126 		return true;
2127 	return false;
2128 }
2129 EXPORT_SYMBOL(inode_owner_or_capable);
2130 
2131 /*
2132  * Direct i/o helper functions
2133  */
__inode_dio_wait(struct inode * inode)2134 static void __inode_dio_wait(struct inode *inode)
2135 {
2136 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2137 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2138 
2139 	do {
2140 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2141 		if (atomic_read(&inode->i_dio_count))
2142 			schedule();
2143 	} while (atomic_read(&inode->i_dio_count));
2144 	finish_wait(wq, &q.wq_entry);
2145 }
2146 
2147 /**
2148  * inode_dio_wait - wait for outstanding DIO requests to finish
2149  * @inode: inode to wait for
2150  *
2151  * Waits for all pending direct I/O requests to finish so that we can
2152  * proceed with a truncate or equivalent operation.
2153  *
2154  * Must be called under a lock that serializes taking new references
2155  * to i_dio_count, usually by inode->i_mutex.
2156  */
inode_dio_wait(struct inode * inode)2157 void inode_dio_wait(struct inode *inode)
2158 {
2159 	if (atomic_read(&inode->i_dio_count))
2160 		__inode_dio_wait(inode);
2161 }
2162 EXPORT_SYMBOL(inode_dio_wait);
2163 
2164 /*
2165  * inode_set_flags - atomically set some inode flags
2166  *
2167  * Note: the caller should be holding i_mutex, or else be sure that
2168  * they have exclusive access to the inode structure (i.e., while the
2169  * inode is being instantiated).  The reason for the cmpxchg() loop
2170  * --- which wouldn't be necessary if all code paths which modify
2171  * i_flags actually followed this rule, is that there is at least one
2172  * code path which doesn't today so we use cmpxchg() out of an abundance
2173  * of caution.
2174  *
2175  * In the long run, i_mutex is overkill, and we should probably look
2176  * at using the i_lock spinlock to protect i_flags, and then make sure
2177  * it is so documented in include/linux/fs.h and that all code follows
2178  * the locking convention!!
2179  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2180 void inode_set_flags(struct inode *inode, unsigned int flags,
2181 		     unsigned int mask)
2182 {
2183 	WARN_ON_ONCE(flags & ~mask);
2184 	set_mask_bits(&inode->i_flags, mask, flags);
2185 }
2186 EXPORT_SYMBOL(inode_set_flags);
2187 
inode_nohighmem(struct inode * inode)2188 void inode_nohighmem(struct inode *inode)
2189 {
2190 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2191 }
2192 EXPORT_SYMBOL(inode_nohighmem);
2193 
2194 /**
2195  * timespec64_trunc - Truncate timespec64 to a granularity
2196  * @t: Timespec64
2197  * @gran: Granularity in ns.
2198  *
2199  * Truncate a timespec64 to a granularity. Always rounds down. gran must
2200  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2201  */
timespec64_trunc(struct timespec64 t,unsigned gran)2202 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2203 {
2204 	/* Avoid division in the common cases 1 ns and 1 s. */
2205 	if (gran == 1) {
2206 		/* nothing */
2207 	} else if (gran == NSEC_PER_SEC) {
2208 		t.tv_nsec = 0;
2209 	} else if (gran > 1 && gran < NSEC_PER_SEC) {
2210 		t.tv_nsec -= t.tv_nsec % gran;
2211 	} else {
2212 		WARN(1, "illegal file time granularity: %u", gran);
2213 	}
2214 	return t;
2215 }
2216 EXPORT_SYMBOL(timespec64_trunc);
2217 
2218 /**
2219  * timestamp_truncate - Truncate timespec to a granularity
2220  * @t: Timespec
2221  * @inode: inode being updated
2222  *
2223  * Truncate a timespec to the granularity supported by the fs
2224  * containing the inode. Always rounds down. gran must
2225  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2226  */
timestamp_truncate(struct timespec64 t,struct inode * inode)2227 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2228 {
2229 	struct super_block *sb = inode->i_sb;
2230 	unsigned int gran = sb->s_time_gran;
2231 
2232 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2233 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2234 		t.tv_nsec = 0;
2235 
2236 	/* Avoid division in the common cases 1 ns and 1 s. */
2237 	if (gran == 1)
2238 		; /* nothing */
2239 	else if (gran == NSEC_PER_SEC)
2240 		t.tv_nsec = 0;
2241 	else if (gran > 1 && gran < NSEC_PER_SEC)
2242 		t.tv_nsec -= t.tv_nsec % gran;
2243 	else
2244 		WARN(1, "invalid file time granularity: %u", gran);
2245 	return t;
2246 }
2247 EXPORT_SYMBOL(timestamp_truncate);
2248 
2249 /**
2250  * current_time - Return FS time
2251  * @inode: inode.
2252  *
2253  * Return the current time truncated to the time granularity supported by
2254  * the fs.
2255  *
2256  * Note that inode and inode->sb cannot be NULL.
2257  * Otherwise, the function warns and returns time without truncation.
2258  */
current_time(struct inode * inode)2259 struct timespec64 current_time(struct inode *inode)
2260 {
2261 	struct timespec64 now;
2262 
2263 	ktime_get_coarse_real_ts64(&now);
2264 
2265 	if (unlikely(!inode->i_sb)) {
2266 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2267 		return now;
2268 	}
2269 
2270 	return timestamp_truncate(now, inode);
2271 }
2272 EXPORT_SYMBOL(current_time);
2273 
2274 /*
2275  * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2276  * configurations.
2277  *
2278  * Note: the caller should be holding i_mutex, or else be sure that they have
2279  * exclusive access to the inode structure.
2280  */
vfs_ioc_setflags_prepare(struct inode * inode,unsigned int oldflags,unsigned int flags)2281 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2282 			     unsigned int flags)
2283 {
2284 	/*
2285 	 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2286 	 * the relevant capability.
2287 	 *
2288 	 * This test looks nicer. Thanks to Pauline Middelink
2289 	 */
2290 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2291 	    !capable(CAP_LINUX_IMMUTABLE))
2292 		return -EPERM;
2293 
2294 	return fscrypt_prepare_setflags(inode, oldflags, flags);
2295 }
2296 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2297 
2298 /*
2299  * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2300  * configurations.
2301  *
2302  * Note: the caller should be holding i_mutex, or else be sure that they have
2303  * exclusive access to the inode structure.
2304  */
vfs_ioc_fssetxattr_check(struct inode * inode,const struct fsxattr * old_fa,struct fsxattr * fa)2305 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2306 			     struct fsxattr *fa)
2307 {
2308 	/*
2309 	 * Can't modify an immutable/append-only file unless we have
2310 	 * appropriate permission.
2311 	 */
2312 	if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2313 			(FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2314 	    !capable(CAP_LINUX_IMMUTABLE))
2315 		return -EPERM;
2316 
2317 	/*
2318 	 * Project Quota ID state is only allowed to change from within the init
2319 	 * namespace. Enforce that restriction only if we are trying to change
2320 	 * the quota ID state. Everything else is allowed in user namespaces.
2321 	 */
2322 	if (current_user_ns() != &init_user_ns) {
2323 		if (old_fa->fsx_projid != fa->fsx_projid)
2324 			return -EINVAL;
2325 		if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2326 				FS_XFLAG_PROJINHERIT)
2327 			return -EINVAL;
2328 	}
2329 
2330 	/* Check extent size hints. */
2331 	if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2332 		return -EINVAL;
2333 
2334 	if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2335 			!S_ISDIR(inode->i_mode))
2336 		return -EINVAL;
2337 
2338 	if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2339 	    !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2340 		return -EINVAL;
2341 
2342 	/*
2343 	 * It is only valid to set the DAX flag on regular files and
2344 	 * directories on filesystems.
2345 	 */
2346 	if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2347 	    !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2348 		return -EINVAL;
2349 
2350 	/* Extent size hints of zero turn off the flags. */
2351 	if (fa->fsx_extsize == 0)
2352 		fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2353 	if (fa->fsx_cowextsize == 0)
2354 		fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2355 
2356 	return 0;
2357 }
2358 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2359 
2360 /**
2361  * mode_strip_sgid - handle the sgid bit for non-directories
2362  * @dir: parent directory inode
2363  * @mode: mode of the file to be created in @dir
2364  *
2365  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2366  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2367  * either in the group of the parent directory or they have CAP_FSETID
2368  * in their user namespace and are privileged over the parent directory.
2369  * In all other cases, strip the S_ISGID bit from @mode.
2370  *
2371  * Return: the new mode to use for the file
2372  */
mode_strip_sgid(const struct inode * dir,umode_t mode)2373 umode_t mode_strip_sgid(const struct inode *dir, umode_t mode)
2374 {
2375 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2376 		return mode;
2377 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2378 		return mode;
2379 	if (in_group_p(dir->i_gid))
2380 		return mode;
2381 	if (capable_wrt_inode_uidgid(dir, CAP_FSETID))
2382 		return mode;
2383 
2384 	return mode & ~S_ISGID;
2385 }
2386 EXPORT_SYMBOL(mode_strip_sgid);
2387