• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
33 
34 #include "pnode.h"
35 #include "internal.h"
36 
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly = 100000;
39 
40 static unsigned int m_hash_mask __read_mostly;
41 static unsigned int m_hash_shift __read_mostly;
42 static unsigned int mp_hash_mask __read_mostly;
43 static unsigned int mp_hash_shift __read_mostly;
44 
45 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)46 static int __init set_mhash_entries(char *str)
47 {
48 	if (!str)
49 		return 0;
50 	mhash_entries = simple_strtoul(str, &str, 0);
51 	return 1;
52 }
53 __setup("mhash_entries=", set_mhash_entries);
54 
55 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)56 static int __init set_mphash_entries(char *str)
57 {
58 	if (!str)
59 		return 0;
60 	mphash_entries = simple_strtoul(str, &str, 0);
61 	return 1;
62 }
63 __setup("mphash_entries=", set_mphash_entries);
64 
65 static u64 event;
66 static DEFINE_IDA(mnt_id_ida);
67 static DEFINE_IDA(mnt_group_ida);
68 
69 static struct hlist_head *mount_hashtable __read_mostly;
70 static struct hlist_head *mountpoint_hashtable __read_mostly;
71 static struct kmem_cache *mnt_cache __read_mostly;
72 static DECLARE_RWSEM(namespace_sem);
73 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
75 
76 /* /sys/fs */
77 struct kobject *fs_kobj;
78 EXPORT_SYMBOL_GPL(fs_kobj);
79 
80 /*
81  * vfsmount lock may be taken for read to prevent changes to the
82  * vfsmount hash, ie. during mountpoint lookups or walking back
83  * up the tree.
84  *
85  * It should be taken for write in all cases where the vfsmount
86  * tree or hash is modified or when a vfsmount structure is modified.
87  */
88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
89 
m_hash(struct vfsmount * mnt,struct dentry * dentry)90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
91 {
92 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 	tmp = tmp + (tmp >> m_hash_shift);
95 	return &mount_hashtable[tmp & m_hash_mask];
96 }
97 
mp_hash(struct dentry * dentry)98 static inline struct hlist_head *mp_hash(struct dentry *dentry)
99 {
100 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 	tmp = tmp + (tmp >> mp_hash_shift);
102 	return &mountpoint_hashtable[tmp & mp_hash_mask];
103 }
104 
mnt_alloc_id(struct mount * mnt)105 static int mnt_alloc_id(struct mount *mnt)
106 {
107 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108 
109 	if (res < 0)
110 		return res;
111 	mnt->mnt_id = res;
112 	return 0;
113 }
114 
mnt_free_id(struct mount * mnt)115 static void mnt_free_id(struct mount *mnt)
116 {
117 	ida_free(&mnt_id_ida, mnt->mnt_id);
118 }
119 
120 /*
121  * Allocate a new peer group ID
122  */
mnt_alloc_group_id(struct mount * mnt)123 static int mnt_alloc_group_id(struct mount *mnt)
124 {
125 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
126 
127 	if (res < 0)
128 		return res;
129 	mnt->mnt_group_id = res;
130 	return 0;
131 }
132 
133 /*
134  * Release a peer group ID
135  */
mnt_release_group_id(struct mount * mnt)136 void mnt_release_group_id(struct mount *mnt)
137 {
138 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 	mnt->mnt_group_id = 0;
140 }
141 
142 /*
143  * vfsmount lock must be held for read
144  */
mnt_add_count(struct mount * mnt,int n)145 static inline void mnt_add_count(struct mount *mnt, int n)
146 {
147 #ifdef CONFIG_SMP
148 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
149 #else
150 	preempt_disable();
151 	mnt->mnt_count += n;
152 	preempt_enable();
153 #endif
154 }
155 
156 /*
157  * vfsmount lock must be held for write
158  */
mnt_get_count(struct mount * mnt)159 int mnt_get_count(struct mount *mnt)
160 {
161 #ifdef CONFIG_SMP
162 	int count = 0;
163 	int cpu;
164 
165 	for_each_possible_cpu(cpu) {
166 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
167 	}
168 
169 	return count;
170 #else
171 	return mnt->mnt_count;
172 #endif
173 }
174 
alloc_vfsmnt(const char * name)175 static struct mount *alloc_vfsmnt(const char *name)
176 {
177 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 	if (mnt) {
179 		int err;
180 
181 		err = mnt_alloc_id(mnt);
182 		if (err)
183 			goto out_free_cache;
184 
185 		if (name) {
186 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 			if (!mnt->mnt_devname)
188 				goto out_free_id;
189 		}
190 
191 #ifdef CONFIG_SMP
192 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 		if (!mnt->mnt_pcp)
194 			goto out_free_devname;
195 
196 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197 #else
198 		mnt->mnt_count = 1;
199 		mnt->mnt_writers = 0;
200 #endif
201 		mnt->mnt.data = NULL;
202 
203 		INIT_HLIST_NODE(&mnt->mnt_hash);
204 		INIT_LIST_HEAD(&mnt->mnt_child);
205 		INIT_LIST_HEAD(&mnt->mnt_mounts);
206 		INIT_LIST_HEAD(&mnt->mnt_list);
207 		INIT_LIST_HEAD(&mnt->mnt_expire);
208 		INIT_LIST_HEAD(&mnt->mnt_share);
209 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
210 		INIT_LIST_HEAD(&mnt->mnt_slave);
211 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
212 		INIT_LIST_HEAD(&mnt->mnt_umounting);
213 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
214 	}
215 	return mnt;
216 
217 #ifdef CONFIG_SMP
218 out_free_devname:
219 	kfree_const(mnt->mnt_devname);
220 #endif
221 out_free_id:
222 	mnt_free_id(mnt);
223 out_free_cache:
224 	kmem_cache_free(mnt_cache, mnt);
225 	return NULL;
226 }
227 
228 /*
229  * Most r/o checks on a fs are for operations that take
230  * discrete amounts of time, like a write() or unlink().
231  * We must keep track of when those operations start
232  * (for permission checks) and when they end, so that
233  * we can determine when writes are able to occur to
234  * a filesystem.
235  */
236 /*
237  * __mnt_is_readonly: check whether a mount is read-only
238  * @mnt: the mount to check for its write status
239  *
240  * This shouldn't be used directly ouside of the VFS.
241  * It does not guarantee that the filesystem will stay
242  * r/w, just that it is right *now*.  This can not and
243  * should not be used in place of IS_RDONLY(inode).
244  * mnt_want/drop_write() will _keep_ the filesystem
245  * r/w.
246  */
__mnt_is_readonly(struct vfsmount * mnt)247 bool __mnt_is_readonly(struct vfsmount *mnt)
248 {
249 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
250 }
251 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
252 
mnt_inc_writers(struct mount * mnt)253 static inline void mnt_inc_writers(struct mount *mnt)
254 {
255 #ifdef CONFIG_SMP
256 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
257 #else
258 	mnt->mnt_writers++;
259 #endif
260 }
261 
mnt_dec_writers(struct mount * mnt)262 static inline void mnt_dec_writers(struct mount *mnt)
263 {
264 #ifdef CONFIG_SMP
265 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
266 #else
267 	mnt->mnt_writers--;
268 #endif
269 }
270 
mnt_get_writers(struct mount * mnt)271 static unsigned int mnt_get_writers(struct mount *mnt)
272 {
273 #ifdef CONFIG_SMP
274 	unsigned int count = 0;
275 	int cpu;
276 
277 	for_each_possible_cpu(cpu) {
278 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
279 	}
280 
281 	return count;
282 #else
283 	return mnt->mnt_writers;
284 #endif
285 }
286 
mnt_is_readonly(struct vfsmount * mnt)287 static int mnt_is_readonly(struct vfsmount *mnt)
288 {
289 	if (mnt->mnt_sb->s_readonly_remount)
290 		return 1;
291 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
292 	smp_rmb();
293 	return __mnt_is_readonly(mnt);
294 }
295 
296 /*
297  * Most r/o & frozen checks on a fs are for operations that take discrete
298  * amounts of time, like a write() or unlink().  We must keep track of when
299  * those operations start (for permission checks) and when they end, so that we
300  * can determine when writes are able to occur to a filesystem.
301  */
302 /**
303  * __mnt_want_write - get write access to a mount without freeze protection
304  * @m: the mount on which to take a write
305  *
306  * This tells the low-level filesystem that a write is about to be performed to
307  * it, and makes sure that writes are allowed (mnt it read-write) before
308  * returning success. This operation does not protect against filesystem being
309  * frozen. When the write operation is finished, __mnt_drop_write() must be
310  * called. This is effectively a refcount.
311  */
__mnt_want_write(struct vfsmount * m)312 int __mnt_want_write(struct vfsmount *m)
313 {
314 	struct mount *mnt = real_mount(m);
315 	int ret = 0;
316 
317 	preempt_disable();
318 	mnt_inc_writers(mnt);
319 	/*
320 	 * The store to mnt_inc_writers must be visible before we pass
321 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
322 	 * incremented count after it has set MNT_WRITE_HOLD.
323 	 */
324 	smp_mb();
325 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
326 		cpu_relax();
327 	/*
328 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
329 	 * be set to match its requirements. So we must not load that until
330 	 * MNT_WRITE_HOLD is cleared.
331 	 */
332 	smp_rmb();
333 	if (mnt_is_readonly(m)) {
334 		mnt_dec_writers(mnt);
335 		ret = -EROFS;
336 	}
337 	preempt_enable();
338 
339 	return ret;
340 }
341 
342 /**
343  * mnt_want_write - get write access to a mount
344  * @m: the mount on which to take a write
345  *
346  * This tells the low-level filesystem that a write is about to be performed to
347  * it, and makes sure that writes are allowed (mount is read-write, filesystem
348  * is not frozen) before returning success.  When the write operation is
349  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
350  */
mnt_want_write(struct vfsmount * m)351 int mnt_want_write(struct vfsmount *m)
352 {
353 	int ret;
354 
355 	sb_start_write(m->mnt_sb);
356 	ret = __mnt_want_write(m);
357 	if (ret)
358 		sb_end_write(m->mnt_sb);
359 	return ret;
360 }
361 EXPORT_SYMBOL_GPL(mnt_want_write);
362 
363 /**
364  * mnt_clone_write - get write access to a mount
365  * @mnt: the mount on which to take a write
366  *
367  * This is effectively like mnt_want_write, except
368  * it must only be used to take an extra write reference
369  * on a mountpoint that we already know has a write reference
370  * on it. This allows some optimisation.
371  *
372  * After finished, mnt_drop_write must be called as usual to
373  * drop the reference.
374  */
mnt_clone_write(struct vfsmount * mnt)375 int mnt_clone_write(struct vfsmount *mnt)
376 {
377 	/* superblock may be r/o */
378 	if (__mnt_is_readonly(mnt))
379 		return -EROFS;
380 	preempt_disable();
381 	mnt_inc_writers(real_mount(mnt));
382 	preempt_enable();
383 	return 0;
384 }
385 EXPORT_SYMBOL_GPL(mnt_clone_write);
386 
387 /**
388  * __mnt_want_write_file - get write access to a file's mount
389  * @file: the file who's mount on which to take a write
390  *
391  * This is like __mnt_want_write, but it takes a file and can
392  * do some optimisations if the file is open for write already
393  */
__mnt_want_write_file(struct file * file)394 int __mnt_want_write_file(struct file *file)
395 {
396 	if (!(file->f_mode & FMODE_WRITER))
397 		return __mnt_want_write(file->f_path.mnt);
398 	else
399 		return mnt_clone_write(file->f_path.mnt);
400 }
401 
402 /**
403  * mnt_want_write_file - get write access to a file's mount
404  * @file: the file who's mount on which to take a write
405  *
406  * This is like mnt_want_write, but it takes a file and can
407  * do some optimisations if the file is open for write already
408  */
mnt_want_write_file(struct file * file)409 int mnt_want_write_file(struct file *file)
410 {
411 	int ret;
412 
413 	sb_start_write(file_inode(file)->i_sb);
414 	ret = __mnt_want_write_file(file);
415 	if (ret)
416 		sb_end_write(file_inode(file)->i_sb);
417 	return ret;
418 }
419 EXPORT_SYMBOL_GPL(mnt_want_write_file);
420 
421 /**
422  * __mnt_drop_write - give up write access to a mount
423  * @mnt: the mount on which to give up write access
424  *
425  * Tells the low-level filesystem that we are done
426  * performing writes to it.  Must be matched with
427  * __mnt_want_write() call above.
428  */
__mnt_drop_write(struct vfsmount * mnt)429 void __mnt_drop_write(struct vfsmount *mnt)
430 {
431 	preempt_disable();
432 	mnt_dec_writers(real_mount(mnt));
433 	preempt_enable();
434 }
435 
436 /**
437  * mnt_drop_write - give up write access to a mount
438  * @mnt: the mount on which to give up write access
439  *
440  * Tells the low-level filesystem that we are done performing writes to it and
441  * also allows filesystem to be frozen again.  Must be matched with
442  * mnt_want_write() call above.
443  */
mnt_drop_write(struct vfsmount * mnt)444 void mnt_drop_write(struct vfsmount *mnt)
445 {
446 	__mnt_drop_write(mnt);
447 	sb_end_write(mnt->mnt_sb);
448 }
449 EXPORT_SYMBOL_GPL(mnt_drop_write);
450 
__mnt_drop_write_file(struct file * file)451 void __mnt_drop_write_file(struct file *file)
452 {
453 	__mnt_drop_write(file->f_path.mnt);
454 }
455 
mnt_drop_write_file(struct file * file)456 void mnt_drop_write_file(struct file *file)
457 {
458 	__mnt_drop_write_file(file);
459 	sb_end_write(file_inode(file)->i_sb);
460 }
461 EXPORT_SYMBOL(mnt_drop_write_file);
462 
mnt_make_readonly(struct mount * mnt)463 static int mnt_make_readonly(struct mount *mnt)
464 {
465 	int ret = 0;
466 
467 	lock_mount_hash();
468 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
469 	/*
470 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
471 	 * should be visible before we do.
472 	 */
473 	smp_mb();
474 
475 	/*
476 	 * With writers on hold, if this value is zero, then there are
477 	 * definitely no active writers (although held writers may subsequently
478 	 * increment the count, they'll have to wait, and decrement it after
479 	 * seeing MNT_READONLY).
480 	 *
481 	 * It is OK to have counter incremented on one CPU and decremented on
482 	 * another: the sum will add up correctly. The danger would be when we
483 	 * sum up each counter, if we read a counter before it is incremented,
484 	 * but then read another CPU's count which it has been subsequently
485 	 * decremented from -- we would see more decrements than we should.
486 	 * MNT_WRITE_HOLD protects against this scenario, because
487 	 * mnt_want_write first increments count, then smp_mb, then spins on
488 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
489 	 * we're counting up here.
490 	 */
491 	if (mnt_get_writers(mnt) > 0)
492 		ret = -EBUSY;
493 	else
494 		mnt->mnt.mnt_flags |= MNT_READONLY;
495 	/*
496 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
497 	 * that become unheld will see MNT_READONLY.
498 	 */
499 	smp_wmb();
500 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
501 	unlock_mount_hash();
502 	return ret;
503 }
504 
__mnt_unmake_readonly(struct mount * mnt)505 static int __mnt_unmake_readonly(struct mount *mnt)
506 {
507 	lock_mount_hash();
508 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
509 	unlock_mount_hash();
510 	return 0;
511 }
512 
sb_prepare_remount_readonly(struct super_block * sb)513 int sb_prepare_remount_readonly(struct super_block *sb)
514 {
515 	struct mount *mnt;
516 	int err = 0;
517 
518 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
519 	if (atomic_long_read(&sb->s_remove_count))
520 		return -EBUSY;
521 
522 	lock_mount_hash();
523 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
524 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
525 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
526 			smp_mb();
527 			if (mnt_get_writers(mnt) > 0) {
528 				err = -EBUSY;
529 				break;
530 			}
531 		}
532 	}
533 	if (!err && atomic_long_read(&sb->s_remove_count))
534 		err = -EBUSY;
535 
536 	if (!err) {
537 		sb->s_readonly_remount = 1;
538 		smp_wmb();
539 	}
540 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
541 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
542 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
543 	}
544 	unlock_mount_hash();
545 
546 	return err;
547 }
548 
free_vfsmnt(struct mount * mnt)549 static void free_vfsmnt(struct mount *mnt)
550 {
551 	kfree(mnt->mnt.data);
552 	kfree_const(mnt->mnt_devname);
553 #ifdef CONFIG_SMP
554 	free_percpu(mnt->mnt_pcp);
555 #endif
556 	kmem_cache_free(mnt_cache, mnt);
557 }
558 
delayed_free_vfsmnt(struct rcu_head * head)559 static void delayed_free_vfsmnt(struct rcu_head *head)
560 {
561 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
562 }
563 
564 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)565 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
566 {
567 	struct mount *mnt;
568 	if (read_seqretry(&mount_lock, seq))
569 		return 1;
570 	if (bastard == NULL)
571 		return 0;
572 	mnt = real_mount(bastard);
573 	mnt_add_count(mnt, 1);
574 	smp_mb();			// see mntput_no_expire()
575 	if (likely(!read_seqretry(&mount_lock, seq)))
576 		return 0;
577 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
578 		mnt_add_count(mnt, -1);
579 		return 1;
580 	}
581 	lock_mount_hash();
582 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
583 		mnt_add_count(mnt, -1);
584 		unlock_mount_hash();
585 		return 1;
586 	}
587 	unlock_mount_hash();
588 	/* caller will mntput() */
589 	return -1;
590 }
591 
592 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)593 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 {
595 	int res = __legitimize_mnt(bastard, seq);
596 	if (likely(!res))
597 		return true;
598 	if (unlikely(res < 0)) {
599 		rcu_read_unlock();
600 		mntput(bastard);
601 		rcu_read_lock();
602 	}
603 	return false;
604 }
605 
606 /*
607  * find the first mount at @dentry on vfsmount @mnt.
608  * call under rcu_read_lock()
609  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)610 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
611 {
612 	struct hlist_head *head = m_hash(mnt, dentry);
613 	struct mount *p;
614 
615 	hlist_for_each_entry_rcu(p, head, mnt_hash)
616 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
617 			return p;
618 	return NULL;
619 }
620 
621 /*
622  * lookup_mnt - Return the first child mount mounted at path
623  *
624  * "First" means first mounted chronologically.  If you create the
625  * following mounts:
626  *
627  * mount /dev/sda1 /mnt
628  * mount /dev/sda2 /mnt
629  * mount /dev/sda3 /mnt
630  *
631  * Then lookup_mnt() on the base /mnt dentry in the root mount will
632  * return successively the root dentry and vfsmount of /dev/sda1, then
633  * /dev/sda2, then /dev/sda3, then NULL.
634  *
635  * lookup_mnt takes a reference to the found vfsmount.
636  */
lookup_mnt(const struct path * path)637 struct vfsmount *lookup_mnt(const struct path *path)
638 {
639 	struct mount *child_mnt;
640 	struct vfsmount *m;
641 	unsigned seq;
642 
643 	rcu_read_lock();
644 	do {
645 		seq = read_seqbegin(&mount_lock);
646 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
647 		m = child_mnt ? &child_mnt->mnt : NULL;
648 	} while (!legitimize_mnt(m, seq));
649 	rcu_read_unlock();
650 	return m;
651 }
652 
653 /*
654  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
655  *                         current mount namespace.
656  *
657  * The common case is dentries are not mountpoints at all and that
658  * test is handled inline.  For the slow case when we are actually
659  * dealing with a mountpoint of some kind, walk through all of the
660  * mounts in the current mount namespace and test to see if the dentry
661  * is a mountpoint.
662  *
663  * The mount_hashtable is not usable in the context because we
664  * need to identify all mounts that may be in the current mount
665  * namespace not just a mount that happens to have some specified
666  * parent mount.
667  */
__is_local_mountpoint(struct dentry * dentry)668 bool __is_local_mountpoint(struct dentry *dentry)
669 {
670 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
671 	struct mount *mnt;
672 	bool is_covered = false;
673 
674 	if (!d_mountpoint(dentry))
675 		goto out;
676 
677 	down_read(&namespace_sem);
678 	list_for_each_entry(mnt, &ns->list, mnt_list) {
679 		is_covered = (mnt->mnt_mountpoint == dentry);
680 		if (is_covered)
681 			break;
682 	}
683 	up_read(&namespace_sem);
684 out:
685 	return is_covered;
686 }
687 
lookup_mountpoint(struct dentry * dentry)688 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
689 {
690 	struct hlist_head *chain = mp_hash(dentry);
691 	struct mountpoint *mp;
692 
693 	hlist_for_each_entry(mp, chain, m_hash) {
694 		if (mp->m_dentry == dentry) {
695 			mp->m_count++;
696 			return mp;
697 		}
698 	}
699 	return NULL;
700 }
701 
get_mountpoint(struct dentry * dentry)702 static struct mountpoint *get_mountpoint(struct dentry *dentry)
703 {
704 	struct mountpoint *mp, *new = NULL;
705 	int ret;
706 
707 	if (d_mountpoint(dentry)) {
708 		/* might be worth a WARN_ON() */
709 		if (d_unlinked(dentry))
710 			return ERR_PTR(-ENOENT);
711 mountpoint:
712 		read_seqlock_excl(&mount_lock);
713 		mp = lookup_mountpoint(dentry);
714 		read_sequnlock_excl(&mount_lock);
715 		if (mp)
716 			goto done;
717 	}
718 
719 	if (!new)
720 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
721 	if (!new)
722 		return ERR_PTR(-ENOMEM);
723 
724 
725 	/* Exactly one processes may set d_mounted */
726 	ret = d_set_mounted(dentry);
727 
728 	/* Someone else set d_mounted? */
729 	if (ret == -EBUSY)
730 		goto mountpoint;
731 
732 	/* The dentry is not available as a mountpoint? */
733 	mp = ERR_PTR(ret);
734 	if (ret)
735 		goto done;
736 
737 	/* Add the new mountpoint to the hash table */
738 	read_seqlock_excl(&mount_lock);
739 	new->m_dentry = dget(dentry);
740 	new->m_count = 1;
741 	hlist_add_head(&new->m_hash, mp_hash(dentry));
742 	INIT_HLIST_HEAD(&new->m_list);
743 	read_sequnlock_excl(&mount_lock);
744 
745 	mp = new;
746 	new = NULL;
747 done:
748 	kfree(new);
749 	return mp;
750 }
751 
752 /*
753  * vfsmount lock must be held.  Additionally, the caller is responsible
754  * for serializing calls for given disposal list.
755  */
__put_mountpoint(struct mountpoint * mp,struct list_head * list)756 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
757 {
758 	if (!--mp->m_count) {
759 		struct dentry *dentry = mp->m_dentry;
760 		BUG_ON(!hlist_empty(&mp->m_list));
761 		spin_lock(&dentry->d_lock);
762 		dentry->d_flags &= ~DCACHE_MOUNTED;
763 		spin_unlock(&dentry->d_lock);
764 		dput_to_list(dentry, list);
765 		hlist_del(&mp->m_hash);
766 		kfree(mp);
767 	}
768 }
769 
770 /* called with namespace_lock and vfsmount lock */
put_mountpoint(struct mountpoint * mp)771 static void put_mountpoint(struct mountpoint *mp)
772 {
773 	__put_mountpoint(mp, &ex_mountpoints);
774 }
775 
check_mnt(struct mount * mnt)776 static inline int check_mnt(struct mount *mnt)
777 {
778 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
779 }
780 
781 /*
782  * vfsmount lock must be held for write
783  */
touch_mnt_namespace(struct mnt_namespace * ns)784 static void touch_mnt_namespace(struct mnt_namespace *ns)
785 {
786 	if (ns) {
787 		ns->event = ++event;
788 		wake_up_interruptible(&ns->poll);
789 	}
790 }
791 
792 /*
793  * vfsmount lock must be held for write
794  */
__touch_mnt_namespace(struct mnt_namespace * ns)795 static void __touch_mnt_namespace(struct mnt_namespace *ns)
796 {
797 	if (ns && ns->event != event) {
798 		ns->event = event;
799 		wake_up_interruptible(&ns->poll);
800 	}
801 }
802 
803 /*
804  * vfsmount lock must be held for write
805  */
unhash_mnt(struct mount * mnt)806 static struct mountpoint *unhash_mnt(struct mount *mnt)
807 {
808 	struct mountpoint *mp;
809 	mnt->mnt_parent = mnt;
810 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
811 	list_del_init(&mnt->mnt_child);
812 	hlist_del_init_rcu(&mnt->mnt_hash);
813 	hlist_del_init(&mnt->mnt_mp_list);
814 	mp = mnt->mnt_mp;
815 	mnt->mnt_mp = NULL;
816 	return mp;
817 }
818 
819 /*
820  * vfsmount lock must be held for write
821  */
umount_mnt(struct mount * mnt)822 static void umount_mnt(struct mount *mnt)
823 {
824 	put_mountpoint(unhash_mnt(mnt));
825 }
826 
827 /*
828  * vfsmount lock must be held for write
829  */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)830 void mnt_set_mountpoint(struct mount *mnt,
831 			struct mountpoint *mp,
832 			struct mount *child_mnt)
833 {
834 	mp->m_count++;
835 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
836 	child_mnt->mnt_mountpoint = mp->m_dentry;
837 	child_mnt->mnt_parent = mnt;
838 	child_mnt->mnt_mp = mp;
839 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
840 }
841 
__attach_mnt(struct mount * mnt,struct mount * parent)842 static void __attach_mnt(struct mount *mnt, struct mount *parent)
843 {
844 	hlist_add_head_rcu(&mnt->mnt_hash,
845 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
846 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
847 }
848 
849 /*
850  * vfsmount lock must be held for write
851  */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)852 static void attach_mnt(struct mount *mnt,
853 			struct mount *parent,
854 			struct mountpoint *mp)
855 {
856 	mnt_set_mountpoint(parent, mp, mnt);
857 	__attach_mnt(mnt, parent);
858 }
859 
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)860 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
861 {
862 	struct mountpoint *old_mp = mnt->mnt_mp;
863 	struct mount *old_parent = mnt->mnt_parent;
864 
865 	list_del_init(&mnt->mnt_child);
866 	hlist_del_init(&mnt->mnt_mp_list);
867 	hlist_del_init_rcu(&mnt->mnt_hash);
868 
869 	attach_mnt(mnt, parent, mp);
870 
871 	put_mountpoint(old_mp);
872 	mnt_add_count(old_parent, -1);
873 }
874 
875 /*
876  * vfsmount lock must be held for write
877  */
commit_tree(struct mount * mnt)878 static void commit_tree(struct mount *mnt)
879 {
880 	struct mount *parent = mnt->mnt_parent;
881 	struct mount *m;
882 	LIST_HEAD(head);
883 	struct mnt_namespace *n = parent->mnt_ns;
884 
885 	BUG_ON(parent == mnt);
886 
887 	list_add_tail(&head, &mnt->mnt_list);
888 	list_for_each_entry(m, &head, mnt_list)
889 		m->mnt_ns = n;
890 
891 	list_splice(&head, n->list.prev);
892 
893 	n->mounts += n->pending_mounts;
894 	n->pending_mounts = 0;
895 
896 	__attach_mnt(mnt, parent);
897 	touch_mnt_namespace(n);
898 }
899 
next_mnt(struct mount * p,struct mount * root)900 static struct mount *next_mnt(struct mount *p, struct mount *root)
901 {
902 	struct list_head *next = p->mnt_mounts.next;
903 	if (next == &p->mnt_mounts) {
904 		while (1) {
905 			if (p == root)
906 				return NULL;
907 			next = p->mnt_child.next;
908 			if (next != &p->mnt_parent->mnt_mounts)
909 				break;
910 			p = p->mnt_parent;
911 		}
912 	}
913 	return list_entry(next, struct mount, mnt_child);
914 }
915 
skip_mnt_tree(struct mount * p)916 static struct mount *skip_mnt_tree(struct mount *p)
917 {
918 	struct list_head *prev = p->mnt_mounts.prev;
919 	while (prev != &p->mnt_mounts) {
920 		p = list_entry(prev, struct mount, mnt_child);
921 		prev = p->mnt_mounts.prev;
922 	}
923 	return p;
924 }
925 
926 /**
927  * vfs_create_mount - Create a mount for a configured superblock
928  * @fc: The configuration context with the superblock attached
929  *
930  * Create a mount to an already configured superblock.  If necessary, the
931  * caller should invoke vfs_get_tree() before calling this.
932  *
933  * Note that this does not attach the mount to anything.
934  */
vfs_create_mount(struct fs_context * fc)935 struct vfsmount *vfs_create_mount(struct fs_context *fc)
936 {
937 	struct mount *mnt;
938 	struct super_block *sb;
939 
940 	if (!fc->root)
941 		return ERR_PTR(-EINVAL);
942 	sb = fc->root->d_sb;
943 
944 	mnt = alloc_vfsmnt(fc->source ?: "none");
945 	if (!mnt)
946 		return ERR_PTR(-ENOMEM);
947 
948 	if (fc->fs_type->alloc_mnt_data) {
949 		mnt->mnt.data = fc->fs_type->alloc_mnt_data();
950 		if (!mnt->mnt.data) {
951 			mnt_free_id(mnt);
952 			free_vfsmnt(mnt);
953 			return ERR_PTR(-ENOMEM);
954 		}
955 		if (sb->s_op->update_mnt_data)
956 			sb->s_op->update_mnt_data(mnt->mnt.data, fc);
957 	}
958 	if (fc->sb_flags & SB_KERNMOUNT)
959 		mnt->mnt.mnt_flags = MNT_INTERNAL;
960 
961 	atomic_inc(&fc->root->d_sb->s_active);
962 	mnt->mnt.mnt_sb		= fc->root->d_sb;
963 	mnt->mnt.mnt_root	= dget(fc->root);
964 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
965 	mnt->mnt_parent		= mnt;
966 
967 	lock_mount_hash();
968 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
969 	unlock_mount_hash();
970 	return &mnt->mnt;
971 }
972 EXPORT_SYMBOL(vfs_create_mount);
973 
fc_mount(struct fs_context * fc)974 struct vfsmount *fc_mount(struct fs_context *fc)
975 {
976 	int err = vfs_get_tree(fc);
977 	if (!err) {
978 		up_write(&fc->root->d_sb->s_umount);
979 		return vfs_create_mount(fc);
980 	}
981 	return ERR_PTR(err);
982 }
983 EXPORT_SYMBOL(fc_mount);
984 
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)985 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
986 				int flags, const char *name,
987 				void *data)
988 {
989 	struct fs_context *fc;
990 	struct vfsmount *mnt;
991 	int ret = 0;
992 
993 	if (!type)
994 		return ERR_PTR(-EINVAL);
995 
996 	fc = fs_context_for_mount(type, flags);
997 	if (IS_ERR(fc))
998 		return ERR_CAST(fc);
999 
1000 	if (name)
1001 		ret = vfs_parse_fs_string(fc, "source",
1002 					  name, strlen(name));
1003 	if (!ret)
1004 		ret = parse_monolithic_mount_data(fc, data);
1005 	if (!ret)
1006 		mnt = fc_mount(fc);
1007 	else
1008 		mnt = ERR_PTR(ret);
1009 
1010 	put_fs_context(fc);
1011 	return mnt;
1012 }
1013 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1014 
1015 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1016 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1017 	     const char *name, void *data)
1018 {
1019 	/* Until it is worked out how to pass the user namespace
1020 	 * through from the parent mount to the submount don't support
1021 	 * unprivileged mounts with submounts.
1022 	 */
1023 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1024 		return ERR_PTR(-EPERM);
1025 
1026 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1027 }
1028 EXPORT_SYMBOL_GPL(vfs_submount);
1029 
clone_mnt(struct mount * old,struct dentry * root,int flag)1030 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1031 					int flag)
1032 {
1033 	struct super_block *sb = old->mnt.mnt_sb;
1034 	struct mount *mnt;
1035 	int err;
1036 
1037 	mnt = alloc_vfsmnt(old->mnt_devname);
1038 	if (!mnt)
1039 		return ERR_PTR(-ENOMEM);
1040 
1041 	if (sb->s_op->clone_mnt_data) {
1042 		mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
1043 		if (!mnt->mnt.data) {
1044 			err = -ENOMEM;
1045 			goto out_free;
1046 		}
1047 	}
1048 
1049 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1050 		mnt->mnt_group_id = 0; /* not a peer of original */
1051 	else
1052 		mnt->mnt_group_id = old->mnt_group_id;
1053 
1054 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1055 		err = mnt_alloc_group_id(mnt);
1056 		if (err)
1057 			goto out_free;
1058 	}
1059 
1060 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1061 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1062 
1063 	atomic_inc(&sb->s_active);
1064 	mnt->mnt.mnt_sb = sb;
1065 	mnt->mnt.mnt_root = dget(root);
1066 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1067 	mnt->mnt_parent = mnt;
1068 	lock_mount_hash();
1069 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1070 	unlock_mount_hash();
1071 
1072 	if ((flag & CL_SLAVE) ||
1073 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1074 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1075 		mnt->mnt_master = old;
1076 		CLEAR_MNT_SHARED(mnt);
1077 	} else if (!(flag & CL_PRIVATE)) {
1078 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1079 			list_add(&mnt->mnt_share, &old->mnt_share);
1080 		if (IS_MNT_SLAVE(old))
1081 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1082 		mnt->mnt_master = old->mnt_master;
1083 	} else {
1084 		CLEAR_MNT_SHARED(mnt);
1085 	}
1086 	if (flag & CL_MAKE_SHARED)
1087 		set_mnt_shared(mnt);
1088 
1089 	/* stick the duplicate mount on the same expiry list
1090 	 * as the original if that was on one */
1091 	if (flag & CL_EXPIRE) {
1092 		if (!list_empty(&old->mnt_expire))
1093 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1094 	}
1095 
1096 	return mnt;
1097 
1098  out_free:
1099 	mnt_free_id(mnt);
1100 	free_vfsmnt(mnt);
1101 	return ERR_PTR(err);
1102 }
1103 
cleanup_mnt(struct mount * mnt)1104 static void cleanup_mnt(struct mount *mnt)
1105 {
1106 	struct hlist_node *p;
1107 	struct mount *m;
1108 	/*
1109 	 * The warning here probably indicates that somebody messed
1110 	 * up a mnt_want/drop_write() pair.  If this happens, the
1111 	 * filesystem was probably unable to make r/w->r/o transitions.
1112 	 * The locking used to deal with mnt_count decrement provides barriers,
1113 	 * so mnt_get_writers() below is safe.
1114 	 */
1115 	WARN_ON(mnt_get_writers(mnt));
1116 	if (unlikely(mnt->mnt_pins.first))
1117 		mnt_pin_kill(mnt);
1118 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1119 		hlist_del(&m->mnt_umount);
1120 		mntput(&m->mnt);
1121 	}
1122 	fsnotify_vfsmount_delete(&mnt->mnt);
1123 	dput(mnt->mnt.mnt_root);
1124 	deactivate_super(mnt->mnt.mnt_sb);
1125 	mnt_free_id(mnt);
1126 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1127 }
1128 
__cleanup_mnt(struct rcu_head * head)1129 static void __cleanup_mnt(struct rcu_head *head)
1130 {
1131 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1132 }
1133 
1134 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1135 static void delayed_mntput(struct work_struct *unused)
1136 {
1137 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1138 	struct mount *m, *t;
1139 
1140 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1141 		cleanup_mnt(m);
1142 }
1143 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1144 
mntput_no_expire(struct mount * mnt)1145 static void mntput_no_expire(struct mount *mnt)
1146 {
1147 	LIST_HEAD(list);
1148 	int count;
1149 
1150 	rcu_read_lock();
1151 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1152 		/*
1153 		 * Since we don't do lock_mount_hash() here,
1154 		 * ->mnt_ns can change under us.  However, if it's
1155 		 * non-NULL, then there's a reference that won't
1156 		 * be dropped until after an RCU delay done after
1157 		 * turning ->mnt_ns NULL.  So if we observe it
1158 		 * non-NULL under rcu_read_lock(), the reference
1159 		 * we are dropping is not the final one.
1160 		 */
1161 		mnt_add_count(mnt, -1);
1162 		rcu_read_unlock();
1163 		return;
1164 	}
1165 	lock_mount_hash();
1166 	/*
1167 	 * make sure that if __legitimize_mnt() has not seen us grab
1168 	 * mount_lock, we'll see their refcount increment here.
1169 	 */
1170 	smp_mb();
1171 	mnt_add_count(mnt, -1);
1172 	count = mnt_get_count(mnt);
1173 	if (count != 0) {
1174 		WARN_ON(count < 0);
1175 		rcu_read_unlock();
1176 		unlock_mount_hash();
1177 		return;
1178 	}
1179 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1180 		rcu_read_unlock();
1181 		unlock_mount_hash();
1182 		return;
1183 	}
1184 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1185 	rcu_read_unlock();
1186 
1187 	list_del(&mnt->mnt_instance);
1188 
1189 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1190 		struct mount *p, *tmp;
1191 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1192 			__put_mountpoint(unhash_mnt(p), &list);
1193 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1194 		}
1195 	}
1196 	unlock_mount_hash();
1197 	shrink_dentry_list(&list);
1198 
1199 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1200 		struct task_struct *task = current;
1201 		if (likely(!(task->flags & PF_KTHREAD))) {
1202 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1203 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1204 				return;
1205 		}
1206 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1207 			schedule_delayed_work(&delayed_mntput_work, 1);
1208 		return;
1209 	}
1210 	cleanup_mnt(mnt);
1211 }
1212 
mntput(struct vfsmount * mnt)1213 void mntput(struct vfsmount *mnt)
1214 {
1215 	if (mnt) {
1216 		struct mount *m = real_mount(mnt);
1217 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1218 		if (unlikely(m->mnt_expiry_mark))
1219 			m->mnt_expiry_mark = 0;
1220 		mntput_no_expire(m);
1221 	}
1222 }
1223 EXPORT_SYMBOL(mntput);
1224 
mntget(struct vfsmount * mnt)1225 struct vfsmount *mntget(struct vfsmount *mnt)
1226 {
1227 	if (mnt)
1228 		mnt_add_count(real_mount(mnt), 1);
1229 	return mnt;
1230 }
1231 EXPORT_SYMBOL(mntget);
1232 
1233 /* path_is_mountpoint() - Check if path is a mount in the current
1234  *                          namespace.
1235  *
1236  *  d_mountpoint() can only be used reliably to establish if a dentry is
1237  *  not mounted in any namespace and that common case is handled inline.
1238  *  d_mountpoint() isn't aware of the possibility there may be multiple
1239  *  mounts using a given dentry in a different namespace. This function
1240  *  checks if the passed in path is a mountpoint rather than the dentry
1241  *  alone.
1242  */
path_is_mountpoint(const struct path * path)1243 bool path_is_mountpoint(const struct path *path)
1244 {
1245 	unsigned seq;
1246 	bool res;
1247 
1248 	if (!d_mountpoint(path->dentry))
1249 		return false;
1250 
1251 	rcu_read_lock();
1252 	do {
1253 		seq = read_seqbegin(&mount_lock);
1254 		res = __path_is_mountpoint(path);
1255 	} while (read_seqretry(&mount_lock, seq));
1256 	rcu_read_unlock();
1257 
1258 	return res;
1259 }
1260 EXPORT_SYMBOL(path_is_mountpoint);
1261 
mnt_clone_internal(const struct path * path)1262 struct vfsmount *mnt_clone_internal(const struct path *path)
1263 {
1264 	struct mount *p;
1265 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1266 	if (IS_ERR(p))
1267 		return ERR_CAST(p);
1268 	p->mnt.mnt_flags |= MNT_INTERNAL;
1269 	return &p->mnt;
1270 }
1271 
1272 #ifdef CONFIG_PROC_FS
1273 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1274 static void *m_start(struct seq_file *m, loff_t *pos)
1275 {
1276 	struct proc_mounts *p = m->private;
1277 
1278 	down_read(&namespace_sem);
1279 	if (p->cached_event == p->ns->event) {
1280 		void *v = p->cached_mount;
1281 		if (*pos == p->cached_index)
1282 			return v;
1283 		if (*pos == p->cached_index + 1) {
1284 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1285 			return p->cached_mount = v;
1286 		}
1287 	}
1288 
1289 	p->cached_event = p->ns->event;
1290 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1291 	p->cached_index = *pos;
1292 	return p->cached_mount;
1293 }
1294 
m_next(struct seq_file * m,void * v,loff_t * pos)1295 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1296 {
1297 	struct proc_mounts *p = m->private;
1298 
1299 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1300 	p->cached_index = *pos;
1301 	return p->cached_mount;
1302 }
1303 
m_stop(struct seq_file * m,void * v)1304 static void m_stop(struct seq_file *m, void *v)
1305 {
1306 	up_read(&namespace_sem);
1307 }
1308 
m_show(struct seq_file * m,void * v)1309 static int m_show(struct seq_file *m, void *v)
1310 {
1311 	struct proc_mounts *p = m->private;
1312 	struct mount *r = list_entry(v, struct mount, mnt_list);
1313 	return p->show(m, &r->mnt);
1314 }
1315 
1316 const struct seq_operations mounts_op = {
1317 	.start	= m_start,
1318 	.next	= m_next,
1319 	.stop	= m_stop,
1320 	.show	= m_show,
1321 };
1322 #endif  /* CONFIG_PROC_FS */
1323 
1324 /**
1325  * may_umount_tree - check if a mount tree is busy
1326  * @mnt: root of mount tree
1327  *
1328  * This is called to check if a tree of mounts has any
1329  * open files, pwds, chroots or sub mounts that are
1330  * busy.
1331  */
may_umount_tree(struct vfsmount * m)1332 int may_umount_tree(struct vfsmount *m)
1333 {
1334 	struct mount *mnt = real_mount(m);
1335 	int actual_refs = 0;
1336 	int minimum_refs = 0;
1337 	struct mount *p;
1338 	BUG_ON(!m);
1339 
1340 	/* write lock needed for mnt_get_count */
1341 	lock_mount_hash();
1342 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1343 		actual_refs += mnt_get_count(p);
1344 		minimum_refs += 2;
1345 	}
1346 	unlock_mount_hash();
1347 
1348 	if (actual_refs > minimum_refs)
1349 		return 0;
1350 
1351 	return 1;
1352 }
1353 
1354 EXPORT_SYMBOL(may_umount_tree);
1355 
1356 /**
1357  * may_umount - check if a mount point is busy
1358  * @mnt: root of mount
1359  *
1360  * This is called to check if a mount point has any
1361  * open files, pwds, chroots or sub mounts. If the
1362  * mount has sub mounts this will return busy
1363  * regardless of whether the sub mounts are busy.
1364  *
1365  * Doesn't take quota and stuff into account. IOW, in some cases it will
1366  * give false negatives. The main reason why it's here is that we need
1367  * a non-destructive way to look for easily umountable filesystems.
1368  */
may_umount(struct vfsmount * mnt)1369 int may_umount(struct vfsmount *mnt)
1370 {
1371 	int ret = 1;
1372 	down_read(&namespace_sem);
1373 	lock_mount_hash();
1374 	if (propagate_mount_busy(real_mount(mnt), 2))
1375 		ret = 0;
1376 	unlock_mount_hash();
1377 	up_read(&namespace_sem);
1378 	return ret;
1379 }
1380 
1381 EXPORT_SYMBOL(may_umount);
1382 
namespace_unlock(void)1383 static void namespace_unlock(void)
1384 {
1385 	struct hlist_head head;
1386 	struct hlist_node *p;
1387 	struct mount *m;
1388 	LIST_HEAD(list);
1389 
1390 	hlist_move_list(&unmounted, &head);
1391 	list_splice_init(&ex_mountpoints, &list);
1392 
1393 	up_write(&namespace_sem);
1394 
1395 	shrink_dentry_list(&list);
1396 
1397 	if (likely(hlist_empty(&head)))
1398 		return;
1399 
1400 	synchronize_rcu_expedited();
1401 
1402 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1403 		hlist_del(&m->mnt_umount);
1404 		mntput(&m->mnt);
1405 	}
1406 }
1407 
namespace_lock(void)1408 static inline void namespace_lock(void)
1409 {
1410 	down_write(&namespace_sem);
1411 }
1412 
1413 enum umount_tree_flags {
1414 	UMOUNT_SYNC = 1,
1415 	UMOUNT_PROPAGATE = 2,
1416 	UMOUNT_CONNECTED = 4,
1417 };
1418 
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1419 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1420 {
1421 	/* Leaving mounts connected is only valid for lazy umounts */
1422 	if (how & UMOUNT_SYNC)
1423 		return true;
1424 
1425 	/* A mount without a parent has nothing to be connected to */
1426 	if (!mnt_has_parent(mnt))
1427 		return true;
1428 
1429 	/* Because the reference counting rules change when mounts are
1430 	 * unmounted and connected, umounted mounts may not be
1431 	 * connected to mounted mounts.
1432 	 */
1433 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1434 		return true;
1435 
1436 	/* Has it been requested that the mount remain connected? */
1437 	if (how & UMOUNT_CONNECTED)
1438 		return false;
1439 
1440 	/* Is the mount locked such that it needs to remain connected? */
1441 	if (IS_MNT_LOCKED(mnt))
1442 		return false;
1443 
1444 	/* By default disconnect the mount */
1445 	return true;
1446 }
1447 
1448 /*
1449  * mount_lock must be held
1450  * namespace_sem must be held for write
1451  */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1452 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1453 {
1454 	LIST_HEAD(tmp_list);
1455 	struct mount *p;
1456 
1457 	if (how & UMOUNT_PROPAGATE)
1458 		propagate_mount_unlock(mnt);
1459 
1460 	/* Gather the mounts to umount */
1461 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1462 		p->mnt.mnt_flags |= MNT_UMOUNT;
1463 		list_move(&p->mnt_list, &tmp_list);
1464 	}
1465 
1466 	/* Hide the mounts from mnt_mounts */
1467 	list_for_each_entry(p, &tmp_list, mnt_list) {
1468 		list_del_init(&p->mnt_child);
1469 	}
1470 
1471 	/* Add propogated mounts to the tmp_list */
1472 	if (how & UMOUNT_PROPAGATE)
1473 		propagate_umount(&tmp_list);
1474 
1475 	while (!list_empty(&tmp_list)) {
1476 		struct mnt_namespace *ns;
1477 		bool disconnect;
1478 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1479 		list_del_init(&p->mnt_expire);
1480 		list_del_init(&p->mnt_list);
1481 		ns = p->mnt_ns;
1482 		if (ns) {
1483 			ns->mounts--;
1484 			__touch_mnt_namespace(ns);
1485 		}
1486 		p->mnt_ns = NULL;
1487 		if (how & UMOUNT_SYNC)
1488 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1489 
1490 		disconnect = disconnect_mount(p, how);
1491 		if (mnt_has_parent(p)) {
1492 			mnt_add_count(p->mnt_parent, -1);
1493 			if (!disconnect) {
1494 				/* Don't forget about p */
1495 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1496 			} else {
1497 				umount_mnt(p);
1498 			}
1499 		}
1500 		change_mnt_propagation(p, MS_PRIVATE);
1501 		if (disconnect)
1502 			hlist_add_head(&p->mnt_umount, &unmounted);
1503 	}
1504 }
1505 
1506 static void shrink_submounts(struct mount *mnt);
1507 
do_umount_root(struct super_block * sb)1508 static int do_umount_root(struct super_block *sb)
1509 {
1510 	int ret = 0;
1511 
1512 	down_write(&sb->s_umount);
1513 	if (!sb_rdonly(sb)) {
1514 		struct fs_context *fc;
1515 
1516 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1517 						SB_RDONLY);
1518 		if (IS_ERR(fc)) {
1519 			ret = PTR_ERR(fc);
1520 		} else {
1521 			ret = parse_monolithic_mount_data(fc, NULL);
1522 			if (!ret)
1523 				ret = reconfigure_super(fc);
1524 			put_fs_context(fc);
1525 		}
1526 	}
1527 	up_write(&sb->s_umount);
1528 	return ret;
1529 }
1530 
do_umount(struct mount * mnt,int flags)1531 static int do_umount(struct mount *mnt, int flags)
1532 {
1533 	struct super_block *sb = mnt->mnt.mnt_sb;
1534 	int retval;
1535 
1536 	retval = security_sb_umount(&mnt->mnt, flags);
1537 	if (retval)
1538 		return retval;
1539 
1540 	/*
1541 	 * Allow userspace to request a mountpoint be expired rather than
1542 	 * unmounting unconditionally. Unmount only happens if:
1543 	 *  (1) the mark is already set (the mark is cleared by mntput())
1544 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1545 	 */
1546 	if (flags & MNT_EXPIRE) {
1547 		if (&mnt->mnt == current->fs->root.mnt ||
1548 		    flags & (MNT_FORCE | MNT_DETACH))
1549 			return -EINVAL;
1550 
1551 		/*
1552 		 * probably don't strictly need the lock here if we examined
1553 		 * all race cases, but it's a slowpath.
1554 		 */
1555 		lock_mount_hash();
1556 		if (mnt_get_count(mnt) != 2) {
1557 			unlock_mount_hash();
1558 			return -EBUSY;
1559 		}
1560 		unlock_mount_hash();
1561 
1562 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1563 			return -EAGAIN;
1564 	}
1565 
1566 	/*
1567 	 * If we may have to abort operations to get out of this
1568 	 * mount, and they will themselves hold resources we must
1569 	 * allow the fs to do things. In the Unix tradition of
1570 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1571 	 * might fail to complete on the first run through as other tasks
1572 	 * must return, and the like. Thats for the mount program to worry
1573 	 * about for the moment.
1574 	 */
1575 
1576 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1577 		sb->s_op->umount_begin(sb);
1578 	}
1579 
1580 	/*
1581 	 * No sense to grab the lock for this test, but test itself looks
1582 	 * somewhat bogus. Suggestions for better replacement?
1583 	 * Ho-hum... In principle, we might treat that as umount + switch
1584 	 * to rootfs. GC would eventually take care of the old vfsmount.
1585 	 * Actually it makes sense, especially if rootfs would contain a
1586 	 * /reboot - static binary that would close all descriptors and
1587 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1588 	 */
1589 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1590 		/*
1591 		 * Special case for "unmounting" root ...
1592 		 * we just try to remount it readonly.
1593 		 */
1594 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1595 			return -EPERM;
1596 		return do_umount_root(sb);
1597 	}
1598 
1599 	namespace_lock();
1600 	lock_mount_hash();
1601 
1602 	/* Recheck MNT_LOCKED with the locks held */
1603 	retval = -EINVAL;
1604 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1605 		goto out;
1606 
1607 	event++;
1608 	if (flags & MNT_DETACH) {
1609 		if (!list_empty(&mnt->mnt_list))
1610 			umount_tree(mnt, UMOUNT_PROPAGATE);
1611 		retval = 0;
1612 	} else {
1613 		shrink_submounts(mnt);
1614 		retval = -EBUSY;
1615 		if (!propagate_mount_busy(mnt, 2)) {
1616 			if (!list_empty(&mnt->mnt_list))
1617 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1618 			retval = 0;
1619 		}
1620 	}
1621 out:
1622 	unlock_mount_hash();
1623 	namespace_unlock();
1624 	return retval;
1625 }
1626 
1627 /*
1628  * __detach_mounts - lazily unmount all mounts on the specified dentry
1629  *
1630  * During unlink, rmdir, and d_drop it is possible to loose the path
1631  * to an existing mountpoint, and wind up leaking the mount.
1632  * detach_mounts allows lazily unmounting those mounts instead of
1633  * leaking them.
1634  *
1635  * The caller may hold dentry->d_inode->i_mutex.
1636  */
__detach_mounts(struct dentry * dentry)1637 void __detach_mounts(struct dentry *dentry)
1638 {
1639 	struct mountpoint *mp;
1640 	struct mount *mnt;
1641 
1642 	namespace_lock();
1643 	lock_mount_hash();
1644 	mp = lookup_mountpoint(dentry);
1645 	if (!mp)
1646 		goto out_unlock;
1647 
1648 	event++;
1649 	while (!hlist_empty(&mp->m_list)) {
1650 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1651 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1652 			umount_mnt(mnt);
1653 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1654 		}
1655 		else umount_tree(mnt, UMOUNT_CONNECTED);
1656 	}
1657 	put_mountpoint(mp);
1658 out_unlock:
1659 	unlock_mount_hash();
1660 	namespace_unlock();
1661 }
1662 
1663 /*
1664  * Is the caller allowed to modify his namespace?
1665  */
may_mount(void)1666 static inline bool may_mount(void)
1667 {
1668 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1669 }
1670 
1671 #ifdef	CONFIG_MANDATORY_FILE_LOCKING
may_mandlock(void)1672 static bool may_mandlock(void)
1673 {
1674 	pr_warn_once("======================================================\n"
1675 		     "WARNING: the mand mount option is being deprecated and\n"
1676 		     "         will be removed in v5.15!\n"
1677 		     "======================================================\n");
1678 	return capable(CAP_SYS_ADMIN);
1679 }
1680 #else
may_mandlock(void)1681 static inline bool may_mandlock(void)
1682 {
1683 	pr_warn("VFS: \"mand\" mount option not supported");
1684 	return false;
1685 }
1686 #endif
1687 
1688 /*
1689  * Now umount can handle mount points as well as block devices.
1690  * This is important for filesystems which use unnamed block devices.
1691  *
1692  * We now support a flag for forced unmount like the other 'big iron'
1693  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1694  */
1695 
ksys_umount(char __user * name,int flags)1696 int ksys_umount(char __user *name, int flags)
1697 {
1698 	struct path path;
1699 	struct mount *mnt;
1700 	int retval;
1701 	int lookup_flags = 0;
1702 
1703 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1704 		return -EINVAL;
1705 
1706 	if (!may_mount())
1707 		return -EPERM;
1708 
1709 	if (!(flags & UMOUNT_NOFOLLOW))
1710 		lookup_flags |= LOOKUP_FOLLOW;
1711 
1712 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1713 	if (retval)
1714 		goto out;
1715 	mnt = real_mount(path.mnt);
1716 	retval = -EINVAL;
1717 	if (path.dentry != path.mnt->mnt_root)
1718 		goto dput_and_out;
1719 	if (!check_mnt(mnt))
1720 		goto dput_and_out;
1721 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1722 		goto dput_and_out;
1723 	retval = -EPERM;
1724 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1725 		goto dput_and_out;
1726 
1727 	retval = do_umount(mnt, flags);
1728 dput_and_out:
1729 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1730 	dput(path.dentry);
1731 	mntput_no_expire(mnt);
1732 out:
1733 	return retval;
1734 }
1735 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1736 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1737 {
1738 	return ksys_umount(name, flags);
1739 }
1740 
1741 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1742 
1743 /*
1744  *	The 2.0 compatible umount. No flags.
1745  */
SYSCALL_DEFINE1(oldumount,char __user *,name)1746 SYSCALL_DEFINE1(oldumount, char __user *, name)
1747 {
1748 	return ksys_umount(name, 0);
1749 }
1750 
1751 #endif
1752 
is_mnt_ns_file(struct dentry * dentry)1753 static bool is_mnt_ns_file(struct dentry *dentry)
1754 {
1755 	/* Is this a proxy for a mount namespace? */
1756 	return dentry->d_op == &ns_dentry_operations &&
1757 	       dentry->d_fsdata == &mntns_operations;
1758 }
1759 
to_mnt_ns(struct ns_common * ns)1760 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1761 {
1762 	return container_of(ns, struct mnt_namespace, ns);
1763 }
1764 
mnt_ns_loop(struct dentry * dentry)1765 static bool mnt_ns_loop(struct dentry *dentry)
1766 {
1767 	/* Could bind mounting the mount namespace inode cause a
1768 	 * mount namespace loop?
1769 	 */
1770 	struct mnt_namespace *mnt_ns;
1771 	if (!is_mnt_ns_file(dentry))
1772 		return false;
1773 
1774 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1775 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1776 }
1777 
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1778 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1779 					int flag)
1780 {
1781 	struct mount *res, *p, *q, *r, *parent;
1782 
1783 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1784 		return ERR_PTR(-EINVAL);
1785 
1786 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1787 		return ERR_PTR(-EINVAL);
1788 
1789 	res = q = clone_mnt(mnt, dentry, flag);
1790 	if (IS_ERR(q))
1791 		return q;
1792 
1793 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1794 
1795 	p = mnt;
1796 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1797 		struct mount *s;
1798 		if (!is_subdir(r->mnt_mountpoint, dentry))
1799 			continue;
1800 
1801 		for (s = r; s; s = next_mnt(s, r)) {
1802 			if (!(flag & CL_COPY_UNBINDABLE) &&
1803 			    IS_MNT_UNBINDABLE(s)) {
1804 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1805 					/* Both unbindable and locked. */
1806 					q = ERR_PTR(-EPERM);
1807 					goto out;
1808 				} else {
1809 					s = skip_mnt_tree(s);
1810 					continue;
1811 				}
1812 			}
1813 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1814 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1815 				s = skip_mnt_tree(s);
1816 				continue;
1817 			}
1818 			while (p != s->mnt_parent) {
1819 				p = p->mnt_parent;
1820 				q = q->mnt_parent;
1821 			}
1822 			p = s;
1823 			parent = q;
1824 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1825 			if (IS_ERR(q))
1826 				goto out;
1827 			lock_mount_hash();
1828 			list_add_tail(&q->mnt_list, &res->mnt_list);
1829 			attach_mnt(q, parent, p->mnt_mp);
1830 			unlock_mount_hash();
1831 		}
1832 	}
1833 	return res;
1834 out:
1835 	if (res) {
1836 		lock_mount_hash();
1837 		umount_tree(res, UMOUNT_SYNC);
1838 		unlock_mount_hash();
1839 	}
1840 	return q;
1841 }
1842 
1843 /* Caller should check returned pointer for errors */
1844 
collect_mounts(const struct path * path)1845 struct vfsmount *collect_mounts(const struct path *path)
1846 {
1847 	struct mount *tree;
1848 	namespace_lock();
1849 	if (!check_mnt(real_mount(path->mnt)))
1850 		tree = ERR_PTR(-EINVAL);
1851 	else
1852 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1853 				 CL_COPY_ALL | CL_PRIVATE);
1854 	namespace_unlock();
1855 	if (IS_ERR(tree))
1856 		return ERR_CAST(tree);
1857 	return &tree->mnt;
1858 }
1859 
1860 static void free_mnt_ns(struct mnt_namespace *);
1861 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1862 
dissolve_on_fput(struct vfsmount * mnt)1863 void dissolve_on_fput(struct vfsmount *mnt)
1864 {
1865 	struct mnt_namespace *ns;
1866 	namespace_lock();
1867 	lock_mount_hash();
1868 	ns = real_mount(mnt)->mnt_ns;
1869 	if (ns) {
1870 		if (is_anon_ns(ns))
1871 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1872 		else
1873 			ns = NULL;
1874 	}
1875 	unlock_mount_hash();
1876 	namespace_unlock();
1877 	if (ns)
1878 		free_mnt_ns(ns);
1879 }
1880 
drop_collected_mounts(struct vfsmount * mnt)1881 void drop_collected_mounts(struct vfsmount *mnt)
1882 {
1883 	namespace_lock();
1884 	lock_mount_hash();
1885 	umount_tree(real_mount(mnt), 0);
1886 	unlock_mount_hash();
1887 	namespace_unlock();
1888 }
1889 
has_locked_children(struct mount * mnt,struct dentry * dentry)1890 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1891 {
1892 	struct mount *child;
1893 
1894 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1895 		if (!is_subdir(child->mnt_mountpoint, dentry))
1896 			continue;
1897 
1898 		if (child->mnt.mnt_flags & MNT_LOCKED)
1899 			return true;
1900 	}
1901 	return false;
1902 }
1903 
1904 /**
1905  * clone_private_mount - create a private clone of a path
1906  *
1907  * This creates a new vfsmount, which will be the clone of @path.  The new will
1908  * not be attached anywhere in the namespace and will be private (i.e. changes
1909  * to the originating mount won't be propagated into this).
1910  *
1911  * Release with mntput().
1912  */
clone_private_mount(const struct path * path)1913 struct vfsmount *clone_private_mount(const struct path *path)
1914 {
1915 	struct mount *old_mnt = real_mount(path->mnt);
1916 	struct mount *new_mnt;
1917 
1918 	down_read(&namespace_sem);
1919 	if (IS_MNT_UNBINDABLE(old_mnt))
1920 		goto invalid;
1921 
1922 	if (!check_mnt(old_mnt))
1923 		goto invalid;
1924 
1925 	if (has_locked_children(old_mnt, path->dentry))
1926 		goto invalid;
1927 
1928 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1929 	up_read(&namespace_sem);
1930 
1931 	if (IS_ERR(new_mnt))
1932 		return ERR_CAST(new_mnt);
1933 
1934 	return &new_mnt->mnt;
1935 
1936 invalid:
1937 	up_read(&namespace_sem);
1938 	return ERR_PTR(-EINVAL);
1939 }
1940 EXPORT_SYMBOL_GPL(clone_private_mount);
1941 
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)1942 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1943 		   struct vfsmount *root)
1944 {
1945 	struct mount *mnt;
1946 	int res = f(root, arg);
1947 	if (res)
1948 		return res;
1949 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1950 		res = f(&mnt->mnt, arg);
1951 		if (res)
1952 			return res;
1953 	}
1954 	return 0;
1955 }
1956 
lock_mnt_tree(struct mount * mnt)1957 static void lock_mnt_tree(struct mount *mnt)
1958 {
1959 	struct mount *p;
1960 
1961 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1962 		int flags = p->mnt.mnt_flags;
1963 		/* Don't allow unprivileged users to change mount flags */
1964 		flags |= MNT_LOCK_ATIME;
1965 
1966 		if (flags & MNT_READONLY)
1967 			flags |= MNT_LOCK_READONLY;
1968 
1969 		if (flags & MNT_NODEV)
1970 			flags |= MNT_LOCK_NODEV;
1971 
1972 		if (flags & MNT_NOSUID)
1973 			flags |= MNT_LOCK_NOSUID;
1974 
1975 		if (flags & MNT_NOEXEC)
1976 			flags |= MNT_LOCK_NOEXEC;
1977 		/* Don't allow unprivileged users to reveal what is under a mount */
1978 		if (list_empty(&p->mnt_expire))
1979 			flags |= MNT_LOCKED;
1980 		p->mnt.mnt_flags = flags;
1981 	}
1982 }
1983 
cleanup_group_ids(struct mount * mnt,struct mount * end)1984 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1985 {
1986 	struct mount *p;
1987 
1988 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1989 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1990 			mnt_release_group_id(p);
1991 	}
1992 }
1993 
invent_group_ids(struct mount * mnt,bool recurse)1994 static int invent_group_ids(struct mount *mnt, bool recurse)
1995 {
1996 	struct mount *p;
1997 
1998 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1999 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2000 			int err = mnt_alloc_group_id(p);
2001 			if (err) {
2002 				cleanup_group_ids(mnt, p);
2003 				return err;
2004 			}
2005 		}
2006 	}
2007 
2008 	return 0;
2009 }
2010 
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2011 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2012 {
2013 	unsigned int max = READ_ONCE(sysctl_mount_max);
2014 	unsigned int mounts = 0, old, pending, sum;
2015 	struct mount *p;
2016 
2017 	for (p = mnt; p; p = next_mnt(p, mnt))
2018 		mounts++;
2019 
2020 	old = ns->mounts;
2021 	pending = ns->pending_mounts;
2022 	sum = old + pending;
2023 	if ((old > sum) ||
2024 	    (pending > sum) ||
2025 	    (max < sum) ||
2026 	    (mounts > (max - sum)))
2027 		return -ENOSPC;
2028 
2029 	ns->pending_mounts = pending + mounts;
2030 	return 0;
2031 }
2032 
2033 /*
2034  *  @source_mnt : mount tree to be attached
2035  *  @nd         : place the mount tree @source_mnt is attached
2036  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2037  *  		   store the parent mount and mountpoint dentry.
2038  *  		   (done when source_mnt is moved)
2039  *
2040  *  NOTE: in the table below explains the semantics when a source mount
2041  *  of a given type is attached to a destination mount of a given type.
2042  * ---------------------------------------------------------------------------
2043  * |         BIND MOUNT OPERATION                                            |
2044  * |**************************************************************************
2045  * | source-->| shared        |       private  |       slave    | unbindable |
2046  * | dest     |               |                |                |            |
2047  * |   |      |               |                |                |            |
2048  * |   v      |               |                |                |            |
2049  * |**************************************************************************
2050  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2051  * |          |               |                |                |            |
2052  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2053  * ***************************************************************************
2054  * A bind operation clones the source mount and mounts the clone on the
2055  * destination mount.
2056  *
2057  * (++)  the cloned mount is propagated to all the mounts in the propagation
2058  * 	 tree of the destination mount and the cloned mount is added to
2059  * 	 the peer group of the source mount.
2060  * (+)   the cloned mount is created under the destination mount and is marked
2061  *       as shared. The cloned mount is added to the peer group of the source
2062  *       mount.
2063  * (+++) the mount is propagated to all the mounts in the propagation tree
2064  *       of the destination mount and the cloned mount is made slave
2065  *       of the same master as that of the source mount. The cloned mount
2066  *       is marked as 'shared and slave'.
2067  * (*)   the cloned mount is made a slave of the same master as that of the
2068  * 	 source mount.
2069  *
2070  * ---------------------------------------------------------------------------
2071  * |         		MOVE MOUNT OPERATION                                 |
2072  * |**************************************************************************
2073  * | source-->| shared        |       private  |       slave    | unbindable |
2074  * | dest     |               |                |                |            |
2075  * |   |      |               |                |                |            |
2076  * |   v      |               |                |                |            |
2077  * |**************************************************************************
2078  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2079  * |          |               |                |                |            |
2080  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2081  * ***************************************************************************
2082  *
2083  * (+)  the mount is moved to the destination. And is then propagated to
2084  * 	all the mounts in the propagation tree of the destination mount.
2085  * (+*)  the mount is moved to the destination.
2086  * (+++)  the mount is moved to the destination and is then propagated to
2087  * 	all the mounts belonging to the destination mount's propagation tree.
2088  * 	the mount is marked as 'shared and slave'.
2089  * (*)	the mount continues to be a slave at the new location.
2090  *
2091  * if the source mount is a tree, the operations explained above is
2092  * applied to each mount in the tree.
2093  * Must be called without spinlocks held, since this function can sleep
2094  * in allocations.
2095  */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,bool moving)2096 static int attach_recursive_mnt(struct mount *source_mnt,
2097 			struct mount *dest_mnt,
2098 			struct mountpoint *dest_mp,
2099 			bool moving)
2100 {
2101 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2102 	HLIST_HEAD(tree_list);
2103 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2104 	struct mountpoint *smp;
2105 	struct mount *child, *p;
2106 	struct hlist_node *n;
2107 	int err;
2108 
2109 	/* Preallocate a mountpoint in case the new mounts need
2110 	 * to be tucked under other mounts.
2111 	 */
2112 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2113 	if (IS_ERR(smp))
2114 		return PTR_ERR(smp);
2115 
2116 	/* Is there space to add these mounts to the mount namespace? */
2117 	if (!moving) {
2118 		err = count_mounts(ns, source_mnt);
2119 		if (err)
2120 			goto out;
2121 	}
2122 
2123 	if (IS_MNT_SHARED(dest_mnt)) {
2124 		err = invent_group_ids(source_mnt, true);
2125 		if (err)
2126 			goto out;
2127 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2128 		lock_mount_hash();
2129 		if (err)
2130 			goto out_cleanup_ids;
2131 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2132 			set_mnt_shared(p);
2133 	} else {
2134 		lock_mount_hash();
2135 	}
2136 	if (moving) {
2137 		unhash_mnt(source_mnt);
2138 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2139 		touch_mnt_namespace(source_mnt->mnt_ns);
2140 	} else {
2141 		if (source_mnt->mnt_ns) {
2142 			/* move from anon - the caller will destroy */
2143 			list_del_init(&source_mnt->mnt_ns->list);
2144 		}
2145 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2146 		commit_tree(source_mnt);
2147 	}
2148 
2149 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2150 		struct mount *q;
2151 		hlist_del_init(&child->mnt_hash);
2152 		q = __lookup_mnt(&child->mnt_parent->mnt,
2153 				 child->mnt_mountpoint);
2154 		if (q)
2155 			mnt_change_mountpoint(child, smp, q);
2156 		/* Notice when we are propagating across user namespaces */
2157 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2158 			lock_mnt_tree(child);
2159 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2160 		commit_tree(child);
2161 	}
2162 	put_mountpoint(smp);
2163 	unlock_mount_hash();
2164 
2165 	return 0;
2166 
2167  out_cleanup_ids:
2168 	while (!hlist_empty(&tree_list)) {
2169 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2170 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2171 		umount_tree(child, UMOUNT_SYNC);
2172 	}
2173 	unlock_mount_hash();
2174 	cleanup_group_ids(source_mnt, NULL);
2175  out:
2176 	ns->pending_mounts = 0;
2177 
2178 	read_seqlock_excl(&mount_lock);
2179 	put_mountpoint(smp);
2180 	read_sequnlock_excl(&mount_lock);
2181 
2182 	return err;
2183 }
2184 
lock_mount(struct path * path)2185 static struct mountpoint *lock_mount(struct path *path)
2186 {
2187 	struct vfsmount *mnt;
2188 	struct dentry *dentry = path->dentry;
2189 retry:
2190 	inode_lock(dentry->d_inode);
2191 	if (unlikely(cant_mount(dentry))) {
2192 		inode_unlock(dentry->d_inode);
2193 		return ERR_PTR(-ENOENT);
2194 	}
2195 	namespace_lock();
2196 	mnt = lookup_mnt(path);
2197 	if (likely(!mnt)) {
2198 		struct mountpoint *mp = get_mountpoint(dentry);
2199 		if (IS_ERR(mp)) {
2200 			namespace_unlock();
2201 			inode_unlock(dentry->d_inode);
2202 			return mp;
2203 		}
2204 		return mp;
2205 	}
2206 	namespace_unlock();
2207 	inode_unlock(path->dentry->d_inode);
2208 	path_put(path);
2209 	path->mnt = mnt;
2210 	dentry = path->dentry = dget(mnt->mnt_root);
2211 	goto retry;
2212 }
2213 
unlock_mount(struct mountpoint * where)2214 static void unlock_mount(struct mountpoint *where)
2215 {
2216 	struct dentry *dentry = where->m_dentry;
2217 
2218 	read_seqlock_excl(&mount_lock);
2219 	put_mountpoint(where);
2220 	read_sequnlock_excl(&mount_lock);
2221 
2222 	namespace_unlock();
2223 	inode_unlock(dentry->d_inode);
2224 }
2225 
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2226 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2227 {
2228 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2229 		return -EINVAL;
2230 
2231 	if (d_is_dir(mp->m_dentry) !=
2232 	      d_is_dir(mnt->mnt.mnt_root))
2233 		return -ENOTDIR;
2234 
2235 	return attach_recursive_mnt(mnt, p, mp, false);
2236 }
2237 
2238 /*
2239  * Sanity check the flags to change_mnt_propagation.
2240  */
2241 
flags_to_propagation_type(int ms_flags)2242 static int flags_to_propagation_type(int ms_flags)
2243 {
2244 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2245 
2246 	/* Fail if any non-propagation flags are set */
2247 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2248 		return 0;
2249 	/* Only one propagation flag should be set */
2250 	if (!is_power_of_2(type))
2251 		return 0;
2252 	return type;
2253 }
2254 
2255 /*
2256  * recursively change the type of the mountpoint.
2257  */
do_change_type(struct path * path,int ms_flags)2258 static int do_change_type(struct path *path, int ms_flags)
2259 {
2260 	struct mount *m;
2261 	struct mount *mnt = real_mount(path->mnt);
2262 	int recurse = ms_flags & MS_REC;
2263 	int type;
2264 	int err = 0;
2265 
2266 	if (path->dentry != path->mnt->mnt_root)
2267 		return -EINVAL;
2268 
2269 	type = flags_to_propagation_type(ms_flags);
2270 	if (!type)
2271 		return -EINVAL;
2272 
2273 	namespace_lock();
2274 	if (type == MS_SHARED) {
2275 		err = invent_group_ids(mnt, recurse);
2276 		if (err)
2277 			goto out_unlock;
2278 	}
2279 
2280 	lock_mount_hash();
2281 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2282 		change_mnt_propagation(m, type);
2283 	unlock_mount_hash();
2284 
2285  out_unlock:
2286 	namespace_unlock();
2287 	return err;
2288 }
2289 
__do_loopback(struct path * old_path,int recurse)2290 static struct mount *__do_loopback(struct path *old_path, int recurse)
2291 {
2292 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2293 
2294 	if (IS_MNT_UNBINDABLE(old))
2295 		return mnt;
2296 
2297 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2298 		return mnt;
2299 
2300 	if (!recurse && has_locked_children(old, old_path->dentry))
2301 		return mnt;
2302 
2303 	if (recurse)
2304 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2305 	else
2306 		mnt = clone_mnt(old, old_path->dentry, 0);
2307 
2308 	if (!IS_ERR(mnt))
2309 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2310 
2311 	return mnt;
2312 }
2313 
2314 /*
2315  * do loopback mount.
2316  */
do_loopback(struct path * path,const char * old_name,int recurse)2317 static int do_loopback(struct path *path, const char *old_name,
2318 				int recurse)
2319 {
2320 	struct path old_path;
2321 	struct mount *mnt = NULL, *parent;
2322 	struct mountpoint *mp;
2323 	int err;
2324 	if (!old_name || !*old_name)
2325 		return -EINVAL;
2326 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2327 	if (err)
2328 		return err;
2329 
2330 	err = -EINVAL;
2331 	if (mnt_ns_loop(old_path.dentry))
2332 		goto out;
2333 
2334 	mp = lock_mount(path);
2335 	if (IS_ERR(mp)) {
2336 		err = PTR_ERR(mp);
2337 		goto out;
2338 	}
2339 
2340 	parent = real_mount(path->mnt);
2341 	if (!check_mnt(parent))
2342 		goto out2;
2343 
2344 	mnt = __do_loopback(&old_path, recurse);
2345 	if (IS_ERR(mnt)) {
2346 		err = PTR_ERR(mnt);
2347 		goto out2;
2348 	}
2349 
2350 	err = graft_tree(mnt, parent, mp);
2351 	if (err) {
2352 		lock_mount_hash();
2353 		umount_tree(mnt, UMOUNT_SYNC);
2354 		unlock_mount_hash();
2355 	}
2356 out2:
2357 	unlock_mount(mp);
2358 out:
2359 	path_put(&old_path);
2360 	return err;
2361 }
2362 
open_detached_copy(struct path * path,bool recursive)2363 static struct file *open_detached_copy(struct path *path, bool recursive)
2364 {
2365 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2366 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2367 	struct mount *mnt, *p;
2368 	struct file *file;
2369 
2370 	if (IS_ERR(ns))
2371 		return ERR_CAST(ns);
2372 
2373 	namespace_lock();
2374 	mnt = __do_loopback(path, recursive);
2375 	if (IS_ERR(mnt)) {
2376 		namespace_unlock();
2377 		free_mnt_ns(ns);
2378 		return ERR_CAST(mnt);
2379 	}
2380 
2381 	lock_mount_hash();
2382 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2383 		p->mnt_ns = ns;
2384 		ns->mounts++;
2385 	}
2386 	ns->root = mnt;
2387 	list_add_tail(&ns->list, &mnt->mnt_list);
2388 	mntget(&mnt->mnt);
2389 	unlock_mount_hash();
2390 	namespace_unlock();
2391 
2392 	mntput(path->mnt);
2393 	path->mnt = &mnt->mnt;
2394 	file = dentry_open(path, O_PATH, current_cred());
2395 	if (IS_ERR(file))
2396 		dissolve_on_fput(path->mnt);
2397 	else
2398 		file->f_mode |= FMODE_NEED_UNMOUNT;
2399 	return file;
2400 }
2401 
SYSCALL_DEFINE3(open_tree,int,dfd,const char *,filename,unsigned,flags)2402 SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2403 {
2404 	struct file *file;
2405 	struct path path;
2406 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2407 	bool detached = flags & OPEN_TREE_CLONE;
2408 	int error;
2409 	int fd;
2410 
2411 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2412 
2413 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2414 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2415 		      OPEN_TREE_CLOEXEC))
2416 		return -EINVAL;
2417 
2418 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2419 		return -EINVAL;
2420 
2421 	if (flags & AT_NO_AUTOMOUNT)
2422 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2423 	if (flags & AT_SYMLINK_NOFOLLOW)
2424 		lookup_flags &= ~LOOKUP_FOLLOW;
2425 	if (flags & AT_EMPTY_PATH)
2426 		lookup_flags |= LOOKUP_EMPTY;
2427 
2428 	if (detached && !may_mount())
2429 		return -EPERM;
2430 
2431 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2432 	if (fd < 0)
2433 		return fd;
2434 
2435 	error = user_path_at(dfd, filename, lookup_flags, &path);
2436 	if (unlikely(error)) {
2437 		file = ERR_PTR(error);
2438 	} else {
2439 		if (detached)
2440 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2441 		else
2442 			file = dentry_open(&path, O_PATH, current_cred());
2443 		path_put(&path);
2444 	}
2445 	if (IS_ERR(file)) {
2446 		put_unused_fd(fd);
2447 		return PTR_ERR(file);
2448 	}
2449 	fd_install(fd, file);
2450 	return fd;
2451 }
2452 
2453 /*
2454  * Don't allow locked mount flags to be cleared.
2455  *
2456  * No locks need to be held here while testing the various MNT_LOCK
2457  * flags because those flags can never be cleared once they are set.
2458  */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)2459 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2460 {
2461 	unsigned int fl = mnt->mnt.mnt_flags;
2462 
2463 	if ((fl & MNT_LOCK_READONLY) &&
2464 	    !(mnt_flags & MNT_READONLY))
2465 		return false;
2466 
2467 	if ((fl & MNT_LOCK_NODEV) &&
2468 	    !(mnt_flags & MNT_NODEV))
2469 		return false;
2470 
2471 	if ((fl & MNT_LOCK_NOSUID) &&
2472 	    !(mnt_flags & MNT_NOSUID))
2473 		return false;
2474 
2475 	if ((fl & MNT_LOCK_NOEXEC) &&
2476 	    !(mnt_flags & MNT_NOEXEC))
2477 		return false;
2478 
2479 	if ((fl & MNT_LOCK_ATIME) &&
2480 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2481 		return false;
2482 
2483 	return true;
2484 }
2485 
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)2486 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2487 {
2488 	bool readonly_request = (mnt_flags & MNT_READONLY);
2489 
2490 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2491 		return 0;
2492 
2493 	if (readonly_request)
2494 		return mnt_make_readonly(mnt);
2495 
2496 	return __mnt_unmake_readonly(mnt);
2497 }
2498 
2499 /*
2500  * Update the user-settable attributes on a mount.  The caller must hold
2501  * sb->s_umount for writing.
2502  */
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)2503 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2504 {
2505 	lock_mount_hash();
2506 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2507 	mnt->mnt.mnt_flags = mnt_flags;
2508 	touch_mnt_namespace(mnt->mnt_ns);
2509 	unlock_mount_hash();
2510 }
2511 
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)2512 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2513 {
2514 	struct super_block *sb = mnt->mnt_sb;
2515 
2516 	if (!__mnt_is_readonly(mnt) &&
2517 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2518 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2519 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2520 		struct tm tm;
2521 
2522 		time64_to_tm(sb->s_time_max, 0, &tm);
2523 
2524 		pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2525 			sb->s_type->name,
2526 			is_mounted(mnt) ? "remounted" : "mounted",
2527 			mntpath,
2528 			tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2529 
2530 		free_page((unsigned long)buf);
2531 	}
2532 }
2533 
2534 /*
2535  * Handle reconfiguration of the mountpoint only without alteration of the
2536  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2537  * to mount(2).
2538  */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)2539 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2540 {
2541 	struct super_block *sb = path->mnt->mnt_sb;
2542 	struct mount *mnt = real_mount(path->mnt);
2543 	int ret;
2544 
2545 	if (!check_mnt(mnt))
2546 		return -EINVAL;
2547 
2548 	if (path->dentry != mnt->mnt.mnt_root)
2549 		return -EINVAL;
2550 
2551 	if (!can_change_locked_flags(mnt, mnt_flags))
2552 		return -EPERM;
2553 
2554 	down_write(&sb->s_umount);
2555 	ret = change_mount_ro_state(mnt, mnt_flags);
2556 	if (ret == 0)
2557 		set_mount_attributes(mnt, mnt_flags);
2558 	up_write(&sb->s_umount);
2559 
2560 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2561 
2562 	return ret;
2563 }
2564 
2565 /*
2566  * change filesystem flags. dir should be a physical root of filesystem.
2567  * If you've mounted a non-root directory somewhere and want to do remount
2568  * on it - tough luck.
2569  */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)2570 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2571 		      int mnt_flags, void *data)
2572 {
2573 	int err;
2574 	struct super_block *sb = path->mnt->mnt_sb;
2575 	struct mount *mnt = real_mount(path->mnt);
2576 	struct fs_context *fc;
2577 
2578 	if (!check_mnt(mnt))
2579 		return -EINVAL;
2580 
2581 	if (path->dentry != path->mnt->mnt_root)
2582 		return -EINVAL;
2583 
2584 	if (!can_change_locked_flags(mnt, mnt_flags))
2585 		return -EPERM;
2586 
2587 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2588 	if (IS_ERR(fc))
2589 		return PTR_ERR(fc);
2590 
2591 	err = parse_monolithic_mount_data(fc, data);
2592 	if (!err) {
2593 		down_write(&sb->s_umount);
2594 		err = -EPERM;
2595 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2596 			err = reconfigure_super(fc);
2597 			if (!err && sb->s_op->update_mnt_data) {
2598 				sb->s_op->update_mnt_data(mnt->mnt.data, fc);
2599 				set_mount_attributes(mnt, mnt_flags);
2600 				namespace_lock();
2601 				lock_mount_hash();
2602 				propagate_remount(mnt);
2603 				unlock_mount_hash();
2604 				namespace_unlock();
2605 			} else if (!err)
2606 				set_mount_attributes(mnt, mnt_flags);
2607 		}
2608 		up_write(&sb->s_umount);
2609 	}
2610 
2611 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2612 
2613 	put_fs_context(fc);
2614 	return err;
2615 }
2616 
tree_contains_unbindable(struct mount * mnt)2617 static inline int tree_contains_unbindable(struct mount *mnt)
2618 {
2619 	struct mount *p;
2620 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2621 		if (IS_MNT_UNBINDABLE(p))
2622 			return 1;
2623 	}
2624 	return 0;
2625 }
2626 
2627 /*
2628  * Check that there aren't references to earlier/same mount namespaces in the
2629  * specified subtree.  Such references can act as pins for mount namespaces
2630  * that aren't checked by the mount-cycle checking code, thereby allowing
2631  * cycles to be made.
2632  */
check_for_nsfs_mounts(struct mount * subtree)2633 static bool check_for_nsfs_mounts(struct mount *subtree)
2634 {
2635 	struct mount *p;
2636 	bool ret = false;
2637 
2638 	lock_mount_hash();
2639 	for (p = subtree; p; p = next_mnt(p, subtree))
2640 		if (mnt_ns_loop(p->mnt.mnt_root))
2641 			goto out;
2642 
2643 	ret = true;
2644 out:
2645 	unlock_mount_hash();
2646 	return ret;
2647 }
2648 
do_move_mount(struct path * old_path,struct path * new_path)2649 static int do_move_mount(struct path *old_path, struct path *new_path)
2650 {
2651 	struct mnt_namespace *ns;
2652 	struct mount *p;
2653 	struct mount *old;
2654 	struct mount *parent;
2655 	struct mountpoint *mp, *old_mp;
2656 	int err;
2657 	bool attached;
2658 
2659 	mp = lock_mount(new_path);
2660 	if (IS_ERR(mp))
2661 		return PTR_ERR(mp);
2662 
2663 	old = real_mount(old_path->mnt);
2664 	p = real_mount(new_path->mnt);
2665 	parent = old->mnt_parent;
2666 	attached = mnt_has_parent(old);
2667 	old_mp = old->mnt_mp;
2668 	ns = old->mnt_ns;
2669 
2670 	err = -EINVAL;
2671 	/* The mountpoint must be in our namespace. */
2672 	if (!check_mnt(p))
2673 		goto out;
2674 
2675 	/* The thing moved must be mounted... */
2676 	if (!is_mounted(&old->mnt))
2677 		goto out;
2678 
2679 	/* ... and either ours or the root of anon namespace */
2680 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2681 		goto out;
2682 
2683 	if (old->mnt.mnt_flags & MNT_LOCKED)
2684 		goto out;
2685 
2686 	if (old_path->dentry != old_path->mnt->mnt_root)
2687 		goto out;
2688 
2689 	if (d_is_dir(new_path->dentry) !=
2690 	    d_is_dir(old_path->dentry))
2691 		goto out;
2692 	/*
2693 	 * Don't move a mount residing in a shared parent.
2694 	 */
2695 	if (attached && IS_MNT_SHARED(parent))
2696 		goto out;
2697 	/*
2698 	 * Don't move a mount tree containing unbindable mounts to a destination
2699 	 * mount which is shared.
2700 	 */
2701 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2702 		goto out;
2703 	err = -ELOOP;
2704 	if (!check_for_nsfs_mounts(old))
2705 		goto out;
2706 	for (; mnt_has_parent(p); p = p->mnt_parent)
2707 		if (p == old)
2708 			goto out;
2709 
2710 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2711 				   attached);
2712 	if (err)
2713 		goto out;
2714 
2715 	/* if the mount is moved, it should no longer be expire
2716 	 * automatically */
2717 	list_del_init(&old->mnt_expire);
2718 	if (attached)
2719 		put_mountpoint(old_mp);
2720 out:
2721 	unlock_mount(mp);
2722 	if (!err) {
2723 		if (attached)
2724 			mntput_no_expire(parent);
2725 		else
2726 			free_mnt_ns(ns);
2727 	}
2728 	return err;
2729 }
2730 
do_move_mount_old(struct path * path,const char * old_name)2731 static int do_move_mount_old(struct path *path, const char *old_name)
2732 {
2733 	struct path old_path;
2734 	int err;
2735 
2736 	if (!old_name || !*old_name)
2737 		return -EINVAL;
2738 
2739 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2740 	if (err)
2741 		return err;
2742 
2743 	err = do_move_mount(&old_path, path);
2744 	path_put(&old_path);
2745 	return err;
2746 }
2747 
2748 /*
2749  * add a mount into a namespace's mount tree
2750  */
do_add_mount(struct mount * newmnt,struct path * path,int mnt_flags)2751 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2752 {
2753 	struct mountpoint *mp;
2754 	struct mount *parent;
2755 	int err;
2756 
2757 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2758 
2759 	mp = lock_mount(path);
2760 	if (IS_ERR(mp))
2761 		return PTR_ERR(mp);
2762 
2763 	parent = real_mount(path->mnt);
2764 	err = -EINVAL;
2765 	if (unlikely(!check_mnt(parent))) {
2766 		/* that's acceptable only for automounts done in private ns */
2767 		if (!(mnt_flags & MNT_SHRINKABLE))
2768 			goto unlock;
2769 		/* ... and for those we'd better have mountpoint still alive */
2770 		if (!parent->mnt_ns)
2771 			goto unlock;
2772 	}
2773 
2774 	/* Refuse the same filesystem on the same mount point */
2775 	err = -EBUSY;
2776 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2777 	    path->mnt->mnt_root == path->dentry)
2778 		goto unlock;
2779 
2780 	err = -EINVAL;
2781 	if (d_is_symlink(newmnt->mnt.mnt_root))
2782 		goto unlock;
2783 
2784 	newmnt->mnt.mnt_flags = mnt_flags;
2785 	err = graft_tree(newmnt, parent, mp);
2786 
2787 unlock:
2788 	unlock_mount(mp);
2789 	return err;
2790 }
2791 
2792 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2793 
2794 /*
2795  * Create a new mount using a superblock configuration and request it
2796  * be added to the namespace tree.
2797  */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)2798 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2799 			   unsigned int mnt_flags)
2800 {
2801 	struct vfsmount *mnt;
2802 	struct super_block *sb = fc->root->d_sb;
2803 	int error;
2804 
2805 	error = security_sb_kern_mount(sb);
2806 	if (!error && mount_too_revealing(sb, &mnt_flags))
2807 		error = -EPERM;
2808 
2809 	if (unlikely(error)) {
2810 		fc_drop_locked(fc);
2811 		return error;
2812 	}
2813 
2814 	up_write(&sb->s_umount);
2815 
2816 	mnt = vfs_create_mount(fc);
2817 	if (IS_ERR(mnt))
2818 		return PTR_ERR(mnt);
2819 
2820 	mnt_warn_timestamp_expiry(mountpoint, mnt);
2821 
2822 	error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2823 	if (error < 0)
2824 		mntput(mnt);
2825 	return error;
2826 }
2827 
2828 /*
2829  * create a new mount for userspace and request it to be added into the
2830  * namespace's tree
2831  */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)2832 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2833 			int mnt_flags, const char *name, void *data)
2834 {
2835 	struct file_system_type *type;
2836 	struct fs_context *fc;
2837 	const char *subtype = NULL;
2838 	int err = 0;
2839 
2840 	if (!fstype)
2841 		return -EINVAL;
2842 
2843 	type = get_fs_type(fstype);
2844 	if (!type)
2845 		return -ENODEV;
2846 
2847 	if (type->fs_flags & FS_HAS_SUBTYPE) {
2848 		subtype = strchr(fstype, '.');
2849 		if (subtype) {
2850 			subtype++;
2851 			if (!*subtype) {
2852 				put_filesystem(type);
2853 				return -EINVAL;
2854 			}
2855 		}
2856 	}
2857 
2858 	fc = fs_context_for_mount(type, sb_flags);
2859 	put_filesystem(type);
2860 	if (IS_ERR(fc))
2861 		return PTR_ERR(fc);
2862 
2863 	if (subtype)
2864 		err = vfs_parse_fs_string(fc, "subtype",
2865 					  subtype, strlen(subtype));
2866 	if (!err && name)
2867 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2868 	if (!err)
2869 		err = parse_monolithic_mount_data(fc, data);
2870 	if (!err && !mount_capable(fc))
2871 		err = -EPERM;
2872 	if (!err)
2873 		err = vfs_get_tree(fc);
2874 	if (!err)
2875 		err = do_new_mount_fc(fc, path, mnt_flags);
2876 
2877 	put_fs_context(fc);
2878 	return err;
2879 }
2880 
finish_automount(struct vfsmount * m,struct path * path)2881 int finish_automount(struct vfsmount *m, struct path *path)
2882 {
2883 	struct mount *mnt = real_mount(m);
2884 	int err;
2885 	/* The new mount record should have at least 2 refs to prevent it being
2886 	 * expired before we get a chance to add it
2887 	 */
2888 	BUG_ON(mnt_get_count(mnt) < 2);
2889 
2890 	if (m->mnt_sb == path->mnt->mnt_sb &&
2891 	    m->mnt_root == path->dentry) {
2892 		err = -ELOOP;
2893 		goto fail;
2894 	}
2895 
2896 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2897 	if (!err)
2898 		return 0;
2899 fail:
2900 	/* remove m from any expiration list it may be on */
2901 	if (!list_empty(&mnt->mnt_expire)) {
2902 		namespace_lock();
2903 		list_del_init(&mnt->mnt_expire);
2904 		namespace_unlock();
2905 	}
2906 	mntput(m);
2907 	mntput(m);
2908 	return err;
2909 }
2910 
2911 /**
2912  * mnt_set_expiry - Put a mount on an expiration list
2913  * @mnt: The mount to list.
2914  * @expiry_list: The list to add the mount to.
2915  */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)2916 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2917 {
2918 	namespace_lock();
2919 
2920 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2921 
2922 	namespace_unlock();
2923 }
2924 EXPORT_SYMBOL(mnt_set_expiry);
2925 
2926 /*
2927  * process a list of expirable mountpoints with the intent of discarding any
2928  * mountpoints that aren't in use and haven't been touched since last we came
2929  * here
2930  */
mark_mounts_for_expiry(struct list_head * mounts)2931 void mark_mounts_for_expiry(struct list_head *mounts)
2932 {
2933 	struct mount *mnt, *next;
2934 	LIST_HEAD(graveyard);
2935 
2936 	if (list_empty(mounts))
2937 		return;
2938 
2939 	namespace_lock();
2940 	lock_mount_hash();
2941 
2942 	/* extract from the expiration list every vfsmount that matches the
2943 	 * following criteria:
2944 	 * - only referenced by its parent vfsmount
2945 	 * - still marked for expiry (marked on the last call here; marks are
2946 	 *   cleared by mntput())
2947 	 */
2948 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2949 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2950 			propagate_mount_busy(mnt, 1))
2951 			continue;
2952 		list_move(&mnt->mnt_expire, &graveyard);
2953 	}
2954 	while (!list_empty(&graveyard)) {
2955 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2956 		touch_mnt_namespace(mnt->mnt_ns);
2957 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2958 	}
2959 	unlock_mount_hash();
2960 	namespace_unlock();
2961 }
2962 
2963 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2964 
2965 /*
2966  * Ripoff of 'select_parent()'
2967  *
2968  * search the list of submounts for a given mountpoint, and move any
2969  * shrinkable submounts to the 'graveyard' list.
2970  */
select_submounts(struct mount * parent,struct list_head * graveyard)2971 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2972 {
2973 	struct mount *this_parent = parent;
2974 	struct list_head *next;
2975 	int found = 0;
2976 
2977 repeat:
2978 	next = this_parent->mnt_mounts.next;
2979 resume:
2980 	while (next != &this_parent->mnt_mounts) {
2981 		struct list_head *tmp = next;
2982 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2983 
2984 		next = tmp->next;
2985 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2986 			continue;
2987 		/*
2988 		 * Descend a level if the d_mounts list is non-empty.
2989 		 */
2990 		if (!list_empty(&mnt->mnt_mounts)) {
2991 			this_parent = mnt;
2992 			goto repeat;
2993 		}
2994 
2995 		if (!propagate_mount_busy(mnt, 1)) {
2996 			list_move_tail(&mnt->mnt_expire, graveyard);
2997 			found++;
2998 		}
2999 	}
3000 	/*
3001 	 * All done at this level ... ascend and resume the search
3002 	 */
3003 	if (this_parent != parent) {
3004 		next = this_parent->mnt_child.next;
3005 		this_parent = this_parent->mnt_parent;
3006 		goto resume;
3007 	}
3008 	return found;
3009 }
3010 
3011 /*
3012  * process a list of expirable mountpoints with the intent of discarding any
3013  * submounts of a specific parent mountpoint
3014  *
3015  * mount_lock must be held for write
3016  */
shrink_submounts(struct mount * mnt)3017 static void shrink_submounts(struct mount *mnt)
3018 {
3019 	LIST_HEAD(graveyard);
3020 	struct mount *m;
3021 
3022 	/* extract submounts of 'mountpoint' from the expiration list */
3023 	while (select_submounts(mnt, &graveyard)) {
3024 		while (!list_empty(&graveyard)) {
3025 			m = list_first_entry(&graveyard, struct mount,
3026 						mnt_expire);
3027 			touch_mnt_namespace(m->mnt_ns);
3028 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3029 		}
3030 	}
3031 }
3032 
3033 /*
3034  * Some copy_from_user() implementations do not return the exact number of
3035  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
3036  * Note that this function differs from copy_from_user() in that it will oops
3037  * on bad values of `to', rather than returning a short copy.
3038  */
exact_copy_from_user(void * to,const void __user * from,unsigned long n)3039 static long exact_copy_from_user(void *to, const void __user * from,
3040 				 unsigned long n)
3041 {
3042 	char *t = to;
3043 	const char __user *f = from;
3044 	char c;
3045 
3046 	if (!access_ok(from, n))
3047 		return n;
3048 
3049 	while (n) {
3050 		if (__get_user(c, f)) {
3051 			memset(t, 0, n);
3052 			break;
3053 		}
3054 		*t++ = c;
3055 		f++;
3056 		n--;
3057 	}
3058 	return n;
3059 }
3060 
copy_mount_options(const void __user * data)3061 void *copy_mount_options(const void __user * data)
3062 {
3063 	int i;
3064 	unsigned long size;
3065 	char *copy;
3066 
3067 	if (!data)
3068 		return NULL;
3069 
3070 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3071 	if (!copy)
3072 		return ERR_PTR(-ENOMEM);
3073 
3074 	/* We only care that *some* data at the address the user
3075 	 * gave us is valid.  Just in case, we'll zero
3076 	 * the remainder of the page.
3077 	 */
3078 	/* copy_from_user cannot cross TASK_SIZE ! */
3079 	size = TASK_SIZE - (unsigned long)untagged_addr(data);
3080 	if (size > PAGE_SIZE)
3081 		size = PAGE_SIZE;
3082 
3083 	i = size - exact_copy_from_user(copy, data, size);
3084 	if (!i) {
3085 		kfree(copy);
3086 		return ERR_PTR(-EFAULT);
3087 	}
3088 	if (i != PAGE_SIZE)
3089 		memset(copy + i, 0, PAGE_SIZE - i);
3090 	return copy;
3091 }
3092 
copy_mount_string(const void __user * data)3093 char *copy_mount_string(const void __user *data)
3094 {
3095 	return data ? strndup_user(data, PATH_MAX) : NULL;
3096 }
3097 
3098 /*
3099  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3100  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3101  *
3102  * data is a (void *) that can point to any structure up to
3103  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3104  * information (or be NULL).
3105  *
3106  * Pre-0.97 versions of mount() didn't have a flags word.
3107  * When the flags word was introduced its top half was required
3108  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3109  * Therefore, if this magic number is present, it carries no information
3110  * and must be discarded.
3111  */
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)3112 long do_mount(const char *dev_name, const char __user *dir_name,
3113 		const char *type_page, unsigned long flags, void *data_page)
3114 {
3115 	struct path path;
3116 	unsigned int mnt_flags = 0, sb_flags;
3117 	int retval = 0;
3118 
3119 	/* Discard magic */
3120 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3121 		flags &= ~MS_MGC_MSK;
3122 
3123 	/* Basic sanity checks */
3124 	if (data_page)
3125 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3126 
3127 	if (flags & MS_NOUSER)
3128 		return -EINVAL;
3129 
3130 	/* ... and get the mountpoint */
3131 	retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3132 	if (retval)
3133 		return retval;
3134 
3135 	retval = security_sb_mount(dev_name, &path,
3136 				   type_page, flags, data_page);
3137 	if (!retval && !may_mount())
3138 		retval = -EPERM;
3139 	if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3140 		retval = -EPERM;
3141 	if (retval)
3142 		goto dput_out;
3143 
3144 	/* Default to relatime unless overriden */
3145 	if (!(flags & MS_NOATIME))
3146 		mnt_flags |= MNT_RELATIME;
3147 
3148 	/* Separate the per-mountpoint flags */
3149 	if (flags & MS_NOSUID)
3150 		mnt_flags |= MNT_NOSUID;
3151 	if (flags & MS_NODEV)
3152 		mnt_flags |= MNT_NODEV;
3153 	if (flags & MS_NOEXEC)
3154 		mnt_flags |= MNT_NOEXEC;
3155 	if (flags & MS_NOATIME)
3156 		mnt_flags |= MNT_NOATIME;
3157 	if (flags & MS_NODIRATIME)
3158 		mnt_flags |= MNT_NODIRATIME;
3159 	if (flags & MS_STRICTATIME)
3160 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3161 	if (flags & MS_RDONLY)
3162 		mnt_flags |= MNT_READONLY;
3163 
3164 	/* The default atime for remount is preservation */
3165 	if ((flags & MS_REMOUNT) &&
3166 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3167 		       MS_STRICTATIME)) == 0)) {
3168 		mnt_flags &= ~MNT_ATIME_MASK;
3169 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3170 	}
3171 
3172 	sb_flags = flags & (SB_RDONLY |
3173 			    SB_SYNCHRONOUS |
3174 			    SB_MANDLOCK |
3175 			    SB_DIRSYNC |
3176 			    SB_SILENT |
3177 			    SB_POSIXACL |
3178 			    SB_LAZYTIME |
3179 			    SB_I_VERSION);
3180 
3181 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3182 		retval = do_reconfigure_mnt(&path, mnt_flags);
3183 	else if (flags & MS_REMOUNT)
3184 		retval = do_remount(&path, flags, sb_flags, mnt_flags,
3185 				    data_page);
3186 	else if (flags & MS_BIND)
3187 		retval = do_loopback(&path, dev_name, flags & MS_REC);
3188 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3189 		retval = do_change_type(&path, flags);
3190 	else if (flags & MS_MOVE)
3191 		retval = do_move_mount_old(&path, dev_name);
3192 	else
3193 		retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3194 				      dev_name, data_page);
3195 dput_out:
3196 	path_put(&path);
3197 	return retval;
3198 }
3199 
inc_mnt_namespaces(struct user_namespace * ns)3200 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3201 {
3202 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3203 }
3204 
dec_mnt_namespaces(struct ucounts * ucounts)3205 static void dec_mnt_namespaces(struct ucounts *ucounts)
3206 {
3207 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3208 }
3209 
free_mnt_ns(struct mnt_namespace * ns)3210 static void free_mnt_ns(struct mnt_namespace *ns)
3211 {
3212 	if (!is_anon_ns(ns))
3213 		ns_free_inum(&ns->ns);
3214 	dec_mnt_namespaces(ns->ucounts);
3215 	put_user_ns(ns->user_ns);
3216 	kfree(ns);
3217 }
3218 
3219 /*
3220  * Assign a sequence number so we can detect when we attempt to bind
3221  * mount a reference to an older mount namespace into the current
3222  * mount namespace, preventing reference counting loops.  A 64bit
3223  * number incrementing at 10Ghz will take 12,427 years to wrap which
3224  * is effectively never, so we can ignore the possibility.
3225  */
3226 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3227 
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)3228 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3229 {
3230 	struct mnt_namespace *new_ns;
3231 	struct ucounts *ucounts;
3232 	int ret;
3233 
3234 	ucounts = inc_mnt_namespaces(user_ns);
3235 	if (!ucounts)
3236 		return ERR_PTR(-ENOSPC);
3237 
3238 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3239 	if (!new_ns) {
3240 		dec_mnt_namespaces(ucounts);
3241 		return ERR_PTR(-ENOMEM);
3242 	}
3243 	if (!anon) {
3244 		ret = ns_alloc_inum(&new_ns->ns);
3245 		if (ret) {
3246 			kfree(new_ns);
3247 			dec_mnt_namespaces(ucounts);
3248 			return ERR_PTR(ret);
3249 		}
3250 	}
3251 	new_ns->ns.ops = &mntns_operations;
3252 	if (!anon)
3253 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3254 	atomic_set(&new_ns->count, 1);
3255 	INIT_LIST_HEAD(&new_ns->list);
3256 	init_waitqueue_head(&new_ns->poll);
3257 	new_ns->user_ns = get_user_ns(user_ns);
3258 	new_ns->ucounts = ucounts;
3259 	return new_ns;
3260 }
3261 
3262 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)3263 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3264 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3265 {
3266 	struct mnt_namespace *new_ns;
3267 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3268 	struct mount *p, *q;
3269 	struct mount *old;
3270 	struct mount *new;
3271 	int copy_flags;
3272 
3273 	BUG_ON(!ns);
3274 
3275 	if (likely(!(flags & CLONE_NEWNS))) {
3276 		get_mnt_ns(ns);
3277 		return ns;
3278 	}
3279 
3280 	old = ns->root;
3281 
3282 	new_ns = alloc_mnt_ns(user_ns, false);
3283 	if (IS_ERR(new_ns))
3284 		return new_ns;
3285 
3286 	namespace_lock();
3287 	/* First pass: copy the tree topology */
3288 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3289 	if (user_ns != ns->user_ns)
3290 		copy_flags |= CL_SHARED_TO_SLAVE;
3291 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3292 	if (IS_ERR(new)) {
3293 		namespace_unlock();
3294 		free_mnt_ns(new_ns);
3295 		return ERR_CAST(new);
3296 	}
3297 	if (user_ns != ns->user_ns) {
3298 		lock_mount_hash();
3299 		lock_mnt_tree(new);
3300 		unlock_mount_hash();
3301 	}
3302 	new_ns->root = new;
3303 	list_add_tail(&new_ns->list, &new->mnt_list);
3304 
3305 	/*
3306 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3307 	 * as belonging to new namespace.  We have already acquired a private
3308 	 * fs_struct, so tsk->fs->lock is not needed.
3309 	 */
3310 	p = old;
3311 	q = new;
3312 	while (p) {
3313 		q->mnt_ns = new_ns;
3314 		new_ns->mounts++;
3315 		if (new_fs) {
3316 			if (&p->mnt == new_fs->root.mnt) {
3317 				new_fs->root.mnt = mntget(&q->mnt);
3318 				rootmnt = &p->mnt;
3319 			}
3320 			if (&p->mnt == new_fs->pwd.mnt) {
3321 				new_fs->pwd.mnt = mntget(&q->mnt);
3322 				pwdmnt = &p->mnt;
3323 			}
3324 		}
3325 		p = next_mnt(p, old);
3326 		q = next_mnt(q, new);
3327 		if (!q)
3328 			break;
3329 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3330 			p = next_mnt(p, old);
3331 	}
3332 	namespace_unlock();
3333 
3334 	if (rootmnt)
3335 		mntput(rootmnt);
3336 	if (pwdmnt)
3337 		mntput(pwdmnt);
3338 
3339 	return new_ns;
3340 }
3341 
mount_subtree(struct vfsmount * m,const char * name)3342 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3343 {
3344 	struct mount *mnt = real_mount(m);
3345 	struct mnt_namespace *ns;
3346 	struct super_block *s;
3347 	struct path path;
3348 	int err;
3349 
3350 	ns = alloc_mnt_ns(&init_user_ns, true);
3351 	if (IS_ERR(ns)) {
3352 		mntput(m);
3353 		return ERR_CAST(ns);
3354 	}
3355 	mnt->mnt_ns = ns;
3356 	ns->root = mnt;
3357 	ns->mounts++;
3358 	list_add(&mnt->mnt_list, &ns->list);
3359 
3360 	err = vfs_path_lookup(m->mnt_root, m,
3361 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3362 
3363 	put_mnt_ns(ns);
3364 
3365 	if (err)
3366 		return ERR_PTR(err);
3367 
3368 	/* trade a vfsmount reference for active sb one */
3369 	s = path.mnt->mnt_sb;
3370 	atomic_inc(&s->s_active);
3371 	mntput(path.mnt);
3372 	/* lock the sucker */
3373 	down_write(&s->s_umount);
3374 	/* ... and return the root of (sub)tree on it */
3375 	return path.dentry;
3376 }
3377 EXPORT_SYMBOL(mount_subtree);
3378 
ksys_mount(const char __user * dev_name,const char __user * dir_name,const char __user * type,unsigned long flags,void __user * data)3379 int ksys_mount(const char __user *dev_name, const char __user *dir_name,
3380 	       const char __user *type, unsigned long flags, void __user *data)
3381 {
3382 	int ret;
3383 	char *kernel_type;
3384 	char *kernel_dev;
3385 	void *options;
3386 
3387 	kernel_type = copy_mount_string(type);
3388 	ret = PTR_ERR(kernel_type);
3389 	if (IS_ERR(kernel_type))
3390 		goto out_type;
3391 
3392 	kernel_dev = copy_mount_string(dev_name);
3393 	ret = PTR_ERR(kernel_dev);
3394 	if (IS_ERR(kernel_dev))
3395 		goto out_dev;
3396 
3397 	options = copy_mount_options(data);
3398 	ret = PTR_ERR(options);
3399 	if (IS_ERR(options))
3400 		goto out_data;
3401 
3402 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3403 
3404 	kfree(options);
3405 out_data:
3406 	kfree(kernel_dev);
3407 out_dev:
3408 	kfree(kernel_type);
3409 out_type:
3410 	return ret;
3411 }
3412 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)3413 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3414 		char __user *, type, unsigned long, flags, void __user *, data)
3415 {
3416 	return ksys_mount(dev_name, dir_name, type, flags, data);
3417 }
3418 
3419 /*
3420  * Create a kernel mount representation for a new, prepared superblock
3421  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3422  */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)3423 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3424 		unsigned int, attr_flags)
3425 {
3426 	struct mnt_namespace *ns;
3427 	struct fs_context *fc;
3428 	struct file *file;
3429 	struct path newmount;
3430 	struct mount *mnt;
3431 	struct fd f;
3432 	unsigned int mnt_flags = 0;
3433 	long ret;
3434 
3435 	if (!may_mount())
3436 		return -EPERM;
3437 
3438 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3439 		return -EINVAL;
3440 
3441 	if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3442 			   MOUNT_ATTR_NOSUID |
3443 			   MOUNT_ATTR_NODEV |
3444 			   MOUNT_ATTR_NOEXEC |
3445 			   MOUNT_ATTR__ATIME |
3446 			   MOUNT_ATTR_NODIRATIME))
3447 		return -EINVAL;
3448 
3449 	if (attr_flags & MOUNT_ATTR_RDONLY)
3450 		mnt_flags |= MNT_READONLY;
3451 	if (attr_flags & MOUNT_ATTR_NOSUID)
3452 		mnt_flags |= MNT_NOSUID;
3453 	if (attr_flags & MOUNT_ATTR_NODEV)
3454 		mnt_flags |= MNT_NODEV;
3455 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3456 		mnt_flags |= MNT_NOEXEC;
3457 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3458 		mnt_flags |= MNT_NODIRATIME;
3459 
3460 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3461 	case MOUNT_ATTR_STRICTATIME:
3462 		break;
3463 	case MOUNT_ATTR_NOATIME:
3464 		mnt_flags |= MNT_NOATIME;
3465 		break;
3466 	case MOUNT_ATTR_RELATIME:
3467 		mnt_flags |= MNT_RELATIME;
3468 		break;
3469 	default:
3470 		return -EINVAL;
3471 	}
3472 
3473 	f = fdget(fs_fd);
3474 	if (!f.file)
3475 		return -EBADF;
3476 
3477 	ret = -EINVAL;
3478 	if (f.file->f_op != &fscontext_fops)
3479 		goto err_fsfd;
3480 
3481 	fc = f.file->private_data;
3482 
3483 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3484 	if (ret < 0)
3485 		goto err_fsfd;
3486 
3487 	/* There must be a valid superblock or we can't mount it */
3488 	ret = -EINVAL;
3489 	if (!fc->root)
3490 		goto err_unlock;
3491 
3492 	ret = -EPERM;
3493 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3494 		pr_warn("VFS: Mount too revealing\n");
3495 		goto err_unlock;
3496 	}
3497 
3498 	ret = -EBUSY;
3499 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3500 		goto err_unlock;
3501 
3502 	ret = -EPERM;
3503 	if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3504 		goto err_unlock;
3505 
3506 	newmount.mnt = vfs_create_mount(fc);
3507 	if (IS_ERR(newmount.mnt)) {
3508 		ret = PTR_ERR(newmount.mnt);
3509 		goto err_unlock;
3510 	}
3511 	newmount.dentry = dget(fc->root);
3512 	newmount.mnt->mnt_flags = mnt_flags;
3513 
3514 	/* We've done the mount bit - now move the file context into more or
3515 	 * less the same state as if we'd done an fspick().  We don't want to
3516 	 * do any memory allocation or anything like that at this point as we
3517 	 * don't want to have to handle any errors incurred.
3518 	 */
3519 	vfs_clean_context(fc);
3520 
3521 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3522 	if (IS_ERR(ns)) {
3523 		ret = PTR_ERR(ns);
3524 		goto err_path;
3525 	}
3526 	mnt = real_mount(newmount.mnt);
3527 	mnt->mnt_ns = ns;
3528 	ns->root = mnt;
3529 	ns->mounts = 1;
3530 	list_add(&mnt->mnt_list, &ns->list);
3531 	mntget(newmount.mnt);
3532 
3533 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3534 	 * it, not just simply put it.
3535 	 */
3536 	file = dentry_open(&newmount, O_PATH, fc->cred);
3537 	if (IS_ERR(file)) {
3538 		dissolve_on_fput(newmount.mnt);
3539 		ret = PTR_ERR(file);
3540 		goto err_path;
3541 	}
3542 	file->f_mode |= FMODE_NEED_UNMOUNT;
3543 
3544 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3545 	if (ret >= 0)
3546 		fd_install(ret, file);
3547 	else
3548 		fput(file);
3549 
3550 err_path:
3551 	path_put(&newmount);
3552 err_unlock:
3553 	mutex_unlock(&fc->uapi_mutex);
3554 err_fsfd:
3555 	fdput(f);
3556 	return ret;
3557 }
3558 
3559 /*
3560  * Move a mount from one place to another.  In combination with
3561  * fsopen()/fsmount() this is used to install a new mount and in combination
3562  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3563  * a mount subtree.
3564  *
3565  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3566  */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char *,from_pathname,int,to_dfd,const char *,to_pathname,unsigned int,flags)3567 SYSCALL_DEFINE5(move_mount,
3568 		int, from_dfd, const char *, from_pathname,
3569 		int, to_dfd, const char *, to_pathname,
3570 		unsigned int, flags)
3571 {
3572 	struct path from_path, to_path;
3573 	unsigned int lflags;
3574 	int ret = 0;
3575 
3576 	if (!may_mount())
3577 		return -EPERM;
3578 
3579 	if (flags & ~MOVE_MOUNT__MASK)
3580 		return -EINVAL;
3581 
3582 	/* If someone gives a pathname, they aren't permitted to move
3583 	 * from an fd that requires unmount as we can't get at the flag
3584 	 * to clear it afterwards.
3585 	 */
3586 	lflags = 0;
3587 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3588 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3589 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3590 
3591 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3592 	if (ret < 0)
3593 		return ret;
3594 
3595 	lflags = 0;
3596 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3597 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3598 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3599 
3600 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3601 	if (ret < 0)
3602 		goto out_from;
3603 
3604 	ret = security_move_mount(&from_path, &to_path);
3605 	if (ret < 0)
3606 		goto out_to;
3607 
3608 	ret = do_move_mount(&from_path, &to_path);
3609 
3610 out_to:
3611 	path_put(&to_path);
3612 out_from:
3613 	path_put(&from_path);
3614 	return ret;
3615 }
3616 
3617 /*
3618  * Return true if path is reachable from root
3619  *
3620  * namespace_sem or mount_lock is held
3621  */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)3622 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3623 			 const struct path *root)
3624 {
3625 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3626 		dentry = mnt->mnt_mountpoint;
3627 		mnt = mnt->mnt_parent;
3628 	}
3629 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3630 }
3631 
path_is_under(const struct path * path1,const struct path * path2)3632 bool path_is_under(const struct path *path1, const struct path *path2)
3633 {
3634 	bool res;
3635 	read_seqlock_excl(&mount_lock);
3636 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3637 	read_sequnlock_excl(&mount_lock);
3638 	return res;
3639 }
3640 EXPORT_SYMBOL(path_is_under);
3641 
3642 /*
3643  * pivot_root Semantics:
3644  * Moves the root file system of the current process to the directory put_old,
3645  * makes new_root as the new root file system of the current process, and sets
3646  * root/cwd of all processes which had them on the current root to new_root.
3647  *
3648  * Restrictions:
3649  * The new_root and put_old must be directories, and  must not be on the
3650  * same file  system as the current process root. The put_old  must  be
3651  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3652  * pointed to by put_old must yield the same directory as new_root. No other
3653  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3654  *
3655  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3656  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3657  * in this situation.
3658  *
3659  * Notes:
3660  *  - we don't move root/cwd if they are not at the root (reason: if something
3661  *    cared enough to change them, it's probably wrong to force them elsewhere)
3662  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3663  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3664  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3665  *    first.
3666  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)3667 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3668 		const char __user *, put_old)
3669 {
3670 	struct path new, old, root;
3671 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3672 	struct mountpoint *old_mp, *root_mp;
3673 	int error;
3674 
3675 	if (!may_mount())
3676 		return -EPERM;
3677 
3678 	error = user_path_at(AT_FDCWD, new_root,
3679 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3680 	if (error)
3681 		goto out0;
3682 
3683 	error = user_path_at(AT_FDCWD, put_old,
3684 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3685 	if (error)
3686 		goto out1;
3687 
3688 	error = security_sb_pivotroot(&old, &new);
3689 	if (error)
3690 		goto out2;
3691 
3692 	get_fs_root(current->fs, &root);
3693 	old_mp = lock_mount(&old);
3694 	error = PTR_ERR(old_mp);
3695 	if (IS_ERR(old_mp))
3696 		goto out3;
3697 
3698 	error = -EINVAL;
3699 	new_mnt = real_mount(new.mnt);
3700 	root_mnt = real_mount(root.mnt);
3701 	old_mnt = real_mount(old.mnt);
3702 	ex_parent = new_mnt->mnt_parent;
3703 	root_parent = root_mnt->mnt_parent;
3704 	if (IS_MNT_SHARED(old_mnt) ||
3705 		IS_MNT_SHARED(ex_parent) ||
3706 		IS_MNT_SHARED(root_parent))
3707 		goto out4;
3708 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3709 		goto out4;
3710 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3711 		goto out4;
3712 	error = -ENOENT;
3713 	if (d_unlinked(new.dentry))
3714 		goto out4;
3715 	error = -EBUSY;
3716 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3717 		goto out4; /* loop, on the same file system  */
3718 	error = -EINVAL;
3719 	if (root.mnt->mnt_root != root.dentry)
3720 		goto out4; /* not a mountpoint */
3721 	if (!mnt_has_parent(root_mnt))
3722 		goto out4; /* not attached */
3723 	if (new.mnt->mnt_root != new.dentry)
3724 		goto out4; /* not a mountpoint */
3725 	if (!mnt_has_parent(new_mnt))
3726 		goto out4; /* not attached */
3727 	/* make sure we can reach put_old from new_root */
3728 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3729 		goto out4;
3730 	/* make certain new is below the root */
3731 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3732 		goto out4;
3733 	lock_mount_hash();
3734 	umount_mnt(new_mnt);
3735 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3736 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3737 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3738 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3739 	}
3740 	/* mount old root on put_old */
3741 	attach_mnt(root_mnt, old_mnt, old_mp);
3742 	/* mount new_root on / */
3743 	attach_mnt(new_mnt, root_parent, root_mp);
3744 	mnt_add_count(root_parent, -1);
3745 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3746 	/* A moved mount should not expire automatically */
3747 	list_del_init(&new_mnt->mnt_expire);
3748 	put_mountpoint(root_mp);
3749 	unlock_mount_hash();
3750 	chroot_fs_refs(&root, &new);
3751 	error = 0;
3752 out4:
3753 	unlock_mount(old_mp);
3754 	if (!error)
3755 		mntput_no_expire(ex_parent);
3756 out3:
3757 	path_put(&root);
3758 out2:
3759 	path_put(&old);
3760 out1:
3761 	path_put(&new);
3762 out0:
3763 	return error;
3764 }
3765 
init_mount_tree(void)3766 static void __init init_mount_tree(void)
3767 {
3768 	struct vfsmount *mnt;
3769 	struct mount *m;
3770 	struct mnt_namespace *ns;
3771 	struct path root;
3772 
3773 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3774 	if (IS_ERR(mnt))
3775 		panic("Can't create rootfs");
3776 
3777 	ns = alloc_mnt_ns(&init_user_ns, false);
3778 	if (IS_ERR(ns))
3779 		panic("Can't allocate initial namespace");
3780 	m = real_mount(mnt);
3781 	m->mnt_ns = ns;
3782 	ns->root = m;
3783 	ns->mounts = 1;
3784 	list_add(&m->mnt_list, &ns->list);
3785 	init_task.nsproxy->mnt_ns = ns;
3786 	get_mnt_ns(ns);
3787 
3788 	root.mnt = mnt;
3789 	root.dentry = mnt->mnt_root;
3790 	mnt->mnt_flags |= MNT_LOCKED;
3791 
3792 	set_fs_pwd(current->fs, &root);
3793 	set_fs_root(current->fs, &root);
3794 }
3795 
mnt_init(void)3796 void __init mnt_init(void)
3797 {
3798 	int err;
3799 
3800 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3801 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3802 
3803 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3804 				sizeof(struct hlist_head),
3805 				mhash_entries, 19,
3806 				HASH_ZERO,
3807 				&m_hash_shift, &m_hash_mask, 0, 0);
3808 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3809 				sizeof(struct hlist_head),
3810 				mphash_entries, 19,
3811 				HASH_ZERO,
3812 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3813 
3814 	if (!mount_hashtable || !mountpoint_hashtable)
3815 		panic("Failed to allocate mount hash table\n");
3816 
3817 	kernfs_init();
3818 
3819 	err = sysfs_init();
3820 	if (err)
3821 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3822 			__func__, err);
3823 	fs_kobj = kobject_create_and_add("fs", NULL);
3824 	if (!fs_kobj)
3825 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3826 	shmem_init();
3827 	init_rootfs();
3828 	init_mount_tree();
3829 }
3830 
put_mnt_ns(struct mnt_namespace * ns)3831 void put_mnt_ns(struct mnt_namespace *ns)
3832 {
3833 	if (!atomic_dec_and_test(&ns->count))
3834 		return;
3835 	drop_collected_mounts(&ns->root->mnt);
3836 	free_mnt_ns(ns);
3837 }
3838 
kern_mount(struct file_system_type * type)3839 struct vfsmount *kern_mount(struct file_system_type *type)
3840 {
3841 	struct vfsmount *mnt;
3842 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3843 	if (!IS_ERR(mnt)) {
3844 		/*
3845 		 * it is a longterm mount, don't release mnt until
3846 		 * we unmount before file sys is unregistered
3847 		*/
3848 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3849 	}
3850 	return mnt;
3851 }
3852 EXPORT_SYMBOL_GPL(kern_mount);
3853 
kern_unmount(struct vfsmount * mnt)3854 void kern_unmount(struct vfsmount *mnt)
3855 {
3856 	/* release long term mount so mount point can be released */
3857 	if (!IS_ERR_OR_NULL(mnt)) {
3858 		real_mount(mnt)->mnt_ns = NULL;
3859 		synchronize_rcu();	/* yecchhh... */
3860 		mntput(mnt);
3861 	}
3862 }
3863 EXPORT_SYMBOL(kern_unmount);
3864 
our_mnt(struct vfsmount * mnt)3865 bool our_mnt(struct vfsmount *mnt)
3866 {
3867 	return check_mnt(real_mount(mnt));
3868 }
3869 
current_chrooted(void)3870 bool current_chrooted(void)
3871 {
3872 	/* Does the current process have a non-standard root */
3873 	struct path ns_root;
3874 	struct path fs_root;
3875 	bool chrooted;
3876 
3877 	/* Find the namespace root */
3878 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3879 	ns_root.dentry = ns_root.mnt->mnt_root;
3880 	path_get(&ns_root);
3881 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3882 		;
3883 
3884 	get_fs_root(current->fs, &fs_root);
3885 
3886 	chrooted = !path_equal(&fs_root, &ns_root);
3887 
3888 	path_put(&fs_root);
3889 	path_put(&ns_root);
3890 
3891 	return chrooted;
3892 }
3893 
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)3894 static bool mnt_already_visible(struct mnt_namespace *ns,
3895 				const struct super_block *sb,
3896 				int *new_mnt_flags)
3897 {
3898 	int new_flags = *new_mnt_flags;
3899 	struct mount *mnt;
3900 	bool visible = false;
3901 
3902 	down_read(&namespace_sem);
3903 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3904 		struct mount *child;
3905 		int mnt_flags;
3906 
3907 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3908 			continue;
3909 
3910 		/* This mount is not fully visible if it's root directory
3911 		 * is not the root directory of the filesystem.
3912 		 */
3913 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3914 			continue;
3915 
3916 		/* A local view of the mount flags */
3917 		mnt_flags = mnt->mnt.mnt_flags;
3918 
3919 		/* Don't miss readonly hidden in the superblock flags */
3920 		if (sb_rdonly(mnt->mnt.mnt_sb))
3921 			mnt_flags |= MNT_LOCK_READONLY;
3922 
3923 		/* Verify the mount flags are equal to or more permissive
3924 		 * than the proposed new mount.
3925 		 */
3926 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3927 		    !(new_flags & MNT_READONLY))
3928 			continue;
3929 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3930 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3931 			continue;
3932 
3933 		/* This mount is not fully visible if there are any
3934 		 * locked child mounts that cover anything except for
3935 		 * empty directories.
3936 		 */
3937 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3938 			struct inode *inode = child->mnt_mountpoint->d_inode;
3939 			/* Only worry about locked mounts */
3940 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3941 				continue;
3942 			/* Is the directory permanetly empty? */
3943 			if (!is_empty_dir_inode(inode))
3944 				goto next;
3945 		}
3946 		/* Preserve the locked attributes */
3947 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3948 					       MNT_LOCK_ATIME);
3949 		visible = true;
3950 		goto found;
3951 	next:	;
3952 	}
3953 found:
3954 	up_read(&namespace_sem);
3955 	return visible;
3956 }
3957 
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)3958 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3959 {
3960 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3961 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3962 	unsigned long s_iflags;
3963 
3964 	if (ns->user_ns == &init_user_ns)
3965 		return false;
3966 
3967 	/* Can this filesystem be too revealing? */
3968 	s_iflags = sb->s_iflags;
3969 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3970 		return false;
3971 
3972 	if ((s_iflags & required_iflags) != required_iflags) {
3973 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3974 			  required_iflags);
3975 		return true;
3976 	}
3977 
3978 	return !mnt_already_visible(ns, sb, new_mnt_flags);
3979 }
3980 
mnt_may_suid(struct vfsmount * mnt)3981 bool mnt_may_suid(struct vfsmount *mnt)
3982 {
3983 	/*
3984 	 * Foreign mounts (accessed via fchdir or through /proc
3985 	 * symlinks) are always treated as if they are nosuid.  This
3986 	 * prevents namespaces from trusting potentially unsafe
3987 	 * suid/sgid bits, file caps, or security labels that originate
3988 	 * in other namespaces.
3989 	 */
3990 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3991 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3992 }
3993 
mntns_get(struct task_struct * task)3994 static struct ns_common *mntns_get(struct task_struct *task)
3995 {
3996 	struct ns_common *ns = NULL;
3997 	struct nsproxy *nsproxy;
3998 
3999 	task_lock(task);
4000 	nsproxy = task->nsproxy;
4001 	if (nsproxy) {
4002 		ns = &nsproxy->mnt_ns->ns;
4003 		get_mnt_ns(to_mnt_ns(ns));
4004 	}
4005 	task_unlock(task);
4006 
4007 	return ns;
4008 }
4009 
mntns_put(struct ns_common * ns)4010 static void mntns_put(struct ns_common *ns)
4011 {
4012 	put_mnt_ns(to_mnt_ns(ns));
4013 }
4014 
mntns_install(struct nsproxy * nsproxy,struct ns_common * ns)4015 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
4016 {
4017 	struct fs_struct *fs = current->fs;
4018 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4019 	struct path root;
4020 	int err;
4021 
4022 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4023 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
4024 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
4025 		return -EPERM;
4026 
4027 	if (is_anon_ns(mnt_ns))
4028 		return -EINVAL;
4029 
4030 	if (fs->users != 1)
4031 		return -EINVAL;
4032 
4033 	get_mnt_ns(mnt_ns);
4034 	old_mnt_ns = nsproxy->mnt_ns;
4035 	nsproxy->mnt_ns = mnt_ns;
4036 
4037 	/* Find the root */
4038 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4039 				"/", LOOKUP_DOWN, &root);
4040 	if (err) {
4041 		/* revert to old namespace */
4042 		nsproxy->mnt_ns = old_mnt_ns;
4043 		put_mnt_ns(mnt_ns);
4044 		return err;
4045 	}
4046 
4047 	put_mnt_ns(old_mnt_ns);
4048 
4049 	/* Update the pwd and root */
4050 	set_fs_pwd(fs, &root);
4051 	set_fs_root(fs, &root);
4052 
4053 	path_put(&root);
4054 	return 0;
4055 }
4056 
mntns_owner(struct ns_common * ns)4057 static struct user_namespace *mntns_owner(struct ns_common *ns)
4058 {
4059 	return to_mnt_ns(ns)->user_ns;
4060 }
4061 
4062 const struct proc_ns_operations mntns_operations = {
4063 	.name		= "mnt",
4064 	.type		= CLONE_NEWNS,
4065 	.get		= mntns_get,
4066 	.put		= mntns_put,
4067 	.install	= mntns_install,
4068 	.owner		= mntns_owner,
4069 };
4070