• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3   */
4  
5  #include <linux/time.h>
6  #include <linux/slab.h>
7  #include <linux/string.h>
8  #include "reiserfs.h"
9  #include <linux/buffer_head.h>
10  
11  /*
12   * To make any changes in the tree we find a node that contains item
13   * to be changed/deleted or position in the node we insert a new item
14   * to. We call this node S. To do balancing we need to decide what we
15   * will shift to left/right neighbor, or to a new node, where new item
16   * will be etc. To make this analysis simpler we build virtual
17   * node. Virtual node is an array of items, that will replace items of
18   * node S. (For instance if we are going to delete an item, virtual
19   * node does not contain it). Virtual node keeps information about
20   * item sizes and types, mergeability of first and last items, sizes
21   * of all entries in directory item. We use this array of items when
22   * calculating what we can shift to neighbors and how many nodes we
23   * have to have if we do not any shiftings, if we shift to left/right
24   * neighbor or to both.
25   */
26  
27  /*
28   * Takes item number in virtual node, returns number of item
29   * that it has in source buffer
30   */
old_item_num(int new_num,int affected_item_num,int mode)31  static inline int old_item_num(int new_num, int affected_item_num, int mode)
32  {
33  	if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
34  		return new_num;
35  
36  	if (mode == M_INSERT) {
37  
38  		RFALSE(new_num == 0,
39  		       "vs-8005: for INSERT mode and item number of inserted item");
40  
41  		return new_num - 1;
42  	}
43  
44  	RFALSE(mode != M_DELETE,
45  	       "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'",
46  	       mode);
47  	/* delete mode */
48  	return new_num + 1;
49  }
50  
create_virtual_node(struct tree_balance * tb,int h)51  static void create_virtual_node(struct tree_balance *tb, int h)
52  {
53  	struct item_head *ih;
54  	struct virtual_node *vn = tb->tb_vn;
55  	int new_num;
56  	struct buffer_head *Sh;	/* this comes from tb->S[h] */
57  
58  	Sh = PATH_H_PBUFFER(tb->tb_path, h);
59  
60  	/* size of changed node */
61  	vn->vn_size =
62  	    MAX_CHILD_SIZE(Sh) - B_FREE_SPACE(Sh) + tb->insert_size[h];
63  
64  	/* for internal nodes array if virtual items is not created */
65  	if (h) {
66  		vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE);
67  		return;
68  	}
69  
70  	/* number of items in virtual node  */
71  	vn->vn_nr_item =
72  	    B_NR_ITEMS(Sh) + ((vn->vn_mode == M_INSERT) ? 1 : 0) -
73  	    ((vn->vn_mode == M_DELETE) ? 1 : 0);
74  
75  	/* first virtual item */
76  	vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1);
77  	memset(vn->vn_vi, 0, vn->vn_nr_item * sizeof(struct virtual_item));
78  	vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
79  
80  	/* first item in the node */
81  	ih = item_head(Sh, 0);
82  
83  	/* define the mergeability for 0-th item (if it is not being deleted) */
84  	if (op_is_left_mergeable(&ih->ih_key, Sh->b_size)
85  	    && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
86  		vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
87  
88  	/*
89  	 * go through all items that remain in the virtual
90  	 * node (except for the new (inserted) one)
91  	 */
92  	for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
93  		int j;
94  		struct virtual_item *vi = vn->vn_vi + new_num;
95  		int is_affected =
96  		    ((new_num != vn->vn_affected_item_num) ? 0 : 1);
97  
98  		if (is_affected && vn->vn_mode == M_INSERT)
99  			continue;
100  
101  		/* get item number in source node */
102  		j = old_item_num(new_num, vn->vn_affected_item_num,
103  				 vn->vn_mode);
104  
105  		vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
106  		vi->vi_ih = ih + j;
107  		vi->vi_item = ih_item_body(Sh, ih + j);
108  		vi->vi_uarea = vn->vn_free_ptr;
109  
110  		/*
111  		 * FIXME: there is no check that item operation did not
112  		 * consume too much memory
113  		 */
114  		vn->vn_free_ptr +=
115  		    op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
116  		if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
117  			reiserfs_panic(tb->tb_sb, "vs-8030",
118  				       "virtual node space consumed");
119  
120  		if (!is_affected)
121  			/* this is not being changed */
122  			continue;
123  
124  		if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
125  			vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
126  			/* pointer to data which is going to be pasted */
127  			vi->vi_new_data = vn->vn_data;
128  		}
129  	}
130  
131  	/* virtual inserted item is not defined yet */
132  	if (vn->vn_mode == M_INSERT) {
133  		struct virtual_item *vi = vn->vn_vi + vn->vn_affected_item_num;
134  
135  		RFALSE(vn->vn_ins_ih == NULL,
136  		       "vs-8040: item header of inserted item is not specified");
137  		vi->vi_item_len = tb->insert_size[0];
138  		vi->vi_ih = vn->vn_ins_ih;
139  		vi->vi_item = vn->vn_data;
140  		vi->vi_uarea = vn->vn_free_ptr;
141  
142  		op_create_vi(vn, vi, 0 /*not pasted or cut */ ,
143  			     tb->insert_size[0]);
144  	}
145  
146  	/*
147  	 * set right merge flag we take right delimiting key and
148  	 * check whether it is a mergeable item
149  	 */
150  	if (tb->CFR[0]) {
151  		struct reiserfs_key *key;
152  
153  		key = internal_key(tb->CFR[0], tb->rkey[0]);
154  		if (op_is_left_mergeable(key, Sh->b_size)
155  		    && (vn->vn_mode != M_DELETE
156  			|| vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
157  			vn->vn_vi[vn->vn_nr_item - 1].vi_type |=
158  			    VI_TYPE_RIGHT_MERGEABLE;
159  
160  #ifdef CONFIG_REISERFS_CHECK
161  		if (op_is_left_mergeable(key, Sh->b_size) &&
162  		    !(vn->vn_mode != M_DELETE
163  		      || vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
164  			/*
165  			 * we delete last item and it could be merged
166  			 * with right neighbor's first item
167  			 */
168  			if (!
169  			    (B_NR_ITEMS(Sh) == 1
170  			     && is_direntry_le_ih(item_head(Sh, 0))
171  			     && ih_entry_count(item_head(Sh, 0)) == 1)) {
172  				/*
173  				 * node contains more than 1 item, or item
174  				 * is not directory item, or this item
175  				 * contains more than 1 entry
176  				 */
177  				print_block(Sh, 0, -1, -1);
178  				reiserfs_panic(tb->tb_sb, "vs-8045",
179  					       "rdkey %k, affected item==%d "
180  					       "(mode==%c) Must be %c",
181  					       key, vn->vn_affected_item_num,
182  					       vn->vn_mode, M_DELETE);
183  			}
184  		}
185  #endif
186  
187  	}
188  }
189  
190  /*
191   * Using virtual node check, how many items can be
192   * shifted to left neighbor
193   */
check_left(struct tree_balance * tb,int h,int cur_free)194  static void check_left(struct tree_balance *tb, int h, int cur_free)
195  {
196  	int i;
197  	struct virtual_node *vn = tb->tb_vn;
198  	struct virtual_item *vi;
199  	int d_size, ih_size;
200  
201  	RFALSE(cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free);
202  
203  	/* internal level */
204  	if (h > 0) {
205  		tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
206  		return;
207  	}
208  
209  	/* leaf level */
210  
211  	if (!cur_free || !vn->vn_nr_item) {
212  		/* no free space or nothing to move */
213  		tb->lnum[h] = 0;
214  		tb->lbytes = -1;
215  		return;
216  	}
217  
218  	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
219  	       "vs-8055: parent does not exist or invalid");
220  
221  	vi = vn->vn_vi;
222  	if ((unsigned int)cur_free >=
223  	    (vn->vn_size -
224  	     ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) {
225  		/* all contents of S[0] fits into L[0] */
226  
227  		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
228  		       "vs-8055: invalid mode or balance condition failed");
229  
230  		tb->lnum[0] = vn->vn_nr_item;
231  		tb->lbytes = -1;
232  		return;
233  	}
234  
235  	d_size = 0, ih_size = IH_SIZE;
236  
237  	/* first item may be merge with last item in left neighbor */
238  	if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE)
239  		d_size = -((int)IH_SIZE), ih_size = 0;
240  
241  	tb->lnum[0] = 0;
242  	for (i = 0; i < vn->vn_nr_item;
243  	     i++, ih_size = IH_SIZE, d_size = 0, vi++) {
244  		d_size += vi->vi_item_len;
245  		if (cur_free >= d_size) {
246  			/* the item can be shifted entirely */
247  			cur_free -= d_size;
248  			tb->lnum[0]++;
249  			continue;
250  		}
251  
252  		/* the item cannot be shifted entirely, try to split it */
253  		/*
254  		 * check whether L[0] can hold ih and at least one byte
255  		 * of the item body
256  		 */
257  
258  		/* cannot shift even a part of the current item */
259  		if (cur_free <= ih_size) {
260  			tb->lbytes = -1;
261  			return;
262  		}
263  		cur_free -= ih_size;
264  
265  		tb->lbytes = op_check_left(vi, cur_free, 0, 0);
266  		if (tb->lbytes != -1)
267  			/* count partially shifted item */
268  			tb->lnum[0]++;
269  
270  		break;
271  	}
272  
273  	return;
274  }
275  
276  /*
277   * Using virtual node check, how many items can be
278   * shifted to right neighbor
279   */
check_right(struct tree_balance * tb,int h,int cur_free)280  static void check_right(struct tree_balance *tb, int h, int cur_free)
281  {
282  	int i;
283  	struct virtual_node *vn = tb->tb_vn;
284  	struct virtual_item *vi;
285  	int d_size, ih_size;
286  
287  	RFALSE(cur_free < 0, "vs-8070: cur_free < 0");
288  
289  	/* internal level */
290  	if (h > 0) {
291  		tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE);
292  		return;
293  	}
294  
295  	/* leaf level */
296  
297  	if (!cur_free || !vn->vn_nr_item) {
298  		/* no free space  */
299  		tb->rnum[h] = 0;
300  		tb->rbytes = -1;
301  		return;
302  	}
303  
304  	RFALSE(!PATH_H_PPARENT(tb->tb_path, 0),
305  	       "vs-8075: parent does not exist or invalid");
306  
307  	vi = vn->vn_vi + vn->vn_nr_item - 1;
308  	if ((unsigned int)cur_free >=
309  	    (vn->vn_size -
310  	     ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) {
311  		/* all contents of S[0] fits into R[0] */
312  
313  		RFALSE(vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE,
314  		       "vs-8080: invalid mode or balance condition failed");
315  
316  		tb->rnum[h] = vn->vn_nr_item;
317  		tb->rbytes = -1;
318  		return;
319  	}
320  
321  	d_size = 0, ih_size = IH_SIZE;
322  
323  	/* last item may be merge with first item in right neighbor */
324  	if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE)
325  		d_size = -(int)IH_SIZE, ih_size = 0;
326  
327  	tb->rnum[0] = 0;
328  	for (i = vn->vn_nr_item - 1; i >= 0;
329  	     i--, d_size = 0, ih_size = IH_SIZE, vi--) {
330  		d_size += vi->vi_item_len;
331  		if (cur_free >= d_size) {
332  			/* the item can be shifted entirely */
333  			cur_free -= d_size;
334  			tb->rnum[0]++;
335  			continue;
336  		}
337  
338  		/*
339  		 * check whether R[0] can hold ih and at least one
340  		 * byte of the item body
341  		 */
342  
343  		/* cannot shift even a part of the current item */
344  		if (cur_free <= ih_size) {
345  			tb->rbytes = -1;
346  			return;
347  		}
348  
349  		/*
350  		 * R[0] can hold the header of the item and at least
351  		 * one byte of its body
352  		 */
353  		cur_free -= ih_size;	/* cur_free is still > 0 */
354  
355  		tb->rbytes = op_check_right(vi, cur_free);
356  		if (tb->rbytes != -1)
357  			/* count partially shifted item */
358  			tb->rnum[0]++;
359  
360  		break;
361  	}
362  
363  	return;
364  }
365  
366  /*
367   * from - number of items, which are shifted to left neighbor entirely
368   * to - number of item, which are shifted to right neighbor entirely
369   * from_bytes - number of bytes of boundary item (or directory entries)
370   *              which are shifted to left neighbor
371   * to_bytes - number of bytes of boundary item (or directory entries)
372   *            which are shifted to right neighbor
373   */
get_num_ver(int mode,struct tree_balance * tb,int h,int from,int from_bytes,int to,int to_bytes,short * snum012,int flow)374  static int get_num_ver(int mode, struct tree_balance *tb, int h,
375  		       int from, int from_bytes,
376  		       int to, int to_bytes, short *snum012, int flow)
377  {
378  	int i;
379  	int units;
380  	struct virtual_node *vn = tb->tb_vn;
381  	int total_node_size, max_node_size, current_item_size;
382  	int needed_nodes;
383  
384  	/* position of item we start filling node from */
385  	int start_item;
386  
387  	/* position of item we finish filling node by */
388  	int end_item;
389  
390  	/*
391  	 * number of first bytes (entries for directory) of start_item-th item
392  	 * we do not include into node that is being filled
393  	 */
394  	int start_bytes;
395  
396  	/*
397  	 * number of last bytes (entries for directory) of end_item-th item
398  	 * we do node include into node that is being filled
399  	 */
400  	int end_bytes;
401  
402  	/*
403  	 * these are positions in virtual item of items, that are split
404  	 * between S[0] and S1new and S1new and S2new
405  	 */
406  	int split_item_positions[2];
407  
408  	split_item_positions[0] = -1;
409  	split_item_positions[1] = -1;
410  
411  	/*
412  	 * We only create additional nodes if we are in insert or paste mode
413  	 * or we are in replace mode at the internal level. If h is 0 and
414  	 * the mode is M_REPLACE then in fix_nodes we change the mode to
415  	 * paste or insert before we get here in the code.
416  	 */
417  	RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
418  	       "vs-8100: insert_size < 0 in overflow");
419  
420  	max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
421  
422  	/*
423  	 * snum012 [0-2] - number of items, that lay
424  	 * to S[0], first new node and second new node
425  	 */
426  	snum012[3] = -1;	/* s1bytes */
427  	snum012[4] = -1;	/* s2bytes */
428  
429  	/* internal level */
430  	if (h > 0) {
431  		i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE);
432  		if (i == max_node_size)
433  			return 1;
434  		return (i / max_node_size + 1);
435  	}
436  
437  	/* leaf level */
438  	needed_nodes = 1;
439  	total_node_size = 0;
440  
441  	/* start from 'from'-th item */
442  	start_item = from;
443  	/* skip its first 'start_bytes' units */
444  	start_bytes = ((from_bytes != -1) ? from_bytes : 0);
445  
446  	/* last included item is the 'end_item'-th one */
447  	end_item = vn->vn_nr_item - to - 1;
448  	/* do not count last 'end_bytes' units of 'end_item'-th item */
449  	end_bytes = (to_bytes != -1) ? to_bytes : 0;
450  
451  	/*
452  	 * go through all item beginning from the start_item-th item
453  	 * and ending by the end_item-th item. Do not count first
454  	 * 'start_bytes' units of 'start_item'-th item and last
455  	 * 'end_bytes' of 'end_item'-th item
456  	 */
457  	for (i = start_item; i <= end_item; i++) {
458  		struct virtual_item *vi = vn->vn_vi + i;
459  		int skip_from_end = ((i == end_item) ? end_bytes : 0);
460  
461  		RFALSE(needed_nodes > 3, "vs-8105: too many nodes are needed");
462  
463  		/* get size of current item */
464  		current_item_size = vi->vi_item_len;
465  
466  		/*
467  		 * do not take in calculation head part (from_bytes)
468  		 * of from-th item
469  		 */
470  		current_item_size -=
471  		    op_part_size(vi, 0 /*from start */ , start_bytes);
472  
473  		/* do not take in calculation tail part of last item */
474  		current_item_size -=
475  		    op_part_size(vi, 1 /*from end */ , skip_from_end);
476  
477  		/* if item fits into current node entierly */
478  		if (total_node_size + current_item_size <= max_node_size) {
479  			snum012[needed_nodes - 1]++;
480  			total_node_size += current_item_size;
481  			start_bytes = 0;
482  			continue;
483  		}
484  
485  		/*
486  		 * virtual item length is longer, than max size of item in
487  		 * a node. It is impossible for direct item
488  		 */
489  		if (current_item_size > max_node_size) {
490  			RFALSE(is_direct_le_ih(vi->vi_ih),
491  			       "vs-8110: "
492  			       "direct item length is %d. It can not be longer than %d",
493  			       current_item_size, max_node_size);
494  			/* we will try to split it */
495  			flow = 1;
496  		}
497  
498  		/* as we do not split items, take new node and continue */
499  		if (!flow) {
500  			needed_nodes++;
501  			i--;
502  			total_node_size = 0;
503  			continue;
504  		}
505  
506  		/*
507  		 * calculate number of item units which fit into node being
508  		 * filled
509  		 */
510  		{
511  			int free_space;
512  
513  			free_space = max_node_size - total_node_size - IH_SIZE;
514  			units =
515  			    op_check_left(vi, free_space, start_bytes,
516  					  skip_from_end);
517  			/*
518  			 * nothing fits into current node, take new
519  			 * node and continue
520  			 */
521  			if (units == -1) {
522  				needed_nodes++, i--, total_node_size = 0;
523  				continue;
524  			}
525  		}
526  
527  		/* something fits into the current node */
528  		start_bytes += units;
529  		snum012[needed_nodes - 1 + 3] = units;
530  
531  		if (needed_nodes > 2)
532  			reiserfs_warning(tb->tb_sb, "vs-8111",
533  					 "split_item_position is out of range");
534  		snum012[needed_nodes - 1]++;
535  		split_item_positions[needed_nodes - 1] = i;
536  		needed_nodes++;
537  		/* continue from the same item with start_bytes != -1 */
538  		start_item = i;
539  		i--;
540  		total_node_size = 0;
541  	}
542  
543  	/*
544  	 * sum012[4] (if it is not -1) contains number of units of which
545  	 * are to be in S1new, snum012[3] - to be in S0. They are supposed
546  	 * to be S1bytes and S2bytes correspondingly, so recalculate
547  	 */
548  	if (snum012[4] > 0) {
549  		int split_item_num;
550  		int bytes_to_r, bytes_to_l;
551  		int bytes_to_S1new;
552  
553  		split_item_num = split_item_positions[1];
554  		bytes_to_l =
555  		    ((from == split_item_num
556  		      && from_bytes != -1) ? from_bytes : 0);
557  		bytes_to_r =
558  		    ((end_item == split_item_num
559  		      && end_bytes != -1) ? end_bytes : 0);
560  		bytes_to_S1new =
561  		    ((split_item_positions[0] ==
562  		      split_item_positions[1]) ? snum012[3] : 0);
563  
564  		/* s2bytes */
565  		snum012[4] =
566  		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
567  		    bytes_to_r - bytes_to_l - bytes_to_S1new;
568  
569  		if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY &&
570  		    vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT)
571  			reiserfs_warning(tb->tb_sb, "vs-8115",
572  					 "not directory or indirect item");
573  	}
574  
575  	/* now we know S2bytes, calculate S1bytes */
576  	if (snum012[3] > 0) {
577  		int split_item_num;
578  		int bytes_to_r, bytes_to_l;
579  		int bytes_to_S2new;
580  
581  		split_item_num = split_item_positions[0];
582  		bytes_to_l =
583  		    ((from == split_item_num
584  		      && from_bytes != -1) ? from_bytes : 0);
585  		bytes_to_r =
586  		    ((end_item == split_item_num
587  		      && end_bytes != -1) ? end_bytes : 0);
588  		bytes_to_S2new =
589  		    ((split_item_positions[0] == split_item_positions[1]
590  		      && snum012[4] != -1) ? snum012[4] : 0);
591  
592  		/* s1bytes */
593  		snum012[3] =
594  		    op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
595  		    bytes_to_r - bytes_to_l - bytes_to_S2new;
596  	}
597  
598  	return needed_nodes;
599  }
600  
601  
602  /*
603   * Set parameters for balancing.
604   * Performs write of results of analysis of balancing into structure tb,
605   * where it will later be used by the functions that actually do the balancing.
606   * Parameters:
607   *	tb	tree_balance structure;
608   *	h	current level of the node;
609   *	lnum	number of items from S[h] that must be shifted to L[h];
610   *	rnum	number of items from S[h] that must be shifted to R[h];
611   *	blk_num	number of blocks that S[h] will be splitted into;
612   *	s012	number of items that fall into splitted nodes.
613   *	lbytes	number of bytes which flow to the left neighbor from the
614   *              item that is not not shifted entirely
615   *	rbytes	number of bytes which flow to the right neighbor from the
616   *              item that is not not shifted entirely
617   *	s1bytes	number of bytes which flow to the first  new node when
618   *              S[0] splits (this number is contained in s012 array)
619   */
620  
set_parameters(struct tree_balance * tb,int h,int lnum,int rnum,int blk_num,short * s012,int lb,int rb)621  static void set_parameters(struct tree_balance *tb, int h, int lnum,
622  			   int rnum, int blk_num, short *s012, int lb, int rb)
623  {
624  
625  	tb->lnum[h] = lnum;
626  	tb->rnum[h] = rnum;
627  	tb->blknum[h] = blk_num;
628  
629  	/* only for leaf level */
630  	if (h == 0) {
631  		if (s012 != NULL) {
632  			tb->s0num = *s012++;
633  			tb->snum[0] = *s012++;
634  			tb->snum[1] = *s012++;
635  			tb->sbytes[0] = *s012++;
636  			tb->sbytes[1] = *s012;
637  		}
638  		tb->lbytes = lb;
639  		tb->rbytes = rb;
640  	}
641  	PROC_INFO_ADD(tb->tb_sb, lnum[h], lnum);
642  	PROC_INFO_ADD(tb->tb_sb, rnum[h], rnum);
643  
644  	PROC_INFO_ADD(tb->tb_sb, lbytes[h], lb);
645  	PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
646  }
647  
648  /*
649   * check if node disappears if we shift tb->lnum[0] items to left
650   * neighbor and tb->rnum[0] to the right one.
651   */
is_leaf_removable(struct tree_balance * tb)652  static int is_leaf_removable(struct tree_balance *tb)
653  {
654  	struct virtual_node *vn = tb->tb_vn;
655  	int to_left, to_right;
656  	int size;
657  	int remain_items;
658  
659  	/*
660  	 * number of items that will be shifted to left (right) neighbor
661  	 * entirely
662  	 */
663  	to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
664  	to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
665  	remain_items = vn->vn_nr_item;
666  
667  	/* how many items remain in S[0] after shiftings to neighbors */
668  	remain_items -= (to_left + to_right);
669  
670  	/* all content of node can be shifted to neighbors */
671  	if (remain_items < 1) {
672  		set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
673  			       NULL, -1, -1);
674  		return 1;
675  	}
676  
677  	/* S[0] is not removable */
678  	if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
679  		return 0;
680  
681  	/* check whether we can divide 1 remaining item between neighbors */
682  
683  	/* get size of remaining item (in item units) */
684  	size = op_unit_num(&vn->vn_vi[to_left]);
685  
686  	if (tb->lbytes + tb->rbytes >= size) {
687  		set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
688  			       tb->lbytes, -1);
689  		return 1;
690  	}
691  
692  	return 0;
693  }
694  
695  /* check whether L, S, R can be joined in one node */
are_leaves_removable(struct tree_balance * tb,int lfree,int rfree)696  static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
697  {
698  	struct virtual_node *vn = tb->tb_vn;
699  	int ih_size;
700  	struct buffer_head *S0;
701  
702  	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
703  
704  	ih_size = 0;
705  	if (vn->vn_nr_item) {
706  		if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE)
707  			ih_size += IH_SIZE;
708  
709  		if (vn->vn_vi[vn->vn_nr_item - 1].
710  		    vi_type & VI_TYPE_RIGHT_MERGEABLE)
711  			ih_size += IH_SIZE;
712  	} else {
713  		/* there was only one item and it will be deleted */
714  		struct item_head *ih;
715  
716  		RFALSE(B_NR_ITEMS(S0) != 1,
717  		       "vs-8125: item number must be 1: it is %d",
718  		       B_NR_ITEMS(S0));
719  
720  		ih = item_head(S0, 0);
721  		if (tb->CFR[0]
722  		    && !comp_short_le_keys(&ih->ih_key,
723  					   internal_key(tb->CFR[0],
724  							  tb->rkey[0])))
725  			/*
726  			 * Directory must be in correct state here: that is
727  			 * somewhere at the left side should exist first
728  			 * directory item. But the item being deleted can
729  			 * not be that first one because its right neighbor
730  			 * is item of the same directory. (But first item
731  			 * always gets deleted in last turn). So, neighbors
732  			 * of deleted item can be merged, so we can save
733  			 * ih_size
734  			 */
735  			if (is_direntry_le_ih(ih)) {
736  				ih_size = IH_SIZE;
737  
738  				/*
739  				 * we might check that left neighbor exists
740  				 * and is of the same directory
741  				 */
742  				RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
743  				       "vs-8130: first directory item can not be removed until directory is not empty");
744  			}
745  
746  	}
747  
748  	if (MAX_CHILD_SIZE(S0) + vn->vn_size <= rfree + lfree + ih_size) {
749  		set_parameters(tb, 0, -1, -1, -1, NULL, -1, -1);
750  		PROC_INFO_INC(tb->tb_sb, leaves_removable);
751  		return 1;
752  	}
753  	return 0;
754  
755  }
756  
757  /* when we do not split item, lnum and rnum are numbers of entire items */
758  #define SET_PAR_SHIFT_LEFT \
759  if (h)\
760  {\
761     int to_l;\
762     \
763     to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\
764  	      (MAX_NR_KEY(Sh) + 1 - lpar);\
765  	      \
766  	      set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\
767  }\
768  else \
769  {\
770     if (lset==LEFT_SHIFT_FLOW)\
771       set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\
772  		     tb->lbytes, -1);\
773     else\
774       set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\
775  		     -1, -1);\
776  }
777  
778  #define SET_PAR_SHIFT_RIGHT \
779  if (h)\
780  {\
781     int to_r;\
782     \
783     to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\
784     \
785     set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\
786  }\
787  else \
788  {\
789     if (rset==RIGHT_SHIFT_FLOW)\
790       set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\
791  		  -1, tb->rbytes);\
792     else\
793       set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\
794  		  -1, -1);\
795  }
796  
free_buffers_in_tb(struct tree_balance * tb)797  static void free_buffers_in_tb(struct tree_balance *tb)
798  {
799  	int i;
800  
801  	pathrelse(tb->tb_path);
802  
803  	for (i = 0; i < MAX_HEIGHT; i++) {
804  		brelse(tb->L[i]);
805  		brelse(tb->R[i]);
806  		brelse(tb->FL[i]);
807  		brelse(tb->FR[i]);
808  		brelse(tb->CFL[i]);
809  		brelse(tb->CFR[i]);
810  
811  		tb->L[i] = NULL;
812  		tb->R[i] = NULL;
813  		tb->FL[i] = NULL;
814  		tb->FR[i] = NULL;
815  		tb->CFL[i] = NULL;
816  		tb->CFR[i] = NULL;
817  	}
818  }
819  
820  /*
821   * Get new buffers for storing new nodes that are created while balancing.
822   * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
823   *	        CARRY_ON - schedule didn't occur while the function worked;
824   *	        NO_DISK_SPACE - no disk space.
825   */
826  /* The function is NOT SCHEDULE-SAFE! */
get_empty_nodes(struct tree_balance * tb,int h)827  static int get_empty_nodes(struct tree_balance *tb, int h)
828  {
829  	struct buffer_head *new_bh, *Sh = PATH_H_PBUFFER(tb->tb_path, h);
830  	b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
831  	int counter, number_of_freeblk;
832  	int  amount_needed;	/* number of needed empty blocks */
833  	int  retval = CARRY_ON;
834  	struct super_block *sb = tb->tb_sb;
835  
836  	/*
837  	 * number_of_freeblk is the number of empty blocks which have been
838  	 * acquired for use by the balancing algorithm minus the number of
839  	 * empty blocks used in the previous levels of the analysis,
840  	 * number_of_freeblk = tb->cur_blknum can be non-zero if a schedule
841  	 * occurs after empty blocks are acquired, and the balancing analysis
842  	 * is then restarted, amount_needed is the number needed by this
843  	 * level (h) of the balancing analysis.
844  	 *
845  	 * Note that for systems with many processes writing, it would be
846  	 * more layout optimal to calculate the total number needed by all
847  	 * levels and then to run reiserfs_new_blocks to get all of them at
848  	 * once.
849  	 */
850  
851  	/*
852  	 * Initiate number_of_freeblk to the amount acquired prior to the
853  	 * restart of the analysis or 0 if not restarted, then subtract the
854  	 * amount needed by all of the levels of the tree below h.
855  	 */
856  	/* blknum includes S[h], so we subtract 1 in this calculation */
857  	for (counter = 0, number_of_freeblk = tb->cur_blknum;
858  	     counter < h; counter++)
859  		number_of_freeblk -=
860  		    (tb->blknum[counter]) ? (tb->blknum[counter] -
861  						   1) : 0;
862  
863  	/* Allocate missing empty blocks. */
864  	/* if Sh == 0  then we are getting a new root */
865  	amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
866  	/*
867  	 * Amount_needed = the amount that we need more than the
868  	 * amount that we have.
869  	 */
870  	if (amount_needed > number_of_freeblk)
871  		amount_needed -= number_of_freeblk;
872  	else	/* If we have enough already then there is nothing to do. */
873  		return CARRY_ON;
874  
875  	/*
876  	 * No need to check quota - is not allocated for blocks used
877  	 * for formatted nodes
878  	 */
879  	if (reiserfs_new_form_blocknrs(tb, blocknrs,
880  				       amount_needed) == NO_DISK_SPACE)
881  		return NO_DISK_SPACE;
882  
883  	/* for each blocknumber we just got, get a buffer and stick it on FEB */
884  	for (blocknr = blocknrs, counter = 0;
885  	     counter < amount_needed; blocknr++, counter++) {
886  
887  		RFALSE(!*blocknr,
888  		       "PAP-8135: reiserfs_new_blocknrs failed when got new blocks");
889  
890  		new_bh = sb_getblk(sb, *blocknr);
891  		RFALSE(buffer_dirty(new_bh) ||
892  		       buffer_journaled(new_bh) ||
893  		       buffer_journal_dirty(new_bh),
894  		       "PAP-8140: journaled or dirty buffer %b for the new block",
895  		       new_bh);
896  
897  		/* Put empty buffers into the array. */
898  		RFALSE(tb->FEB[tb->cur_blknum],
899  		       "PAP-8141: busy slot for new buffer");
900  
901  		set_buffer_journal_new(new_bh);
902  		tb->FEB[tb->cur_blknum++] = new_bh;
903  	}
904  
905  	if (retval == CARRY_ON && FILESYSTEM_CHANGED_TB(tb))
906  		retval = REPEAT_SEARCH;
907  
908  	return retval;
909  }
910  
911  /*
912   * Get free space of the left neighbor, which is stored in the parent
913   * node of the left neighbor.
914   */
get_lfree(struct tree_balance * tb,int h)915  static int get_lfree(struct tree_balance *tb, int h)
916  {
917  	struct buffer_head *l, *f;
918  	int order;
919  
920  	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
921  	    (l = tb->FL[h]) == NULL)
922  		return 0;
923  
924  	if (f == l)
925  		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) - 1;
926  	else {
927  		order = B_NR_ITEMS(l);
928  		f = l;
929  	}
930  
931  	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
932  }
933  
934  /*
935   * Get free space of the right neighbor,
936   * which is stored in the parent node of the right neighbor.
937   */
get_rfree(struct tree_balance * tb,int h)938  static int get_rfree(struct tree_balance *tb, int h)
939  {
940  	struct buffer_head *r, *f;
941  	int order;
942  
943  	if ((f = PATH_H_PPARENT(tb->tb_path, h)) == NULL ||
944  	    (r = tb->FR[h]) == NULL)
945  		return 0;
946  
947  	if (f == r)
948  		order = PATH_H_B_ITEM_ORDER(tb->tb_path, h) + 1;
949  	else {
950  		order = 0;
951  		f = r;
952  	}
953  
954  	return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
955  
956  }
957  
958  /* Check whether left neighbor is in memory. */
is_left_neighbor_in_cache(struct tree_balance * tb,int h)959  static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
960  {
961  	struct buffer_head *father, *left;
962  	struct super_block *sb = tb->tb_sb;
963  	b_blocknr_t left_neighbor_blocknr;
964  	int left_neighbor_position;
965  
966  	/* Father of the left neighbor does not exist. */
967  	if (!tb->FL[h])
968  		return 0;
969  
970  	/* Calculate father of the node to be balanced. */
971  	father = PATH_H_PBUFFER(tb->tb_path, h + 1);
972  
973  	RFALSE(!father ||
974  	       !B_IS_IN_TREE(father) ||
975  	       !B_IS_IN_TREE(tb->FL[h]) ||
976  	       !buffer_uptodate(father) ||
977  	       !buffer_uptodate(tb->FL[h]),
978  	       "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
979  	       father, tb->FL[h]);
980  
981  	/*
982  	 * Get position of the pointer to the left neighbor
983  	 * into the left father.
984  	 */
985  	left_neighbor_position = (father == tb->FL[h]) ?
986  	    tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
987  	/* Get left neighbor block number. */
988  	left_neighbor_blocknr =
989  	    B_N_CHILD_NUM(tb->FL[h], left_neighbor_position);
990  	/* Look for the left neighbor in the cache. */
991  	if ((left = sb_find_get_block(sb, left_neighbor_blocknr))) {
992  
993  		RFALSE(buffer_uptodate(left) && !B_IS_IN_TREE(left),
994  		       "vs-8170: left neighbor (%b %z) is not in the tree",
995  		       left, left);
996  		put_bh(left);
997  		return 1;
998  	}
999  
1000  	return 0;
1001  }
1002  
1003  #define LEFT_PARENTS  'l'
1004  #define RIGHT_PARENTS 'r'
1005  
decrement_key(struct cpu_key * key)1006  static void decrement_key(struct cpu_key *key)
1007  {
1008  	/* call item specific function for this key */
1009  	item_ops[cpu_key_k_type(key)]->decrement_key(key);
1010  }
1011  
1012  /*
1013   * Calculate far left/right parent of the left/right neighbor of the
1014   * current node, that is calculate the left/right (FL[h]/FR[h]) neighbor
1015   * of the parent F[h].
1016   * Calculate left/right common parent of the current node and L[h]/R[h].
1017   * Calculate left/right delimiting key position.
1018   * Returns:	PATH_INCORRECT    - path in the tree is not correct
1019   *		SCHEDULE_OCCURRED - schedule occurred while the function worked
1020   *	        CARRY_ON          - schedule didn't occur while the function
1021   *				    worked
1022   */
get_far_parent(struct tree_balance * tb,int h,struct buffer_head ** pfather,struct buffer_head ** pcom_father,char c_lr_par)1023  static int get_far_parent(struct tree_balance *tb,
1024  			  int h,
1025  			  struct buffer_head **pfather,
1026  			  struct buffer_head **pcom_father, char c_lr_par)
1027  {
1028  	struct buffer_head *parent;
1029  	INITIALIZE_PATH(s_path_to_neighbor_father);
1030  	struct treepath *path = tb->tb_path;
1031  	struct cpu_key s_lr_father_key;
1032  	int counter,
1033  	    position = INT_MAX,
1034  	    first_last_position = 0,
1035  	    path_offset = PATH_H_PATH_OFFSET(path, h);
1036  
1037  	/*
1038  	 * Starting from F[h] go upwards in the tree, and look for the common
1039  	 * ancestor of F[h], and its neighbor l/r, that should be obtained.
1040  	 */
1041  
1042  	counter = path_offset;
1043  
1044  	RFALSE(counter < FIRST_PATH_ELEMENT_OFFSET,
1045  	       "PAP-8180: invalid path length");
1046  
1047  	for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
1048  		/*
1049  		 * Check whether parent of the current buffer in the path
1050  		 * is really parent in the tree.
1051  		 */
1052  		if (!B_IS_IN_TREE
1053  		    (parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
1054  			return REPEAT_SEARCH;
1055  
1056  		/* Check whether position in the parent is correct. */
1057  		if ((position =
1058  		     PATH_OFFSET_POSITION(path,
1059  					  counter - 1)) >
1060  		    B_NR_ITEMS(parent))
1061  			return REPEAT_SEARCH;
1062  
1063  		/*
1064  		 * Check whether parent at the path really points
1065  		 * to the child.
1066  		 */
1067  		if (B_N_CHILD_NUM(parent, position) !=
1068  		    PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
1069  			return REPEAT_SEARCH;
1070  
1071  		/*
1072  		 * Return delimiting key if position in the parent is not
1073  		 * equal to first/last one.
1074  		 */
1075  		if (c_lr_par == RIGHT_PARENTS)
1076  			first_last_position = B_NR_ITEMS(parent);
1077  		if (position != first_last_position) {
1078  			*pcom_father = parent;
1079  			get_bh(*pcom_father);
1080  			/*(*pcom_father = parent)->b_count++; */
1081  			break;
1082  		}
1083  	}
1084  
1085  	/* if we are in the root of the tree, then there is no common father */
1086  	if (counter == FIRST_PATH_ELEMENT_OFFSET) {
1087  		/*
1088  		 * Check whether first buffer in the path is the
1089  		 * root of the tree.
1090  		 */
1091  		if (PATH_OFFSET_PBUFFER
1092  		    (tb->tb_path,
1093  		     FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
1094  		    SB_ROOT_BLOCK(tb->tb_sb)) {
1095  			*pfather = *pcom_father = NULL;
1096  			return CARRY_ON;
1097  		}
1098  		return REPEAT_SEARCH;
1099  	}
1100  
1101  	RFALSE(B_LEVEL(*pcom_father) <= DISK_LEAF_NODE_LEVEL,
1102  	       "PAP-8185: (%b %z) level too small",
1103  	       *pcom_father, *pcom_father);
1104  
1105  	/* Check whether the common parent is locked. */
1106  
1107  	if (buffer_locked(*pcom_father)) {
1108  
1109  		/* Release the write lock while the buffer is busy */
1110  		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
1111  		__wait_on_buffer(*pcom_father);
1112  		reiserfs_write_lock_nested(tb->tb_sb, depth);
1113  		if (FILESYSTEM_CHANGED_TB(tb)) {
1114  			brelse(*pcom_father);
1115  			return REPEAT_SEARCH;
1116  		}
1117  	}
1118  
1119  	/*
1120  	 * So, we got common parent of the current node and its
1121  	 * left/right neighbor.  Now we are getting the parent of the
1122  	 * left/right neighbor.
1123  	 */
1124  
1125  	/* Form key to get parent of the left/right neighbor. */
1126  	le_key2cpu_key(&s_lr_father_key,
1127  		       internal_key(*pcom_father,
1128  				      (c_lr_par ==
1129  				       LEFT_PARENTS) ? (tb->lkey[h - 1] =
1130  							position -
1131  							1) : (tb->rkey[h -
1132  									   1] =
1133  							      position)));
1134  
1135  	if (c_lr_par == LEFT_PARENTS)
1136  		decrement_key(&s_lr_father_key);
1137  
1138  	if (search_by_key
1139  	    (tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
1140  	     h + 1) == IO_ERROR)
1141  		/* path is released */
1142  		return IO_ERROR;
1143  
1144  	if (FILESYSTEM_CHANGED_TB(tb)) {
1145  		pathrelse(&s_path_to_neighbor_father);
1146  		brelse(*pcom_father);
1147  		return REPEAT_SEARCH;
1148  	}
1149  
1150  	*pfather = PATH_PLAST_BUFFER(&s_path_to_neighbor_father);
1151  
1152  	RFALSE(B_LEVEL(*pfather) != h + 1,
1153  	       "PAP-8190: (%b %z) level too small", *pfather, *pfather);
1154  	RFALSE(s_path_to_neighbor_father.path_length <
1155  	       FIRST_PATH_ELEMENT_OFFSET, "PAP-8192: path length is too small");
1156  
1157  	s_path_to_neighbor_father.path_length--;
1158  	pathrelse(&s_path_to_neighbor_father);
1159  	return CARRY_ON;
1160  }
1161  
1162  /*
1163   * Get parents of neighbors of node in the path(S[path_offset]) and
1164   * common parents of S[path_offset] and L[path_offset]/R[path_offset]:
1165   * F[path_offset], FL[path_offset], FR[path_offset], CFL[path_offset],
1166   * CFR[path_offset].
1167   * Calculate numbers of left and right delimiting keys position:
1168   * lkey[path_offset], rkey[path_offset].
1169   * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked
1170   *	        CARRY_ON - schedule didn't occur while the function worked
1171   */
get_parents(struct tree_balance * tb,int h)1172  static int get_parents(struct tree_balance *tb, int h)
1173  {
1174  	struct treepath *path = tb->tb_path;
1175  	int position,
1176  	    ret,
1177  	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
1178  	struct buffer_head *curf, *curcf;
1179  
1180  	/* Current node is the root of the tree or will be root of the tree */
1181  	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
1182  		/*
1183  		 * The root can not have parents.
1184  		 * Release nodes which previously were obtained as
1185  		 * parents of the current node neighbors.
1186  		 */
1187  		brelse(tb->FL[h]);
1188  		brelse(tb->CFL[h]);
1189  		brelse(tb->FR[h]);
1190  		brelse(tb->CFR[h]);
1191  		tb->FL[h]  = NULL;
1192  		tb->CFL[h] = NULL;
1193  		tb->FR[h]  = NULL;
1194  		tb->CFR[h] = NULL;
1195  		return CARRY_ON;
1196  	}
1197  
1198  	/* Get parent FL[path_offset] of L[path_offset]. */
1199  	position = PATH_OFFSET_POSITION(path, path_offset - 1);
1200  	if (position) {
1201  		/* Current node is not the first child of its parent. */
1202  		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1203  		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1204  		get_bh(curf);
1205  		get_bh(curf);
1206  		tb->lkey[h] = position - 1;
1207  	} else {
1208  		/*
1209  		 * Calculate current parent of L[path_offset], which is the
1210  		 * left neighbor of the current node.  Calculate current
1211  		 * common parent of L[path_offset] and the current node.
1212  		 * Note that CFL[path_offset] not equal FL[path_offset] and
1213  		 * CFL[path_offset] not equal F[path_offset].
1214  		 * Calculate lkey[path_offset].
1215  		 */
1216  		if ((ret = get_far_parent(tb, h + 1, &curf,
1217  						  &curcf,
1218  						  LEFT_PARENTS)) != CARRY_ON)
1219  			return ret;
1220  	}
1221  
1222  	brelse(tb->FL[h]);
1223  	tb->FL[h] = curf;	/* New initialization of FL[h]. */
1224  	brelse(tb->CFL[h]);
1225  	tb->CFL[h] = curcf;	/* New initialization of CFL[h]. */
1226  
1227  	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1228  	       (curcf && !B_IS_IN_TREE(curcf)),
1229  	       "PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
1230  
1231  	/* Get parent FR[h] of R[h]. */
1232  
1233  	/* Current node is the last child of F[h]. FR[h] != F[h]. */
1234  	if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
1235  		/*
1236  		 * Calculate current parent of R[h], which is the right
1237  		 * neighbor of F[h].  Calculate current common parent of
1238  		 * R[h] and current node. Note that CFR[h] not equal
1239  		 * FR[path_offset] and CFR[h] not equal F[h].
1240  		 */
1241  		if ((ret =
1242  		     get_far_parent(tb, h + 1, &curf, &curcf,
1243  				    RIGHT_PARENTS)) != CARRY_ON)
1244  			return ret;
1245  	} else {
1246  		/* Current node is not the last child of its parent F[h]. */
1247  		curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1248  		curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
1249  		get_bh(curf);
1250  		get_bh(curf);
1251  		tb->rkey[h] = position;
1252  	}
1253  
1254  	brelse(tb->FR[h]);
1255  	/* New initialization of FR[path_offset]. */
1256  	tb->FR[h] = curf;
1257  
1258  	brelse(tb->CFR[h]);
1259  	/* New initialization of CFR[path_offset]. */
1260  	tb->CFR[h] = curcf;
1261  
1262  	RFALSE((curf && !B_IS_IN_TREE(curf)) ||
1263  	       (curcf && !B_IS_IN_TREE(curcf)),
1264  	       "PAP-8205: FR (%b) or CFR (%b) is invalid", curf, curcf);
1265  
1266  	return CARRY_ON;
1267  }
1268  
1269  /*
1270   * it is possible to remove node as result of shiftings to
1271   * neighbors even when we insert or paste item.
1272   */
can_node_be_removed(int mode,int lfree,int sfree,int rfree,struct tree_balance * tb,int h)1273  static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
1274  				      struct tree_balance *tb, int h)
1275  {
1276  	struct buffer_head *Sh = PATH_H_PBUFFER(tb->tb_path, h);
1277  	int levbytes = tb->insert_size[h];
1278  	struct item_head *ih;
1279  	struct reiserfs_key *r_key = NULL;
1280  
1281  	ih = item_head(Sh, 0);
1282  	if (tb->CFR[h])
1283  		r_key = internal_key(tb->CFR[h], tb->rkey[h]);
1284  
1285  	if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
1286  	    /* shifting may merge items which might save space */
1287  	    -
1288  	    ((!h
1289  	      && op_is_left_mergeable(&ih->ih_key, Sh->b_size)) ? IH_SIZE : 0)
1290  	    -
1291  	    ((!h && r_key
1292  	      && op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
1293  	    + ((h) ? KEY_SIZE : 0)) {
1294  		/* node can not be removed */
1295  		if (sfree >= levbytes) {
1296  			/* new item fits into node S[h] without any shifting */
1297  			if (!h)
1298  				tb->s0num =
1299  				    B_NR_ITEMS(Sh) +
1300  				    ((mode == M_INSERT) ? 1 : 0);
1301  			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1302  			return NO_BALANCING_NEEDED;
1303  		}
1304  	}
1305  	PROC_INFO_INC(tb->tb_sb, can_node_be_removed[h]);
1306  	return !NO_BALANCING_NEEDED;
1307  }
1308  
1309  /*
1310   * Check whether current node S[h] is balanced when increasing its size by
1311   * Inserting or Pasting.
1312   * Calculate parameters for balancing for current level h.
1313   * Parameters:
1314   *	tb	tree_balance structure;
1315   *	h	current level of the node;
1316   *	inum	item number in S[h];
1317   *	mode	i - insert, p - paste;
1318   * Returns:	1 - schedule occurred;
1319   *	        0 - balancing for higher levels needed;
1320   *	       -1 - no balancing for higher levels needed;
1321   *	       -2 - no disk space.
1322   */
1323  /* ip means Inserting or Pasting */
ip_check_balance(struct tree_balance * tb,int h)1324  static int ip_check_balance(struct tree_balance *tb, int h)
1325  {
1326  	struct virtual_node *vn = tb->tb_vn;
1327  	/*
1328  	 * Number of bytes that must be inserted into (value is negative
1329  	 * if bytes are deleted) buffer which contains node being balanced.
1330  	 * The mnemonic is that the attempted change in node space used
1331  	 * level is levbytes bytes.
1332  	 */
1333  	int levbytes;
1334  	int ret;
1335  
1336  	int lfree, sfree, rfree /* free space in L, S and R */ ;
1337  
1338  	/*
1339  	 * nver is short for number of vertixes, and lnver is the number if
1340  	 * we shift to the left, rnver is the number if we shift to the
1341  	 * right, and lrnver is the number if we shift in both directions.
1342  	 * The goal is to minimize first the number of vertixes, and second,
1343  	 * the number of vertixes whose contents are changed by shifting,
1344  	 * and third the number of uncached vertixes whose contents are
1345  	 * changed by shifting and must be read from disk.
1346  	 */
1347  	int nver, lnver, rnver, lrnver;
1348  
1349  	/*
1350  	 * used at leaf level only, S0 = S[0] is the node being balanced,
1351  	 * sInum [ I = 0,1,2 ] is the number of items that will
1352  	 * remain in node SI after balancing.  S1 and S2 are new
1353  	 * nodes that might be created.
1354  	 */
1355  
1356  	/*
1357  	 * we perform 8 calls to get_num_ver().  For each call we
1358  	 * calculate five parameters.  where 4th parameter is s1bytes
1359  	 * and 5th - s2bytes
1360  	 *
1361  	 * s0num, s1num, s2num for 8 cases
1362  	 * 0,1 - do not shift and do not shift but bottle
1363  	 * 2   - shift only whole item to left
1364  	 * 3   - shift to left and bottle as much as possible
1365  	 * 4,5 - shift to right (whole items and as much as possible
1366  	 * 6,7 - shift to both directions (whole items and as much as possible)
1367  	 */
1368  	short snum012[40] = { 0, };
1369  
1370  	/* Sh is the node whose balance is currently being checked */
1371  	struct buffer_head *Sh;
1372  
1373  	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1374  	levbytes = tb->insert_size[h];
1375  
1376  	/* Calculate balance parameters for creating new root. */
1377  	if (!Sh) {
1378  		if (!h)
1379  			reiserfs_panic(tb->tb_sb, "vs-8210",
1380  				       "S[0] can not be 0");
1381  		switch (ret = get_empty_nodes(tb, h)) {
1382  		/* no balancing for higher levels needed */
1383  		case CARRY_ON:
1384  			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1385  			return NO_BALANCING_NEEDED;
1386  
1387  		case NO_DISK_SPACE:
1388  		case REPEAT_SEARCH:
1389  			return ret;
1390  		default:
1391  			reiserfs_panic(tb->tb_sb, "vs-8215", "incorrect "
1392  				       "return value of get_empty_nodes");
1393  		}
1394  	}
1395  
1396  	/* get parents of S[h] neighbors. */
1397  	ret = get_parents(tb, h);
1398  	if (ret != CARRY_ON)
1399  		return ret;
1400  
1401  	sfree = B_FREE_SPACE(Sh);
1402  
1403  	/* get free space of neighbors */
1404  	rfree = get_rfree(tb, h);
1405  	lfree = get_lfree(tb, h);
1406  
1407  	/* and new item fits into node S[h] without any shifting */
1408  	if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
1409  	    NO_BALANCING_NEEDED)
1410  		return NO_BALANCING_NEEDED;
1411  
1412  	create_virtual_node(tb, h);
1413  
1414  	/*
1415  	 * determine maximal number of items we can shift to the left
1416  	 * neighbor (in tb structure) and the maximal number of bytes
1417  	 * that can flow to the left neighbor from the left most liquid
1418  	 * item that cannot be shifted from S[0] entirely (returned value)
1419  	 */
1420  	check_left(tb, h, lfree);
1421  
1422  	/*
1423  	 * determine maximal number of items we can shift to the right
1424  	 * neighbor (in tb structure) and the maximal number of bytes
1425  	 * that can flow to the right neighbor from the right most liquid
1426  	 * item that cannot be shifted from S[0] entirely (returned value)
1427  	 */
1428  	check_right(tb, h, rfree);
1429  
1430  	/*
1431  	 * all contents of internal node S[h] can be moved into its
1432  	 * neighbors, S[h] will be removed after balancing
1433  	 */
1434  	if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
1435  		int to_r;
1436  
1437  		/*
1438  		 * Since we are working on internal nodes, and our internal
1439  		 * nodes have fixed size entries, then we can balance by the
1440  		 * number of items rather than the space they consume.  In this
1441  		 * routine we set the left node equal to the right node,
1442  		 * allowing a difference of less than or equal to 1 child
1443  		 * pointer.
1444  		 */
1445  		to_r =
1446  		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1447  		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1448  						tb->rnum[h]);
1449  		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1450  			       -1, -1);
1451  		return CARRY_ON;
1452  	}
1453  
1454  	/*
1455  	 * this checks balance condition, that any two neighboring nodes
1456  	 * can not fit in one node
1457  	 */
1458  	RFALSE(h &&
1459  	       (tb->lnum[h] >= vn->vn_nr_item + 1 ||
1460  		tb->rnum[h] >= vn->vn_nr_item + 1),
1461  	       "vs-8220: tree is not balanced on internal level");
1462  	RFALSE(!h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) ||
1463  		      (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
1464  	       "vs-8225: tree is not balanced on leaf level");
1465  
1466  	/*
1467  	 * all contents of S[0] can be moved into its neighbors
1468  	 * S[0] will be removed after balancing.
1469  	 */
1470  	if (!h && is_leaf_removable(tb))
1471  		return CARRY_ON;
1472  
1473  	/*
1474  	 * why do we perform this check here rather than earlier??
1475  	 * Answer: we can win 1 node in some cases above. Moreover we
1476  	 * checked it above, when we checked, that S[0] is not removable
1477  	 * in principle
1478  	 */
1479  
1480  	 /* new item fits into node S[h] without any shifting */
1481  	if (sfree >= levbytes) {
1482  		if (!h)
1483  			tb->s0num = vn->vn_nr_item;
1484  		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1485  		return NO_BALANCING_NEEDED;
1486  	}
1487  
1488  	{
1489  		int lpar, rpar, nset, lset, rset, lrset;
1490  		/* regular overflowing of the node */
1491  
1492  		/*
1493  		 * get_num_ver works in 2 modes (FLOW & NO_FLOW)
1494  		 * lpar, rpar - number of items we can shift to left/right
1495  		 *              neighbor (including splitting item)
1496  		 * nset, lset, rset, lrset - shows, whether flowing items
1497  		 *                           give better packing
1498  		 */
1499  #define FLOW 1
1500  #define NO_FLOW 0		/* do not any splitting */
1501  
1502  		/* we choose one of the following */
1503  #define NOTHING_SHIFT_NO_FLOW	0
1504  #define NOTHING_SHIFT_FLOW	5
1505  #define LEFT_SHIFT_NO_FLOW	10
1506  #define LEFT_SHIFT_FLOW		15
1507  #define RIGHT_SHIFT_NO_FLOW	20
1508  #define RIGHT_SHIFT_FLOW	25
1509  #define LR_SHIFT_NO_FLOW	30
1510  #define LR_SHIFT_FLOW		35
1511  
1512  		lpar = tb->lnum[h];
1513  		rpar = tb->rnum[h];
1514  
1515  		/*
1516  		 * calculate number of blocks S[h] must be split into when
1517  		 * nothing is shifted to the neighbors, as well as number of
1518  		 * items in each part of the split node (s012 numbers),
1519  		 * and number of bytes (s1bytes) of the shared drop which
1520  		 * flow to S1 if any
1521  		 */
1522  		nset = NOTHING_SHIFT_NO_FLOW;
1523  		nver = get_num_ver(vn->vn_mode, tb, h,
1524  				   0, -1, h ? vn->vn_nr_item : 0, -1,
1525  				   snum012, NO_FLOW);
1526  
1527  		if (!h) {
1528  			int nver1;
1529  
1530  			/*
1531  			 * note, that in this case we try to bottle
1532  			 * between S[0] and S1 (S1 - the first new node)
1533  			 */
1534  			nver1 = get_num_ver(vn->vn_mode, tb, h,
1535  					    0, -1, 0, -1,
1536  					    snum012 + NOTHING_SHIFT_FLOW, FLOW);
1537  			if (nver > nver1)
1538  				nset = NOTHING_SHIFT_FLOW, nver = nver1;
1539  		}
1540  
1541  		/*
1542  		 * calculate number of blocks S[h] must be split into when
1543  		 * l_shift_num first items and l_shift_bytes of the right
1544  		 * most liquid item to be shifted are shifted to the left
1545  		 * neighbor, as well as number of items in each part of the
1546  		 * splitted node (s012 numbers), and number of bytes
1547  		 * (s1bytes) of the shared drop which flow to S1 if any
1548  		 */
1549  		lset = LEFT_SHIFT_NO_FLOW;
1550  		lnver = get_num_ver(vn->vn_mode, tb, h,
1551  				    lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1552  				    -1, h ? vn->vn_nr_item : 0, -1,
1553  				    snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW);
1554  		if (!h) {
1555  			int lnver1;
1556  
1557  			lnver1 = get_num_ver(vn->vn_mode, tb, h,
1558  					     lpar -
1559  					     ((tb->lbytes != -1) ? 1 : 0),
1560  					     tb->lbytes, 0, -1,
1561  					     snum012 + LEFT_SHIFT_FLOW, FLOW);
1562  			if (lnver > lnver1)
1563  				lset = LEFT_SHIFT_FLOW, lnver = lnver1;
1564  		}
1565  
1566  		/*
1567  		 * calculate number of blocks S[h] must be split into when
1568  		 * r_shift_num first items and r_shift_bytes of the left most
1569  		 * liquid item to be shifted are shifted to the right neighbor,
1570  		 * as well as number of items in each part of the splitted
1571  		 * node (s012 numbers), and number of bytes (s1bytes) of the
1572  		 * shared drop which flow to S1 if any
1573  		 */
1574  		rset = RIGHT_SHIFT_NO_FLOW;
1575  		rnver = get_num_ver(vn->vn_mode, tb, h,
1576  				    0, -1,
1577  				    h ? (vn->vn_nr_item - rpar) : (rpar -
1578  								   ((tb->
1579  								     rbytes !=
1580  								     -1) ? 1 :
1581  								    0)), -1,
1582  				    snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW);
1583  		if (!h) {
1584  			int rnver1;
1585  
1586  			rnver1 = get_num_ver(vn->vn_mode, tb, h,
1587  					     0, -1,
1588  					     (rpar -
1589  					      ((tb->rbytes != -1) ? 1 : 0)),
1590  					     tb->rbytes,
1591  					     snum012 + RIGHT_SHIFT_FLOW, FLOW);
1592  
1593  			if (rnver > rnver1)
1594  				rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
1595  		}
1596  
1597  		/*
1598  		 * calculate number of blocks S[h] must be split into when
1599  		 * items are shifted in both directions, as well as number
1600  		 * of items in each part of the splitted node (s012 numbers),
1601  		 * and number of bytes (s1bytes) of the shared drop which
1602  		 * flow to S1 if any
1603  		 */
1604  		lrset = LR_SHIFT_NO_FLOW;
1605  		lrnver = get_num_ver(vn->vn_mode, tb, h,
1606  				     lpar - ((h || tb->lbytes == -1) ? 0 : 1),
1607  				     -1,
1608  				     h ? (vn->vn_nr_item - rpar) : (rpar -
1609  								    ((tb->
1610  								      rbytes !=
1611  								      -1) ? 1 :
1612  								     0)), -1,
1613  				     snum012 + LR_SHIFT_NO_FLOW, NO_FLOW);
1614  		if (!h) {
1615  			int lrnver1;
1616  
1617  			lrnver1 = get_num_ver(vn->vn_mode, tb, h,
1618  					      lpar -
1619  					      ((tb->lbytes != -1) ? 1 : 0),
1620  					      tb->lbytes,
1621  					      (rpar -
1622  					       ((tb->rbytes != -1) ? 1 : 0)),
1623  					      tb->rbytes,
1624  					      snum012 + LR_SHIFT_FLOW, FLOW);
1625  			if (lrnver > lrnver1)
1626  				lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
1627  		}
1628  
1629  		/*
1630  		 * Our general shifting strategy is:
1631  		 * 1) to minimized number of new nodes;
1632  		 * 2) to minimized number of neighbors involved in shifting;
1633  		 * 3) to minimized number of disk reads;
1634  		 */
1635  
1636  		/* we can win TWO or ONE nodes by shifting in both directions */
1637  		if (lrnver < lnver && lrnver < rnver) {
1638  			RFALSE(h &&
1639  			       (tb->lnum[h] != 1 ||
1640  				tb->rnum[h] != 1 ||
1641  				lrnver != 1 || rnver != 2 || lnver != 2
1642  				|| h != 1), "vs-8230: bad h");
1643  			if (lrset == LR_SHIFT_FLOW)
1644  				set_parameters(tb, h, tb->lnum[h], tb->rnum[h],
1645  					       lrnver, snum012 + lrset,
1646  					       tb->lbytes, tb->rbytes);
1647  			else
1648  				set_parameters(tb, h,
1649  					       tb->lnum[h] -
1650  					       ((tb->lbytes == -1) ? 0 : 1),
1651  					       tb->rnum[h] -
1652  					       ((tb->rbytes == -1) ? 0 : 1),
1653  					       lrnver, snum012 + lrset, -1, -1);
1654  
1655  			return CARRY_ON;
1656  		}
1657  
1658  		/*
1659  		 * if shifting doesn't lead to better packing
1660  		 * then don't shift
1661  		 */
1662  		if (nver == lrnver) {
1663  			set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
1664  				       -1);
1665  			return CARRY_ON;
1666  		}
1667  
1668  		/*
1669  		 * now we know that for better packing shifting in only one
1670  		 * direction either to the left or to the right is required
1671  		 */
1672  
1673  		/*
1674  		 * if shifting to the left is better than
1675  		 * shifting to the right
1676  		 */
1677  		if (lnver < rnver) {
1678  			SET_PAR_SHIFT_LEFT;
1679  			return CARRY_ON;
1680  		}
1681  
1682  		/*
1683  		 * if shifting to the right is better than
1684  		 * shifting to the left
1685  		 */
1686  		if (lnver > rnver) {
1687  			SET_PAR_SHIFT_RIGHT;
1688  			return CARRY_ON;
1689  		}
1690  
1691  		/*
1692  		 * now shifting in either direction gives the same number
1693  		 * of nodes and we can make use of the cached neighbors
1694  		 */
1695  		if (is_left_neighbor_in_cache(tb, h)) {
1696  			SET_PAR_SHIFT_LEFT;
1697  			return CARRY_ON;
1698  		}
1699  
1700  		/*
1701  		 * shift to the right independently on whether the
1702  		 * right neighbor in cache or not
1703  		 */
1704  		SET_PAR_SHIFT_RIGHT;
1705  		return CARRY_ON;
1706  	}
1707  }
1708  
1709  /*
1710   * Check whether current node S[h] is balanced when Decreasing its size by
1711   * Deleting or Cutting for INTERNAL node of S+tree.
1712   * Calculate parameters for balancing for current level h.
1713   * Parameters:
1714   *	tb	tree_balance structure;
1715   *	h	current level of the node;
1716   *	inum	item number in S[h];
1717   *	mode	i - insert, p - paste;
1718   * Returns:	1 - schedule occurred;
1719   *	        0 - balancing for higher levels needed;
1720   *	       -1 - no balancing for higher levels needed;
1721   *	       -2 - no disk space.
1722   *
1723   * Note: Items of internal nodes have fixed size, so the balance condition for
1724   * the internal part of S+tree is as for the B-trees.
1725   */
dc_check_balance_internal(struct tree_balance * tb,int h)1726  static int dc_check_balance_internal(struct tree_balance *tb, int h)
1727  {
1728  	struct virtual_node *vn = tb->tb_vn;
1729  
1730  	/*
1731  	 * Sh is the node whose balance is currently being checked,
1732  	 * and Fh is its father.
1733  	 */
1734  	struct buffer_head *Sh, *Fh;
1735  	int ret;
1736  	int lfree, rfree /* free space in L and R */ ;
1737  
1738  	Sh = PATH_H_PBUFFER(tb->tb_path, h);
1739  	Fh = PATH_H_PPARENT(tb->tb_path, h);
1740  
1741  	/*
1742  	 * using tb->insert_size[h], which is negative in this case,
1743  	 * create_virtual_node calculates:
1744  	 * new_nr_item = number of items node would have if operation is
1745  	 * performed without balancing (new_nr_item);
1746  	 */
1747  	create_virtual_node(tb, h);
1748  
1749  	if (!Fh) {		/* S[h] is the root. */
1750  		/* no balancing for higher levels needed */
1751  		if (vn->vn_nr_item > 0) {
1752  			set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1753  			return NO_BALANCING_NEEDED;
1754  		}
1755  		/*
1756  		 * new_nr_item == 0.
1757  		 * Current root will be deleted resulting in
1758  		 * decrementing the tree height.
1759  		 */
1760  		set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
1761  		return CARRY_ON;
1762  	}
1763  
1764  	if ((ret = get_parents(tb, h)) != CARRY_ON)
1765  		return ret;
1766  
1767  	/* get free space of neighbors */
1768  	rfree = get_rfree(tb, h);
1769  	lfree = get_lfree(tb, h);
1770  
1771  	/* determine maximal number of items we can fit into neighbors */
1772  	check_left(tb, h, lfree);
1773  	check_right(tb, h, rfree);
1774  
1775  	/*
1776  	 * Balance condition for the internal node is valid.
1777  	 * In this case we balance only if it leads to better packing.
1778  	 */
1779  	if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {
1780  		/*
1781  		 * Here we join S[h] with one of its neighbors,
1782  		 * which is impossible with greater values of new_nr_item.
1783  		 */
1784  		if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {
1785  			/* All contents of S[h] can be moved to L[h]. */
1786  			if (tb->lnum[h] >= vn->vn_nr_item + 1) {
1787  				int n;
1788  				int order_L;
1789  
1790  				order_L =
1791  				    ((n =
1792  				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1793  							  h)) ==
1794  				     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1795  				n = dc_size(B_N_CHILD(tb->FL[h], order_L)) /
1796  				    (DC_SIZE + KEY_SIZE);
1797  				set_parameters(tb, h, -n - 1, 0, 0, NULL, -1,
1798  					       -1);
1799  				return CARRY_ON;
1800  			}
1801  
1802  			/* All contents of S[h] can be moved to R[h]. */
1803  			if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1804  				int n;
1805  				int order_R;
1806  
1807  				order_R =
1808  				    ((n =
1809  				      PATH_H_B_ITEM_ORDER(tb->tb_path,
1810  							  h)) ==
1811  				     B_NR_ITEMS(Fh)) ? 0 : n + 1;
1812  				n = dc_size(B_N_CHILD(tb->FR[h], order_R)) /
1813  				    (DC_SIZE + KEY_SIZE);
1814  				set_parameters(tb, h, 0, -n - 1, 0, NULL, -1,
1815  					       -1);
1816  				return CARRY_ON;
1817  			}
1818  		}
1819  
1820  		/*
1821  		 * All contents of S[h] can be moved to the neighbors
1822  		 * (L[h] & R[h]).
1823  		 */
1824  		if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1825  			int to_r;
1826  
1827  			to_r =
1828  			    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] -
1829  			     tb->rnum[h] + vn->vn_nr_item + 1) / 2 -
1830  			    (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]);
1831  			set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r,
1832  				       0, NULL, -1, -1);
1833  			return CARRY_ON;
1834  		}
1835  
1836  		/* Balancing does not lead to better packing. */
1837  		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1838  		return NO_BALANCING_NEEDED;
1839  	}
1840  
1841  	/*
1842  	 * Current node contain insufficient number of items.
1843  	 * Balancing is required.
1844  	 */
1845  	/* Check whether we can merge S[h] with left neighbor. */
1846  	if (tb->lnum[h] >= vn->vn_nr_item + 1)
1847  		if (is_left_neighbor_in_cache(tb, h)
1848  		    || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) {
1849  			int n;
1850  			int order_L;
1851  
1852  			order_L =
1853  			    ((n =
1854  			      PATH_H_B_ITEM_ORDER(tb->tb_path,
1855  						  h)) ==
1856  			     0) ? B_NR_ITEMS(tb->FL[h]) : n - 1;
1857  			n = dc_size(B_N_CHILD(tb->FL[h], order_L)) / (DC_SIZE +
1858  								      KEY_SIZE);
1859  			set_parameters(tb, h, -n - 1, 0, 0, NULL, -1, -1);
1860  			return CARRY_ON;
1861  		}
1862  
1863  	/* Check whether we can merge S[h] with right neighbor. */
1864  	if (tb->rnum[h] >= vn->vn_nr_item + 1) {
1865  		int n;
1866  		int order_R;
1867  
1868  		order_R =
1869  		    ((n =
1870  		      PATH_H_B_ITEM_ORDER(tb->tb_path,
1871  					  h)) == B_NR_ITEMS(Fh)) ? 0 : (n + 1);
1872  		n = dc_size(B_N_CHILD(tb->FR[h], order_R)) / (DC_SIZE +
1873  							      KEY_SIZE);
1874  		set_parameters(tb, h, 0, -n - 1, 0, NULL, -1, -1);
1875  		return CARRY_ON;
1876  	}
1877  
1878  	/* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
1879  	if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
1880  		int to_r;
1881  
1882  		to_r =
1883  		    ((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
1884  		     vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
1885  						tb->rnum[h]);
1886  		set_parameters(tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL,
1887  			       -1, -1);
1888  		return CARRY_ON;
1889  	}
1890  
1891  	/* For internal nodes try to borrow item from a neighbor */
1892  	RFALSE(!tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root");
1893  
1894  	/* Borrow one or two items from caching neighbor */
1895  	if (is_left_neighbor_in_cache(tb, h) || !tb->FR[h]) {
1896  		int from_l;
1897  
1898  		from_l =
1899  		    (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item +
1900  		     1) / 2 - (vn->vn_nr_item + 1);
1901  		set_parameters(tb, h, -from_l, 0, 1, NULL, -1, -1);
1902  		return CARRY_ON;
1903  	}
1904  
1905  	set_parameters(tb, h, 0,
1906  		       -((MAX_NR_KEY(Sh) + 1 - tb->rnum[h] + vn->vn_nr_item +
1907  			  1) / 2 - (vn->vn_nr_item + 1)), 1, NULL, -1, -1);
1908  	return CARRY_ON;
1909  }
1910  
1911  /*
1912   * Check whether current node S[h] is balanced when Decreasing its size by
1913   * Deleting or Truncating for LEAF node of S+tree.
1914   * Calculate parameters for balancing for current level h.
1915   * Parameters:
1916   *	tb	tree_balance structure;
1917   *	h	current level of the node;
1918   *	inum	item number in S[h];
1919   *	mode	i - insert, p - paste;
1920   * Returns:	1 - schedule occurred;
1921   *	        0 - balancing for higher levels needed;
1922   *	       -1 - no balancing for higher levels needed;
1923   *	       -2 - no disk space.
1924   */
dc_check_balance_leaf(struct tree_balance * tb,int h)1925  static int dc_check_balance_leaf(struct tree_balance *tb, int h)
1926  {
1927  	struct virtual_node *vn = tb->tb_vn;
1928  
1929  	/*
1930  	 * Number of bytes that must be deleted from
1931  	 * (value is negative if bytes are deleted) buffer which
1932  	 * contains node being balanced.  The mnemonic is that the
1933  	 * attempted change in node space used level is levbytes bytes.
1934  	 */
1935  	int levbytes;
1936  
1937  	/* the maximal item size */
1938  	int maxsize, ret;
1939  
1940  	/*
1941  	 * S0 is the node whose balance is currently being checked,
1942  	 * and F0 is its father.
1943  	 */
1944  	struct buffer_head *S0, *F0;
1945  	int lfree, rfree /* free space in L and R */ ;
1946  
1947  	S0 = PATH_H_PBUFFER(tb->tb_path, 0);
1948  	F0 = PATH_H_PPARENT(tb->tb_path, 0);
1949  
1950  	levbytes = tb->insert_size[h];
1951  
1952  	maxsize = MAX_CHILD_SIZE(S0);	/* maximal possible size of an item */
1953  
1954  	if (!F0) {		/* S[0] is the root now. */
1955  
1956  		RFALSE(-levbytes >= maxsize - B_FREE_SPACE(S0),
1957  		       "vs-8240: attempt to create empty buffer tree");
1958  
1959  		set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
1960  		return NO_BALANCING_NEEDED;
1961  	}
1962  
1963  	if ((ret = get_parents(tb, h)) != CARRY_ON)
1964  		return ret;
1965  
1966  	/* get free space of neighbors */
1967  	rfree = get_rfree(tb, h);
1968  	lfree = get_lfree(tb, h);
1969  
1970  	create_virtual_node(tb, h);
1971  
1972  	/* if 3 leaves can be merge to one, set parameters and return */
1973  	if (are_leaves_removable(tb, lfree, rfree))
1974  		return CARRY_ON;
1975  
1976  	/*
1977  	 * determine maximal number of items we can shift to the left/right
1978  	 * neighbor and the maximal number of bytes that can flow to the
1979  	 * left/right neighbor from the left/right most liquid item that
1980  	 * cannot be shifted from S[0] entirely
1981  	 */
1982  	check_left(tb, h, lfree);
1983  	check_right(tb, h, rfree);
1984  
1985  	/* check whether we can merge S with left neighbor. */
1986  	if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1)
1987  		if (is_left_neighbor_in_cache(tb, h) || ((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) ||	/* S can not be merged with R */
1988  		    !tb->FR[h]) {
1989  
1990  			RFALSE(!tb->FL[h],
1991  			       "vs-8245: dc_check_balance_leaf: FL[h] must exist");
1992  
1993  			/* set parameter to merge S[0] with its left neighbor */
1994  			set_parameters(tb, h, -1, 0, 0, NULL, -1, -1);
1995  			return CARRY_ON;
1996  		}
1997  
1998  	/* check whether we can merge S[0] with right neighbor. */
1999  	if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) {
2000  		set_parameters(tb, h, 0, -1, 0, NULL, -1, -1);
2001  		return CARRY_ON;
2002  	}
2003  
2004  	/*
2005  	 * All contents of S[0] can be moved to the neighbors (L[0] & R[0]).
2006  	 * Set parameters and return
2007  	 */
2008  	if (is_leaf_removable(tb))
2009  		return CARRY_ON;
2010  
2011  	/* Balancing is not required. */
2012  	tb->s0num = vn->vn_nr_item;
2013  	set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
2014  	return NO_BALANCING_NEEDED;
2015  }
2016  
2017  /*
2018   * Check whether current node S[h] is balanced when Decreasing its size by
2019   * Deleting or Cutting.
2020   * Calculate parameters for balancing for current level h.
2021   * Parameters:
2022   *	tb	tree_balance structure;
2023   *	h	current level of the node;
2024   *	inum	item number in S[h];
2025   *	mode	d - delete, c - cut.
2026   * Returns:	1 - schedule occurred;
2027   *	        0 - balancing for higher levels needed;
2028   *	       -1 - no balancing for higher levels needed;
2029   *	       -2 - no disk space.
2030   */
dc_check_balance(struct tree_balance * tb,int h)2031  static int dc_check_balance(struct tree_balance *tb, int h)
2032  {
2033  	RFALSE(!(PATH_H_PBUFFER(tb->tb_path, h)),
2034  	       "vs-8250: S is not initialized");
2035  
2036  	if (h)
2037  		return dc_check_balance_internal(tb, h);
2038  	else
2039  		return dc_check_balance_leaf(tb, h);
2040  }
2041  
2042  /*
2043   * Check whether current node S[h] is balanced.
2044   * Calculate parameters for balancing for current level h.
2045   * Parameters:
2046   *
2047   *	tb	tree_balance structure:
2048   *
2049   *              tb is a large structure that must be read about in the header
2050   *		file at the same time as this procedure if the reader is
2051   *		to successfully understand this procedure
2052   *
2053   *	h	current level of the node;
2054   *	inum	item number in S[h];
2055   *	mode	i - insert, p - paste, d - delete, c - cut.
2056   * Returns:	1 - schedule occurred;
2057   *	        0 - balancing for higher levels needed;
2058   *	       -1 - no balancing for higher levels needed;
2059   *	       -2 - no disk space.
2060   */
check_balance(int mode,struct tree_balance * tb,int h,int inum,int pos_in_item,struct item_head * ins_ih,const void * data)2061  static int check_balance(int mode,
2062  			 struct tree_balance *tb,
2063  			 int h,
2064  			 int inum,
2065  			 int pos_in_item,
2066  			 struct item_head *ins_ih, const void *data)
2067  {
2068  	struct virtual_node *vn;
2069  
2070  	vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf);
2071  	vn->vn_free_ptr = (char *)(tb->tb_vn + 1);
2072  	vn->vn_mode = mode;
2073  	vn->vn_affected_item_num = inum;
2074  	vn->vn_pos_in_item = pos_in_item;
2075  	vn->vn_ins_ih = ins_ih;
2076  	vn->vn_data = data;
2077  
2078  	RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
2079  	       "vs-8255: ins_ih can not be 0 in insert mode");
2080  
2081  	/* Calculate balance parameters when size of node is increasing. */
2082  	if (tb->insert_size[h] > 0)
2083  		return ip_check_balance(tb, h);
2084  
2085  	/* Calculate balance parameters when  size of node is decreasing. */
2086  	return dc_check_balance(tb, h);
2087  }
2088  
2089  /* Check whether parent at the path is the really parent of the current node.*/
get_direct_parent(struct tree_balance * tb,int h)2090  static int get_direct_parent(struct tree_balance *tb, int h)
2091  {
2092  	struct buffer_head *bh;
2093  	struct treepath *path = tb->tb_path;
2094  	int position,
2095  	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h);
2096  
2097  	/* We are in the root or in the new root. */
2098  	if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
2099  
2100  		RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET - 1,
2101  		       "PAP-8260: invalid offset in the path");
2102  
2103  		if (PATH_OFFSET_PBUFFER(path, FIRST_PATH_ELEMENT_OFFSET)->
2104  		    b_blocknr == SB_ROOT_BLOCK(tb->tb_sb)) {
2105  			/* Root is not changed. */
2106  			PATH_OFFSET_PBUFFER(path, path_offset - 1) = NULL;
2107  			PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
2108  			return CARRY_ON;
2109  		}
2110  		/* Root is changed and we must recalculate the path. */
2111  		return REPEAT_SEARCH;
2112  	}
2113  
2114  	/* Parent in the path is not in the tree. */
2115  	if (!B_IS_IN_TREE
2116  	    (bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
2117  		return REPEAT_SEARCH;
2118  
2119  	if ((position =
2120  	     PATH_OFFSET_POSITION(path,
2121  				  path_offset - 1)) > B_NR_ITEMS(bh))
2122  		return REPEAT_SEARCH;
2123  
2124  	/* Parent in the path is not parent of the current node in the tree. */
2125  	if (B_N_CHILD_NUM(bh, position) !=
2126  	    PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
2127  		return REPEAT_SEARCH;
2128  
2129  	if (buffer_locked(bh)) {
2130  		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2131  		__wait_on_buffer(bh);
2132  		reiserfs_write_lock_nested(tb->tb_sb, depth);
2133  		if (FILESYSTEM_CHANGED_TB(tb))
2134  			return REPEAT_SEARCH;
2135  	}
2136  
2137  	/*
2138  	 * Parent in the path is unlocked and really parent
2139  	 * of the current node.
2140  	 */
2141  	return CARRY_ON;
2142  }
2143  
2144  /*
2145   * Using lnum[h] and rnum[h] we should determine what neighbors
2146   * of S[h] we
2147   * need in order to balance S[h], and get them if necessary.
2148   * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked;
2149   *	        CARRY_ON - schedule didn't occur while the function worked;
2150   */
get_neighbors(struct tree_balance * tb,int h)2151  static int get_neighbors(struct tree_balance *tb, int h)
2152  {
2153  	int child_position,
2154  	    path_offset = PATH_H_PATH_OFFSET(tb->tb_path, h + 1);
2155  	unsigned long son_number;
2156  	struct super_block *sb = tb->tb_sb;
2157  	struct buffer_head *bh;
2158  	int depth;
2159  
2160  	PROC_INFO_INC(sb, get_neighbors[h]);
2161  
2162  	if (tb->lnum[h]) {
2163  		/* We need left neighbor to balance S[h]. */
2164  		PROC_INFO_INC(sb, need_l_neighbor[h]);
2165  		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2166  
2167  		RFALSE(bh == tb->FL[h] &&
2168  		       !PATH_OFFSET_POSITION(tb->tb_path, path_offset),
2169  		       "PAP-8270: invalid position in the parent");
2170  
2171  		child_position =
2172  		    (bh ==
2173  		     tb->FL[h]) ? tb->lkey[h] : B_NR_ITEMS(tb->
2174  								       FL[h]);
2175  		son_number = B_N_CHILD_NUM(tb->FL[h], child_position);
2176  		depth = reiserfs_write_unlock_nested(tb->tb_sb);
2177  		bh = sb_bread(sb, son_number);
2178  		reiserfs_write_lock_nested(tb->tb_sb, depth);
2179  		if (!bh)
2180  			return IO_ERROR;
2181  		if (FILESYSTEM_CHANGED_TB(tb)) {
2182  			brelse(bh);
2183  			PROC_INFO_INC(sb, get_neighbors_restart[h]);
2184  			return REPEAT_SEARCH;
2185  		}
2186  
2187  		RFALSE(!B_IS_IN_TREE(tb->FL[h]) ||
2188  		       child_position > B_NR_ITEMS(tb->FL[h]) ||
2189  		       B_N_CHILD_NUM(tb->FL[h], child_position) !=
2190  		       bh->b_blocknr, "PAP-8275: invalid parent");
2191  		RFALSE(!B_IS_IN_TREE(bh), "PAP-8280: invalid child");
2192  		RFALSE(!h &&
2193  		       B_FREE_SPACE(bh) !=
2194  		       MAX_CHILD_SIZE(bh) -
2195  		       dc_size(B_N_CHILD(tb->FL[0], child_position)),
2196  		       "PAP-8290: invalid child size of left neighbor");
2197  
2198  		brelse(tb->L[h]);
2199  		tb->L[h] = bh;
2200  	}
2201  
2202  	/* We need right neighbor to balance S[path_offset]. */
2203  	if (tb->rnum[h]) {
2204  		PROC_INFO_INC(sb, need_r_neighbor[h]);
2205  		bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
2206  
2207  		RFALSE(bh == tb->FR[h] &&
2208  		       PATH_OFFSET_POSITION(tb->tb_path,
2209  					    path_offset) >=
2210  		       B_NR_ITEMS(bh),
2211  		       "PAP-8295: invalid position in the parent");
2212  
2213  		child_position =
2214  		    (bh == tb->FR[h]) ? tb->rkey[h] + 1 : 0;
2215  		son_number = B_N_CHILD_NUM(tb->FR[h], child_position);
2216  		depth = reiserfs_write_unlock_nested(tb->tb_sb);
2217  		bh = sb_bread(sb, son_number);
2218  		reiserfs_write_lock_nested(tb->tb_sb, depth);
2219  		if (!bh)
2220  			return IO_ERROR;
2221  		if (FILESYSTEM_CHANGED_TB(tb)) {
2222  			brelse(bh);
2223  			PROC_INFO_INC(sb, get_neighbors_restart[h]);
2224  			return REPEAT_SEARCH;
2225  		}
2226  		brelse(tb->R[h]);
2227  		tb->R[h] = bh;
2228  
2229  		RFALSE(!h
2230  		       && B_FREE_SPACE(bh) !=
2231  		       MAX_CHILD_SIZE(bh) -
2232  		       dc_size(B_N_CHILD(tb->FR[0], child_position)),
2233  		       "PAP-8300: invalid child size of right neighbor (%d != %d - %d)",
2234  		       B_FREE_SPACE(bh), MAX_CHILD_SIZE(bh),
2235  		       dc_size(B_N_CHILD(tb->FR[0], child_position)));
2236  
2237  	}
2238  	return CARRY_ON;
2239  }
2240  
get_virtual_node_size(struct super_block * sb,struct buffer_head * bh)2241  static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
2242  {
2243  	int max_num_of_items;
2244  	int max_num_of_entries;
2245  	unsigned long blocksize = sb->s_blocksize;
2246  
2247  #define MIN_NAME_LEN 1
2248  
2249  	max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN);
2250  	max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /
2251  	    (DEH_SIZE + MIN_NAME_LEN);
2252  
2253  	return sizeof(struct virtual_node) +
2254  	    max(max_num_of_items * sizeof(struct virtual_item),
2255  		sizeof(struct virtual_item) + sizeof(struct direntry_uarea) +
2256  		(max_num_of_entries - 1) * sizeof(__u16));
2257  }
2258  
2259  /*
2260   * maybe we should fail balancing we are going to perform when kmalloc
2261   * fails several times. But now it will loop until kmalloc gets
2262   * required memory
2263   */
get_mem_for_virtual_node(struct tree_balance * tb)2264  static int get_mem_for_virtual_node(struct tree_balance *tb)
2265  {
2266  	int check_fs = 0;
2267  	int size;
2268  	char *buf;
2269  
2270  	size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
2271  
2272  	/* we have to allocate more memory for virtual node */
2273  	if (size > tb->vn_buf_size) {
2274  		if (tb->vn_buf) {
2275  			/* free memory allocated before */
2276  			kfree(tb->vn_buf);
2277  			/* this is not needed if kfree is atomic */
2278  			check_fs = 1;
2279  		}
2280  
2281  		/* virtual node requires now more memory */
2282  		tb->vn_buf_size = size;
2283  
2284  		/* get memory for virtual item */
2285  		buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
2286  		if (!buf) {
2287  			/*
2288  			 * getting memory with GFP_KERNEL priority may involve
2289  			 * balancing now (due to indirect_to_direct conversion
2290  			 * on dcache shrinking). So, release path and collected
2291  			 * resources here
2292  			 */
2293  			free_buffers_in_tb(tb);
2294  			buf = kmalloc(size, GFP_NOFS);
2295  			if (!buf) {
2296  				tb->vn_buf_size = 0;
2297  			}
2298  			tb->vn_buf = buf;
2299  			schedule();
2300  			return REPEAT_SEARCH;
2301  		}
2302  
2303  		tb->vn_buf = buf;
2304  	}
2305  
2306  	if (check_fs && FILESYSTEM_CHANGED_TB(tb))
2307  		return REPEAT_SEARCH;
2308  
2309  	return CARRY_ON;
2310  }
2311  
2312  #ifdef CONFIG_REISERFS_CHECK
tb_buffer_sanity_check(struct super_block * sb,struct buffer_head * bh,const char * descr,int level)2313  static void tb_buffer_sanity_check(struct super_block *sb,
2314  				   struct buffer_head *bh,
2315  				   const char *descr, int level)
2316  {
2317  	if (bh) {
2318  		if (atomic_read(&(bh->b_count)) <= 0)
2319  
2320  			reiserfs_panic(sb, "jmacd-1", "negative or zero "
2321  				       "reference counter for buffer %s[%d] "
2322  				       "(%b)", descr, level, bh);
2323  
2324  		if (!buffer_uptodate(bh))
2325  			reiserfs_panic(sb, "jmacd-2", "buffer is not up "
2326  				       "to date %s[%d] (%b)",
2327  				       descr, level, bh);
2328  
2329  		if (!B_IS_IN_TREE(bh))
2330  			reiserfs_panic(sb, "jmacd-3", "buffer is not "
2331  				       "in tree %s[%d] (%b)",
2332  				       descr, level, bh);
2333  
2334  		if (bh->b_bdev != sb->s_bdev)
2335  			reiserfs_panic(sb, "jmacd-4", "buffer has wrong "
2336  				       "device %s[%d] (%b)",
2337  				       descr, level, bh);
2338  
2339  		if (bh->b_size != sb->s_blocksize)
2340  			reiserfs_panic(sb, "jmacd-5", "buffer has wrong "
2341  				       "blocksize %s[%d] (%b)",
2342  				       descr, level, bh);
2343  
2344  		if (bh->b_blocknr > SB_BLOCK_COUNT(sb))
2345  			reiserfs_panic(sb, "jmacd-6", "buffer block "
2346  				       "number too high %s[%d] (%b)",
2347  				       descr, level, bh);
2348  	}
2349  }
2350  #else
tb_buffer_sanity_check(struct super_block * sb,struct buffer_head * bh,const char * descr,int level)2351  static void tb_buffer_sanity_check(struct super_block *sb,
2352  				   struct buffer_head *bh,
2353  				   const char *descr, int level)
2354  {;
2355  }
2356  #endif
2357  
clear_all_dirty_bits(struct super_block * s,struct buffer_head * bh)2358  static int clear_all_dirty_bits(struct super_block *s, struct buffer_head *bh)
2359  {
2360  	return reiserfs_prepare_for_journal(s, bh, 0);
2361  }
2362  
wait_tb_buffers_until_unlocked(struct tree_balance * tb)2363  static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
2364  {
2365  	struct buffer_head *locked;
2366  #ifdef CONFIG_REISERFS_CHECK
2367  	int repeat_counter = 0;
2368  #endif
2369  	int i;
2370  
2371  	do {
2372  
2373  		locked = NULL;
2374  
2375  		for (i = tb->tb_path->path_length;
2376  		     !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
2377  			if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
2378  				/*
2379  				 * if I understand correctly, we can only
2380  				 * be sure the last buffer in the path is
2381  				 * in the tree --clm
2382  				 */
2383  #ifdef CONFIG_REISERFS_CHECK
2384  				if (PATH_PLAST_BUFFER(tb->tb_path) ==
2385  				    PATH_OFFSET_PBUFFER(tb->tb_path, i))
2386  					tb_buffer_sanity_check(tb->tb_sb,
2387  							       PATH_OFFSET_PBUFFER
2388  							       (tb->tb_path,
2389  								i), "S",
2390  							       tb->tb_path->
2391  							       path_length - i);
2392  #endif
2393  				if (!clear_all_dirty_bits(tb->tb_sb,
2394  							  PATH_OFFSET_PBUFFER
2395  							  (tb->tb_path,
2396  							   i))) {
2397  					locked =
2398  					    PATH_OFFSET_PBUFFER(tb->tb_path,
2399  								i);
2400  				}
2401  			}
2402  		}
2403  
2404  		for (i = 0; !locked && i < MAX_HEIGHT && tb->insert_size[i];
2405  		     i++) {
2406  
2407  			if (tb->lnum[i]) {
2408  
2409  				if (tb->L[i]) {
2410  					tb_buffer_sanity_check(tb->tb_sb,
2411  							       tb->L[i],
2412  							       "L", i);
2413  					if (!clear_all_dirty_bits
2414  					    (tb->tb_sb, tb->L[i]))
2415  						locked = tb->L[i];
2416  				}
2417  
2418  				if (!locked && tb->FL[i]) {
2419  					tb_buffer_sanity_check(tb->tb_sb,
2420  							       tb->FL[i],
2421  							       "FL", i);
2422  					if (!clear_all_dirty_bits
2423  					    (tb->tb_sb, tb->FL[i]))
2424  						locked = tb->FL[i];
2425  				}
2426  
2427  				if (!locked && tb->CFL[i]) {
2428  					tb_buffer_sanity_check(tb->tb_sb,
2429  							       tb->CFL[i],
2430  							       "CFL", i);
2431  					if (!clear_all_dirty_bits
2432  					    (tb->tb_sb, tb->CFL[i]))
2433  						locked = tb->CFL[i];
2434  				}
2435  
2436  			}
2437  
2438  			if (!locked && (tb->rnum[i])) {
2439  
2440  				if (tb->R[i]) {
2441  					tb_buffer_sanity_check(tb->tb_sb,
2442  							       tb->R[i],
2443  							       "R", i);
2444  					if (!clear_all_dirty_bits
2445  					    (tb->tb_sb, tb->R[i]))
2446  						locked = tb->R[i];
2447  				}
2448  
2449  				if (!locked && tb->FR[i]) {
2450  					tb_buffer_sanity_check(tb->tb_sb,
2451  							       tb->FR[i],
2452  							       "FR", i);
2453  					if (!clear_all_dirty_bits
2454  					    (tb->tb_sb, tb->FR[i]))
2455  						locked = tb->FR[i];
2456  				}
2457  
2458  				if (!locked && tb->CFR[i]) {
2459  					tb_buffer_sanity_check(tb->tb_sb,
2460  							       tb->CFR[i],
2461  							       "CFR", i);
2462  					if (!clear_all_dirty_bits
2463  					    (tb->tb_sb, tb->CFR[i]))
2464  						locked = tb->CFR[i];
2465  				}
2466  			}
2467  		}
2468  
2469  		/*
2470  		 * as far as I can tell, this is not required.  The FEB list
2471  		 * seems to be full of newly allocated nodes, which will
2472  		 * never be locked, dirty, or anything else.
2473  		 * To be safe, I'm putting in the checks and waits in.
2474  		 * For the moment, they are needed to keep the code in
2475  		 * journal.c from complaining about the buffer.
2476  		 * That code is inside CONFIG_REISERFS_CHECK as well.  --clm
2477  		 */
2478  		for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
2479  			if (tb->FEB[i]) {
2480  				if (!clear_all_dirty_bits
2481  				    (tb->tb_sb, tb->FEB[i]))
2482  					locked = tb->FEB[i];
2483  			}
2484  		}
2485  
2486  		if (locked) {
2487  			int depth;
2488  #ifdef CONFIG_REISERFS_CHECK
2489  			repeat_counter++;
2490  			if ((repeat_counter % 10000) == 0) {
2491  				reiserfs_warning(tb->tb_sb, "reiserfs-8200",
2492  						 "too many iterations waiting "
2493  						 "for buffer to unlock "
2494  						 "(%b)", locked);
2495  
2496  				/* Don't loop forever.  Try to recover from possible error. */
2497  
2498  				return (FILESYSTEM_CHANGED_TB(tb)) ?
2499  				    REPEAT_SEARCH : CARRY_ON;
2500  			}
2501  #endif
2502  			depth = reiserfs_write_unlock_nested(tb->tb_sb);
2503  			__wait_on_buffer(locked);
2504  			reiserfs_write_lock_nested(tb->tb_sb, depth);
2505  			if (FILESYSTEM_CHANGED_TB(tb))
2506  				return REPEAT_SEARCH;
2507  		}
2508  
2509  	} while (locked);
2510  
2511  	return CARRY_ON;
2512  }
2513  
2514  /*
2515   * Prepare for balancing, that is
2516   *	get all necessary parents, and neighbors;
2517   *	analyze what and where should be moved;
2518   *	get sufficient number of new nodes;
2519   * Balancing will start only after all resources will be collected at a time.
2520   *
2521   * When ported to SMP kernels, only at the last moment after all needed nodes
2522   * are collected in cache, will the resources be locked using the usual
2523   * textbook ordered lock acquisition algorithms.  Note that ensuring that
2524   * this code neither write locks what it does not need to write lock nor locks
2525   * out of order will be a pain in the butt that could have been avoided.
2526   * Grumble grumble. -Hans
2527   *
2528   * fix is meant in the sense of render unchanging
2529   *
2530   * Latency might be improved by first gathering a list of what buffers
2531   * are needed and then getting as many of them in parallel as possible? -Hans
2532   *
2533   * Parameters:
2534   *	op_mode	i - insert, d - delete, c - cut (truncate), p - paste (append)
2535   *	tb	tree_balance structure;
2536   *	inum	item number in S[h];
2537   *      pos_in_item - comment this if you can
2538   *      ins_ih	item head of item being inserted
2539   *	data	inserted item or data to be pasted
2540   * Returns:	1 - schedule occurred while the function worked;
2541   *	        0 - schedule didn't occur while the function worked;
2542   *             -1 - if no_disk_space
2543   */
2544  
fix_nodes(int op_mode,struct tree_balance * tb,struct item_head * ins_ih,const void * data)2545  int fix_nodes(int op_mode, struct tree_balance *tb,
2546  	      struct item_head *ins_ih, const void *data)
2547  {
2548  	int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
2549  	int pos_in_item;
2550  
2551  	/*
2552  	 * we set wait_tb_buffers_run when we have to restore any dirty
2553  	 * bits cleared during wait_tb_buffers_run
2554  	 */
2555  	int wait_tb_buffers_run = 0;
2556  	struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
2557  
2558  	++REISERFS_SB(tb->tb_sb)->s_fix_nodes;
2559  
2560  	pos_in_item = tb->tb_path->pos_in_item;
2561  
2562  	tb->fs_gen = get_generation(tb->tb_sb);
2563  
2564  	/*
2565  	 * we prepare and log the super here so it will already be in the
2566  	 * transaction when do_balance needs to change it.
2567  	 * This way do_balance won't have to schedule when trying to prepare
2568  	 * the super for logging
2569  	 */
2570  	reiserfs_prepare_for_journal(tb->tb_sb,
2571  				     SB_BUFFER_WITH_SB(tb->tb_sb), 1);
2572  	journal_mark_dirty(tb->transaction_handle,
2573  			   SB_BUFFER_WITH_SB(tb->tb_sb));
2574  	if (FILESYSTEM_CHANGED_TB(tb))
2575  		return REPEAT_SEARCH;
2576  
2577  	/* if it possible in indirect_to_direct conversion */
2578  	if (buffer_locked(tbS0)) {
2579  		int depth = reiserfs_write_unlock_nested(tb->tb_sb);
2580  		__wait_on_buffer(tbS0);
2581  		reiserfs_write_lock_nested(tb->tb_sb, depth);
2582  		if (FILESYSTEM_CHANGED_TB(tb))
2583  			return REPEAT_SEARCH;
2584  	}
2585  #ifdef CONFIG_REISERFS_CHECK
2586  	if (REISERFS_SB(tb->tb_sb)->cur_tb) {
2587  		print_cur_tb("fix_nodes");
2588  		reiserfs_panic(tb->tb_sb, "PAP-8305",
2589  			       "there is pending do_balance");
2590  	}
2591  
2592  	if (!buffer_uptodate(tbS0) || !B_IS_IN_TREE(tbS0))
2593  		reiserfs_panic(tb->tb_sb, "PAP-8320", "S[0] (%b %z) is "
2594  			       "not uptodate at the beginning of fix_nodes "
2595  			       "or not in tree (mode %c)",
2596  			       tbS0, tbS0, op_mode);
2597  
2598  	/* Check parameters. */
2599  	switch (op_mode) {
2600  	case M_INSERT:
2601  		if (item_num <= 0 || item_num > B_NR_ITEMS(tbS0))
2602  			reiserfs_panic(tb->tb_sb, "PAP-8330", "Incorrect "
2603  				       "item number %d (in S0 - %d) in case "
2604  				       "of insert", item_num,
2605  				       B_NR_ITEMS(tbS0));
2606  		break;
2607  	case M_PASTE:
2608  	case M_DELETE:
2609  	case M_CUT:
2610  		if (item_num < 0 || item_num >= B_NR_ITEMS(tbS0)) {
2611  			print_block(tbS0, 0, -1, -1);
2612  			reiserfs_panic(tb->tb_sb, "PAP-8335", "Incorrect "
2613  				       "item number(%d); mode = %c "
2614  				       "insert_size = %d",
2615  				       item_num, op_mode,
2616  				       tb->insert_size[0]);
2617  		}
2618  		break;
2619  	default:
2620  		reiserfs_panic(tb->tb_sb, "PAP-8340", "Incorrect mode "
2621  			       "of operation");
2622  	}
2623  #endif
2624  
2625  	if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
2626  		/* FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat */
2627  		return REPEAT_SEARCH;
2628  
2629  	/* Starting from the leaf level; for all levels h of the tree. */
2630  	for (h = 0; h < MAX_HEIGHT && tb->insert_size[h]; h++) {
2631  		ret = get_direct_parent(tb, h);
2632  		if (ret != CARRY_ON)
2633  			goto repeat;
2634  
2635  		ret = check_balance(op_mode, tb, h, item_num,
2636  				    pos_in_item, ins_ih, data);
2637  		if (ret != CARRY_ON) {
2638  			if (ret == NO_BALANCING_NEEDED) {
2639  				/* No balancing for higher levels needed. */
2640  				ret = get_neighbors(tb, h);
2641  				if (ret != CARRY_ON)
2642  					goto repeat;
2643  				if (h != MAX_HEIGHT - 1)
2644  					tb->insert_size[h + 1] = 0;
2645  				/*
2646  				 * ok, analysis and resource gathering
2647  				 * are complete
2648  				 */
2649  				break;
2650  			}
2651  			goto repeat;
2652  		}
2653  
2654  		ret = get_neighbors(tb, h);
2655  		if (ret != CARRY_ON)
2656  			goto repeat;
2657  
2658  		/*
2659  		 * No disk space, or schedule occurred and analysis may be
2660  		 * invalid and needs to be redone.
2661  		 */
2662  		ret = get_empty_nodes(tb, h);
2663  		if (ret != CARRY_ON)
2664  			goto repeat;
2665  
2666  		/*
2667  		 * We have a positive insert size but no nodes exist on this
2668  		 * level, this means that we are creating a new root.
2669  		 */
2670  		if (!PATH_H_PBUFFER(tb->tb_path, h)) {
2671  
2672  			RFALSE(tb->blknum[h] != 1,
2673  			       "PAP-8350: creating new empty root");
2674  
2675  			if (h < MAX_HEIGHT - 1)
2676  				tb->insert_size[h + 1] = 0;
2677  		} else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
2678  			/*
2679  			 * The tree needs to be grown, so this node S[h]
2680  			 * which is the root node is split into two nodes,
2681  			 * and a new node (S[h+1]) will be created to
2682  			 * become the root node.
2683  			 */
2684  			if (tb->blknum[h] > 1) {
2685  
2686  				RFALSE(h == MAX_HEIGHT - 1,
2687  				       "PAP-8355: attempt to create too high of a tree");
2688  
2689  				tb->insert_size[h + 1] =
2690  				    (DC_SIZE +
2691  				     KEY_SIZE) * (tb->blknum[h] - 1) +
2692  				    DC_SIZE;
2693  			} else if (h < MAX_HEIGHT - 1)
2694  				tb->insert_size[h + 1] = 0;
2695  		} else
2696  			tb->insert_size[h + 1] =
2697  			    (DC_SIZE + KEY_SIZE) * (tb->blknum[h] - 1);
2698  	}
2699  
2700  	ret = wait_tb_buffers_until_unlocked(tb);
2701  	if (ret == CARRY_ON) {
2702  		if (FILESYSTEM_CHANGED_TB(tb)) {
2703  			wait_tb_buffers_run = 1;
2704  			ret = REPEAT_SEARCH;
2705  			goto repeat;
2706  		} else {
2707  			return CARRY_ON;
2708  		}
2709  	} else {
2710  		wait_tb_buffers_run = 1;
2711  		goto repeat;
2712  	}
2713  
2714  repeat:
2715  	/*
2716  	 * fix_nodes was unable to perform its calculation due to
2717  	 * filesystem got changed under us, lack of free disk space or i/o
2718  	 * failure. If the first is the case - the search will be
2719  	 * repeated. For now - free all resources acquired so far except
2720  	 * for the new allocated nodes
2721  	 */
2722  	{
2723  		int i;
2724  
2725  		/* Release path buffers. */
2726  		if (wait_tb_buffers_run) {
2727  			pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2728  		} else {
2729  			pathrelse(tb->tb_path);
2730  		}
2731  		/* brelse all resources collected for balancing */
2732  		for (i = 0; i < MAX_HEIGHT; i++) {
2733  			if (wait_tb_buffers_run) {
2734  				reiserfs_restore_prepared_buffer(tb->tb_sb,
2735  								 tb->L[i]);
2736  				reiserfs_restore_prepared_buffer(tb->tb_sb,
2737  								 tb->R[i]);
2738  				reiserfs_restore_prepared_buffer(tb->tb_sb,
2739  								 tb->FL[i]);
2740  				reiserfs_restore_prepared_buffer(tb->tb_sb,
2741  								 tb->FR[i]);
2742  				reiserfs_restore_prepared_buffer(tb->tb_sb,
2743  								 tb->
2744  								 CFL[i]);
2745  				reiserfs_restore_prepared_buffer(tb->tb_sb,
2746  								 tb->
2747  								 CFR[i]);
2748  			}
2749  
2750  			brelse(tb->L[i]);
2751  			brelse(tb->R[i]);
2752  			brelse(tb->FL[i]);
2753  			brelse(tb->FR[i]);
2754  			brelse(tb->CFL[i]);
2755  			brelse(tb->CFR[i]);
2756  
2757  			tb->L[i] = NULL;
2758  			tb->R[i] = NULL;
2759  			tb->FL[i] = NULL;
2760  			tb->FR[i] = NULL;
2761  			tb->CFL[i] = NULL;
2762  			tb->CFR[i] = NULL;
2763  		}
2764  
2765  		if (wait_tb_buffers_run) {
2766  			for (i = 0; i < MAX_FEB_SIZE; i++) {
2767  				if (tb->FEB[i])
2768  					reiserfs_restore_prepared_buffer
2769  					    (tb->tb_sb, tb->FEB[i]);
2770  			}
2771  		}
2772  		return ret;
2773  	}
2774  
2775  }
2776  
unfix_nodes(struct tree_balance * tb)2777  void unfix_nodes(struct tree_balance *tb)
2778  {
2779  	int i;
2780  
2781  	/* Release path buffers. */
2782  	pathrelse_and_restore(tb->tb_sb, tb->tb_path);
2783  
2784  	/* brelse all resources collected for balancing */
2785  	for (i = 0; i < MAX_HEIGHT; i++) {
2786  		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->L[i]);
2787  		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->R[i]);
2788  		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FL[i]);
2789  		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->FR[i]);
2790  		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFL[i]);
2791  		reiserfs_restore_prepared_buffer(tb->tb_sb, tb->CFR[i]);
2792  
2793  		brelse(tb->L[i]);
2794  		brelse(tb->R[i]);
2795  		brelse(tb->FL[i]);
2796  		brelse(tb->FR[i]);
2797  		brelse(tb->CFL[i]);
2798  		brelse(tb->CFR[i]);
2799  	}
2800  
2801  	/* deal with list of allocated (used and unused) nodes */
2802  	for (i = 0; i < MAX_FEB_SIZE; i++) {
2803  		if (tb->FEB[i]) {
2804  			b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
2805  			/*
2806  			 * de-allocated block which was not used by
2807  			 * balancing and bforget about buffer for it
2808  			 */
2809  			brelse(tb->FEB[i]);
2810  			reiserfs_free_block(tb->transaction_handle, NULL,
2811  					    blocknr, 0);
2812  		}
2813  		if (tb->used[i]) {
2814  			/* release used as new nodes including a new root */
2815  			brelse(tb->used[i]);
2816  		}
2817  	}
2818  
2819  	kfree(tb->vn_buf);
2820  
2821  }
2822