• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/locks.c
4  *
5  *  Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls.
6  *  Doug Evans (dje@spiff.uucp), August 07, 1992
7  *
8  *  Deadlock detection added.
9  *  FIXME: one thing isn't handled yet:
10  *	- mandatory locks (requires lots of changes elsewhere)
11  *  Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994.
12  *
13  *  Miscellaneous edits, and a total rewrite of posix_lock_file() code.
14  *  Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994
15  *
16  *  Converted file_lock_table to a linked list from an array, which eliminates
17  *  the limits on how many active file locks are open.
18  *  Chad Page (pageone@netcom.com), November 27, 1994
19  *
20  *  Removed dependency on file descriptors. dup()'ed file descriptors now
21  *  get the same locks as the original file descriptors, and a close() on
22  *  any file descriptor removes ALL the locks on the file for the current
23  *  process. Since locks still depend on the process id, locks are inherited
24  *  after an exec() but not after a fork(). This agrees with POSIX, and both
25  *  BSD and SVR4 practice.
26  *  Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995
27  *
28  *  Scrapped free list which is redundant now that we allocate locks
29  *  dynamically with kmalloc()/kfree().
30  *  Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995
31  *
32  *  Implemented two lock personalities - FL_FLOCK and FL_POSIX.
33  *
34  *  FL_POSIX locks are created with calls to fcntl() and lockf() through the
35  *  fcntl() system call. They have the semantics described above.
36  *
37  *  FL_FLOCK locks are created with calls to flock(), through the flock()
38  *  system call, which is new. Old C libraries implement flock() via fcntl()
39  *  and will continue to use the old, broken implementation.
40  *
41  *  FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated
42  *  with a file pointer (filp). As a result they can be shared by a parent
43  *  process and its children after a fork(). They are removed when the last
44  *  file descriptor referring to the file pointer is closed (unless explicitly
45  *  unlocked).
46  *
47  *  FL_FLOCK locks never deadlock, an existing lock is always removed before
48  *  upgrading from shared to exclusive (or vice versa). When this happens
49  *  any processes blocked by the current lock are woken up and allowed to
50  *  run before the new lock is applied.
51  *  Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995
52  *
53  *  Removed some race conditions in flock_lock_file(), marked other possible
54  *  races. Just grep for FIXME to see them.
55  *  Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996.
56  *
57  *  Addressed Dmitry's concerns. Deadlock checking no longer recursive.
58  *  Lock allocation changed to GFP_ATOMIC as we can't afford to sleep
59  *  once we've checked for blocking and deadlocking.
60  *  Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996.
61  *
62  *  Initial implementation of mandatory locks. SunOS turned out to be
63  *  a rotten model, so I implemented the "obvious" semantics.
64  *  See 'Documentation/filesystems/mandatory-locking.txt' for details.
65  *  Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996.
66  *
67  *  Don't allow mandatory locks on mmap()'ed files. Added simple functions to
68  *  check if a file has mandatory locks, used by mmap(), open() and creat() to
69  *  see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference
70  *  Manual, Section 2.
71  *  Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996.
72  *
73  *  Tidied up block list handling. Added '/proc/locks' interface.
74  *  Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996.
75  *
76  *  Fixed deadlock condition for pathological code that mixes calls to
77  *  flock() and fcntl().
78  *  Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996.
79  *
80  *  Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use
81  *  for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to
82  *  guarantee sensible behaviour in the case where file system modules might
83  *  be compiled with different options than the kernel itself.
84  *  Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
85  *
86  *  Added a couple of missing wake_up() calls. Thanks to Thomas Meckel
87  *  (Thomas.Meckel@mni.fh-giessen.de) for spotting this.
88  *  Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
89  *
90  *  Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK
91  *  locks. Changed process synchronisation to avoid dereferencing locks that
92  *  have already been freed.
93  *  Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996.
94  *
95  *  Made the block list a circular list to minimise searching in the list.
96  *  Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996.
97  *
98  *  Made mandatory locking a mount option. Default is not to allow mandatory
99  *  locking.
100  *  Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996.
101  *
102  *  Some adaptations for NFS support.
103  *  Olaf Kirch (okir@monad.swb.de), Dec 1996,
104  *
105  *  Fixed /proc/locks interface so that we can't overrun the buffer we are handed.
106  *  Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997.
107  *
108  *  Use slab allocator instead of kmalloc/kfree.
109  *  Use generic list implementation from <linux/list.h>.
110  *  Sped up posix_locks_deadlock by only considering blocked locks.
111  *  Matthew Wilcox <willy@debian.org>, March, 2000.
112  *
113  *  Leases and LOCK_MAND
114  *  Matthew Wilcox <willy@debian.org>, June, 2000.
115  *  Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000.
116  *
117  * Locking conflicts and dependencies:
118  * If multiple threads attempt to lock the same byte (or flock the same file)
119  * only one can be granted the lock, and other must wait their turn.
120  * The first lock has been "applied" or "granted", the others are "waiting"
121  * and are "blocked" by the "applied" lock..
122  *
123  * Waiting and applied locks are all kept in trees whose properties are:
124  *
125  *	- the root of a tree may be an applied or waiting lock.
126  *	- every other node in the tree is a waiting lock that
127  *	  conflicts with every ancestor of that node.
128  *
129  * Every such tree begins life as a waiting singleton which obviously
130  * satisfies the above properties.
131  *
132  * The only ways we modify trees preserve these properties:
133  *
134  *	1. We may add a new leaf node, but only after first verifying that it
135  *	   conflicts with all of its ancestors.
136  *	2. We may remove the root of a tree, creating a new singleton
137  *	   tree from the root and N new trees rooted in the immediate
138  *	   children.
139  *	3. If the root of a tree is not currently an applied lock, we may
140  *	   apply it (if possible).
141  *	4. We may upgrade the root of the tree (either extend its range,
142  *	   or upgrade its entire range from read to write).
143  *
144  * When an applied lock is modified in a way that reduces or downgrades any
145  * part of its range, we remove all its children (2 above).  This particularly
146  * happens when a lock is unlocked.
147  *
148  * For each of those child trees we "wake up" the thread which is
149  * waiting for the lock so it can continue handling as follows: if the
150  * root of the tree applies, we do so (3).  If it doesn't, it must
151  * conflict with some applied lock.  We remove (wake up) all of its children
152  * (2), and add it is a new leaf to the tree rooted in the applied
153  * lock (1).  We then repeat the process recursively with those
154  * children.
155  *
156  */
157 
158 #include <linux/capability.h>
159 #include <linux/file.h>
160 #include <linux/fdtable.h>
161 #include <linux/fs.h>
162 #include <linux/init.h>
163 #include <linux/security.h>
164 #include <linux/slab.h>
165 #include <linux/syscalls.h>
166 #include <linux/time.h>
167 #include <linux/rcupdate.h>
168 #include <linux/pid_namespace.h>
169 #include <linux/hashtable.h>
170 #include <linux/percpu.h>
171 
172 #define CREATE_TRACE_POINTS
173 #include <trace/events/filelock.h>
174 
175 #include <linux/uaccess.h>
176 
177 #define IS_POSIX(fl)	(fl->fl_flags & FL_POSIX)
178 #define IS_FLOCK(fl)	(fl->fl_flags & FL_FLOCK)
179 #define IS_LEASE(fl)	(fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT))
180 #define IS_OFDLCK(fl)	(fl->fl_flags & FL_OFDLCK)
181 #define IS_REMOTELCK(fl)	(fl->fl_pid <= 0)
182 
lease_breaking(struct file_lock * fl)183 static bool lease_breaking(struct file_lock *fl)
184 {
185 	return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING);
186 }
187 
target_leasetype(struct file_lock * fl)188 static int target_leasetype(struct file_lock *fl)
189 {
190 	if (fl->fl_flags & FL_UNLOCK_PENDING)
191 		return F_UNLCK;
192 	if (fl->fl_flags & FL_DOWNGRADE_PENDING)
193 		return F_RDLCK;
194 	return fl->fl_type;
195 }
196 
197 int leases_enable = 1;
198 int lease_break_time = 45;
199 
200 /*
201  * The global file_lock_list is only used for displaying /proc/locks, so we
202  * keep a list on each CPU, with each list protected by its own spinlock.
203  * Global serialization is done using file_rwsem.
204  *
205  * Note that alterations to the list also require that the relevant flc_lock is
206  * held.
207  */
208 struct file_lock_list_struct {
209 	spinlock_t		lock;
210 	struct hlist_head	hlist;
211 };
212 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list);
213 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem);
214 
215 
216 /*
217  * The blocked_hash is used to find POSIX lock loops for deadlock detection.
218  * It is protected by blocked_lock_lock.
219  *
220  * We hash locks by lockowner in order to optimize searching for the lock a
221  * particular lockowner is waiting on.
222  *
223  * FIXME: make this value scale via some heuristic? We generally will want more
224  * buckets when we have more lockowners holding locks, but that's a little
225  * difficult to determine without knowing what the workload will look like.
226  */
227 #define BLOCKED_HASH_BITS	7
228 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS);
229 
230 /*
231  * This lock protects the blocked_hash. Generally, if you're accessing it, you
232  * want to be holding this lock.
233  *
234  * In addition, it also protects the fl->fl_blocked_requests list, and the
235  * fl->fl_blocker pointer for file_lock structures that are acting as lock
236  * requests (in contrast to those that are acting as records of acquired locks).
237  *
238  * Note that when we acquire this lock in order to change the above fields,
239  * we often hold the flc_lock as well. In certain cases, when reading the fields
240  * protected by this lock, we can skip acquiring it iff we already hold the
241  * flc_lock.
242  */
243 static DEFINE_SPINLOCK(blocked_lock_lock);
244 
245 static struct kmem_cache *flctx_cache __read_mostly;
246 static struct kmem_cache *filelock_cache __read_mostly;
247 
248 static struct file_lock_context *
locks_get_lock_context(struct inode * inode,int type)249 locks_get_lock_context(struct inode *inode, int type)
250 {
251 	struct file_lock_context *ctx;
252 
253 	/* paired with cmpxchg() below */
254 	ctx = smp_load_acquire(&inode->i_flctx);
255 	if (likely(ctx) || type == F_UNLCK)
256 		goto out;
257 
258 	ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL);
259 	if (!ctx)
260 		goto out;
261 
262 	spin_lock_init(&ctx->flc_lock);
263 	INIT_LIST_HEAD(&ctx->flc_flock);
264 	INIT_LIST_HEAD(&ctx->flc_posix);
265 	INIT_LIST_HEAD(&ctx->flc_lease);
266 
267 	/*
268 	 * Assign the pointer if it's not already assigned. If it is, then
269 	 * free the context we just allocated.
270 	 */
271 	if (cmpxchg(&inode->i_flctx, NULL, ctx)) {
272 		kmem_cache_free(flctx_cache, ctx);
273 		ctx = smp_load_acquire(&inode->i_flctx);
274 	}
275 out:
276 	trace_locks_get_lock_context(inode, type, ctx);
277 	return ctx;
278 }
279 
280 static void
locks_dump_ctx_list(struct list_head * list,char * list_type)281 locks_dump_ctx_list(struct list_head *list, char *list_type)
282 {
283 	struct file_lock *fl;
284 
285 	list_for_each_entry(fl, list, fl_list) {
286 		pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
287 	}
288 }
289 
290 static void
locks_check_ctx_lists(struct inode * inode)291 locks_check_ctx_lists(struct inode *inode)
292 {
293 	struct file_lock_context *ctx = inode->i_flctx;
294 
295 	if (unlikely(!list_empty(&ctx->flc_flock) ||
296 		     !list_empty(&ctx->flc_posix) ||
297 		     !list_empty(&ctx->flc_lease))) {
298 		pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n",
299 			MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev),
300 			inode->i_ino);
301 		locks_dump_ctx_list(&ctx->flc_flock, "FLOCK");
302 		locks_dump_ctx_list(&ctx->flc_posix, "POSIX");
303 		locks_dump_ctx_list(&ctx->flc_lease, "LEASE");
304 	}
305 }
306 
307 static void
locks_check_ctx_file_list(struct file * filp,struct list_head * list,char * list_type)308 locks_check_ctx_file_list(struct file *filp, struct list_head *list,
309 				char *list_type)
310 {
311 	struct file_lock *fl;
312 	struct inode *inode = locks_inode(filp);
313 
314 	list_for_each_entry(fl, list, fl_list)
315 		if (fl->fl_file == filp)
316 			pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx "
317 				" fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
318 				list_type, MAJOR(inode->i_sb->s_dev),
319 				MINOR(inode->i_sb->s_dev), inode->i_ino,
320 				fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
321 }
322 
323 void
locks_free_lock_context(struct inode * inode)324 locks_free_lock_context(struct inode *inode)
325 {
326 	struct file_lock_context *ctx = inode->i_flctx;
327 
328 	if (unlikely(ctx)) {
329 		locks_check_ctx_lists(inode);
330 		kmem_cache_free(flctx_cache, ctx);
331 	}
332 }
333 
locks_init_lock_heads(struct file_lock * fl)334 static void locks_init_lock_heads(struct file_lock *fl)
335 {
336 	INIT_HLIST_NODE(&fl->fl_link);
337 	INIT_LIST_HEAD(&fl->fl_list);
338 	INIT_LIST_HEAD(&fl->fl_blocked_requests);
339 	INIT_LIST_HEAD(&fl->fl_blocked_member);
340 	init_waitqueue_head(&fl->fl_wait);
341 }
342 
343 /* Allocate an empty lock structure. */
locks_alloc_lock(void)344 struct file_lock *locks_alloc_lock(void)
345 {
346 	struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
347 
348 	if (fl)
349 		locks_init_lock_heads(fl);
350 
351 	return fl;
352 }
353 EXPORT_SYMBOL_GPL(locks_alloc_lock);
354 
locks_release_private(struct file_lock * fl)355 void locks_release_private(struct file_lock *fl)
356 {
357 	BUG_ON(waitqueue_active(&fl->fl_wait));
358 	BUG_ON(!list_empty(&fl->fl_list));
359 	BUG_ON(!list_empty(&fl->fl_blocked_requests));
360 	BUG_ON(!list_empty(&fl->fl_blocked_member));
361 	BUG_ON(!hlist_unhashed(&fl->fl_link));
362 
363 	if (fl->fl_ops) {
364 		if (fl->fl_ops->fl_release_private)
365 			fl->fl_ops->fl_release_private(fl);
366 		fl->fl_ops = NULL;
367 	}
368 
369 	if (fl->fl_lmops) {
370 		if (fl->fl_lmops->lm_put_owner) {
371 			fl->fl_lmops->lm_put_owner(fl->fl_owner);
372 			fl->fl_owner = NULL;
373 		}
374 		fl->fl_lmops = NULL;
375 	}
376 }
377 EXPORT_SYMBOL_GPL(locks_release_private);
378 
379 /* Free a lock which is not in use. */
locks_free_lock(struct file_lock * fl)380 void locks_free_lock(struct file_lock *fl)
381 {
382 	locks_release_private(fl);
383 	kmem_cache_free(filelock_cache, fl);
384 }
385 EXPORT_SYMBOL(locks_free_lock);
386 
387 static void
locks_dispose_list(struct list_head * dispose)388 locks_dispose_list(struct list_head *dispose)
389 {
390 	struct file_lock *fl;
391 
392 	while (!list_empty(dispose)) {
393 		fl = list_first_entry(dispose, struct file_lock, fl_list);
394 		list_del_init(&fl->fl_list);
395 		locks_free_lock(fl);
396 	}
397 }
398 
locks_init_lock(struct file_lock * fl)399 void locks_init_lock(struct file_lock *fl)
400 {
401 	memset(fl, 0, sizeof(struct file_lock));
402 	locks_init_lock_heads(fl);
403 }
404 EXPORT_SYMBOL(locks_init_lock);
405 
406 /*
407  * Initialize a new lock from an existing file_lock structure.
408  */
locks_copy_conflock(struct file_lock * new,struct file_lock * fl)409 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl)
410 {
411 	new->fl_owner = fl->fl_owner;
412 	new->fl_pid = fl->fl_pid;
413 	new->fl_file = NULL;
414 	new->fl_flags = fl->fl_flags;
415 	new->fl_type = fl->fl_type;
416 	new->fl_start = fl->fl_start;
417 	new->fl_end = fl->fl_end;
418 	new->fl_lmops = fl->fl_lmops;
419 	new->fl_ops = NULL;
420 
421 	if (fl->fl_lmops) {
422 		if (fl->fl_lmops->lm_get_owner)
423 			fl->fl_lmops->lm_get_owner(fl->fl_owner);
424 	}
425 }
426 EXPORT_SYMBOL(locks_copy_conflock);
427 
locks_copy_lock(struct file_lock * new,struct file_lock * fl)428 void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
429 {
430 	/* "new" must be a freshly-initialized lock */
431 	WARN_ON_ONCE(new->fl_ops);
432 
433 	locks_copy_conflock(new, fl);
434 
435 	new->fl_file = fl->fl_file;
436 	new->fl_ops = fl->fl_ops;
437 
438 	if (fl->fl_ops) {
439 		if (fl->fl_ops->fl_copy_lock)
440 			fl->fl_ops->fl_copy_lock(new, fl);
441 	}
442 }
443 EXPORT_SYMBOL(locks_copy_lock);
444 
locks_move_blocks(struct file_lock * new,struct file_lock * fl)445 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl)
446 {
447 	struct file_lock *f;
448 
449 	/*
450 	 * As ctx->flc_lock is held, new requests cannot be added to
451 	 * ->fl_blocked_requests, so we don't need a lock to check if it
452 	 * is empty.
453 	 */
454 	if (list_empty(&fl->fl_blocked_requests))
455 		return;
456 	spin_lock(&blocked_lock_lock);
457 	list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests);
458 	list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member)
459 		f->fl_blocker = new;
460 	spin_unlock(&blocked_lock_lock);
461 }
462 
flock_translate_cmd(int cmd)463 static inline int flock_translate_cmd(int cmd) {
464 	if (cmd & LOCK_MAND)
465 		return cmd & (LOCK_MAND | LOCK_RW);
466 	switch (cmd) {
467 	case LOCK_SH:
468 		return F_RDLCK;
469 	case LOCK_EX:
470 		return F_WRLCK;
471 	case LOCK_UN:
472 		return F_UNLCK;
473 	}
474 	return -EINVAL;
475 }
476 
477 /* Fill in a file_lock structure with an appropriate FLOCK lock. */
478 static struct file_lock *
flock_make_lock(struct file * filp,unsigned int cmd,struct file_lock * fl)479 flock_make_lock(struct file *filp, unsigned int cmd, struct file_lock *fl)
480 {
481 	int type = flock_translate_cmd(cmd);
482 
483 	if (type < 0)
484 		return ERR_PTR(type);
485 
486 	if (fl == NULL) {
487 		fl = locks_alloc_lock();
488 		if (fl == NULL)
489 			return ERR_PTR(-ENOMEM);
490 	} else {
491 		locks_init_lock(fl);
492 	}
493 
494 	fl->fl_file = filp;
495 	fl->fl_owner = filp;
496 	fl->fl_pid = current->tgid;
497 	fl->fl_flags = FL_FLOCK;
498 	fl->fl_type = type;
499 	fl->fl_end = OFFSET_MAX;
500 
501 	return fl;
502 }
503 
assign_type(struct file_lock * fl,long type)504 static int assign_type(struct file_lock *fl, long type)
505 {
506 	switch (type) {
507 	case F_RDLCK:
508 	case F_WRLCK:
509 	case F_UNLCK:
510 		fl->fl_type = type;
511 		break;
512 	default:
513 		return -EINVAL;
514 	}
515 	return 0;
516 }
517 
flock64_to_posix_lock(struct file * filp,struct file_lock * fl,struct flock64 * l)518 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
519 				 struct flock64 *l)
520 {
521 	switch (l->l_whence) {
522 	case SEEK_SET:
523 		fl->fl_start = 0;
524 		break;
525 	case SEEK_CUR:
526 		fl->fl_start = filp->f_pos;
527 		break;
528 	case SEEK_END:
529 		fl->fl_start = i_size_read(file_inode(filp));
530 		break;
531 	default:
532 		return -EINVAL;
533 	}
534 	if (l->l_start > OFFSET_MAX - fl->fl_start)
535 		return -EOVERFLOW;
536 	fl->fl_start += l->l_start;
537 	if (fl->fl_start < 0)
538 		return -EINVAL;
539 
540 	/* POSIX-1996 leaves the case l->l_len < 0 undefined;
541 	   POSIX-2001 defines it. */
542 	if (l->l_len > 0) {
543 		if (l->l_len - 1 > OFFSET_MAX - fl->fl_start)
544 			return -EOVERFLOW;
545 		fl->fl_end = fl->fl_start + l->l_len - 1;
546 
547 	} else if (l->l_len < 0) {
548 		if (fl->fl_start + l->l_len < 0)
549 			return -EINVAL;
550 		fl->fl_end = fl->fl_start - 1;
551 		fl->fl_start += l->l_len;
552 	} else
553 		fl->fl_end = OFFSET_MAX;
554 
555 	fl->fl_owner = current->files;
556 	fl->fl_pid = current->tgid;
557 	fl->fl_file = filp;
558 	fl->fl_flags = FL_POSIX;
559 	fl->fl_ops = NULL;
560 	fl->fl_lmops = NULL;
561 
562 	return assign_type(fl, l->l_type);
563 }
564 
565 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
566  * style lock.
567  */
flock_to_posix_lock(struct file * filp,struct file_lock * fl,struct flock * l)568 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
569 			       struct flock *l)
570 {
571 	struct flock64 ll = {
572 		.l_type = l->l_type,
573 		.l_whence = l->l_whence,
574 		.l_start = l->l_start,
575 		.l_len = l->l_len,
576 	};
577 
578 	return flock64_to_posix_lock(filp, fl, &ll);
579 }
580 
581 /* default lease lock manager operations */
582 static bool
lease_break_callback(struct file_lock * fl)583 lease_break_callback(struct file_lock *fl)
584 {
585 	kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
586 	return false;
587 }
588 
589 static void
lease_setup(struct file_lock * fl,void ** priv)590 lease_setup(struct file_lock *fl, void **priv)
591 {
592 	struct file *filp = fl->fl_file;
593 	struct fasync_struct *fa = *priv;
594 
595 	/*
596 	 * fasync_insert_entry() returns the old entry if any. If there was no
597 	 * old entry, then it used "priv" and inserted it into the fasync list.
598 	 * Clear the pointer to indicate that it shouldn't be freed.
599 	 */
600 	if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa))
601 		*priv = NULL;
602 
603 	__f_setown(filp, task_pid(current), PIDTYPE_TGID, 0);
604 }
605 
606 static const struct lock_manager_operations lease_manager_ops = {
607 	.lm_break = lease_break_callback,
608 	.lm_change = lease_modify,
609 	.lm_setup = lease_setup,
610 };
611 
612 /*
613  * Initialize a lease, use the default lock manager operations
614  */
lease_init(struct file * filp,long type,struct file_lock * fl)615 static int lease_init(struct file *filp, long type, struct file_lock *fl)
616 {
617 	if (assign_type(fl, type) != 0)
618 		return -EINVAL;
619 
620 	fl->fl_owner = filp;
621 	fl->fl_pid = current->tgid;
622 
623 	fl->fl_file = filp;
624 	fl->fl_flags = FL_LEASE;
625 	fl->fl_start = 0;
626 	fl->fl_end = OFFSET_MAX;
627 	fl->fl_ops = NULL;
628 	fl->fl_lmops = &lease_manager_ops;
629 	return 0;
630 }
631 
632 /* Allocate a file_lock initialised to this type of lease */
lease_alloc(struct file * filp,long type)633 static struct file_lock *lease_alloc(struct file *filp, long type)
634 {
635 	struct file_lock *fl = locks_alloc_lock();
636 	int error = -ENOMEM;
637 
638 	if (fl == NULL)
639 		return ERR_PTR(error);
640 
641 	error = lease_init(filp, type, fl);
642 	if (error) {
643 		locks_free_lock(fl);
644 		return ERR_PTR(error);
645 	}
646 	return fl;
647 }
648 
649 /* Check if two locks overlap each other.
650  */
locks_overlap(struct file_lock * fl1,struct file_lock * fl2)651 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
652 {
653 	return ((fl1->fl_end >= fl2->fl_start) &&
654 		(fl2->fl_end >= fl1->fl_start));
655 }
656 
657 /*
658  * Check whether two locks have the same owner.
659  */
posix_same_owner(struct file_lock * fl1,struct file_lock * fl2)660 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2)
661 {
662 	return fl1->fl_owner == fl2->fl_owner;
663 }
664 
665 /* Must be called with the flc_lock held! */
locks_insert_global_locks(struct file_lock * fl)666 static void locks_insert_global_locks(struct file_lock *fl)
667 {
668 	struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list);
669 
670 	percpu_rwsem_assert_held(&file_rwsem);
671 
672 	spin_lock(&fll->lock);
673 	fl->fl_link_cpu = smp_processor_id();
674 	hlist_add_head(&fl->fl_link, &fll->hlist);
675 	spin_unlock(&fll->lock);
676 }
677 
678 /* Must be called with the flc_lock held! */
locks_delete_global_locks(struct file_lock * fl)679 static void locks_delete_global_locks(struct file_lock *fl)
680 {
681 	struct file_lock_list_struct *fll;
682 
683 	percpu_rwsem_assert_held(&file_rwsem);
684 
685 	/*
686 	 * Avoid taking lock if already unhashed. This is safe since this check
687 	 * is done while holding the flc_lock, and new insertions into the list
688 	 * also require that it be held.
689 	 */
690 	if (hlist_unhashed(&fl->fl_link))
691 		return;
692 
693 	fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu);
694 	spin_lock(&fll->lock);
695 	hlist_del_init(&fl->fl_link);
696 	spin_unlock(&fll->lock);
697 }
698 
699 static unsigned long
posix_owner_key(struct file_lock * fl)700 posix_owner_key(struct file_lock *fl)
701 {
702 	return (unsigned long)fl->fl_owner;
703 }
704 
locks_insert_global_blocked(struct file_lock * waiter)705 static void locks_insert_global_blocked(struct file_lock *waiter)
706 {
707 	lockdep_assert_held(&blocked_lock_lock);
708 
709 	hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter));
710 }
711 
locks_delete_global_blocked(struct file_lock * waiter)712 static void locks_delete_global_blocked(struct file_lock *waiter)
713 {
714 	lockdep_assert_held(&blocked_lock_lock);
715 
716 	hash_del(&waiter->fl_link);
717 }
718 
719 /* Remove waiter from blocker's block list.
720  * When blocker ends up pointing to itself then the list is empty.
721  *
722  * Must be called with blocked_lock_lock held.
723  */
__locks_delete_block(struct file_lock * waiter)724 static void __locks_delete_block(struct file_lock *waiter)
725 {
726 	locks_delete_global_blocked(waiter);
727 	list_del_init(&waiter->fl_blocked_member);
728 }
729 
__locks_wake_up_blocks(struct file_lock * blocker)730 static void __locks_wake_up_blocks(struct file_lock *blocker)
731 {
732 	while (!list_empty(&blocker->fl_blocked_requests)) {
733 		struct file_lock *waiter;
734 
735 		waiter = list_first_entry(&blocker->fl_blocked_requests,
736 					  struct file_lock, fl_blocked_member);
737 		__locks_delete_block(waiter);
738 		if (waiter->fl_lmops && waiter->fl_lmops->lm_notify)
739 			waiter->fl_lmops->lm_notify(waiter);
740 		else
741 			wake_up(&waiter->fl_wait);
742 
743 		/*
744 		 * The setting of fl_blocker to NULL marks the "done"
745 		 * point in deleting a block. Paired with acquire at the top
746 		 * of locks_delete_block().
747 		 */
748 		smp_store_release(&waiter->fl_blocker, NULL);
749 	}
750 }
751 
752 /**
753  *	locks_delete_lock - stop waiting for a file lock
754  *	@waiter: the lock which was waiting
755  *
756  *	lockd/nfsd need to disconnect the lock while working on it.
757  */
locks_delete_block(struct file_lock * waiter)758 int locks_delete_block(struct file_lock *waiter)
759 {
760 	int status = -ENOENT;
761 
762 	/*
763 	 * If fl_blocker is NULL, it won't be set again as this thread "owns"
764 	 * the lock and is the only one that might try to claim the lock.
765 	 *
766 	 * We use acquire/release to manage fl_blocker so that we can
767 	 * optimize away taking the blocked_lock_lock in many cases.
768 	 *
769 	 * The smp_load_acquire guarantees two things:
770 	 *
771 	 * 1/ that fl_blocked_requests can be tested locklessly. If something
772 	 * was recently added to that list it must have been in a locked region
773 	 * *before* the locked region when fl_blocker was set to NULL.
774 	 *
775 	 * 2/ that no other thread is accessing 'waiter', so it is safe to free
776 	 * it.  __locks_wake_up_blocks is careful not to touch waiter after
777 	 * fl_blocker is released.
778 	 *
779 	 * If a lockless check of fl_blocker shows it to be NULL, we know that
780 	 * no new locks can be inserted into its fl_blocked_requests list, and
781 	 * can avoid doing anything further if the list is empty.
782 	 */
783 	if (!smp_load_acquire(&waiter->fl_blocker) &&
784 	    list_empty(&waiter->fl_blocked_requests))
785 		return status;
786 
787 	spin_lock(&blocked_lock_lock);
788 	if (waiter->fl_blocker)
789 		status = 0;
790 	__locks_wake_up_blocks(waiter);
791 	__locks_delete_block(waiter);
792 
793 	/*
794 	 * The setting of fl_blocker to NULL marks the "done" point in deleting
795 	 * a block. Paired with acquire at the top of this function.
796 	 */
797 	smp_store_release(&waiter->fl_blocker, NULL);
798 	spin_unlock(&blocked_lock_lock);
799 	return status;
800 }
801 EXPORT_SYMBOL(locks_delete_block);
802 
803 /* Insert waiter into blocker's block list.
804  * We use a circular list so that processes can be easily woken up in
805  * the order they blocked. The documentation doesn't require this but
806  * it seems like the reasonable thing to do.
807  *
808  * Must be called with both the flc_lock and blocked_lock_lock held. The
809  * fl_blocked_requests list itself is protected by the blocked_lock_lock,
810  * but by ensuring that the flc_lock is also held on insertions we can avoid
811  * taking the blocked_lock_lock in some cases when we see that the
812  * fl_blocked_requests list is empty.
813  *
814  * Rather than just adding to the list, we check for conflicts with any existing
815  * waiters, and add beneath any waiter that blocks the new waiter.
816  * Thus wakeups don't happen until needed.
817  */
__locks_insert_block(struct file_lock * blocker,struct file_lock * waiter,bool conflict (struct file_lock *,struct file_lock *))818 static void __locks_insert_block(struct file_lock *blocker,
819 				 struct file_lock *waiter,
820 				 bool conflict(struct file_lock *,
821 					       struct file_lock *))
822 {
823 	struct file_lock *fl;
824 	BUG_ON(!list_empty(&waiter->fl_blocked_member));
825 
826 new_blocker:
827 	list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member)
828 		if (conflict(fl, waiter)) {
829 			blocker =  fl;
830 			goto new_blocker;
831 		}
832 	waiter->fl_blocker = blocker;
833 	list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests);
834 	if (IS_POSIX(blocker) && !IS_OFDLCK(blocker))
835 		locks_insert_global_blocked(waiter);
836 
837 	/* The requests in waiter->fl_blocked are known to conflict with
838 	 * waiter, but might not conflict with blocker, or the requests
839 	 * and lock which block it.  So they all need to be woken.
840 	 */
841 	__locks_wake_up_blocks(waiter);
842 }
843 
844 /* Must be called with flc_lock held. */
locks_insert_block(struct file_lock * blocker,struct file_lock * waiter,bool conflict (struct file_lock *,struct file_lock *))845 static void locks_insert_block(struct file_lock *blocker,
846 			       struct file_lock *waiter,
847 			       bool conflict(struct file_lock *,
848 					     struct file_lock *))
849 {
850 	spin_lock(&blocked_lock_lock);
851 	__locks_insert_block(blocker, waiter, conflict);
852 	spin_unlock(&blocked_lock_lock);
853 }
854 
855 /*
856  * Wake up processes blocked waiting for blocker.
857  *
858  * Must be called with the inode->flc_lock held!
859  */
locks_wake_up_blocks(struct file_lock * blocker)860 static void locks_wake_up_blocks(struct file_lock *blocker)
861 {
862 	/*
863 	 * Avoid taking global lock if list is empty. This is safe since new
864 	 * blocked requests are only added to the list under the flc_lock, and
865 	 * the flc_lock is always held here. Note that removal from the
866 	 * fl_blocked_requests list does not require the flc_lock, so we must
867 	 * recheck list_empty() after acquiring the blocked_lock_lock.
868 	 */
869 	if (list_empty(&blocker->fl_blocked_requests))
870 		return;
871 
872 	spin_lock(&blocked_lock_lock);
873 	__locks_wake_up_blocks(blocker);
874 	spin_unlock(&blocked_lock_lock);
875 }
876 
877 static void
locks_insert_lock_ctx(struct file_lock * fl,struct list_head * before)878 locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before)
879 {
880 	list_add_tail(&fl->fl_list, before);
881 	locks_insert_global_locks(fl);
882 }
883 
884 static void
locks_unlink_lock_ctx(struct file_lock * fl)885 locks_unlink_lock_ctx(struct file_lock *fl)
886 {
887 	locks_delete_global_locks(fl);
888 	list_del_init(&fl->fl_list);
889 	locks_wake_up_blocks(fl);
890 }
891 
892 static void
locks_delete_lock_ctx(struct file_lock * fl,struct list_head * dispose)893 locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose)
894 {
895 	locks_unlink_lock_ctx(fl);
896 	if (dispose)
897 		list_add(&fl->fl_list, dispose);
898 	else
899 		locks_free_lock(fl);
900 }
901 
902 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality
903  * checks for shared/exclusive status of overlapping locks.
904  */
locks_conflict(struct file_lock * caller_fl,struct file_lock * sys_fl)905 static bool locks_conflict(struct file_lock *caller_fl,
906 			   struct file_lock *sys_fl)
907 {
908 	if (sys_fl->fl_type == F_WRLCK)
909 		return true;
910 	if (caller_fl->fl_type == F_WRLCK)
911 		return true;
912 	return false;
913 }
914 
915 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
916  * checking before calling the locks_conflict().
917  */
posix_locks_conflict(struct file_lock * caller_fl,struct file_lock * sys_fl)918 static bool posix_locks_conflict(struct file_lock *caller_fl,
919 				 struct file_lock *sys_fl)
920 {
921 	/* POSIX locks owned by the same process do not conflict with
922 	 * each other.
923 	 */
924 	if (posix_same_owner(caller_fl, sys_fl))
925 		return false;
926 
927 	/* Check whether they overlap */
928 	if (!locks_overlap(caller_fl, sys_fl))
929 		return false;
930 
931 	return locks_conflict(caller_fl, sys_fl);
932 }
933 
934 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
935  * checking before calling the locks_conflict().
936  */
flock_locks_conflict(struct file_lock * caller_fl,struct file_lock * sys_fl)937 static bool flock_locks_conflict(struct file_lock *caller_fl,
938 				 struct file_lock *sys_fl)
939 {
940 	/* FLOCK locks referring to the same filp do not conflict with
941 	 * each other.
942 	 */
943 	if (caller_fl->fl_file == sys_fl->fl_file)
944 		return false;
945 	if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND))
946 		return false;
947 
948 	return locks_conflict(caller_fl, sys_fl);
949 }
950 
951 void
posix_test_lock(struct file * filp,struct file_lock * fl)952 posix_test_lock(struct file *filp, struct file_lock *fl)
953 {
954 	struct file_lock *cfl;
955 	struct file_lock_context *ctx;
956 	struct inode *inode = locks_inode(filp);
957 
958 	ctx = smp_load_acquire(&inode->i_flctx);
959 	if (!ctx || list_empty_careful(&ctx->flc_posix)) {
960 		fl->fl_type = F_UNLCK;
961 		return;
962 	}
963 
964 	spin_lock(&ctx->flc_lock);
965 	list_for_each_entry(cfl, &ctx->flc_posix, fl_list) {
966 		if (posix_locks_conflict(fl, cfl)) {
967 			locks_copy_conflock(fl, cfl);
968 			goto out;
969 		}
970 	}
971 	fl->fl_type = F_UNLCK;
972 out:
973 	spin_unlock(&ctx->flc_lock);
974 	return;
975 }
976 EXPORT_SYMBOL(posix_test_lock);
977 
978 /*
979  * Deadlock detection:
980  *
981  * We attempt to detect deadlocks that are due purely to posix file
982  * locks.
983  *
984  * We assume that a task can be waiting for at most one lock at a time.
985  * So for any acquired lock, the process holding that lock may be
986  * waiting on at most one other lock.  That lock in turns may be held by
987  * someone waiting for at most one other lock.  Given a requested lock
988  * caller_fl which is about to wait for a conflicting lock block_fl, we
989  * follow this chain of waiters to ensure we are not about to create a
990  * cycle.
991  *
992  * Since we do this before we ever put a process to sleep on a lock, we
993  * are ensured that there is never a cycle; that is what guarantees that
994  * the while() loop in posix_locks_deadlock() eventually completes.
995  *
996  * Note: the above assumption may not be true when handling lock
997  * requests from a broken NFS client. It may also fail in the presence
998  * of tasks (such as posix threads) sharing the same open file table.
999  * To handle those cases, we just bail out after a few iterations.
1000  *
1001  * For FL_OFDLCK locks, the owner is the filp, not the files_struct.
1002  * Because the owner is not even nominally tied to a thread of
1003  * execution, the deadlock detection below can't reasonably work well. Just
1004  * skip it for those.
1005  *
1006  * In principle, we could do a more limited deadlock detection on FL_OFDLCK
1007  * locks that just checks for the case where two tasks are attempting to
1008  * upgrade from read to write locks on the same inode.
1009  */
1010 
1011 #define MAX_DEADLK_ITERATIONS 10
1012 
1013 /* Find a lock that the owner of the given block_fl is blocking on. */
what_owner_is_waiting_for(struct file_lock * block_fl)1014 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl)
1015 {
1016 	struct file_lock *fl;
1017 
1018 	hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) {
1019 		if (posix_same_owner(fl, block_fl)) {
1020 			while (fl->fl_blocker)
1021 				fl = fl->fl_blocker;
1022 			return fl;
1023 		}
1024 	}
1025 	return NULL;
1026 }
1027 
1028 /* Must be called with the blocked_lock_lock held! */
posix_locks_deadlock(struct file_lock * caller_fl,struct file_lock * block_fl)1029 static int posix_locks_deadlock(struct file_lock *caller_fl,
1030 				struct file_lock *block_fl)
1031 {
1032 	int i = 0;
1033 
1034 	lockdep_assert_held(&blocked_lock_lock);
1035 
1036 	/*
1037 	 * This deadlock detector can't reasonably detect deadlocks with
1038 	 * FL_OFDLCK locks, since they aren't owned by a process, per-se.
1039 	 */
1040 	if (IS_OFDLCK(caller_fl))
1041 		return 0;
1042 
1043 	while ((block_fl = what_owner_is_waiting_for(block_fl))) {
1044 		if (i++ > MAX_DEADLK_ITERATIONS)
1045 			return 0;
1046 		if (posix_same_owner(caller_fl, block_fl))
1047 			return 1;
1048 	}
1049 	return 0;
1050 }
1051 
1052 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
1053  * after any leases, but before any posix locks.
1054  *
1055  * Note that if called with an FL_EXISTS argument, the caller may determine
1056  * whether or not a lock was successfully freed by testing the return
1057  * value for -ENOENT.
1058  */
flock_lock_inode(struct inode * inode,struct file_lock * request)1059 static int flock_lock_inode(struct inode *inode, struct file_lock *request)
1060 {
1061 	struct file_lock *new_fl = NULL;
1062 	struct file_lock *fl;
1063 	struct file_lock_context *ctx;
1064 	int error = 0;
1065 	bool found = false;
1066 	LIST_HEAD(dispose);
1067 
1068 	ctx = locks_get_lock_context(inode, request->fl_type);
1069 	if (!ctx) {
1070 		if (request->fl_type != F_UNLCK)
1071 			return -ENOMEM;
1072 		return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0;
1073 	}
1074 
1075 	if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) {
1076 		new_fl = locks_alloc_lock();
1077 		if (!new_fl)
1078 			return -ENOMEM;
1079 	}
1080 
1081 	percpu_down_read(&file_rwsem);
1082 	spin_lock(&ctx->flc_lock);
1083 	if (request->fl_flags & FL_ACCESS)
1084 		goto find_conflict;
1085 
1086 	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1087 		if (request->fl_file != fl->fl_file)
1088 			continue;
1089 		if (request->fl_type == fl->fl_type)
1090 			goto out;
1091 		found = true;
1092 		locks_delete_lock_ctx(fl, &dispose);
1093 		break;
1094 	}
1095 
1096 	if (request->fl_type == F_UNLCK) {
1097 		if ((request->fl_flags & FL_EXISTS) && !found)
1098 			error = -ENOENT;
1099 		goto out;
1100 	}
1101 
1102 find_conflict:
1103 	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1104 		if (!flock_locks_conflict(request, fl))
1105 			continue;
1106 		error = -EAGAIN;
1107 		if (!(request->fl_flags & FL_SLEEP))
1108 			goto out;
1109 		error = FILE_LOCK_DEFERRED;
1110 		locks_insert_block(fl, request, flock_locks_conflict);
1111 		goto out;
1112 	}
1113 	if (request->fl_flags & FL_ACCESS)
1114 		goto out;
1115 	locks_copy_lock(new_fl, request);
1116 	locks_move_blocks(new_fl, request);
1117 	locks_insert_lock_ctx(new_fl, &ctx->flc_flock);
1118 	new_fl = NULL;
1119 	error = 0;
1120 
1121 out:
1122 	spin_unlock(&ctx->flc_lock);
1123 	percpu_up_read(&file_rwsem);
1124 	if (new_fl)
1125 		locks_free_lock(new_fl);
1126 	locks_dispose_list(&dispose);
1127 	trace_flock_lock_inode(inode, request, error);
1128 	return error;
1129 }
1130 
posix_lock_inode(struct inode * inode,struct file_lock * request,struct file_lock * conflock)1131 static int posix_lock_inode(struct inode *inode, struct file_lock *request,
1132 			    struct file_lock *conflock)
1133 {
1134 	struct file_lock *fl, *tmp;
1135 	struct file_lock *new_fl = NULL;
1136 	struct file_lock *new_fl2 = NULL;
1137 	struct file_lock *left = NULL;
1138 	struct file_lock *right = NULL;
1139 	struct file_lock_context *ctx;
1140 	int error;
1141 	bool added = false;
1142 	LIST_HEAD(dispose);
1143 
1144 	ctx = locks_get_lock_context(inode, request->fl_type);
1145 	if (!ctx)
1146 		return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM;
1147 
1148 	/*
1149 	 * We may need two file_lock structures for this operation,
1150 	 * so we get them in advance to avoid races.
1151 	 *
1152 	 * In some cases we can be sure, that no new locks will be needed
1153 	 */
1154 	if (!(request->fl_flags & FL_ACCESS) &&
1155 	    (request->fl_type != F_UNLCK ||
1156 	     request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
1157 		new_fl = locks_alloc_lock();
1158 		new_fl2 = locks_alloc_lock();
1159 	}
1160 
1161 	percpu_down_read(&file_rwsem);
1162 	spin_lock(&ctx->flc_lock);
1163 	/*
1164 	 * New lock request. Walk all POSIX locks and look for conflicts. If
1165 	 * there are any, either return error or put the request on the
1166 	 * blocker's list of waiters and the global blocked_hash.
1167 	 */
1168 	if (request->fl_type != F_UNLCK) {
1169 		list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1170 			if (!posix_locks_conflict(request, fl))
1171 				continue;
1172 			if (conflock)
1173 				locks_copy_conflock(conflock, fl);
1174 			error = -EAGAIN;
1175 			if (!(request->fl_flags & FL_SLEEP))
1176 				goto out;
1177 			/*
1178 			 * Deadlock detection and insertion into the blocked
1179 			 * locks list must be done while holding the same lock!
1180 			 */
1181 			error = -EDEADLK;
1182 			spin_lock(&blocked_lock_lock);
1183 			/*
1184 			 * Ensure that we don't find any locks blocked on this
1185 			 * request during deadlock detection.
1186 			 */
1187 			__locks_wake_up_blocks(request);
1188 			if (likely(!posix_locks_deadlock(request, fl))) {
1189 				error = FILE_LOCK_DEFERRED;
1190 				__locks_insert_block(fl, request,
1191 						     posix_locks_conflict);
1192 			}
1193 			spin_unlock(&blocked_lock_lock);
1194 			goto out;
1195 		}
1196 	}
1197 
1198 	/* If we're just looking for a conflict, we're done. */
1199 	error = 0;
1200 	if (request->fl_flags & FL_ACCESS)
1201 		goto out;
1202 
1203 	/* Find the first old lock with the same owner as the new lock */
1204 	list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1205 		if (posix_same_owner(request, fl))
1206 			break;
1207 	}
1208 
1209 	/* Process locks with this owner. */
1210 	list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) {
1211 		if (!posix_same_owner(request, fl))
1212 			break;
1213 
1214 		/* Detect adjacent or overlapping regions (if same lock type) */
1215 		if (request->fl_type == fl->fl_type) {
1216 			/* In all comparisons of start vs end, use
1217 			 * "start - 1" rather than "end + 1". If end
1218 			 * is OFFSET_MAX, end + 1 will become negative.
1219 			 */
1220 			if (fl->fl_end < request->fl_start - 1)
1221 				continue;
1222 			/* If the next lock in the list has entirely bigger
1223 			 * addresses than the new one, insert the lock here.
1224 			 */
1225 			if (fl->fl_start - 1 > request->fl_end)
1226 				break;
1227 
1228 			/* If we come here, the new and old lock are of the
1229 			 * same type and adjacent or overlapping. Make one
1230 			 * lock yielding from the lower start address of both
1231 			 * locks to the higher end address.
1232 			 */
1233 			if (fl->fl_start > request->fl_start)
1234 				fl->fl_start = request->fl_start;
1235 			else
1236 				request->fl_start = fl->fl_start;
1237 			if (fl->fl_end < request->fl_end)
1238 				fl->fl_end = request->fl_end;
1239 			else
1240 				request->fl_end = fl->fl_end;
1241 			if (added) {
1242 				locks_delete_lock_ctx(fl, &dispose);
1243 				continue;
1244 			}
1245 			request = fl;
1246 			added = true;
1247 		} else {
1248 			/* Processing for different lock types is a bit
1249 			 * more complex.
1250 			 */
1251 			if (fl->fl_end < request->fl_start)
1252 				continue;
1253 			if (fl->fl_start > request->fl_end)
1254 				break;
1255 			if (request->fl_type == F_UNLCK)
1256 				added = true;
1257 			if (fl->fl_start < request->fl_start)
1258 				left = fl;
1259 			/* If the next lock in the list has a higher end
1260 			 * address than the new one, insert the new one here.
1261 			 */
1262 			if (fl->fl_end > request->fl_end) {
1263 				right = fl;
1264 				break;
1265 			}
1266 			if (fl->fl_start >= request->fl_start) {
1267 				/* The new lock completely replaces an old
1268 				 * one (This may happen several times).
1269 				 */
1270 				if (added) {
1271 					locks_delete_lock_ctx(fl, &dispose);
1272 					continue;
1273 				}
1274 				/*
1275 				 * Replace the old lock with new_fl, and
1276 				 * remove the old one. It's safe to do the
1277 				 * insert here since we know that we won't be
1278 				 * using new_fl later, and that the lock is
1279 				 * just replacing an existing lock.
1280 				 */
1281 				error = -ENOLCK;
1282 				if (!new_fl)
1283 					goto out;
1284 				locks_copy_lock(new_fl, request);
1285 				request = new_fl;
1286 				new_fl = NULL;
1287 				locks_insert_lock_ctx(request, &fl->fl_list);
1288 				locks_delete_lock_ctx(fl, &dispose);
1289 				added = true;
1290 			}
1291 		}
1292 	}
1293 
1294 	/*
1295 	 * The above code only modifies existing locks in case of merging or
1296 	 * replacing. If new lock(s) need to be inserted all modifications are
1297 	 * done below this, so it's safe yet to bail out.
1298 	 */
1299 	error = -ENOLCK; /* "no luck" */
1300 	if (right && left == right && !new_fl2)
1301 		goto out;
1302 
1303 	error = 0;
1304 	if (!added) {
1305 		if (request->fl_type == F_UNLCK) {
1306 			if (request->fl_flags & FL_EXISTS)
1307 				error = -ENOENT;
1308 			goto out;
1309 		}
1310 
1311 		if (!new_fl) {
1312 			error = -ENOLCK;
1313 			goto out;
1314 		}
1315 		locks_copy_lock(new_fl, request);
1316 		locks_move_blocks(new_fl, request);
1317 		locks_insert_lock_ctx(new_fl, &fl->fl_list);
1318 		fl = new_fl;
1319 		new_fl = NULL;
1320 	}
1321 	if (right) {
1322 		if (left == right) {
1323 			/* The new lock breaks the old one in two pieces,
1324 			 * so we have to use the second new lock.
1325 			 */
1326 			left = new_fl2;
1327 			new_fl2 = NULL;
1328 			locks_copy_lock(left, right);
1329 			locks_insert_lock_ctx(left, &fl->fl_list);
1330 		}
1331 		right->fl_start = request->fl_end + 1;
1332 		locks_wake_up_blocks(right);
1333 	}
1334 	if (left) {
1335 		left->fl_end = request->fl_start - 1;
1336 		locks_wake_up_blocks(left);
1337 	}
1338  out:
1339 	spin_unlock(&ctx->flc_lock);
1340 	percpu_up_read(&file_rwsem);
1341 	trace_posix_lock_inode(inode, request, error);
1342 	/*
1343 	 * Free any unused locks.
1344 	 */
1345 	if (new_fl)
1346 		locks_free_lock(new_fl);
1347 	if (new_fl2)
1348 		locks_free_lock(new_fl2);
1349 	locks_dispose_list(&dispose);
1350 
1351 	return error;
1352 }
1353 
1354 /**
1355  * posix_lock_file - Apply a POSIX-style lock to a file
1356  * @filp: The file to apply the lock to
1357  * @fl: The lock to be applied
1358  * @conflock: Place to return a copy of the conflicting lock, if found.
1359  *
1360  * Add a POSIX style lock to a file.
1361  * We merge adjacent & overlapping locks whenever possible.
1362  * POSIX locks are sorted by owner task, then by starting address
1363  *
1364  * Note that if called with an FL_EXISTS argument, the caller may determine
1365  * whether or not a lock was successfully freed by testing the return
1366  * value for -ENOENT.
1367  */
posix_lock_file(struct file * filp,struct file_lock * fl,struct file_lock * conflock)1368 int posix_lock_file(struct file *filp, struct file_lock *fl,
1369 			struct file_lock *conflock)
1370 {
1371 	return posix_lock_inode(locks_inode(filp), fl, conflock);
1372 }
1373 EXPORT_SYMBOL(posix_lock_file);
1374 
1375 /**
1376  * posix_lock_inode_wait - Apply a POSIX-style lock to a file
1377  * @inode: inode of file to which lock request should be applied
1378  * @fl: The lock to be applied
1379  *
1380  * Apply a POSIX style lock request to an inode.
1381  */
posix_lock_inode_wait(struct inode * inode,struct file_lock * fl)1382 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1383 {
1384 	int error;
1385 	might_sleep ();
1386 	for (;;) {
1387 		error = posix_lock_inode(inode, fl, NULL);
1388 		if (error != FILE_LOCK_DEFERRED)
1389 			break;
1390 		error = wait_event_interruptible(fl->fl_wait,
1391 					list_empty(&fl->fl_blocked_member));
1392 		if (error)
1393 			break;
1394 	}
1395 	locks_delete_block(fl);
1396 	return error;
1397 }
1398 
1399 #ifdef CONFIG_MANDATORY_FILE_LOCKING
1400 /**
1401  * locks_mandatory_locked - Check for an active lock
1402  * @file: the file to check
1403  *
1404  * Searches the inode's list of locks to find any POSIX locks which conflict.
1405  * This function is called from locks_verify_locked() only.
1406  */
locks_mandatory_locked(struct file * file)1407 int locks_mandatory_locked(struct file *file)
1408 {
1409 	int ret;
1410 	struct inode *inode = locks_inode(file);
1411 	struct file_lock_context *ctx;
1412 	struct file_lock *fl;
1413 
1414 	ctx = smp_load_acquire(&inode->i_flctx);
1415 	if (!ctx || list_empty_careful(&ctx->flc_posix))
1416 		return 0;
1417 
1418 	/*
1419 	 * Search the lock list for this inode for any POSIX locks.
1420 	 */
1421 	spin_lock(&ctx->flc_lock);
1422 	ret = 0;
1423 	list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1424 		if (fl->fl_owner != current->files &&
1425 		    fl->fl_owner != file) {
1426 			ret = -EAGAIN;
1427 			break;
1428 		}
1429 	}
1430 	spin_unlock(&ctx->flc_lock);
1431 	return ret;
1432 }
1433 
1434 /**
1435  * locks_mandatory_area - Check for a conflicting lock
1436  * @inode:	the file to check
1437  * @filp:       how the file was opened (if it was)
1438  * @start:	first byte in the file to check
1439  * @end:	lastbyte in the file to check
1440  * @type:	%F_WRLCK for a write lock, else %F_RDLCK
1441  *
1442  * Searches the inode's list of locks to find any POSIX locks which conflict.
1443  */
locks_mandatory_area(struct inode * inode,struct file * filp,loff_t start,loff_t end,unsigned char type)1444 int locks_mandatory_area(struct inode *inode, struct file *filp, loff_t start,
1445 			 loff_t end, unsigned char type)
1446 {
1447 	struct file_lock fl;
1448 	int error;
1449 	bool sleep = false;
1450 
1451 	locks_init_lock(&fl);
1452 	fl.fl_pid = current->tgid;
1453 	fl.fl_file = filp;
1454 	fl.fl_flags = FL_POSIX | FL_ACCESS;
1455 	if (filp && !(filp->f_flags & O_NONBLOCK))
1456 		sleep = true;
1457 	fl.fl_type = type;
1458 	fl.fl_start = start;
1459 	fl.fl_end = end;
1460 
1461 	for (;;) {
1462 		if (filp) {
1463 			fl.fl_owner = filp;
1464 			fl.fl_flags &= ~FL_SLEEP;
1465 			error = posix_lock_inode(inode, &fl, NULL);
1466 			if (!error)
1467 				break;
1468 		}
1469 
1470 		if (sleep)
1471 			fl.fl_flags |= FL_SLEEP;
1472 		fl.fl_owner = current->files;
1473 		error = posix_lock_inode(inode, &fl, NULL);
1474 		if (error != FILE_LOCK_DEFERRED)
1475 			break;
1476 		error = wait_event_interruptible(fl.fl_wait,
1477 					list_empty(&fl.fl_blocked_member));
1478 		if (!error) {
1479 			/*
1480 			 * If we've been sleeping someone might have
1481 			 * changed the permissions behind our back.
1482 			 */
1483 			if (__mandatory_lock(inode))
1484 				continue;
1485 		}
1486 
1487 		break;
1488 	}
1489 	locks_delete_block(&fl);
1490 
1491 	return error;
1492 }
1493 EXPORT_SYMBOL(locks_mandatory_area);
1494 #endif /* CONFIG_MANDATORY_FILE_LOCKING */
1495 
lease_clear_pending(struct file_lock * fl,int arg)1496 static void lease_clear_pending(struct file_lock *fl, int arg)
1497 {
1498 	switch (arg) {
1499 	case F_UNLCK:
1500 		fl->fl_flags &= ~FL_UNLOCK_PENDING;
1501 		/* fall through */
1502 	case F_RDLCK:
1503 		fl->fl_flags &= ~FL_DOWNGRADE_PENDING;
1504 	}
1505 }
1506 
1507 /* We already had a lease on this file; just change its type */
lease_modify(struct file_lock * fl,int arg,struct list_head * dispose)1508 int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose)
1509 {
1510 	int error = assign_type(fl, arg);
1511 
1512 	if (error)
1513 		return error;
1514 	lease_clear_pending(fl, arg);
1515 	locks_wake_up_blocks(fl);
1516 	if (arg == F_UNLCK) {
1517 		struct file *filp = fl->fl_file;
1518 
1519 		f_delown(filp);
1520 		filp->f_owner.signum = 0;
1521 		fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync);
1522 		if (fl->fl_fasync != NULL) {
1523 			printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
1524 			fl->fl_fasync = NULL;
1525 		}
1526 		locks_delete_lock_ctx(fl, dispose);
1527 	}
1528 	return 0;
1529 }
1530 EXPORT_SYMBOL(lease_modify);
1531 
past_time(unsigned long then)1532 static bool past_time(unsigned long then)
1533 {
1534 	if (!then)
1535 		/* 0 is a special value meaning "this never expires": */
1536 		return false;
1537 	return time_after(jiffies, then);
1538 }
1539 
time_out_leases(struct inode * inode,struct list_head * dispose)1540 static void time_out_leases(struct inode *inode, struct list_head *dispose)
1541 {
1542 	struct file_lock_context *ctx = inode->i_flctx;
1543 	struct file_lock *fl, *tmp;
1544 
1545 	lockdep_assert_held(&ctx->flc_lock);
1546 
1547 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1548 		trace_time_out_leases(inode, fl);
1549 		if (past_time(fl->fl_downgrade_time))
1550 			lease_modify(fl, F_RDLCK, dispose);
1551 		if (past_time(fl->fl_break_time))
1552 			lease_modify(fl, F_UNLCK, dispose);
1553 	}
1554 }
1555 
leases_conflict(struct file_lock * lease,struct file_lock * breaker)1556 static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker)
1557 {
1558 	bool rc;
1559 
1560 	if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) {
1561 		rc = false;
1562 		goto trace;
1563 	}
1564 	if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) {
1565 		rc = false;
1566 		goto trace;
1567 	}
1568 
1569 	rc = locks_conflict(breaker, lease);
1570 trace:
1571 	trace_leases_conflict(rc, lease, breaker);
1572 	return rc;
1573 }
1574 
1575 static bool
any_leases_conflict(struct inode * inode,struct file_lock * breaker)1576 any_leases_conflict(struct inode *inode, struct file_lock *breaker)
1577 {
1578 	struct file_lock_context *ctx = inode->i_flctx;
1579 	struct file_lock *fl;
1580 
1581 	lockdep_assert_held(&ctx->flc_lock);
1582 
1583 	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1584 		if (leases_conflict(fl, breaker))
1585 			return true;
1586 	}
1587 	return false;
1588 }
1589 
1590 /**
1591  *	__break_lease	-	revoke all outstanding leases on file
1592  *	@inode: the inode of the file to return
1593  *	@mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR:
1594  *	    break all leases
1595  *	@type: FL_LEASE: break leases and delegations; FL_DELEG: break
1596  *	    only delegations
1597  *
1598  *	break_lease (inlined for speed) has checked there already is at least
1599  *	some kind of lock (maybe a lease) on this file.  Leases are broken on
1600  *	a call to open() or truncate().  This function can sleep unless you
1601  *	specified %O_NONBLOCK to your open().
1602  */
__break_lease(struct inode * inode,unsigned int mode,unsigned int type)1603 int __break_lease(struct inode *inode, unsigned int mode, unsigned int type)
1604 {
1605 	int error = 0;
1606 	struct file_lock_context *ctx;
1607 	struct file_lock *new_fl, *fl, *tmp;
1608 	unsigned long break_time;
1609 	int want_write = (mode & O_ACCMODE) != O_RDONLY;
1610 	LIST_HEAD(dispose);
1611 
1612 	new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK);
1613 	if (IS_ERR(new_fl))
1614 		return PTR_ERR(new_fl);
1615 	new_fl->fl_flags = type;
1616 
1617 	/* typically we will check that ctx is non-NULL before calling */
1618 	ctx = smp_load_acquire(&inode->i_flctx);
1619 	if (!ctx) {
1620 		WARN_ON_ONCE(1);
1621 		goto free_lock;
1622 	}
1623 
1624 	percpu_down_read(&file_rwsem);
1625 	spin_lock(&ctx->flc_lock);
1626 
1627 	time_out_leases(inode, &dispose);
1628 
1629 	if (!any_leases_conflict(inode, new_fl))
1630 		goto out;
1631 
1632 	break_time = 0;
1633 	if (lease_break_time > 0) {
1634 		break_time = jiffies + lease_break_time * HZ;
1635 		if (break_time == 0)
1636 			break_time++;	/* so that 0 means no break time */
1637 	}
1638 
1639 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1640 		if (!leases_conflict(fl, new_fl))
1641 			continue;
1642 		if (want_write) {
1643 			if (fl->fl_flags & FL_UNLOCK_PENDING)
1644 				continue;
1645 			fl->fl_flags |= FL_UNLOCK_PENDING;
1646 			fl->fl_break_time = break_time;
1647 		} else {
1648 			if (lease_breaking(fl))
1649 				continue;
1650 			fl->fl_flags |= FL_DOWNGRADE_PENDING;
1651 			fl->fl_downgrade_time = break_time;
1652 		}
1653 		if (fl->fl_lmops->lm_break(fl))
1654 			locks_delete_lock_ctx(fl, &dispose);
1655 	}
1656 
1657 	if (list_empty(&ctx->flc_lease))
1658 		goto out;
1659 
1660 	if (mode & O_NONBLOCK) {
1661 		trace_break_lease_noblock(inode, new_fl);
1662 		error = -EWOULDBLOCK;
1663 		goto out;
1664 	}
1665 
1666 restart:
1667 	fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list);
1668 	break_time = fl->fl_break_time;
1669 	if (break_time != 0)
1670 		break_time -= jiffies;
1671 	if (break_time == 0)
1672 		break_time++;
1673 	locks_insert_block(fl, new_fl, leases_conflict);
1674 	trace_break_lease_block(inode, new_fl);
1675 	spin_unlock(&ctx->flc_lock);
1676 	percpu_up_read(&file_rwsem);
1677 
1678 	locks_dispose_list(&dispose);
1679 	error = wait_event_interruptible_timeout(new_fl->fl_wait,
1680 					list_empty(&new_fl->fl_blocked_member),
1681 					break_time);
1682 
1683 	percpu_down_read(&file_rwsem);
1684 	spin_lock(&ctx->flc_lock);
1685 	trace_break_lease_unblock(inode, new_fl);
1686 	locks_delete_block(new_fl);
1687 	if (error >= 0) {
1688 		/*
1689 		 * Wait for the next conflicting lease that has not been
1690 		 * broken yet
1691 		 */
1692 		if (error == 0)
1693 			time_out_leases(inode, &dispose);
1694 		if (any_leases_conflict(inode, new_fl))
1695 			goto restart;
1696 		error = 0;
1697 	}
1698 out:
1699 	spin_unlock(&ctx->flc_lock);
1700 	percpu_up_read(&file_rwsem);
1701 	locks_dispose_list(&dispose);
1702 free_lock:
1703 	locks_free_lock(new_fl);
1704 	return error;
1705 }
1706 EXPORT_SYMBOL(__break_lease);
1707 
1708 /**
1709  *	lease_get_mtime - update modified time of an inode with exclusive lease
1710  *	@inode: the inode
1711  *      @time:  pointer to a timespec which contains the last modified time
1712  *
1713  * This is to force NFS clients to flush their caches for files with
1714  * exclusive leases.  The justification is that if someone has an
1715  * exclusive lease, then they could be modifying it.
1716  */
lease_get_mtime(struct inode * inode,struct timespec64 * time)1717 void lease_get_mtime(struct inode *inode, struct timespec64 *time)
1718 {
1719 	bool has_lease = false;
1720 	struct file_lock_context *ctx;
1721 	struct file_lock *fl;
1722 
1723 	ctx = smp_load_acquire(&inode->i_flctx);
1724 	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1725 		spin_lock(&ctx->flc_lock);
1726 		fl = list_first_entry_or_null(&ctx->flc_lease,
1727 					      struct file_lock, fl_list);
1728 		if (fl && (fl->fl_type == F_WRLCK))
1729 			has_lease = true;
1730 		spin_unlock(&ctx->flc_lock);
1731 	}
1732 
1733 	if (has_lease)
1734 		*time = current_time(inode);
1735 }
1736 EXPORT_SYMBOL(lease_get_mtime);
1737 
1738 /**
1739  *	fcntl_getlease - Enquire what lease is currently active
1740  *	@filp: the file
1741  *
1742  *	The value returned by this function will be one of
1743  *	(if no lease break is pending):
1744  *
1745  *	%F_RDLCK to indicate a shared lease is held.
1746  *
1747  *	%F_WRLCK to indicate an exclusive lease is held.
1748  *
1749  *	%F_UNLCK to indicate no lease is held.
1750  *
1751  *	(if a lease break is pending):
1752  *
1753  *	%F_RDLCK to indicate an exclusive lease needs to be
1754  *		changed to a shared lease (or removed).
1755  *
1756  *	%F_UNLCK to indicate the lease needs to be removed.
1757  *
1758  *	XXX: sfr & willy disagree over whether F_INPROGRESS
1759  *	should be returned to userspace.
1760  */
fcntl_getlease(struct file * filp)1761 int fcntl_getlease(struct file *filp)
1762 {
1763 	struct file_lock *fl;
1764 	struct inode *inode = locks_inode(filp);
1765 	struct file_lock_context *ctx;
1766 	int type = F_UNLCK;
1767 	LIST_HEAD(dispose);
1768 
1769 	ctx = smp_load_acquire(&inode->i_flctx);
1770 	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1771 		percpu_down_read(&file_rwsem);
1772 		spin_lock(&ctx->flc_lock);
1773 		time_out_leases(inode, &dispose);
1774 		list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1775 			if (fl->fl_file != filp)
1776 				continue;
1777 			type = target_leasetype(fl);
1778 			break;
1779 		}
1780 		spin_unlock(&ctx->flc_lock);
1781 		percpu_up_read(&file_rwsem);
1782 
1783 		locks_dispose_list(&dispose);
1784 	}
1785 	return type;
1786 }
1787 
1788 /**
1789  * check_conflicting_open - see if the given file points to an inode that has
1790  *			    an existing open that would conflict with the
1791  *			    desired lease.
1792  * @filp:	file to check
1793  * @arg:	type of lease that we're trying to acquire
1794  * @flags:	current lock flags
1795  *
1796  * Check to see if there's an existing open fd on this file that would
1797  * conflict with the lease we're trying to set.
1798  */
1799 static int
check_conflicting_open(struct file * filp,const long arg,int flags)1800 check_conflicting_open(struct file *filp, const long arg, int flags)
1801 {
1802 	struct inode *inode = locks_inode(filp);
1803 	int self_wcount = 0, self_rcount = 0;
1804 
1805 	if (flags & FL_LAYOUT)
1806 		return 0;
1807 
1808 	if (arg == F_RDLCK)
1809 		return inode_is_open_for_write(inode) ? -EAGAIN : 0;
1810 	else if (arg != F_WRLCK)
1811 		return 0;
1812 
1813 	/*
1814 	 * Make sure that only read/write count is from lease requestor.
1815 	 * Note that this will result in denying write leases when i_writecount
1816 	 * is negative, which is what we want.  (We shouldn't grant write leases
1817 	 * on files open for execution.)
1818 	 */
1819 	if (filp->f_mode & FMODE_WRITE)
1820 		self_wcount = 1;
1821 	else if (filp->f_mode & FMODE_READ)
1822 		self_rcount = 1;
1823 
1824 	if (atomic_read(&inode->i_writecount) != self_wcount ||
1825 	    atomic_read(&inode->i_readcount) != self_rcount)
1826 		return -EAGAIN;
1827 
1828 	return 0;
1829 }
1830 
1831 static int
generic_add_lease(struct file * filp,long arg,struct file_lock ** flp,void ** priv)1832 generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv)
1833 {
1834 	struct file_lock *fl, *my_fl = NULL, *lease;
1835 	struct inode *inode = locks_inode(filp);
1836 	struct file_lock_context *ctx;
1837 	bool is_deleg = (*flp)->fl_flags & FL_DELEG;
1838 	int error;
1839 	LIST_HEAD(dispose);
1840 
1841 	lease = *flp;
1842 	trace_generic_add_lease(inode, lease);
1843 
1844 	/* Note that arg is never F_UNLCK here */
1845 	ctx = locks_get_lock_context(inode, arg);
1846 	if (!ctx)
1847 		return -ENOMEM;
1848 
1849 	/*
1850 	 * In the delegation case we need mutual exclusion with
1851 	 * a number of operations that take the i_mutex.  We trylock
1852 	 * because delegations are an optional optimization, and if
1853 	 * there's some chance of a conflict--we'd rather not
1854 	 * bother, maybe that's a sign this just isn't a good file to
1855 	 * hand out a delegation on.
1856 	 */
1857 	if (is_deleg && !inode_trylock(inode))
1858 		return -EAGAIN;
1859 
1860 	if (is_deleg && arg == F_WRLCK) {
1861 		/* Write delegations are not currently supported: */
1862 		inode_unlock(inode);
1863 		WARN_ON_ONCE(1);
1864 		return -EINVAL;
1865 	}
1866 
1867 	percpu_down_read(&file_rwsem);
1868 	spin_lock(&ctx->flc_lock);
1869 	time_out_leases(inode, &dispose);
1870 	error = check_conflicting_open(filp, arg, lease->fl_flags);
1871 	if (error)
1872 		goto out;
1873 
1874 	/*
1875 	 * At this point, we know that if there is an exclusive
1876 	 * lease on this file, then we hold it on this filp
1877 	 * (otherwise our open of this file would have blocked).
1878 	 * And if we are trying to acquire an exclusive lease,
1879 	 * then the file is not open by anyone (including us)
1880 	 * except for this filp.
1881 	 */
1882 	error = -EAGAIN;
1883 	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1884 		if (fl->fl_file == filp &&
1885 		    fl->fl_owner == lease->fl_owner) {
1886 			my_fl = fl;
1887 			continue;
1888 		}
1889 
1890 		/*
1891 		 * No exclusive leases if someone else has a lease on
1892 		 * this file:
1893 		 */
1894 		if (arg == F_WRLCK)
1895 			goto out;
1896 		/*
1897 		 * Modifying our existing lease is OK, but no getting a
1898 		 * new lease if someone else is opening for write:
1899 		 */
1900 		if (fl->fl_flags & FL_UNLOCK_PENDING)
1901 			goto out;
1902 	}
1903 
1904 	if (my_fl != NULL) {
1905 		lease = my_fl;
1906 		error = lease->fl_lmops->lm_change(lease, arg, &dispose);
1907 		if (error)
1908 			goto out;
1909 		goto out_setup;
1910 	}
1911 
1912 	error = -EINVAL;
1913 	if (!leases_enable)
1914 		goto out;
1915 
1916 	locks_insert_lock_ctx(lease, &ctx->flc_lease);
1917 	/*
1918 	 * The check in break_lease() is lockless. It's possible for another
1919 	 * open to race in after we did the earlier check for a conflicting
1920 	 * open but before the lease was inserted. Check again for a
1921 	 * conflicting open and cancel the lease if there is one.
1922 	 *
1923 	 * We also add a barrier here to ensure that the insertion of the lock
1924 	 * precedes these checks.
1925 	 */
1926 	smp_mb();
1927 	error = check_conflicting_open(filp, arg, lease->fl_flags);
1928 	if (error) {
1929 		locks_unlink_lock_ctx(lease);
1930 		goto out;
1931 	}
1932 
1933 out_setup:
1934 	if (lease->fl_lmops->lm_setup)
1935 		lease->fl_lmops->lm_setup(lease, priv);
1936 out:
1937 	spin_unlock(&ctx->flc_lock);
1938 	percpu_up_read(&file_rwsem);
1939 	locks_dispose_list(&dispose);
1940 	if (is_deleg)
1941 		inode_unlock(inode);
1942 	if (!error && !my_fl)
1943 		*flp = NULL;
1944 	return error;
1945 }
1946 
generic_delete_lease(struct file * filp,void * owner)1947 static int generic_delete_lease(struct file *filp, void *owner)
1948 {
1949 	int error = -EAGAIN;
1950 	struct file_lock *fl, *victim = NULL;
1951 	struct inode *inode = locks_inode(filp);
1952 	struct file_lock_context *ctx;
1953 	LIST_HEAD(dispose);
1954 
1955 	ctx = smp_load_acquire(&inode->i_flctx);
1956 	if (!ctx) {
1957 		trace_generic_delete_lease(inode, NULL);
1958 		return error;
1959 	}
1960 
1961 	percpu_down_read(&file_rwsem);
1962 	spin_lock(&ctx->flc_lock);
1963 	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1964 		if (fl->fl_file == filp &&
1965 		    fl->fl_owner == owner) {
1966 			victim = fl;
1967 			break;
1968 		}
1969 	}
1970 	trace_generic_delete_lease(inode, victim);
1971 	if (victim)
1972 		error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose);
1973 	spin_unlock(&ctx->flc_lock);
1974 	percpu_up_read(&file_rwsem);
1975 	locks_dispose_list(&dispose);
1976 	return error;
1977 }
1978 
1979 /**
1980  *	generic_setlease	-	sets a lease on an open file
1981  *	@filp:	file pointer
1982  *	@arg:	type of lease to obtain
1983  *	@flp:	input - file_lock to use, output - file_lock inserted
1984  *	@priv:	private data for lm_setup (may be NULL if lm_setup
1985  *		doesn't require it)
1986  *
1987  *	The (input) flp->fl_lmops->lm_break function is required
1988  *	by break_lease().
1989  */
generic_setlease(struct file * filp,long arg,struct file_lock ** flp,void ** priv)1990 int generic_setlease(struct file *filp, long arg, struct file_lock **flp,
1991 			void **priv)
1992 {
1993 	struct inode *inode = locks_inode(filp);
1994 	int error;
1995 
1996 	if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE))
1997 		return -EACCES;
1998 	if (!S_ISREG(inode->i_mode))
1999 		return -EINVAL;
2000 	error = security_file_lock(filp, arg);
2001 	if (error)
2002 		return error;
2003 
2004 	switch (arg) {
2005 	case F_UNLCK:
2006 		return generic_delete_lease(filp, *priv);
2007 	case F_RDLCK:
2008 	case F_WRLCK:
2009 		if (!(*flp)->fl_lmops->lm_break) {
2010 			WARN_ON_ONCE(1);
2011 			return -ENOLCK;
2012 		}
2013 
2014 		return generic_add_lease(filp, arg, flp, priv);
2015 	default:
2016 		return -EINVAL;
2017 	}
2018 }
2019 EXPORT_SYMBOL(generic_setlease);
2020 
2021 #if IS_ENABLED(CONFIG_SRCU)
2022 /*
2023  * Kernel subsystems can register to be notified on any attempt to set
2024  * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd
2025  * to close files that it may have cached when there is an attempt to set a
2026  * conflicting lease.
2027  */
2028 static struct srcu_notifier_head lease_notifier_chain;
2029 
2030 static inline void
lease_notifier_chain_init(void)2031 lease_notifier_chain_init(void)
2032 {
2033 	srcu_init_notifier_head(&lease_notifier_chain);
2034 }
2035 
2036 static inline void
setlease_notifier(long arg,struct file_lock * lease)2037 setlease_notifier(long arg, struct file_lock *lease)
2038 {
2039 	if (arg != F_UNLCK)
2040 		srcu_notifier_call_chain(&lease_notifier_chain, arg, lease);
2041 }
2042 
lease_register_notifier(struct notifier_block * nb)2043 int lease_register_notifier(struct notifier_block *nb)
2044 {
2045 	return srcu_notifier_chain_register(&lease_notifier_chain, nb);
2046 }
2047 EXPORT_SYMBOL_GPL(lease_register_notifier);
2048 
lease_unregister_notifier(struct notifier_block * nb)2049 void lease_unregister_notifier(struct notifier_block *nb)
2050 {
2051 	srcu_notifier_chain_unregister(&lease_notifier_chain, nb);
2052 }
2053 EXPORT_SYMBOL_GPL(lease_unregister_notifier);
2054 
2055 #else /* !IS_ENABLED(CONFIG_SRCU) */
2056 static inline void
lease_notifier_chain_init(void)2057 lease_notifier_chain_init(void)
2058 {
2059 }
2060 
2061 static inline void
setlease_notifier(long arg,struct file_lock * lease)2062 setlease_notifier(long arg, struct file_lock *lease)
2063 {
2064 }
2065 
lease_register_notifier(struct notifier_block * nb)2066 int lease_register_notifier(struct notifier_block *nb)
2067 {
2068 	return 0;
2069 }
2070 EXPORT_SYMBOL_GPL(lease_register_notifier);
2071 
lease_unregister_notifier(struct notifier_block * nb)2072 void lease_unregister_notifier(struct notifier_block *nb)
2073 {
2074 }
2075 EXPORT_SYMBOL_GPL(lease_unregister_notifier);
2076 
2077 #endif /* IS_ENABLED(CONFIG_SRCU) */
2078 
2079 /**
2080  * vfs_setlease        -       sets a lease on an open file
2081  * @filp:	file pointer
2082  * @arg:	type of lease to obtain
2083  * @lease:	file_lock to use when adding a lease
2084  * @priv:	private info for lm_setup when adding a lease (may be
2085  *		NULL if lm_setup doesn't require it)
2086  *
2087  * Call this to establish a lease on the file. The "lease" argument is not
2088  * used for F_UNLCK requests and may be NULL. For commands that set or alter
2089  * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be
2090  * set; if not, this function will return -ENOLCK (and generate a scary-looking
2091  * stack trace).
2092  *
2093  * The "priv" pointer is passed directly to the lm_setup function as-is. It
2094  * may be NULL if the lm_setup operation doesn't require it.
2095  */
2096 int
vfs_setlease(struct file * filp,long arg,struct file_lock ** lease,void ** priv)2097 vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv)
2098 {
2099 	if (lease)
2100 		setlease_notifier(arg, *lease);
2101 	if (filp->f_op->setlease)
2102 		return filp->f_op->setlease(filp, arg, lease, priv);
2103 	else
2104 		return generic_setlease(filp, arg, lease, priv);
2105 }
2106 EXPORT_SYMBOL_GPL(vfs_setlease);
2107 
do_fcntl_add_lease(unsigned int fd,struct file * filp,long arg)2108 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg)
2109 {
2110 	struct file_lock *fl;
2111 	struct fasync_struct *new;
2112 	int error;
2113 
2114 	fl = lease_alloc(filp, arg);
2115 	if (IS_ERR(fl))
2116 		return PTR_ERR(fl);
2117 
2118 	new = fasync_alloc();
2119 	if (!new) {
2120 		locks_free_lock(fl);
2121 		return -ENOMEM;
2122 	}
2123 	new->fa_fd = fd;
2124 
2125 	error = vfs_setlease(filp, arg, &fl, (void **)&new);
2126 	if (fl)
2127 		locks_free_lock(fl);
2128 	if (new)
2129 		fasync_free(new);
2130 	return error;
2131 }
2132 
2133 /**
2134  *	fcntl_setlease	-	sets a lease on an open file
2135  *	@fd: open file descriptor
2136  *	@filp: file pointer
2137  *	@arg: type of lease to obtain
2138  *
2139  *	Call this fcntl to establish a lease on the file.
2140  *	Note that you also need to call %F_SETSIG to
2141  *	receive a signal when the lease is broken.
2142  */
fcntl_setlease(unsigned int fd,struct file * filp,long arg)2143 int fcntl_setlease(unsigned int fd, struct file *filp, long arg)
2144 {
2145 	if (arg == F_UNLCK)
2146 		return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
2147 	return do_fcntl_add_lease(fd, filp, arg);
2148 }
2149 
2150 /**
2151  * flock_lock_inode_wait - Apply a FLOCK-style lock to a file
2152  * @inode: inode of the file to apply to
2153  * @fl: The lock to be applied
2154  *
2155  * Apply a FLOCK style lock request to an inode.
2156  */
flock_lock_inode_wait(struct inode * inode,struct file_lock * fl)2157 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2158 {
2159 	int error;
2160 	might_sleep();
2161 	for (;;) {
2162 		error = flock_lock_inode(inode, fl);
2163 		if (error != FILE_LOCK_DEFERRED)
2164 			break;
2165 		error = wait_event_interruptible(fl->fl_wait,
2166 				list_empty(&fl->fl_blocked_member));
2167 		if (error)
2168 			break;
2169 	}
2170 	locks_delete_block(fl);
2171 	return error;
2172 }
2173 
2174 /**
2175  * locks_lock_inode_wait - Apply a lock to an inode
2176  * @inode: inode of the file to apply to
2177  * @fl: The lock to be applied
2178  *
2179  * Apply a POSIX or FLOCK style lock request to an inode.
2180  */
locks_lock_inode_wait(struct inode * inode,struct file_lock * fl)2181 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2182 {
2183 	int res = 0;
2184 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
2185 		case FL_POSIX:
2186 			res = posix_lock_inode_wait(inode, fl);
2187 			break;
2188 		case FL_FLOCK:
2189 			res = flock_lock_inode_wait(inode, fl);
2190 			break;
2191 		default:
2192 			BUG();
2193 	}
2194 	return res;
2195 }
2196 EXPORT_SYMBOL(locks_lock_inode_wait);
2197 
2198 /**
2199  *	sys_flock: - flock() system call.
2200  *	@fd: the file descriptor to lock.
2201  *	@cmd: the type of lock to apply.
2202  *
2203  *	Apply a %FL_FLOCK style lock to an open file descriptor.
2204  *	The @cmd can be one of:
2205  *
2206  *	- %LOCK_SH -- a shared lock.
2207  *	- %LOCK_EX -- an exclusive lock.
2208  *	- %LOCK_UN -- remove an existing lock.
2209  *	- %LOCK_MAND -- a 'mandatory' flock.
2210  *	  This exists to emulate Windows Share Modes.
2211  *
2212  *	%LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other
2213  *	processes read and write access respectively.
2214  */
SYSCALL_DEFINE2(flock,unsigned int,fd,unsigned int,cmd)2215 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
2216 {
2217 	struct fd f = fdget(fd);
2218 	struct file_lock *lock;
2219 	int can_sleep, unlock;
2220 	int error;
2221 
2222 	error = -EBADF;
2223 	if (!f.file)
2224 		goto out;
2225 
2226 	can_sleep = !(cmd & LOCK_NB);
2227 	cmd &= ~LOCK_NB;
2228 	unlock = (cmd == LOCK_UN);
2229 
2230 	if (!unlock && !(cmd & LOCK_MAND) &&
2231 	    !(f.file->f_mode & (FMODE_READ|FMODE_WRITE)))
2232 		goto out_putf;
2233 
2234 	lock = flock_make_lock(f.file, cmd, NULL);
2235 	if (IS_ERR(lock)) {
2236 		error = PTR_ERR(lock);
2237 		goto out_putf;
2238 	}
2239 
2240 	if (can_sleep)
2241 		lock->fl_flags |= FL_SLEEP;
2242 
2243 	error = security_file_lock(f.file, lock->fl_type);
2244 	if (error)
2245 		goto out_free;
2246 
2247 	if (f.file->f_op->flock)
2248 		error = f.file->f_op->flock(f.file,
2249 					  (can_sleep) ? F_SETLKW : F_SETLK,
2250 					  lock);
2251 	else
2252 		error = locks_lock_file_wait(f.file, lock);
2253 
2254  out_free:
2255 	locks_free_lock(lock);
2256 
2257  out_putf:
2258 	fdput(f);
2259  out:
2260 	return error;
2261 }
2262 
2263 /**
2264  * vfs_test_lock - test file byte range lock
2265  * @filp: The file to test lock for
2266  * @fl: The lock to test; also used to hold result
2267  *
2268  * Returns -ERRNO on failure.  Indicates presence of conflicting lock by
2269  * setting conf->fl_type to something other than F_UNLCK.
2270  */
vfs_test_lock(struct file * filp,struct file_lock * fl)2271 int vfs_test_lock(struct file *filp, struct file_lock *fl)
2272 {
2273 	if (filp->f_op->lock)
2274 		return filp->f_op->lock(filp, F_GETLK, fl);
2275 	posix_test_lock(filp, fl);
2276 	return 0;
2277 }
2278 EXPORT_SYMBOL_GPL(vfs_test_lock);
2279 
2280 /**
2281  * locks_translate_pid - translate a file_lock's fl_pid number into a namespace
2282  * @fl: The file_lock who's fl_pid should be translated
2283  * @ns: The namespace into which the pid should be translated
2284  *
2285  * Used to tranlate a fl_pid into a namespace virtual pid number
2286  */
locks_translate_pid(struct file_lock * fl,struct pid_namespace * ns)2287 static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns)
2288 {
2289 	pid_t vnr;
2290 	struct pid *pid;
2291 
2292 	if (IS_OFDLCK(fl))
2293 		return -1;
2294 	if (IS_REMOTELCK(fl))
2295 		return fl->fl_pid;
2296 	/*
2297 	 * If the flock owner process is dead and its pid has been already
2298 	 * freed, the translation below won't work, but we still want to show
2299 	 * flock owner pid number in init pidns.
2300 	 */
2301 	if (ns == &init_pid_ns)
2302 		return (pid_t)fl->fl_pid;
2303 
2304 	rcu_read_lock();
2305 	pid = find_pid_ns(fl->fl_pid, &init_pid_ns);
2306 	vnr = pid_nr_ns(pid, ns);
2307 	rcu_read_unlock();
2308 	return vnr;
2309 }
2310 
posix_lock_to_flock(struct flock * flock,struct file_lock * fl)2311 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
2312 {
2313 	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2314 #if BITS_PER_LONG == 32
2315 	/*
2316 	 * Make sure we can represent the posix lock via
2317 	 * legacy 32bit flock.
2318 	 */
2319 	if (fl->fl_start > OFFT_OFFSET_MAX)
2320 		return -EOVERFLOW;
2321 	if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
2322 		return -EOVERFLOW;
2323 #endif
2324 	flock->l_start = fl->fl_start;
2325 	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2326 		fl->fl_end - fl->fl_start + 1;
2327 	flock->l_whence = 0;
2328 	flock->l_type = fl->fl_type;
2329 	return 0;
2330 }
2331 
2332 #if BITS_PER_LONG == 32
posix_lock_to_flock64(struct flock64 * flock,struct file_lock * fl)2333 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
2334 {
2335 	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2336 	flock->l_start = fl->fl_start;
2337 	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2338 		fl->fl_end - fl->fl_start + 1;
2339 	flock->l_whence = 0;
2340 	flock->l_type = fl->fl_type;
2341 }
2342 #endif
2343 
2344 /* Report the first existing lock that would conflict with l.
2345  * This implements the F_GETLK command of fcntl().
2346  */
fcntl_getlk(struct file * filp,unsigned int cmd,struct flock * flock)2347 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock)
2348 {
2349 	struct file_lock *fl;
2350 	int error;
2351 
2352 	fl = locks_alloc_lock();
2353 	if (fl == NULL)
2354 		return -ENOMEM;
2355 	error = -EINVAL;
2356 	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
2357 		goto out;
2358 
2359 	error = flock_to_posix_lock(filp, fl, flock);
2360 	if (error)
2361 		goto out;
2362 
2363 	if (cmd == F_OFD_GETLK) {
2364 		error = -EINVAL;
2365 		if (flock->l_pid != 0)
2366 			goto out;
2367 
2368 		cmd = F_GETLK;
2369 		fl->fl_flags |= FL_OFDLCK;
2370 		fl->fl_owner = filp;
2371 	}
2372 
2373 	error = vfs_test_lock(filp, fl);
2374 	if (error)
2375 		goto out;
2376 
2377 	flock->l_type = fl->fl_type;
2378 	if (fl->fl_type != F_UNLCK) {
2379 		error = posix_lock_to_flock(flock, fl);
2380 		if (error)
2381 			goto out;
2382 	}
2383 out:
2384 	locks_free_lock(fl);
2385 	return error;
2386 }
2387 
2388 /**
2389  * vfs_lock_file - file byte range lock
2390  * @filp: The file to apply the lock to
2391  * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
2392  * @fl: The lock to be applied
2393  * @conf: Place to return a copy of the conflicting lock, if found.
2394  *
2395  * A caller that doesn't care about the conflicting lock may pass NULL
2396  * as the final argument.
2397  *
2398  * If the filesystem defines a private ->lock() method, then @conf will
2399  * be left unchanged; so a caller that cares should initialize it to
2400  * some acceptable default.
2401  *
2402  * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
2403  * locks, the ->lock() interface may return asynchronously, before the lock has
2404  * been granted or denied by the underlying filesystem, if (and only if)
2405  * lm_grant is set. Callers expecting ->lock() to return asynchronously
2406  * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if)
2407  * the request is for a blocking lock. When ->lock() does return asynchronously,
2408  * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock
2409  * request completes.
2410  * If the request is for non-blocking lock the file system should return
2411  * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
2412  * with the result. If the request timed out the callback routine will return a
2413  * nonzero return code and the file system should release the lock. The file
2414  * system is also responsible to keep a corresponding posix lock when it
2415  * grants a lock so the VFS can find out which locks are locally held and do
2416  * the correct lock cleanup when required.
2417  * The underlying filesystem must not drop the kernel lock or call
2418  * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
2419  * return code.
2420  */
vfs_lock_file(struct file * filp,unsigned int cmd,struct file_lock * fl,struct file_lock * conf)2421 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
2422 {
2423 	if (filp->f_op->lock)
2424 		return filp->f_op->lock(filp, cmd, fl);
2425 	else
2426 		return posix_lock_file(filp, fl, conf);
2427 }
2428 EXPORT_SYMBOL_GPL(vfs_lock_file);
2429 
do_lock_file_wait(struct file * filp,unsigned int cmd,struct file_lock * fl)2430 static int do_lock_file_wait(struct file *filp, unsigned int cmd,
2431 			     struct file_lock *fl)
2432 {
2433 	int error;
2434 
2435 	error = security_file_lock(filp, fl->fl_type);
2436 	if (error)
2437 		return error;
2438 
2439 	for (;;) {
2440 		error = vfs_lock_file(filp, cmd, fl, NULL);
2441 		if (error != FILE_LOCK_DEFERRED)
2442 			break;
2443 		error = wait_event_interruptible(fl->fl_wait,
2444 					list_empty(&fl->fl_blocked_member));
2445 		if (error)
2446 			break;
2447 	}
2448 	locks_delete_block(fl);
2449 
2450 	return error;
2451 }
2452 
2453 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */
2454 static int
check_fmode_for_setlk(struct file_lock * fl)2455 check_fmode_for_setlk(struct file_lock *fl)
2456 {
2457 	switch (fl->fl_type) {
2458 	case F_RDLCK:
2459 		if (!(fl->fl_file->f_mode & FMODE_READ))
2460 			return -EBADF;
2461 		break;
2462 	case F_WRLCK:
2463 		if (!(fl->fl_file->f_mode & FMODE_WRITE))
2464 			return -EBADF;
2465 	}
2466 	return 0;
2467 }
2468 
2469 /* Apply the lock described by l to an open file descriptor.
2470  * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2471  */
fcntl_setlk(unsigned int fd,struct file * filp,unsigned int cmd,struct flock * flock)2472 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
2473 		struct flock *flock)
2474 {
2475 	struct file_lock *file_lock = locks_alloc_lock();
2476 	struct inode *inode = locks_inode(filp);
2477 	struct file *f;
2478 	int error;
2479 
2480 	if (file_lock == NULL)
2481 		return -ENOLCK;
2482 
2483 	/* Don't allow mandatory locks on files that may be memory mapped
2484 	 * and shared.
2485 	 */
2486 	if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
2487 		error = -EAGAIN;
2488 		goto out;
2489 	}
2490 
2491 	error = flock_to_posix_lock(filp, file_lock, flock);
2492 	if (error)
2493 		goto out;
2494 
2495 	error = check_fmode_for_setlk(file_lock);
2496 	if (error)
2497 		goto out;
2498 
2499 	/*
2500 	 * If the cmd is requesting file-private locks, then set the
2501 	 * FL_OFDLCK flag and override the owner.
2502 	 */
2503 	switch (cmd) {
2504 	case F_OFD_SETLK:
2505 		error = -EINVAL;
2506 		if (flock->l_pid != 0)
2507 			goto out;
2508 
2509 		cmd = F_SETLK;
2510 		file_lock->fl_flags |= FL_OFDLCK;
2511 		file_lock->fl_owner = filp;
2512 		break;
2513 	case F_OFD_SETLKW:
2514 		error = -EINVAL;
2515 		if (flock->l_pid != 0)
2516 			goto out;
2517 
2518 		cmd = F_SETLKW;
2519 		file_lock->fl_flags |= FL_OFDLCK;
2520 		file_lock->fl_owner = filp;
2521 		/* Fallthrough */
2522 	case F_SETLKW:
2523 		file_lock->fl_flags |= FL_SLEEP;
2524 	}
2525 
2526 	error = do_lock_file_wait(filp, cmd, file_lock);
2527 
2528 	/*
2529 	 * Attempt to detect a close/fcntl race and recover by releasing the
2530 	 * lock that was just acquired. There is no need to do that when we're
2531 	 * unlocking though, or for OFD locks.
2532 	 */
2533 	if (!error && file_lock->fl_type != F_UNLCK &&
2534 	    !(file_lock->fl_flags & FL_OFDLCK)) {
2535 		/*
2536 		 * We need that spin_lock here - it prevents reordering between
2537 		 * update of i_flctx->flc_posix and check for it done in
2538 		 * close(). rcu_read_lock() wouldn't do.
2539 		 */
2540 		spin_lock(&current->files->file_lock);
2541 		f = fcheck(fd);
2542 		spin_unlock(&current->files->file_lock);
2543 		if (f != filp) {
2544 			file_lock->fl_type = F_UNLCK;
2545 			error = do_lock_file_wait(filp, cmd, file_lock);
2546 			WARN_ON_ONCE(error);
2547 			error = -EBADF;
2548 		}
2549 	}
2550 out:
2551 	trace_fcntl_setlk(inode, file_lock, error);
2552 	locks_free_lock(file_lock);
2553 	return error;
2554 }
2555 
2556 #if BITS_PER_LONG == 32
2557 /* Report the first existing lock that would conflict with l.
2558  * This implements the F_GETLK command of fcntl().
2559  */
fcntl_getlk64(struct file * filp,unsigned int cmd,struct flock64 * flock)2560 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock)
2561 {
2562 	struct file_lock *fl;
2563 	int error;
2564 
2565 	fl = locks_alloc_lock();
2566 	if (fl == NULL)
2567 		return -ENOMEM;
2568 
2569 	error = -EINVAL;
2570 	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
2571 		goto out;
2572 
2573 	error = flock64_to_posix_lock(filp, fl, flock);
2574 	if (error)
2575 		goto out;
2576 
2577 	if (cmd == F_OFD_GETLK) {
2578 		error = -EINVAL;
2579 		if (flock->l_pid != 0)
2580 			goto out;
2581 
2582 		cmd = F_GETLK64;
2583 		fl->fl_flags |= FL_OFDLCK;
2584 		fl->fl_owner = filp;
2585 	}
2586 
2587 	error = vfs_test_lock(filp, fl);
2588 	if (error)
2589 		goto out;
2590 
2591 	flock->l_type = fl->fl_type;
2592 	if (fl->fl_type != F_UNLCK)
2593 		posix_lock_to_flock64(flock, fl);
2594 
2595 out:
2596 	locks_free_lock(fl);
2597 	return error;
2598 }
2599 
2600 /* Apply the lock described by l to an open file descriptor.
2601  * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2602  */
fcntl_setlk64(unsigned int fd,struct file * filp,unsigned int cmd,struct flock64 * flock)2603 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
2604 		struct flock64 *flock)
2605 {
2606 	struct file_lock *file_lock = locks_alloc_lock();
2607 	struct inode *inode = locks_inode(filp);
2608 	struct file *f;
2609 	int error;
2610 
2611 	if (file_lock == NULL)
2612 		return -ENOLCK;
2613 
2614 	/* Don't allow mandatory locks on files that may be memory mapped
2615 	 * and shared.
2616 	 */
2617 	if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
2618 		error = -EAGAIN;
2619 		goto out;
2620 	}
2621 
2622 	error = flock64_to_posix_lock(filp, file_lock, flock);
2623 	if (error)
2624 		goto out;
2625 
2626 	error = check_fmode_for_setlk(file_lock);
2627 	if (error)
2628 		goto out;
2629 
2630 	/*
2631 	 * If the cmd is requesting file-private locks, then set the
2632 	 * FL_OFDLCK flag and override the owner.
2633 	 */
2634 	switch (cmd) {
2635 	case F_OFD_SETLK:
2636 		error = -EINVAL;
2637 		if (flock->l_pid != 0)
2638 			goto out;
2639 
2640 		cmd = F_SETLK64;
2641 		file_lock->fl_flags |= FL_OFDLCK;
2642 		file_lock->fl_owner = filp;
2643 		break;
2644 	case F_OFD_SETLKW:
2645 		error = -EINVAL;
2646 		if (flock->l_pid != 0)
2647 			goto out;
2648 
2649 		cmd = F_SETLKW64;
2650 		file_lock->fl_flags |= FL_OFDLCK;
2651 		file_lock->fl_owner = filp;
2652 		/* Fallthrough */
2653 	case F_SETLKW64:
2654 		file_lock->fl_flags |= FL_SLEEP;
2655 	}
2656 
2657 	error = do_lock_file_wait(filp, cmd, file_lock);
2658 
2659 	/*
2660 	 * Attempt to detect a close/fcntl race and recover by releasing the
2661 	 * lock that was just acquired. There is no need to do that when we're
2662 	 * unlocking though, or for OFD locks.
2663 	 */
2664 	if (!error && file_lock->fl_type != F_UNLCK &&
2665 	    !(file_lock->fl_flags & FL_OFDLCK)) {
2666 		/*
2667 		 * We need that spin_lock here - it prevents reordering between
2668 		 * update of i_flctx->flc_posix and check for it done in
2669 		 * close(). rcu_read_lock() wouldn't do.
2670 		 */
2671 		spin_lock(&current->files->file_lock);
2672 		f = fcheck(fd);
2673 		spin_unlock(&current->files->file_lock);
2674 		if (f != filp) {
2675 			file_lock->fl_type = F_UNLCK;
2676 			error = do_lock_file_wait(filp, cmd, file_lock);
2677 			WARN_ON_ONCE(error);
2678 			error = -EBADF;
2679 		}
2680 	}
2681 out:
2682 	locks_free_lock(file_lock);
2683 	return error;
2684 }
2685 #endif /* BITS_PER_LONG == 32 */
2686 
2687 /*
2688  * This function is called when the file is being removed
2689  * from the task's fd array.  POSIX locks belonging to this task
2690  * are deleted at this time.
2691  */
locks_remove_posix(struct file * filp,fl_owner_t owner)2692 void locks_remove_posix(struct file *filp, fl_owner_t owner)
2693 {
2694 	int error;
2695 	struct inode *inode = locks_inode(filp);
2696 	struct file_lock lock;
2697 	struct file_lock_context *ctx;
2698 
2699 	/*
2700 	 * If there are no locks held on this file, we don't need to call
2701 	 * posix_lock_file().  Another process could be setting a lock on this
2702 	 * file at the same time, but we wouldn't remove that lock anyway.
2703 	 */
2704 	ctx =  smp_load_acquire(&inode->i_flctx);
2705 	if (!ctx || list_empty(&ctx->flc_posix))
2706 		return;
2707 
2708 	locks_init_lock(&lock);
2709 	lock.fl_type = F_UNLCK;
2710 	lock.fl_flags = FL_POSIX | FL_CLOSE;
2711 	lock.fl_start = 0;
2712 	lock.fl_end = OFFSET_MAX;
2713 	lock.fl_owner = owner;
2714 	lock.fl_pid = current->tgid;
2715 	lock.fl_file = filp;
2716 	lock.fl_ops = NULL;
2717 	lock.fl_lmops = NULL;
2718 
2719 	error = vfs_lock_file(filp, F_SETLK, &lock, NULL);
2720 
2721 	if (lock.fl_ops && lock.fl_ops->fl_release_private)
2722 		lock.fl_ops->fl_release_private(&lock);
2723 	trace_locks_remove_posix(inode, &lock, error);
2724 }
2725 EXPORT_SYMBOL(locks_remove_posix);
2726 
2727 /* The i_flctx must be valid when calling into here */
2728 static void
locks_remove_flock(struct file * filp,struct file_lock_context * flctx)2729 locks_remove_flock(struct file *filp, struct file_lock_context *flctx)
2730 {
2731 	struct file_lock fl;
2732 	struct inode *inode = locks_inode(filp);
2733 
2734 	if (list_empty(&flctx->flc_flock))
2735 		return;
2736 
2737 	flock_make_lock(filp, LOCK_UN, &fl);
2738 	fl.fl_flags |= FL_CLOSE;
2739 
2740 	if (filp->f_op->flock)
2741 		filp->f_op->flock(filp, F_SETLKW, &fl);
2742 	else
2743 		flock_lock_inode(inode, &fl);
2744 
2745 	if (fl.fl_ops && fl.fl_ops->fl_release_private)
2746 		fl.fl_ops->fl_release_private(&fl);
2747 }
2748 
2749 /* The i_flctx must be valid when calling into here */
2750 static void
locks_remove_lease(struct file * filp,struct file_lock_context * ctx)2751 locks_remove_lease(struct file *filp, struct file_lock_context *ctx)
2752 {
2753 	struct file_lock *fl, *tmp;
2754 	LIST_HEAD(dispose);
2755 
2756 	if (list_empty(&ctx->flc_lease))
2757 		return;
2758 
2759 	percpu_down_read(&file_rwsem);
2760 	spin_lock(&ctx->flc_lock);
2761 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list)
2762 		if (filp == fl->fl_file)
2763 			lease_modify(fl, F_UNLCK, &dispose);
2764 	spin_unlock(&ctx->flc_lock);
2765 	percpu_up_read(&file_rwsem);
2766 
2767 	locks_dispose_list(&dispose);
2768 }
2769 
2770 /*
2771  * This function is called on the last close of an open file.
2772  */
locks_remove_file(struct file * filp)2773 void locks_remove_file(struct file *filp)
2774 {
2775 	struct file_lock_context *ctx;
2776 
2777 	ctx = smp_load_acquire(&locks_inode(filp)->i_flctx);
2778 	if (!ctx)
2779 		return;
2780 
2781 	/* remove any OFD locks */
2782 	locks_remove_posix(filp, filp);
2783 
2784 	/* remove flock locks */
2785 	locks_remove_flock(filp, ctx);
2786 
2787 	/* remove any leases */
2788 	locks_remove_lease(filp, ctx);
2789 
2790 	spin_lock(&ctx->flc_lock);
2791 	locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX");
2792 	locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK");
2793 	locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE");
2794 	spin_unlock(&ctx->flc_lock);
2795 }
2796 
2797 /**
2798  * vfs_cancel_lock - file byte range unblock lock
2799  * @filp: The file to apply the unblock to
2800  * @fl: The lock to be unblocked
2801  *
2802  * Used by lock managers to cancel blocked requests
2803  */
vfs_cancel_lock(struct file * filp,struct file_lock * fl)2804 int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2805 {
2806 	if (filp->f_op->lock)
2807 		return filp->f_op->lock(filp, F_CANCELLK, fl);
2808 	return 0;
2809 }
2810 EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2811 
2812 #ifdef CONFIG_PROC_FS
2813 #include <linux/proc_fs.h>
2814 #include <linux/seq_file.h>
2815 
2816 struct locks_iterator {
2817 	int	li_cpu;
2818 	loff_t	li_pos;
2819 };
2820 
lock_get_status(struct seq_file * f,struct file_lock * fl,loff_t id,char * pfx)2821 static void lock_get_status(struct seq_file *f, struct file_lock *fl,
2822 			    loff_t id, char *pfx)
2823 {
2824 	struct inode *inode = NULL;
2825 	unsigned int fl_pid;
2826 	struct pid_namespace *proc_pidns = file_inode(f->file)->i_sb->s_fs_info;
2827 
2828 	fl_pid = locks_translate_pid(fl, proc_pidns);
2829 	/*
2830 	 * If lock owner is dead (and pid is freed) or not visible in current
2831 	 * pidns, zero is shown as a pid value. Check lock info from
2832 	 * init_pid_ns to get saved lock pid value.
2833 	 */
2834 
2835 	if (fl->fl_file != NULL)
2836 		inode = locks_inode(fl->fl_file);
2837 
2838 	seq_printf(f, "%lld:%s ", id, pfx);
2839 	if (IS_POSIX(fl)) {
2840 		if (fl->fl_flags & FL_ACCESS)
2841 			seq_puts(f, "ACCESS");
2842 		else if (IS_OFDLCK(fl))
2843 			seq_puts(f, "OFDLCK");
2844 		else
2845 			seq_puts(f, "POSIX ");
2846 
2847 		seq_printf(f, " %s ",
2848 			     (inode == NULL) ? "*NOINODE*" :
2849 			     mandatory_lock(inode) ? "MANDATORY" : "ADVISORY ");
2850 	} else if (IS_FLOCK(fl)) {
2851 		if (fl->fl_type & LOCK_MAND) {
2852 			seq_puts(f, "FLOCK  MSNFS     ");
2853 		} else {
2854 			seq_puts(f, "FLOCK  ADVISORY  ");
2855 		}
2856 	} else if (IS_LEASE(fl)) {
2857 		if (fl->fl_flags & FL_DELEG)
2858 			seq_puts(f, "DELEG  ");
2859 		else
2860 			seq_puts(f, "LEASE  ");
2861 
2862 		if (lease_breaking(fl))
2863 			seq_puts(f, "BREAKING  ");
2864 		else if (fl->fl_file)
2865 			seq_puts(f, "ACTIVE    ");
2866 		else
2867 			seq_puts(f, "BREAKER   ");
2868 	} else {
2869 		seq_puts(f, "UNKNOWN UNKNOWN  ");
2870 	}
2871 	if (fl->fl_type & LOCK_MAND) {
2872 		seq_printf(f, "%s ",
2873 			       (fl->fl_type & LOCK_READ)
2874 			       ? (fl->fl_type & LOCK_WRITE) ? "RW   " : "READ "
2875 			       : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE ");
2876 	} else {
2877 		int type = IS_LEASE(fl) ? target_leasetype(fl) : fl->fl_type;
2878 
2879 		seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" :
2880 				     (type == F_RDLCK) ? "READ" : "UNLCK");
2881 	}
2882 	if (inode) {
2883 		/* userspace relies on this representation of dev_t */
2884 		seq_printf(f, "%d %02x:%02x:%lu ", fl_pid,
2885 				MAJOR(inode->i_sb->s_dev),
2886 				MINOR(inode->i_sb->s_dev), inode->i_ino);
2887 	} else {
2888 		seq_printf(f, "%d <none>:0 ", fl_pid);
2889 	}
2890 	if (IS_POSIX(fl)) {
2891 		if (fl->fl_end == OFFSET_MAX)
2892 			seq_printf(f, "%Ld EOF\n", fl->fl_start);
2893 		else
2894 			seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2895 	} else {
2896 		seq_puts(f, "0 EOF\n");
2897 	}
2898 }
2899 
locks_show(struct seq_file * f,void * v)2900 static int locks_show(struct seq_file *f, void *v)
2901 {
2902 	struct locks_iterator *iter = f->private;
2903 	struct file_lock *fl, *bfl;
2904 	struct pid_namespace *proc_pidns = file_inode(f->file)->i_sb->s_fs_info;
2905 
2906 	fl = hlist_entry(v, struct file_lock, fl_link);
2907 
2908 	if (locks_translate_pid(fl, proc_pidns) == 0)
2909 		return 0;
2910 
2911 	lock_get_status(f, fl, iter->li_pos, "");
2912 
2913 	list_for_each_entry(bfl, &fl->fl_blocked_requests, fl_blocked_member)
2914 		lock_get_status(f, bfl, iter->li_pos, " ->");
2915 
2916 	return 0;
2917 }
2918 
__show_fd_locks(struct seq_file * f,struct list_head * head,int * id,struct file * filp,struct files_struct * files)2919 static void __show_fd_locks(struct seq_file *f,
2920 			struct list_head *head, int *id,
2921 			struct file *filp, struct files_struct *files)
2922 {
2923 	struct file_lock *fl;
2924 
2925 	list_for_each_entry(fl, head, fl_list) {
2926 
2927 		if (filp != fl->fl_file)
2928 			continue;
2929 		if (fl->fl_owner != files &&
2930 		    fl->fl_owner != filp)
2931 			continue;
2932 
2933 		(*id)++;
2934 		seq_puts(f, "lock:\t");
2935 		lock_get_status(f, fl, *id, "");
2936 	}
2937 }
2938 
show_fd_locks(struct seq_file * f,struct file * filp,struct files_struct * files)2939 void show_fd_locks(struct seq_file *f,
2940 		  struct file *filp, struct files_struct *files)
2941 {
2942 	struct inode *inode = locks_inode(filp);
2943 	struct file_lock_context *ctx;
2944 	int id = 0;
2945 
2946 	ctx = smp_load_acquire(&inode->i_flctx);
2947 	if (!ctx)
2948 		return;
2949 
2950 	spin_lock(&ctx->flc_lock);
2951 	__show_fd_locks(f, &ctx->flc_flock, &id, filp, files);
2952 	__show_fd_locks(f, &ctx->flc_posix, &id, filp, files);
2953 	__show_fd_locks(f, &ctx->flc_lease, &id, filp, files);
2954 	spin_unlock(&ctx->flc_lock);
2955 }
2956 
locks_start(struct seq_file * f,loff_t * pos)2957 static void *locks_start(struct seq_file *f, loff_t *pos)
2958 	__acquires(&blocked_lock_lock)
2959 {
2960 	struct locks_iterator *iter = f->private;
2961 
2962 	iter->li_pos = *pos + 1;
2963 	percpu_down_write(&file_rwsem);
2964 	spin_lock(&blocked_lock_lock);
2965 	return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos);
2966 }
2967 
locks_next(struct seq_file * f,void * v,loff_t * pos)2968 static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
2969 {
2970 	struct locks_iterator *iter = f->private;
2971 
2972 	++iter->li_pos;
2973 	return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos);
2974 }
2975 
locks_stop(struct seq_file * f,void * v)2976 static void locks_stop(struct seq_file *f, void *v)
2977 	__releases(&blocked_lock_lock)
2978 {
2979 	spin_unlock(&blocked_lock_lock);
2980 	percpu_up_write(&file_rwsem);
2981 }
2982 
2983 static const struct seq_operations locks_seq_operations = {
2984 	.start	= locks_start,
2985 	.next	= locks_next,
2986 	.stop	= locks_stop,
2987 	.show	= locks_show,
2988 };
2989 
proc_locks_init(void)2990 static int __init proc_locks_init(void)
2991 {
2992 	proc_create_seq_private("locks", 0, NULL, &locks_seq_operations,
2993 			sizeof(struct locks_iterator), NULL);
2994 	return 0;
2995 }
2996 fs_initcall(proc_locks_init);
2997 #endif
2998 
filelock_init(void)2999 static int __init filelock_init(void)
3000 {
3001 	int i;
3002 
3003 	flctx_cache = kmem_cache_create("file_lock_ctx",
3004 			sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL);
3005 
3006 	filelock_cache = kmem_cache_create("file_lock_cache",
3007 			sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
3008 
3009 	for_each_possible_cpu(i) {
3010 		struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i);
3011 
3012 		spin_lock_init(&fll->lock);
3013 		INIT_HLIST_HEAD(&fll->hlist);
3014 	}
3015 
3016 	lease_notifier_chain_init();
3017 	return 0;
3018 }
3019 core_initcall(filelock_init);
3020