1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/time.h> 6 #include <linux/fs.h> 7 #include "reiserfs.h" 8 #include "acl.h" 9 #include "xattr.h" 10 #include <linux/exportfs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/slab.h> 14 #include <linux/uaccess.h> 15 #include <asm/unaligned.h> 16 #include <linux/buffer_head.h> 17 #include <linux/mpage.h> 18 #include <linux/writeback.h> 19 #include <linux/quotaops.h> 20 #include <linux/swap.h> 21 #include <linux/uio.h> 22 #include <linux/bio.h> 23 24 int reiserfs_commit_write(struct file *f, struct page *page, 25 unsigned from, unsigned to); 26 reiserfs_evict_inode(struct inode * inode)27 void reiserfs_evict_inode(struct inode *inode) 28 { 29 /* 30 * We need blocks for transaction + (user+group) quota 31 * update (possibly delete) 32 */ 33 int jbegin_count = 34 JOURNAL_PER_BALANCE_CNT * 2 + 35 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 36 struct reiserfs_transaction_handle th; 37 int err; 38 39 if (!inode->i_nlink && !is_bad_inode(inode)) 40 dquot_initialize(inode); 41 42 truncate_inode_pages_final(&inode->i_data); 43 if (inode->i_nlink) 44 goto no_delete; 45 46 /* 47 * The = 0 happens when we abort creating a new inode 48 * for some reason like lack of space.. 49 * also handles bad_inode case 50 */ 51 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { 52 53 reiserfs_delete_xattrs(inode); 54 55 reiserfs_write_lock(inode->i_sb); 56 57 if (journal_begin(&th, inode->i_sb, jbegin_count)) 58 goto out; 59 reiserfs_update_inode_transaction(inode); 60 61 reiserfs_discard_prealloc(&th, inode); 62 63 err = reiserfs_delete_object(&th, inode); 64 65 /* 66 * Do quota update inside a transaction for journaled quotas. 67 * We must do that after delete_object so that quota updates 68 * go into the same transaction as stat data deletion 69 */ 70 if (!err) { 71 int depth = reiserfs_write_unlock_nested(inode->i_sb); 72 dquot_free_inode(inode); 73 reiserfs_write_lock_nested(inode->i_sb, depth); 74 } 75 76 if (journal_end(&th)) 77 goto out; 78 79 /* 80 * check return value from reiserfs_delete_object after 81 * ending the transaction 82 */ 83 if (err) 84 goto out; 85 86 /* 87 * all items of file are deleted, so we can remove 88 * "save" link 89 * we can't do anything about an error here 90 */ 91 remove_save_link(inode, 0 /* not truncate */); 92 out: 93 reiserfs_write_unlock(inode->i_sb); 94 } else { 95 /* no object items are in the tree */ 96 ; 97 } 98 99 /* note this must go after the journal_end to prevent deadlock */ 100 clear_inode(inode); 101 102 dquot_drop(inode); 103 inode->i_blocks = 0; 104 return; 105 106 no_delete: 107 clear_inode(inode); 108 dquot_drop(inode); 109 } 110 _make_cpu_key(struct cpu_key * key,int version,__u32 dirid,__u32 objectid,loff_t offset,int type,int length)111 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 112 __u32 objectid, loff_t offset, int type, int length) 113 { 114 key->version = version; 115 116 key->on_disk_key.k_dir_id = dirid; 117 key->on_disk_key.k_objectid = objectid; 118 set_cpu_key_k_offset(key, offset); 119 set_cpu_key_k_type(key, type); 120 key->key_length = length; 121 } 122 123 /* 124 * take base of inode_key (it comes from inode always) (dirid, objectid) 125 * and version from an inode, set offset and type of key 126 */ make_cpu_key(struct cpu_key * key,struct inode * inode,loff_t offset,int type,int length)127 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 128 int type, int length) 129 { 130 _make_cpu_key(key, get_inode_item_key_version(inode), 131 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 132 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 133 length); 134 } 135 136 /* when key is 0, do not set version and short key */ make_le_item_head(struct item_head * ih,const struct cpu_key * key,int version,loff_t offset,int type,int length,int entry_count)137 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 138 int version, 139 loff_t offset, int type, int length, 140 int entry_count /*or ih_free_space */ ) 141 { 142 if (key) { 143 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 144 ih->ih_key.k_objectid = 145 cpu_to_le32(key->on_disk_key.k_objectid); 146 } 147 put_ih_version(ih, version); 148 set_le_ih_k_offset(ih, offset); 149 set_le_ih_k_type(ih, type); 150 put_ih_item_len(ih, length); 151 /* set_ih_free_space (ih, 0); */ 152 /* 153 * for directory items it is entry count, for directs and stat 154 * datas - 0xffff, for indirects - 0 155 */ 156 put_ih_entry_count(ih, entry_count); 157 } 158 159 /* 160 * FIXME: we might cache recently accessed indirect item 161 * Ugh. Not too eager for that.... 162 * I cut the code until such time as I see a convincing argument (benchmark). 163 * I don't want a bloated inode struct..., and I don't like code complexity.... 164 */ 165 166 /* 167 * cutting the code is fine, since it really isn't in use yet and is easy 168 * to add back in. But, Vladimir has a really good idea here. Think 169 * about what happens for reading a file. For each page, 170 * The VFS layer calls reiserfs_readpage, who searches the tree to find 171 * an indirect item. This indirect item has X number of pointers, where 172 * X is a big number if we've done the block allocation right. But, 173 * we only use one or two of these pointers during each call to readpage, 174 * needlessly researching again later on. 175 * 176 * The size of the cache could be dynamic based on the size of the file. 177 * 178 * I'd also like to see us cache the location the stat data item, since 179 * we are needlessly researching for that frequently. 180 * 181 * --chris 182 */ 183 184 /* 185 * If this page has a file tail in it, and 186 * it was read in by get_block_create_0, the page data is valid, 187 * but tail is still sitting in a direct item, and we can't write to 188 * it. So, look through this page, and check all the mapped buffers 189 * to make sure they have valid block numbers. Any that don't need 190 * to be unmapped, so that __block_write_begin will correctly call 191 * reiserfs_get_block to convert the tail into an unformatted node 192 */ fix_tail_page_for_writing(struct page * page)193 static inline void fix_tail_page_for_writing(struct page *page) 194 { 195 struct buffer_head *head, *next, *bh; 196 197 if (page && page_has_buffers(page)) { 198 head = page_buffers(page); 199 bh = head; 200 do { 201 next = bh->b_this_page; 202 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 203 reiserfs_unmap_buffer(bh); 204 } 205 bh = next; 206 } while (bh != head); 207 } 208 } 209 210 /* 211 * reiserfs_get_block does not need to allocate a block only if it has been 212 * done already or non-hole position has been found in the indirect item 213 */ allocation_needed(int retval,b_blocknr_t allocated,struct item_head * ih,__le32 * item,int pos_in_item)214 static inline int allocation_needed(int retval, b_blocknr_t allocated, 215 struct item_head *ih, 216 __le32 * item, int pos_in_item) 217 { 218 if (allocated) 219 return 0; 220 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 221 get_block_num(item, pos_in_item)) 222 return 0; 223 return 1; 224 } 225 indirect_item_found(int retval,struct item_head * ih)226 static inline int indirect_item_found(int retval, struct item_head *ih) 227 { 228 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 229 } 230 set_block_dev_mapped(struct buffer_head * bh,b_blocknr_t block,struct inode * inode)231 static inline void set_block_dev_mapped(struct buffer_head *bh, 232 b_blocknr_t block, struct inode *inode) 233 { 234 map_bh(bh, inode->i_sb, block); 235 } 236 237 /* 238 * files which were created in the earlier version can not be longer, 239 * than 2 gb 240 */ file_capable(struct inode * inode,sector_t block)241 static int file_capable(struct inode *inode, sector_t block) 242 { 243 /* it is new file. */ 244 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || 245 /* old file, but 'block' is inside of 2gb */ 246 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) 247 return 1; 248 249 return 0; 250 } 251 restart_transaction(struct reiserfs_transaction_handle * th,struct inode * inode,struct treepath * path)252 static int restart_transaction(struct reiserfs_transaction_handle *th, 253 struct inode *inode, struct treepath *path) 254 { 255 struct super_block *s = th->t_super; 256 int err; 257 258 BUG_ON(!th->t_trans_id); 259 BUG_ON(!th->t_refcount); 260 261 pathrelse(path); 262 263 /* we cannot restart while nested */ 264 if (th->t_refcount > 1) { 265 return 0; 266 } 267 reiserfs_update_sd(th, inode); 268 err = journal_end(th); 269 if (!err) { 270 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 271 if (!err) 272 reiserfs_update_inode_transaction(inode); 273 } 274 return err; 275 } 276 277 /* 278 * it is called by get_block when create == 0. Returns block number 279 * for 'block'-th logical block of file. When it hits direct item it 280 * returns 0 (being called from bmap) or read direct item into piece 281 * of page (bh_result) 282 * Please improve the english/clarity in the comment above, as it is 283 * hard to understand. 284 */ _get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int args)285 static int _get_block_create_0(struct inode *inode, sector_t block, 286 struct buffer_head *bh_result, int args) 287 { 288 INITIALIZE_PATH(path); 289 struct cpu_key key; 290 struct buffer_head *bh; 291 struct item_head *ih, tmp_ih; 292 b_blocknr_t blocknr; 293 char *p = NULL; 294 int chars; 295 int ret; 296 int result; 297 int done = 0; 298 unsigned long offset; 299 300 /* prepare the key to look for the 'block'-th block of file */ 301 make_cpu_key(&key, inode, 302 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 303 3); 304 305 result = search_for_position_by_key(inode->i_sb, &key, &path); 306 if (result != POSITION_FOUND) { 307 pathrelse(&path); 308 if (p) 309 kunmap(bh_result->b_page); 310 if (result == IO_ERROR) 311 return -EIO; 312 /* 313 * We do not return -ENOENT if there is a hole but page is 314 * uptodate, because it means that there is some MMAPED data 315 * associated with it that is yet to be written to disk. 316 */ 317 if ((args & GET_BLOCK_NO_HOLE) 318 && !PageUptodate(bh_result->b_page)) { 319 return -ENOENT; 320 } 321 return 0; 322 } 323 324 bh = get_last_bh(&path); 325 ih = tp_item_head(&path); 326 if (is_indirect_le_ih(ih)) { 327 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih); 328 329 /* 330 * FIXME: here we could cache indirect item or part of it in 331 * the inode to avoid search_by_key in case of subsequent 332 * access to file 333 */ 334 blocknr = get_block_num(ind_item, path.pos_in_item); 335 ret = 0; 336 if (blocknr) { 337 map_bh(bh_result, inode->i_sb, blocknr); 338 if (path.pos_in_item == 339 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 340 set_buffer_boundary(bh_result); 341 } 342 } else 343 /* 344 * We do not return -ENOENT if there is a hole but 345 * page is uptodate, because it means that there is 346 * some MMAPED data associated with it that is 347 * yet to be written to disk. 348 */ 349 if ((args & GET_BLOCK_NO_HOLE) 350 && !PageUptodate(bh_result->b_page)) { 351 ret = -ENOENT; 352 } 353 354 pathrelse(&path); 355 if (p) 356 kunmap(bh_result->b_page); 357 return ret; 358 } 359 /* requested data are in direct item(s) */ 360 if (!(args & GET_BLOCK_READ_DIRECT)) { 361 /* 362 * we are called by bmap. FIXME: we can not map block of file 363 * when it is stored in direct item(s) 364 */ 365 pathrelse(&path); 366 if (p) 367 kunmap(bh_result->b_page); 368 return -ENOENT; 369 } 370 371 /* 372 * if we've got a direct item, and the buffer or page was uptodate, 373 * we don't want to pull data off disk again. skip to the 374 * end, where we map the buffer and return 375 */ 376 if (buffer_uptodate(bh_result)) { 377 goto finished; 378 } else 379 /* 380 * grab_tail_page can trigger calls to reiserfs_get_block on 381 * up to date pages without any buffers. If the page is up 382 * to date, we don't want read old data off disk. Set the up 383 * to date bit on the buffer instead and jump to the end 384 */ 385 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 386 set_buffer_uptodate(bh_result); 387 goto finished; 388 } 389 /* read file tail into part of page */ 390 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1); 391 copy_item_head(&tmp_ih, ih); 392 393 /* 394 * we only want to kmap if we are reading the tail into the page. 395 * this is not the common case, so we don't kmap until we are 396 * sure we need to. But, this means the item might move if 397 * kmap schedules 398 */ 399 if (!p) 400 p = (char *)kmap(bh_result->b_page); 401 402 p += offset; 403 memset(p, 0, inode->i_sb->s_blocksize); 404 do { 405 if (!is_direct_le_ih(ih)) { 406 BUG(); 407 } 408 /* 409 * make sure we don't read more bytes than actually exist in 410 * the file. This can happen in odd cases where i_size isn't 411 * correct, and when direct item padding results in a few 412 * extra bytes at the end of the direct item 413 */ 414 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 415 break; 416 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 417 chars = 418 inode->i_size - (le_ih_k_offset(ih) - 1) - 419 path.pos_in_item; 420 done = 1; 421 } else { 422 chars = ih_item_len(ih) - path.pos_in_item; 423 } 424 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars); 425 426 if (done) 427 break; 428 429 p += chars; 430 431 /* 432 * we done, if read direct item is not the last item of 433 * node FIXME: we could try to check right delimiting key 434 * to see whether direct item continues in the right 435 * neighbor or rely on i_size 436 */ 437 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 438 break; 439 440 /* update key to look for the next piece */ 441 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 442 result = search_for_position_by_key(inode->i_sb, &key, &path); 443 if (result != POSITION_FOUND) 444 /* i/o error most likely */ 445 break; 446 bh = get_last_bh(&path); 447 ih = tp_item_head(&path); 448 } while (1); 449 450 flush_dcache_page(bh_result->b_page); 451 kunmap(bh_result->b_page); 452 453 finished: 454 pathrelse(&path); 455 456 if (result == IO_ERROR) 457 return -EIO; 458 459 /* 460 * this buffer has valid data, but isn't valid for io. mapping it to 461 * block #0 tells the rest of reiserfs it just has a tail in it 462 */ 463 map_bh(bh_result, inode->i_sb, 0); 464 set_buffer_uptodate(bh_result); 465 return 0; 466 } 467 468 /* 469 * this is called to create file map. So, _get_block_create_0 will not 470 * read direct item 471 */ reiserfs_bmap(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)472 static int reiserfs_bmap(struct inode *inode, sector_t block, 473 struct buffer_head *bh_result, int create) 474 { 475 if (!file_capable(inode, block)) 476 return -EFBIG; 477 478 reiserfs_write_lock(inode->i_sb); 479 /* do not read the direct item */ 480 _get_block_create_0(inode, block, bh_result, 0); 481 reiserfs_write_unlock(inode->i_sb); 482 return 0; 483 } 484 485 /* 486 * special version of get_block that is only used by grab_tail_page right 487 * now. It is sent to __block_write_begin, and when you try to get a 488 * block past the end of the file (or a block from a hole) it returns 489 * -ENOENT instead of a valid buffer. __block_write_begin expects to 490 * be able to do i/o on the buffers returned, unless an error value 491 * is also returned. 492 * 493 * So, this allows __block_write_begin to be used for reading a single block 494 * in a page. Where it does not produce a valid page for holes, or past the 495 * end of the file. This turns out to be exactly what we need for reading 496 * tails for conversion. 497 * 498 * The point of the wrapper is forcing a certain value for create, even 499 * though the VFS layer is calling this function with create==1. If you 500 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 501 * don't use this function. 502 */ reiserfs_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)503 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 504 struct buffer_head *bh_result, 505 int create) 506 { 507 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 508 } 509 510 /* 511 * This is special helper for reiserfs_get_block in case we are executing 512 * direct_IO request. 513 */ reiserfs_get_blocks_direct_io(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)514 static int reiserfs_get_blocks_direct_io(struct inode *inode, 515 sector_t iblock, 516 struct buffer_head *bh_result, 517 int create) 518 { 519 int ret; 520 521 bh_result->b_page = NULL; 522 523 /* 524 * We set the b_size before reiserfs_get_block call since it is 525 * referenced in convert_tail_for_hole() that may be called from 526 * reiserfs_get_block() 527 */ 528 bh_result->b_size = i_blocksize(inode); 529 530 ret = reiserfs_get_block(inode, iblock, bh_result, 531 create | GET_BLOCK_NO_DANGLE); 532 if (ret) 533 goto out; 534 535 /* don't allow direct io onto tail pages */ 536 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 537 /* 538 * make sure future calls to the direct io funcs for this 539 * offset in the file fail by unmapping the buffer 540 */ 541 clear_buffer_mapped(bh_result); 542 ret = -EINVAL; 543 } 544 545 /* 546 * Possible unpacked tail. Flush the data before pages have 547 * disappeared 548 */ 549 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 550 int err; 551 552 reiserfs_write_lock(inode->i_sb); 553 554 err = reiserfs_commit_for_inode(inode); 555 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 556 557 reiserfs_write_unlock(inode->i_sb); 558 559 if (err < 0) 560 ret = err; 561 } 562 out: 563 return ret; 564 } 565 566 /* 567 * helper function for when reiserfs_get_block is called for a hole 568 * but the file tail is still in a direct item 569 * bh_result is the buffer head for the hole 570 * tail_offset is the offset of the start of the tail in the file 571 * 572 * This calls prepare_write, which will start a new transaction 573 * you should not be in a transaction, or have any paths held when you 574 * call this. 575 */ convert_tail_for_hole(struct inode * inode,struct buffer_head * bh_result,loff_t tail_offset)576 static int convert_tail_for_hole(struct inode *inode, 577 struct buffer_head *bh_result, 578 loff_t tail_offset) 579 { 580 unsigned long index; 581 unsigned long tail_end; 582 unsigned long tail_start; 583 struct page *tail_page; 584 struct page *hole_page = bh_result->b_page; 585 int retval = 0; 586 587 if ((tail_offset & (bh_result->b_size - 1)) != 1) 588 return -EIO; 589 590 /* always try to read until the end of the block */ 591 tail_start = tail_offset & (PAGE_SIZE - 1); 592 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 593 594 index = tail_offset >> PAGE_SHIFT; 595 /* 596 * hole_page can be zero in case of direct_io, we are sure 597 * that we cannot get here if we write with O_DIRECT into tail page 598 */ 599 if (!hole_page || index != hole_page->index) { 600 tail_page = grab_cache_page(inode->i_mapping, index); 601 retval = -ENOMEM; 602 if (!tail_page) { 603 goto out; 604 } 605 } else { 606 tail_page = hole_page; 607 } 608 609 /* 610 * we don't have to make sure the conversion did not happen while 611 * we were locking the page because anyone that could convert 612 * must first take i_mutex. 613 * 614 * We must fix the tail page for writing because it might have buffers 615 * that are mapped, but have a block number of 0. This indicates tail 616 * data that has been read directly into the page, and 617 * __block_write_begin won't trigger a get_block in this case. 618 */ 619 fix_tail_page_for_writing(tail_page); 620 retval = __reiserfs_write_begin(tail_page, tail_start, 621 tail_end - tail_start); 622 if (retval) 623 goto unlock; 624 625 /* tail conversion might change the data in the page */ 626 flush_dcache_page(tail_page); 627 628 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 629 630 unlock: 631 if (tail_page != hole_page) { 632 unlock_page(tail_page); 633 put_page(tail_page); 634 } 635 out: 636 return retval; 637 } 638 _allocate_block(struct reiserfs_transaction_handle * th,sector_t block,struct inode * inode,b_blocknr_t * allocated_block_nr,struct treepath * path,int flags)639 static inline int _allocate_block(struct reiserfs_transaction_handle *th, 640 sector_t block, 641 struct inode *inode, 642 b_blocknr_t * allocated_block_nr, 643 struct treepath *path, int flags) 644 { 645 BUG_ON(!th->t_trans_id); 646 647 #ifdef REISERFS_PREALLOCATE 648 if (!(flags & GET_BLOCK_NO_IMUX)) { 649 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 650 path, block); 651 } 652 #endif 653 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 654 block); 655 } 656 reiserfs_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)657 int reiserfs_get_block(struct inode *inode, sector_t block, 658 struct buffer_head *bh_result, int create) 659 { 660 int repeat, retval = 0; 661 /* b_blocknr_t is (unsigned) 32 bit int*/ 662 b_blocknr_t allocated_block_nr = 0; 663 INITIALIZE_PATH(path); 664 int pos_in_item; 665 struct cpu_key key; 666 struct buffer_head *bh, *unbh = NULL; 667 struct item_head *ih, tmp_ih; 668 __le32 *item; 669 int done; 670 int fs_gen; 671 struct reiserfs_transaction_handle *th = NULL; 672 /* 673 * space reserved in transaction batch: 674 * . 3 balancings in direct->indirect conversion 675 * . 1 block involved into reiserfs_update_sd() 676 * XXX in practically impossible worst case direct2indirect() 677 * can incur (much) more than 3 balancings. 678 * quota update for user, group 679 */ 680 int jbegin_count = 681 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 682 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 683 int version; 684 int dangle = 1; 685 loff_t new_offset = 686 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 687 688 reiserfs_write_lock(inode->i_sb); 689 version = get_inode_item_key_version(inode); 690 691 if (!file_capable(inode, block)) { 692 reiserfs_write_unlock(inode->i_sb); 693 return -EFBIG; 694 } 695 696 /* 697 * if !create, we aren't changing the FS, so we don't need to 698 * log anything, so we don't need to start a transaction 699 */ 700 if (!(create & GET_BLOCK_CREATE)) { 701 int ret; 702 /* find number of block-th logical block of the file */ 703 ret = _get_block_create_0(inode, block, bh_result, 704 create | GET_BLOCK_READ_DIRECT); 705 reiserfs_write_unlock(inode->i_sb); 706 return ret; 707 } 708 709 /* 710 * if we're already in a transaction, make sure to close 711 * any new transactions we start in this func 712 */ 713 if ((create & GET_BLOCK_NO_DANGLE) || 714 reiserfs_transaction_running(inode->i_sb)) 715 dangle = 0; 716 717 /* 718 * If file is of such a size, that it might have a tail and 719 * tails are enabled we should mark it as possibly needing 720 * tail packing on close 721 */ 722 if ((have_large_tails(inode->i_sb) 723 && inode->i_size < i_block_size(inode) * 4) 724 || (have_small_tails(inode->i_sb) 725 && inode->i_size < i_block_size(inode))) 726 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 727 728 /* set the key of the first byte in the 'block'-th block of file */ 729 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 730 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 731 start_trans: 732 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 733 if (!th) { 734 retval = -ENOMEM; 735 goto failure; 736 } 737 reiserfs_update_inode_transaction(inode); 738 } 739 research: 740 741 retval = search_for_position_by_key(inode->i_sb, &key, &path); 742 if (retval == IO_ERROR) { 743 retval = -EIO; 744 goto failure; 745 } 746 747 bh = get_last_bh(&path); 748 ih = tp_item_head(&path); 749 item = tp_item_body(&path); 750 pos_in_item = path.pos_in_item; 751 752 fs_gen = get_generation(inode->i_sb); 753 copy_item_head(&tmp_ih, ih); 754 755 if (allocation_needed 756 (retval, allocated_block_nr, ih, item, pos_in_item)) { 757 /* we have to allocate block for the unformatted node */ 758 if (!th) { 759 pathrelse(&path); 760 goto start_trans; 761 } 762 763 repeat = 764 _allocate_block(th, block, inode, &allocated_block_nr, 765 &path, create); 766 767 /* 768 * restart the transaction to give the journal a chance to free 769 * some blocks. releases the path, so we have to go back to 770 * research if we succeed on the second try 771 */ 772 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 773 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 774 retval = restart_transaction(th, inode, &path); 775 if (retval) 776 goto failure; 777 repeat = 778 _allocate_block(th, block, inode, 779 &allocated_block_nr, NULL, create); 780 781 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 782 goto research; 783 } 784 if (repeat == QUOTA_EXCEEDED) 785 retval = -EDQUOT; 786 else 787 retval = -ENOSPC; 788 goto failure; 789 } 790 791 if (fs_changed(fs_gen, inode->i_sb) 792 && item_moved(&tmp_ih, &path)) { 793 goto research; 794 } 795 } 796 797 if (indirect_item_found(retval, ih)) { 798 b_blocknr_t unfm_ptr; 799 /* 800 * 'block'-th block is in the file already (there is 801 * corresponding cell in some indirect item). But it may be 802 * zero unformatted node pointer (hole) 803 */ 804 unfm_ptr = get_block_num(item, pos_in_item); 805 if (unfm_ptr == 0) { 806 /* use allocated block to plug the hole */ 807 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 808 if (fs_changed(fs_gen, inode->i_sb) 809 && item_moved(&tmp_ih, &path)) { 810 reiserfs_restore_prepared_buffer(inode->i_sb, 811 bh); 812 goto research; 813 } 814 set_buffer_new(bh_result); 815 if (buffer_dirty(bh_result) 816 && reiserfs_data_ordered(inode->i_sb)) 817 reiserfs_add_ordered_list(inode, bh_result); 818 put_block_num(item, pos_in_item, allocated_block_nr); 819 unfm_ptr = allocated_block_nr; 820 journal_mark_dirty(th, bh); 821 reiserfs_update_sd(th, inode); 822 } 823 set_block_dev_mapped(bh_result, unfm_ptr, inode); 824 pathrelse(&path); 825 retval = 0; 826 if (!dangle && th) 827 retval = reiserfs_end_persistent_transaction(th); 828 829 reiserfs_write_unlock(inode->i_sb); 830 831 /* 832 * the item was found, so new blocks were not added to the file 833 * there is no need to make sure the inode is updated with this 834 * transaction 835 */ 836 return retval; 837 } 838 839 if (!th) { 840 pathrelse(&path); 841 goto start_trans; 842 } 843 844 /* 845 * desired position is not found or is in the direct item. We have 846 * to append file with holes up to 'block'-th block converting 847 * direct items to indirect one if necessary 848 */ 849 done = 0; 850 do { 851 if (is_statdata_le_ih(ih)) { 852 __le32 unp = 0; 853 struct cpu_key tmp_key; 854 855 /* indirect item has to be inserted */ 856 make_le_item_head(&tmp_ih, &key, version, 1, 857 TYPE_INDIRECT, UNFM_P_SIZE, 858 0 /* free_space */ ); 859 860 /* 861 * we are going to add 'block'-th block to the file. 862 * Use allocated block for that 863 */ 864 if (cpu_key_k_offset(&key) == 1) { 865 unp = cpu_to_le32(allocated_block_nr); 866 set_block_dev_mapped(bh_result, 867 allocated_block_nr, inode); 868 set_buffer_new(bh_result); 869 done = 1; 870 } 871 tmp_key = key; /* ;) */ 872 set_cpu_key_k_offset(&tmp_key, 1); 873 PATH_LAST_POSITION(&path)++; 874 875 retval = 876 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 877 inode, (char *)&unp); 878 if (retval) { 879 reiserfs_free_block(th, inode, 880 allocated_block_nr, 1); 881 /* 882 * retval == -ENOSPC, -EDQUOT or -EIO 883 * or -EEXIST 884 */ 885 goto failure; 886 } 887 } else if (is_direct_le_ih(ih)) { 888 /* direct item has to be converted */ 889 loff_t tail_offset; 890 891 tail_offset = 892 ((le_ih_k_offset(ih) - 893 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 894 895 /* 896 * direct item we just found fits into block we have 897 * to map. Convert it into unformatted node: use 898 * bh_result for the conversion 899 */ 900 if (tail_offset == cpu_key_k_offset(&key)) { 901 set_block_dev_mapped(bh_result, 902 allocated_block_nr, inode); 903 unbh = bh_result; 904 done = 1; 905 } else { 906 /* 907 * we have to pad file tail stored in direct 908 * item(s) up to block size and convert it 909 * to unformatted node. FIXME: this should 910 * also get into page cache 911 */ 912 913 pathrelse(&path); 914 /* 915 * ugly, but we can only end the transaction if 916 * we aren't nested 917 */ 918 BUG_ON(!th->t_refcount); 919 if (th->t_refcount == 1) { 920 retval = 921 reiserfs_end_persistent_transaction 922 (th); 923 th = NULL; 924 if (retval) 925 goto failure; 926 } 927 928 retval = 929 convert_tail_for_hole(inode, bh_result, 930 tail_offset); 931 if (retval) { 932 if (retval != -ENOSPC) 933 reiserfs_error(inode->i_sb, 934 "clm-6004", 935 "convert tail failed " 936 "inode %lu, error %d", 937 inode->i_ino, 938 retval); 939 if (allocated_block_nr) { 940 /* 941 * the bitmap, the super, 942 * and the stat data == 3 943 */ 944 if (!th) 945 th = reiserfs_persistent_transaction(inode->i_sb, 3); 946 if (th) 947 reiserfs_free_block(th, 948 inode, 949 allocated_block_nr, 950 1); 951 } 952 goto failure; 953 } 954 goto research; 955 } 956 retval = 957 direct2indirect(th, inode, &path, unbh, 958 tail_offset); 959 if (retval) { 960 reiserfs_unmap_buffer(unbh); 961 reiserfs_free_block(th, inode, 962 allocated_block_nr, 1); 963 goto failure; 964 } 965 /* 966 * it is important the set_buffer_uptodate is done 967 * after the direct2indirect. The buffer might 968 * contain valid data newer than the data on disk 969 * (read by readpage, changed, and then sent here by 970 * writepage). direct2indirect needs to know if unbh 971 * was already up to date, so it can decide if the 972 * data in unbh needs to be replaced with data from 973 * the disk 974 */ 975 set_buffer_uptodate(unbh); 976 977 /* 978 * unbh->b_page == NULL in case of DIRECT_IO request, 979 * this means buffer will disappear shortly, so it 980 * should not be added to 981 */ 982 if (unbh->b_page) { 983 /* 984 * we've converted the tail, so we must 985 * flush unbh before the transaction commits 986 */ 987 reiserfs_add_tail_list(inode, unbh); 988 989 /* 990 * mark it dirty now to prevent commit_write 991 * from adding this buffer to the inode's 992 * dirty buffer list 993 */ 994 /* 995 * AKPM: changed __mark_buffer_dirty to 996 * mark_buffer_dirty(). It's still atomic, 997 * but it sets the page dirty too, which makes 998 * it eligible for writeback at any time by the 999 * VM (which was also the case with 1000 * __mark_buffer_dirty()) 1001 */ 1002 mark_buffer_dirty(unbh); 1003 } 1004 } else { 1005 /* 1006 * append indirect item with holes if needed, when 1007 * appending pointer to 'block'-th block use block, 1008 * which is already allocated 1009 */ 1010 struct cpu_key tmp_key; 1011 /* 1012 * We use this in case we need to allocate 1013 * only one block which is a fastpath 1014 */ 1015 unp_t unf_single = 0; 1016 unp_t *un; 1017 __u64 max_to_insert = 1018 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 1019 UNFM_P_SIZE; 1020 __u64 blocks_needed; 1021 1022 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 1023 "vs-804: invalid position for append"); 1024 /* 1025 * indirect item has to be appended, 1026 * set up key of that position 1027 * (key type is unimportant) 1028 */ 1029 make_cpu_key(&tmp_key, inode, 1030 le_key_k_offset(version, 1031 &ih->ih_key) + 1032 op_bytes_number(ih, 1033 inode->i_sb->s_blocksize), 1034 TYPE_INDIRECT, 3); 1035 1036 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 1037 "green-805: invalid offset"); 1038 blocks_needed = 1039 1 + 1040 ((cpu_key_k_offset(&key) - 1041 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 1042 s_blocksize_bits); 1043 1044 if (blocks_needed == 1) { 1045 un = &unf_single; 1046 } else { 1047 un = kcalloc(min(blocks_needed, max_to_insert), 1048 UNFM_P_SIZE, GFP_NOFS); 1049 if (!un) { 1050 un = &unf_single; 1051 blocks_needed = 1; 1052 max_to_insert = 0; 1053 } 1054 } 1055 if (blocks_needed <= max_to_insert) { 1056 /* 1057 * we are going to add target block to 1058 * the file. Use allocated block for that 1059 */ 1060 un[blocks_needed - 1] = 1061 cpu_to_le32(allocated_block_nr); 1062 set_block_dev_mapped(bh_result, 1063 allocated_block_nr, inode); 1064 set_buffer_new(bh_result); 1065 done = 1; 1066 } else { 1067 /* paste hole to the indirect item */ 1068 /* 1069 * If kmalloc failed, max_to_insert becomes 1070 * zero and it means we only have space for 1071 * one block 1072 */ 1073 blocks_needed = 1074 max_to_insert ? max_to_insert : 1; 1075 } 1076 retval = 1077 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 1078 (char *)un, 1079 UNFM_P_SIZE * 1080 blocks_needed); 1081 1082 if (blocks_needed != 1) 1083 kfree(un); 1084 1085 if (retval) { 1086 reiserfs_free_block(th, inode, 1087 allocated_block_nr, 1); 1088 goto failure; 1089 } 1090 if (!done) { 1091 /* 1092 * We need to mark new file size in case 1093 * this function will be interrupted/aborted 1094 * later on. And we may do this only for 1095 * holes. 1096 */ 1097 inode->i_size += 1098 inode->i_sb->s_blocksize * blocks_needed; 1099 } 1100 } 1101 1102 if (done == 1) 1103 break; 1104 1105 /* 1106 * this loop could log more blocks than we had originally 1107 * asked for. So, we have to allow the transaction to end 1108 * if it is too big or too full. Update the inode so things 1109 * are consistent if we crash before the function returns 1110 * release the path so that anybody waiting on the path before 1111 * ending their transaction will be able to continue. 1112 */ 1113 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 1114 retval = restart_transaction(th, inode, &path); 1115 if (retval) 1116 goto failure; 1117 } 1118 /* 1119 * inserting indirect pointers for a hole can take a 1120 * long time. reschedule if needed and also release the write 1121 * lock for others. 1122 */ 1123 reiserfs_cond_resched(inode->i_sb); 1124 1125 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1126 if (retval == IO_ERROR) { 1127 retval = -EIO; 1128 goto failure; 1129 } 1130 if (retval == POSITION_FOUND) { 1131 reiserfs_warning(inode->i_sb, "vs-825", 1132 "%K should not be found", &key); 1133 retval = -EEXIST; 1134 if (allocated_block_nr) 1135 reiserfs_free_block(th, inode, 1136 allocated_block_nr, 1); 1137 pathrelse(&path); 1138 goto failure; 1139 } 1140 bh = get_last_bh(&path); 1141 ih = tp_item_head(&path); 1142 item = tp_item_body(&path); 1143 pos_in_item = path.pos_in_item; 1144 } while (1); 1145 1146 retval = 0; 1147 1148 failure: 1149 if (th && (!dangle || (retval && !th->t_trans_id))) { 1150 int err; 1151 if (th->t_trans_id) 1152 reiserfs_update_sd(th, inode); 1153 err = reiserfs_end_persistent_transaction(th); 1154 if (err) 1155 retval = err; 1156 } 1157 1158 reiserfs_write_unlock(inode->i_sb); 1159 reiserfs_check_path(&path); 1160 return retval; 1161 } 1162 1163 static int reiserfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1164 reiserfs_readpages(struct file *file, struct address_space *mapping, 1165 struct list_head *pages, unsigned nr_pages) 1166 { 1167 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1168 } 1169 1170 /* 1171 * Compute real number of used bytes by file 1172 * Following three functions can go away when we'll have enough space in 1173 * stat item 1174 */ real_space_diff(struct inode * inode,int sd_size)1175 static int real_space_diff(struct inode *inode, int sd_size) 1176 { 1177 int bytes; 1178 loff_t blocksize = inode->i_sb->s_blocksize; 1179 1180 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1181 return sd_size; 1182 1183 /* 1184 * End of file is also in full block with indirect reference, so round 1185 * up to the next block. 1186 * 1187 * there is just no way to know if the tail is actually packed 1188 * on the file, so we have to assume it isn't. When we pack the 1189 * tail, we add 4 bytes to pretend there really is an unformatted 1190 * node pointer 1191 */ 1192 bytes = 1193 ((inode->i_size + 1194 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1195 sd_size; 1196 return bytes; 1197 } 1198 to_real_used_space(struct inode * inode,ulong blocks,int sd_size)1199 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1200 int sd_size) 1201 { 1202 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1203 return inode->i_size + 1204 (loff_t) (real_space_diff(inode, sd_size)); 1205 } 1206 return ((loff_t) real_space_diff(inode, sd_size)) + 1207 (((loff_t) blocks) << 9); 1208 } 1209 1210 /* Compute number of blocks used by file in ReiserFS counting */ to_fake_used_blocks(struct inode * inode,int sd_size)1211 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1212 { 1213 loff_t bytes = inode_get_bytes(inode); 1214 loff_t real_space = real_space_diff(inode, sd_size); 1215 1216 /* keeps fsck and non-quota versions of reiserfs happy */ 1217 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1218 bytes += (loff_t) 511; 1219 } 1220 1221 /* 1222 * files from before the quota patch might i_blocks such that 1223 * bytes < real_space. Deal with that here to prevent it from 1224 * going negative. 1225 */ 1226 if (bytes < real_space) 1227 return 0; 1228 return (bytes - real_space) >> 9; 1229 } 1230 1231 /* 1232 * BAD: new directories have stat data of new type and all other items 1233 * of old type. Version stored in the inode says about body items, so 1234 * in update_stat_data we can not rely on inode, but have to check 1235 * item version directly 1236 */ 1237 1238 /* called by read_locked_inode */ init_inode(struct inode * inode,struct treepath * path)1239 static void init_inode(struct inode *inode, struct treepath *path) 1240 { 1241 struct buffer_head *bh; 1242 struct item_head *ih; 1243 __u32 rdev; 1244 1245 bh = PATH_PLAST_BUFFER(path); 1246 ih = tp_item_head(path); 1247 1248 copy_key(INODE_PKEY(inode), &ih->ih_key); 1249 1250 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 1251 REISERFS_I(inode)->i_flags = 0; 1252 REISERFS_I(inode)->i_prealloc_block = 0; 1253 REISERFS_I(inode)->i_prealloc_count = 0; 1254 REISERFS_I(inode)->i_trans_id = 0; 1255 REISERFS_I(inode)->i_jl = NULL; 1256 reiserfs_init_xattr_rwsem(inode); 1257 1258 if (stat_data_v1(ih)) { 1259 struct stat_data_v1 *sd = 1260 (struct stat_data_v1 *)ih_item_body(bh, ih); 1261 unsigned long blocks; 1262 1263 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1264 set_inode_sd_version(inode, STAT_DATA_V1); 1265 inode->i_mode = sd_v1_mode(sd); 1266 set_nlink(inode, sd_v1_nlink(sd)); 1267 i_uid_write(inode, sd_v1_uid(sd)); 1268 i_gid_write(inode, sd_v1_gid(sd)); 1269 inode->i_size = sd_v1_size(sd); 1270 inode->i_atime.tv_sec = sd_v1_atime(sd); 1271 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1272 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1273 inode->i_atime.tv_nsec = 0; 1274 inode->i_ctime.tv_nsec = 0; 1275 inode->i_mtime.tv_nsec = 0; 1276 1277 inode->i_blocks = sd_v1_blocks(sd); 1278 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1279 blocks = (inode->i_size + 511) >> 9; 1280 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1281 1282 /* 1283 * there was a bug in <=3.5.23 when i_blocks could take 1284 * negative values. Starting from 3.5.17 this value could 1285 * even be stored in stat data. For such files we set 1286 * i_blocks based on file size. Just 2 notes: this can be 1287 * wrong for sparse files. On-disk value will be only 1288 * updated if file's inode will ever change 1289 */ 1290 if (inode->i_blocks > blocks) { 1291 inode->i_blocks = blocks; 1292 } 1293 1294 rdev = sd_v1_rdev(sd); 1295 REISERFS_I(inode)->i_first_direct_byte = 1296 sd_v1_first_direct_byte(sd); 1297 1298 /* 1299 * an early bug in the quota code can give us an odd 1300 * number for the block count. This is incorrect, fix it here. 1301 */ 1302 if (inode->i_blocks & 1) { 1303 inode->i_blocks++; 1304 } 1305 inode_set_bytes(inode, 1306 to_real_used_space(inode, inode->i_blocks, 1307 SD_V1_SIZE)); 1308 /* 1309 * nopack is initially zero for v1 objects. For v2 objects, 1310 * nopack is initialised from sd_attrs 1311 */ 1312 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1313 } else { 1314 /* 1315 * new stat data found, but object may have old items 1316 * (directories and symlinks) 1317 */ 1318 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih); 1319 1320 inode->i_mode = sd_v2_mode(sd); 1321 set_nlink(inode, sd_v2_nlink(sd)); 1322 i_uid_write(inode, sd_v2_uid(sd)); 1323 inode->i_size = sd_v2_size(sd); 1324 i_gid_write(inode, sd_v2_gid(sd)); 1325 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1326 inode->i_atime.tv_sec = sd_v2_atime(sd); 1327 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1328 inode->i_ctime.tv_nsec = 0; 1329 inode->i_mtime.tv_nsec = 0; 1330 inode->i_atime.tv_nsec = 0; 1331 inode->i_blocks = sd_v2_blocks(sd); 1332 rdev = sd_v2_rdev(sd); 1333 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1334 inode->i_generation = 1335 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1336 else 1337 inode->i_generation = sd_v2_generation(sd); 1338 1339 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1340 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1341 else 1342 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1343 REISERFS_I(inode)->i_first_direct_byte = 0; 1344 set_inode_sd_version(inode, STAT_DATA_V2); 1345 inode_set_bytes(inode, 1346 to_real_used_space(inode, inode->i_blocks, 1347 SD_V2_SIZE)); 1348 /* 1349 * read persistent inode attributes from sd and initialise 1350 * generic inode flags from them 1351 */ 1352 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1353 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1354 } 1355 1356 pathrelse(path); 1357 if (S_ISREG(inode->i_mode)) { 1358 inode->i_op = &reiserfs_file_inode_operations; 1359 inode->i_fop = &reiserfs_file_operations; 1360 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1361 } else if (S_ISDIR(inode->i_mode)) { 1362 inode->i_op = &reiserfs_dir_inode_operations; 1363 inode->i_fop = &reiserfs_dir_operations; 1364 } else if (S_ISLNK(inode->i_mode)) { 1365 inode->i_op = &reiserfs_symlink_inode_operations; 1366 inode_nohighmem(inode); 1367 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1368 } else { 1369 inode->i_blocks = 0; 1370 inode->i_op = &reiserfs_special_inode_operations; 1371 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1372 } 1373 } 1374 1375 /* update new stat data with inode fields */ inode2sd(void * sd,struct inode * inode,loff_t size)1376 static void inode2sd(void *sd, struct inode *inode, loff_t size) 1377 { 1378 struct stat_data *sd_v2 = (struct stat_data *)sd; 1379 1380 set_sd_v2_mode(sd_v2, inode->i_mode); 1381 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1382 set_sd_v2_uid(sd_v2, i_uid_read(inode)); 1383 set_sd_v2_size(sd_v2, size); 1384 set_sd_v2_gid(sd_v2, i_gid_read(inode)); 1385 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1386 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1387 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1388 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1389 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1390 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1391 else 1392 set_sd_v2_generation(sd_v2, inode->i_generation); 1393 set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs); 1394 } 1395 1396 /* used to copy inode's fields to old stat data */ inode2sd_v1(void * sd,struct inode * inode,loff_t size)1397 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1398 { 1399 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1400 1401 set_sd_v1_mode(sd_v1, inode->i_mode); 1402 set_sd_v1_uid(sd_v1, i_uid_read(inode)); 1403 set_sd_v1_gid(sd_v1, i_gid_read(inode)); 1404 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1405 set_sd_v1_size(sd_v1, size); 1406 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1407 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1408 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1409 1410 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1411 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1412 else 1413 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1414 1415 /* Sigh. i_first_direct_byte is back */ 1416 set_sd_v1_first_direct_byte(sd_v1, 1417 REISERFS_I(inode)->i_first_direct_byte); 1418 } 1419 1420 /* 1421 * NOTE, you must prepare the buffer head before sending it here, 1422 * and then log it after the call 1423 */ update_stat_data(struct treepath * path,struct inode * inode,loff_t size)1424 static void update_stat_data(struct treepath *path, struct inode *inode, 1425 loff_t size) 1426 { 1427 struct buffer_head *bh; 1428 struct item_head *ih; 1429 1430 bh = PATH_PLAST_BUFFER(path); 1431 ih = tp_item_head(path); 1432 1433 if (!is_statdata_le_ih(ih)) 1434 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h", 1435 INODE_PKEY(inode), ih); 1436 1437 /* path points to old stat data */ 1438 if (stat_data_v1(ih)) { 1439 inode2sd_v1(ih_item_body(bh, ih), inode, size); 1440 } else { 1441 inode2sd(ih_item_body(bh, ih), inode, size); 1442 } 1443 1444 return; 1445 } 1446 reiserfs_update_sd_size(struct reiserfs_transaction_handle * th,struct inode * inode,loff_t size)1447 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1448 struct inode *inode, loff_t size) 1449 { 1450 struct cpu_key key; 1451 INITIALIZE_PATH(path); 1452 struct buffer_head *bh; 1453 int fs_gen; 1454 struct item_head *ih, tmp_ih; 1455 int retval; 1456 1457 BUG_ON(!th->t_trans_id); 1458 1459 /* key type is unimportant */ 1460 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); 1461 1462 for (;;) { 1463 int pos; 1464 /* look for the object's stat data */ 1465 retval = search_item(inode->i_sb, &key, &path); 1466 if (retval == IO_ERROR) { 1467 reiserfs_error(inode->i_sb, "vs-13050", 1468 "i/o failure occurred trying to " 1469 "update %K stat data", &key); 1470 return; 1471 } 1472 if (retval == ITEM_NOT_FOUND) { 1473 pos = PATH_LAST_POSITION(&path); 1474 pathrelse(&path); 1475 if (inode->i_nlink == 0) { 1476 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1477 return; 1478 } 1479 reiserfs_warning(inode->i_sb, "vs-13060", 1480 "stat data of object %k (nlink == %d) " 1481 "not found (pos %d)", 1482 INODE_PKEY(inode), inode->i_nlink, 1483 pos); 1484 reiserfs_check_path(&path); 1485 return; 1486 } 1487 1488 /* 1489 * sigh, prepare_for_journal might schedule. When it 1490 * schedules the FS might change. We have to detect that, 1491 * and loop back to the search if the stat data item has moved 1492 */ 1493 bh = get_last_bh(&path); 1494 ih = tp_item_head(&path); 1495 copy_item_head(&tmp_ih, ih); 1496 fs_gen = get_generation(inode->i_sb); 1497 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1498 1499 /* Stat_data item has been moved after scheduling. */ 1500 if (fs_changed(fs_gen, inode->i_sb) 1501 && item_moved(&tmp_ih, &path)) { 1502 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1503 continue; 1504 } 1505 break; 1506 } 1507 update_stat_data(&path, inode, size); 1508 journal_mark_dirty(th, bh); 1509 pathrelse(&path); 1510 return; 1511 } 1512 1513 /* 1514 * reiserfs_read_locked_inode is called to read the inode off disk, and it 1515 * does a make_bad_inode when things go wrong. But, we need to make sure 1516 * and clear the key in the private portion of the inode, otherwise a 1517 * corresponding iput might try to delete whatever object the inode last 1518 * represented. 1519 */ reiserfs_make_bad_inode(struct inode * inode)1520 static void reiserfs_make_bad_inode(struct inode *inode) 1521 { 1522 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1523 make_bad_inode(inode); 1524 } 1525 1526 /* 1527 * initially this function was derived from minix or ext2's analog and 1528 * evolved as the prototype did 1529 */ reiserfs_init_locked_inode(struct inode * inode,void * p)1530 int reiserfs_init_locked_inode(struct inode *inode, void *p) 1531 { 1532 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1533 inode->i_ino = args->objectid; 1534 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1535 return 0; 1536 } 1537 1538 /* 1539 * looks for stat data in the tree, and fills up the fields of in-core 1540 * inode stat data fields 1541 */ reiserfs_read_locked_inode(struct inode * inode,struct reiserfs_iget_args * args)1542 void reiserfs_read_locked_inode(struct inode *inode, 1543 struct reiserfs_iget_args *args) 1544 { 1545 INITIALIZE_PATH(path_to_sd); 1546 struct cpu_key key; 1547 unsigned long dirino; 1548 int retval; 1549 1550 dirino = args->dirid; 1551 1552 /* 1553 * set version 1, version 2 could be used too, because stat data 1554 * key is the same in both versions 1555 */ 1556 _make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3); 1557 1558 /* look for the object's stat data */ 1559 retval = search_item(inode->i_sb, &key, &path_to_sd); 1560 if (retval == IO_ERROR) { 1561 reiserfs_error(inode->i_sb, "vs-13070", 1562 "i/o failure occurred trying to find " 1563 "stat data of %K", &key); 1564 reiserfs_make_bad_inode(inode); 1565 return; 1566 } 1567 1568 /* a stale NFS handle can trigger this without it being an error */ 1569 if (retval != ITEM_FOUND) { 1570 pathrelse(&path_to_sd); 1571 reiserfs_make_bad_inode(inode); 1572 clear_nlink(inode); 1573 return; 1574 } 1575 1576 init_inode(inode, &path_to_sd); 1577 1578 /* 1579 * It is possible that knfsd is trying to access inode of a file 1580 * that is being removed from the disk by some other thread. As we 1581 * update sd on unlink all that is required is to check for nlink 1582 * here. This bug was first found by Sizif when debugging 1583 * SquidNG/Butterfly, forgotten, and found again after Philippe 1584 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1585 1586 * More logical fix would require changes in fs/inode.c:iput() to 1587 * remove inode from hash-table _after_ fs cleaned disk stuff up and 1588 * in iget() to return NULL if I_FREEING inode is found in 1589 * hash-table. 1590 */ 1591 1592 /* 1593 * Currently there is one place where it's ok to meet inode with 1594 * nlink==0: processing of open-unlinked and half-truncated files 1595 * during mount (fs/reiserfs/super.c:finish_unfinished()). 1596 */ 1597 if ((inode->i_nlink == 0) && 1598 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1599 reiserfs_warning(inode->i_sb, "vs-13075", 1600 "dead inode read from disk %K. " 1601 "This is likely to be race with knfsd. Ignore", 1602 &key); 1603 reiserfs_make_bad_inode(inode); 1604 } 1605 1606 /* init inode should be relsing */ 1607 reiserfs_check_path(&path_to_sd); 1608 1609 /* 1610 * Stat data v1 doesn't support ACLs. 1611 */ 1612 if (get_inode_sd_version(inode) == STAT_DATA_V1) 1613 cache_no_acl(inode); 1614 } 1615 1616 /* 1617 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1618 * 1619 * @inode: inode from hash table to check 1620 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1621 * 1622 * This function is called by iget5_locked() to distinguish reiserfs inodes 1623 * having the same inode numbers. Such inodes can only exist due to some 1624 * error condition. One of them should be bad. Inodes with identical 1625 * inode numbers (objectids) are distinguished by parent directory ids. 1626 * 1627 */ reiserfs_find_actor(struct inode * inode,void * opaque)1628 int reiserfs_find_actor(struct inode *inode, void *opaque) 1629 { 1630 struct reiserfs_iget_args *args; 1631 1632 args = opaque; 1633 /* args is already in CPU order */ 1634 return (inode->i_ino == args->objectid) && 1635 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1636 } 1637 reiserfs_iget(struct super_block * s,const struct cpu_key * key)1638 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1639 { 1640 struct inode *inode; 1641 struct reiserfs_iget_args args; 1642 int depth; 1643 1644 args.objectid = key->on_disk_key.k_objectid; 1645 args.dirid = key->on_disk_key.k_dir_id; 1646 depth = reiserfs_write_unlock_nested(s); 1647 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1648 reiserfs_find_actor, reiserfs_init_locked_inode, 1649 (void *)(&args)); 1650 reiserfs_write_lock_nested(s, depth); 1651 if (!inode) 1652 return ERR_PTR(-ENOMEM); 1653 1654 if (inode->i_state & I_NEW) { 1655 reiserfs_read_locked_inode(inode, &args); 1656 unlock_new_inode(inode); 1657 } 1658 1659 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1660 /* either due to i/o error or a stale NFS handle */ 1661 iput(inode); 1662 inode = NULL; 1663 } 1664 return inode; 1665 } 1666 reiserfs_get_dentry(struct super_block * sb,u32 objectid,u32 dir_id,u32 generation)1667 static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1668 u32 objectid, u32 dir_id, u32 generation) 1669 1670 { 1671 struct cpu_key key; 1672 struct inode *inode; 1673 1674 key.on_disk_key.k_objectid = objectid; 1675 key.on_disk_key.k_dir_id = dir_id; 1676 reiserfs_write_lock(sb); 1677 inode = reiserfs_iget(sb, &key); 1678 if (inode && !IS_ERR(inode) && generation != 0 && 1679 generation != inode->i_generation) { 1680 iput(inode); 1681 inode = NULL; 1682 } 1683 reiserfs_write_unlock(sb); 1684 1685 return d_obtain_alias(inode); 1686 } 1687 reiserfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1688 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1689 int fh_len, int fh_type) 1690 { 1691 /* 1692 * fhtype happens to reflect the number of u32s encoded. 1693 * due to a bug in earlier code, fhtype might indicate there 1694 * are more u32s then actually fitted. 1695 * so if fhtype seems to be more than len, reduce fhtype. 1696 * Valid types are: 1697 * 2 - objectid + dir_id - legacy support 1698 * 3 - objectid + dir_id + generation 1699 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1700 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1701 * 6 - as above plus generation of directory 1702 * 6 does not fit in NFSv2 handles 1703 */ 1704 if (fh_type > fh_len) { 1705 if (fh_type != 6 || fh_len != 5) 1706 reiserfs_warning(sb, "reiserfs-13077", 1707 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1708 fh_type, fh_len); 1709 fh_type = fh_len; 1710 } 1711 if (fh_len < 2) 1712 return NULL; 1713 1714 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1715 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1716 } 1717 reiserfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1718 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1719 int fh_len, int fh_type) 1720 { 1721 if (fh_type > fh_len) 1722 fh_type = fh_len; 1723 if (fh_type < 4) 1724 return NULL; 1725 1726 return reiserfs_get_dentry(sb, 1727 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1728 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1729 (fh_type == 6) ? fid->raw[5] : 0); 1730 } 1731 reiserfs_encode_fh(struct inode * inode,__u32 * data,int * lenp,struct inode * parent)1732 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 1733 struct inode *parent) 1734 { 1735 int maxlen = *lenp; 1736 1737 if (parent && (maxlen < 5)) { 1738 *lenp = 5; 1739 return FILEID_INVALID; 1740 } else if (maxlen < 3) { 1741 *lenp = 3; 1742 return FILEID_INVALID; 1743 } 1744 1745 data[0] = inode->i_ino; 1746 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1747 data[2] = inode->i_generation; 1748 *lenp = 3; 1749 if (parent) { 1750 data[3] = parent->i_ino; 1751 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id); 1752 *lenp = 5; 1753 if (maxlen >= 6) { 1754 data[5] = parent->i_generation; 1755 *lenp = 6; 1756 } 1757 } 1758 return *lenp; 1759 } 1760 1761 /* 1762 * looks for stat data, then copies fields to it, marks the buffer 1763 * containing stat data as dirty 1764 */ 1765 /* 1766 * reiserfs inodes are never really dirty, since the dirty inode call 1767 * always logs them. This call allows the VFS inode marking routines 1768 * to properly mark inodes for datasync and such, but only actually 1769 * does something when called for a synchronous update. 1770 */ reiserfs_write_inode(struct inode * inode,struct writeback_control * wbc)1771 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1772 { 1773 struct reiserfs_transaction_handle th; 1774 int jbegin_count = 1; 1775 1776 if (sb_rdonly(inode->i_sb)) 1777 return -EROFS; 1778 /* 1779 * memory pressure can sometimes initiate write_inode calls with 1780 * sync == 1, 1781 * these cases are just when the system needs ram, not when the 1782 * inode needs to reach disk for safety, and they can safely be 1783 * ignored because the altered inode has already been logged. 1784 */ 1785 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) { 1786 reiserfs_write_lock(inode->i_sb); 1787 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1788 reiserfs_update_sd(&th, inode); 1789 journal_end_sync(&th); 1790 } 1791 reiserfs_write_unlock(inode->i_sb); 1792 } 1793 return 0; 1794 } 1795 1796 /* 1797 * stat data of new object is inserted already, this inserts the item 1798 * containing "." and ".." entries 1799 */ reiserfs_new_directory(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,struct inode * dir)1800 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1801 struct inode *inode, 1802 struct item_head *ih, struct treepath *path, 1803 struct inode *dir) 1804 { 1805 struct super_block *sb = th->t_super; 1806 char empty_dir[EMPTY_DIR_SIZE]; 1807 char *body = empty_dir; 1808 struct cpu_key key; 1809 int retval; 1810 1811 BUG_ON(!th->t_trans_id); 1812 1813 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1814 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1815 TYPE_DIRENTRY, 3 /*key length */ ); 1816 1817 /* 1818 * compose item head for new item. Directories consist of items of 1819 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1820 * is done by reiserfs_new_inode 1821 */ 1822 if (old_format_only(sb)) { 1823 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1824 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1825 1826 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1827 ih->ih_key.k_objectid, 1828 INODE_PKEY(dir)->k_dir_id, 1829 INODE_PKEY(dir)->k_objectid); 1830 } else { 1831 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1832 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1833 1834 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1835 ih->ih_key.k_objectid, 1836 INODE_PKEY(dir)->k_dir_id, 1837 INODE_PKEY(dir)->k_objectid); 1838 } 1839 1840 /* look for place in the tree for new item */ 1841 retval = search_item(sb, &key, path); 1842 if (retval == IO_ERROR) { 1843 reiserfs_error(sb, "vs-13080", 1844 "i/o failure occurred creating new directory"); 1845 return -EIO; 1846 } 1847 if (retval == ITEM_FOUND) { 1848 pathrelse(path); 1849 reiserfs_warning(sb, "vs-13070", 1850 "object with this key exists (%k)", 1851 &(ih->ih_key)); 1852 return -EEXIST; 1853 } 1854 1855 /* insert item, that is empty directory item */ 1856 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1857 } 1858 1859 /* 1860 * stat data of object has been inserted, this inserts the item 1861 * containing the body of symlink 1862 */ reiserfs_new_symlink(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,const char * symname,int item_len)1863 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, 1864 struct inode *inode, 1865 struct item_head *ih, 1866 struct treepath *path, const char *symname, 1867 int item_len) 1868 { 1869 struct super_block *sb = th->t_super; 1870 struct cpu_key key; 1871 int retval; 1872 1873 BUG_ON(!th->t_trans_id); 1874 1875 _make_cpu_key(&key, KEY_FORMAT_3_5, 1876 le32_to_cpu(ih->ih_key.k_dir_id), 1877 le32_to_cpu(ih->ih_key.k_objectid), 1878 1, TYPE_DIRECT, 3 /*key length */ ); 1879 1880 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1881 0 /*free_space */ ); 1882 1883 /* look for place in the tree for new item */ 1884 retval = search_item(sb, &key, path); 1885 if (retval == IO_ERROR) { 1886 reiserfs_error(sb, "vs-13080", 1887 "i/o failure occurred creating new symlink"); 1888 return -EIO; 1889 } 1890 if (retval == ITEM_FOUND) { 1891 pathrelse(path); 1892 reiserfs_warning(sb, "vs-13080", 1893 "object with this key exists (%k)", 1894 &(ih->ih_key)); 1895 return -EEXIST; 1896 } 1897 1898 /* insert item, that is body of symlink */ 1899 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1900 } 1901 1902 /* 1903 * inserts the stat data into the tree, and then calls 1904 * reiserfs_new_directory (to insert ".", ".." item if new object is 1905 * directory) or reiserfs_new_symlink (to insert symlink body if new 1906 * object is symlink) or nothing (if new object is regular file) 1907 1908 * NOTE! uid and gid must already be set in the inode. If we return 1909 * non-zero due to an error, we have to drop the quota previously allocated 1910 * for the fresh inode. This can only be done outside a transaction, so 1911 * if we return non-zero, we also end the transaction. 1912 * 1913 * @th: active transaction handle 1914 * @dir: parent directory for new inode 1915 * @mode: mode of new inode 1916 * @symname: symlink contents if inode is symlink 1917 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for 1918 * symlinks 1919 * @inode: inode to be filled 1920 * @security: optional security context to associate with this inode 1921 */ reiserfs_new_inode(struct reiserfs_transaction_handle * th,struct inode * dir,umode_t mode,const char * symname,loff_t i_size,struct dentry * dentry,struct inode * inode,struct reiserfs_security_handle * security)1922 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1923 struct inode *dir, umode_t mode, const char *symname, 1924 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1925 strlen (symname) for symlinks) */ 1926 loff_t i_size, struct dentry *dentry, 1927 struct inode *inode, 1928 struct reiserfs_security_handle *security) 1929 { 1930 struct super_block *sb = dir->i_sb; 1931 struct reiserfs_iget_args args; 1932 INITIALIZE_PATH(path_to_key); 1933 struct cpu_key key; 1934 struct item_head ih; 1935 struct stat_data sd; 1936 int retval; 1937 int err; 1938 int depth; 1939 1940 BUG_ON(!th->t_trans_id); 1941 1942 depth = reiserfs_write_unlock_nested(sb); 1943 err = dquot_alloc_inode(inode); 1944 reiserfs_write_lock_nested(sb, depth); 1945 if (err) 1946 goto out_end_trans; 1947 if (!dir->i_nlink) { 1948 err = -EPERM; 1949 goto out_bad_inode; 1950 } 1951 1952 /* item head of new item */ 1953 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1954 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1955 if (!ih.ih_key.k_objectid) { 1956 err = -ENOMEM; 1957 goto out_bad_inode; 1958 } 1959 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1960 if (old_format_only(sb)) 1961 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1962 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1963 else 1964 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1965 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1966 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE); 1967 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id); 1968 1969 depth = reiserfs_write_unlock_nested(inode->i_sb); 1970 err = insert_inode_locked4(inode, args.objectid, 1971 reiserfs_find_actor, &args); 1972 reiserfs_write_lock_nested(inode->i_sb, depth); 1973 if (err) { 1974 err = -EINVAL; 1975 goto out_bad_inode; 1976 } 1977 1978 if (old_format_only(sb)) 1979 /* 1980 * not a perfect generation count, as object ids can be reused, 1981 * but this is as good as reiserfs can do right now. 1982 * note that the private part of inode isn't filled in yet, 1983 * we have to use the directory. 1984 */ 1985 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1986 else 1987 #if defined( USE_INODE_GENERATION_COUNTER ) 1988 inode->i_generation = 1989 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1990 #else 1991 inode->i_generation = ++event; 1992 #endif 1993 1994 /* fill stat data */ 1995 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1)); 1996 1997 /* uid and gid must already be set by the caller for quota init */ 1998 1999 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 2000 inode->i_size = i_size; 2001 inode->i_blocks = 0; 2002 inode->i_bytes = 0; 2003 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 2004 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 2005 2006 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 2007 REISERFS_I(inode)->i_flags = 0; 2008 REISERFS_I(inode)->i_prealloc_block = 0; 2009 REISERFS_I(inode)->i_prealloc_count = 0; 2010 REISERFS_I(inode)->i_trans_id = 0; 2011 REISERFS_I(inode)->i_jl = NULL; 2012 REISERFS_I(inode)->i_attrs = 2013 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 2014 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 2015 reiserfs_init_xattr_rwsem(inode); 2016 2017 /* key to search for correct place for new stat data */ 2018 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 2019 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 2020 TYPE_STAT_DATA, 3 /*key length */ ); 2021 2022 /* find proper place for inserting of stat data */ 2023 retval = search_item(sb, &key, &path_to_key); 2024 if (retval == IO_ERROR) { 2025 err = -EIO; 2026 goto out_bad_inode; 2027 } 2028 if (retval == ITEM_FOUND) { 2029 pathrelse(&path_to_key); 2030 err = -EEXIST; 2031 goto out_bad_inode; 2032 } 2033 if (old_format_only(sb)) { 2034 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 2035 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) { 2036 pathrelse(&path_to_key); 2037 err = -EINVAL; 2038 goto out_bad_inode; 2039 } 2040 inode2sd_v1(&sd, inode, inode->i_size); 2041 } else { 2042 inode2sd(&sd, inode, inode->i_size); 2043 } 2044 /* 2045 * store in in-core inode the key of stat data and version all 2046 * object items will have (directory items will have old offset 2047 * format, other new objects will consist of new items) 2048 */ 2049 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 2050 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 2051 else 2052 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 2053 if (old_format_only(sb)) 2054 set_inode_sd_version(inode, STAT_DATA_V1); 2055 else 2056 set_inode_sd_version(inode, STAT_DATA_V2); 2057 2058 /* insert the stat data into the tree */ 2059 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2060 if (REISERFS_I(dir)->new_packing_locality) 2061 th->displace_new_blocks = 1; 2062 #endif 2063 retval = 2064 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 2065 (char *)(&sd)); 2066 if (retval) { 2067 err = retval; 2068 reiserfs_check_path(&path_to_key); 2069 goto out_bad_inode; 2070 } 2071 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2072 if (!th->displace_new_blocks) 2073 REISERFS_I(dir)->new_packing_locality = 0; 2074 #endif 2075 if (S_ISDIR(mode)) { 2076 /* insert item with "." and ".." */ 2077 retval = 2078 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 2079 } 2080 2081 if (S_ISLNK(mode)) { 2082 /* insert body of symlink */ 2083 if (!old_format_only(sb)) 2084 i_size = ROUND_UP(i_size); 2085 retval = 2086 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 2087 i_size); 2088 } 2089 if (retval) { 2090 err = retval; 2091 reiserfs_check_path(&path_to_key); 2092 journal_end(th); 2093 goto out_inserted_sd; 2094 } 2095 2096 /* 2097 * Mark it private if we're creating the privroot 2098 * or something under it. 2099 */ 2100 if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root) { 2101 inode->i_flags |= S_PRIVATE; 2102 inode->i_opflags &= ~IOP_XATTR; 2103 } 2104 2105 if (reiserfs_posixacl(inode->i_sb)) { 2106 reiserfs_write_unlock(inode->i_sb); 2107 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode); 2108 reiserfs_write_lock(inode->i_sb); 2109 if (retval) { 2110 err = retval; 2111 reiserfs_check_path(&path_to_key); 2112 journal_end(th); 2113 goto out_inserted_sd; 2114 } 2115 } else if (inode->i_sb->s_flags & SB_POSIXACL) { 2116 reiserfs_warning(inode->i_sb, "jdm-13090", 2117 "ACLs aren't enabled in the fs, " 2118 "but vfs thinks they are!"); 2119 } 2120 2121 if (security->name) { 2122 reiserfs_write_unlock(inode->i_sb); 2123 retval = reiserfs_security_write(th, inode, security); 2124 reiserfs_write_lock(inode->i_sb); 2125 if (retval) { 2126 err = retval; 2127 reiserfs_check_path(&path_to_key); 2128 retval = journal_end(th); 2129 if (retval) 2130 err = retval; 2131 goto out_inserted_sd; 2132 } 2133 } 2134 2135 reiserfs_update_sd(th, inode); 2136 reiserfs_check_path(&path_to_key); 2137 2138 return 0; 2139 2140 out_bad_inode: 2141 /* Invalidate the object, nothing was inserted yet */ 2142 INODE_PKEY(inode)->k_objectid = 0; 2143 2144 /* Quota change must be inside a transaction for journaling */ 2145 depth = reiserfs_write_unlock_nested(inode->i_sb); 2146 dquot_free_inode(inode); 2147 reiserfs_write_lock_nested(inode->i_sb, depth); 2148 2149 out_end_trans: 2150 journal_end(th); 2151 /* 2152 * Drop can be outside and it needs more credits so it's better 2153 * to have it outside 2154 */ 2155 depth = reiserfs_write_unlock_nested(inode->i_sb); 2156 dquot_drop(inode); 2157 reiserfs_write_lock_nested(inode->i_sb, depth); 2158 inode->i_flags |= S_NOQUOTA; 2159 make_bad_inode(inode); 2160 2161 out_inserted_sd: 2162 clear_nlink(inode); 2163 th->t_trans_id = 0; /* so the caller can't use this handle later */ 2164 if (inode->i_state & I_NEW) 2165 unlock_new_inode(inode); 2166 iput(inode); 2167 return err; 2168 } 2169 2170 /* 2171 * finds the tail page in the page cache, 2172 * reads the last block in. 2173 * 2174 * On success, page_result is set to a locked, pinned page, and bh_result 2175 * is set to an up to date buffer for the last block in the file. returns 0. 2176 * 2177 * tail conversion is not done, so bh_result might not be valid for writing 2178 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 2179 * trying to write the block. 2180 * 2181 * on failure, nonzero is returned, page_result and bh_result are untouched. 2182 */ grab_tail_page(struct inode * inode,struct page ** page_result,struct buffer_head ** bh_result)2183 static int grab_tail_page(struct inode *inode, 2184 struct page **page_result, 2185 struct buffer_head **bh_result) 2186 { 2187 2188 /* 2189 * we want the page with the last byte in the file, 2190 * not the page that will hold the next byte for appending 2191 */ 2192 unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT; 2193 unsigned long pos = 0; 2194 unsigned long start = 0; 2195 unsigned long blocksize = inode->i_sb->s_blocksize; 2196 unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1); 2197 struct buffer_head *bh; 2198 struct buffer_head *head; 2199 struct page *page; 2200 int error; 2201 2202 /* 2203 * we know that we are only called with inode->i_size > 0. 2204 * we also know that a file tail can never be as big as a block 2205 * If i_size % blocksize == 0, our file is currently block aligned 2206 * and it won't need converting or zeroing after a truncate. 2207 */ 2208 if ((offset & (blocksize - 1)) == 0) { 2209 return -ENOENT; 2210 } 2211 page = grab_cache_page(inode->i_mapping, index); 2212 error = -ENOMEM; 2213 if (!page) { 2214 goto out; 2215 } 2216 /* start within the page of the last block in the file */ 2217 start = (offset / blocksize) * blocksize; 2218 2219 error = __block_write_begin(page, start, offset - start, 2220 reiserfs_get_block_create_0); 2221 if (error) 2222 goto unlock; 2223 2224 head = page_buffers(page); 2225 bh = head; 2226 do { 2227 if (pos >= start) { 2228 break; 2229 } 2230 bh = bh->b_this_page; 2231 pos += blocksize; 2232 } while (bh != head); 2233 2234 if (!buffer_uptodate(bh)) { 2235 /* 2236 * note, this should never happen, prepare_write should be 2237 * taking care of this for us. If the buffer isn't up to 2238 * date, I've screwed up the code to find the buffer, or the 2239 * code to call prepare_write 2240 */ 2241 reiserfs_error(inode->i_sb, "clm-6000", 2242 "error reading block %lu", bh->b_blocknr); 2243 error = -EIO; 2244 goto unlock; 2245 } 2246 *bh_result = bh; 2247 *page_result = page; 2248 2249 out: 2250 return error; 2251 2252 unlock: 2253 unlock_page(page); 2254 put_page(page); 2255 return error; 2256 } 2257 2258 /* 2259 * vfs version of truncate file. Must NOT be called with 2260 * a transaction already started. 2261 * 2262 * some code taken from block_truncate_page 2263 */ reiserfs_truncate_file(struct inode * inode,int update_timestamps)2264 int reiserfs_truncate_file(struct inode *inode, int update_timestamps) 2265 { 2266 struct reiserfs_transaction_handle th; 2267 /* we want the offset for the first byte after the end of the file */ 2268 unsigned long offset = inode->i_size & (PAGE_SIZE - 1); 2269 unsigned blocksize = inode->i_sb->s_blocksize; 2270 unsigned length; 2271 struct page *page = NULL; 2272 int error; 2273 struct buffer_head *bh = NULL; 2274 int err2; 2275 2276 reiserfs_write_lock(inode->i_sb); 2277 2278 if (inode->i_size > 0) { 2279 error = grab_tail_page(inode, &page, &bh); 2280 if (error) { 2281 /* 2282 * -ENOENT means we truncated past the end of the 2283 * file, and get_block_create_0 could not find a 2284 * block to read in, which is ok. 2285 */ 2286 if (error != -ENOENT) 2287 reiserfs_error(inode->i_sb, "clm-6001", 2288 "grab_tail_page failed %d", 2289 error); 2290 page = NULL; 2291 bh = NULL; 2292 } 2293 } 2294 2295 /* 2296 * so, if page != NULL, we have a buffer head for the offset at 2297 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2298 * then we have an unformatted node. Otherwise, we have a direct item, 2299 * and no zeroing is required on disk. We zero after the truncate, 2300 * because the truncate might pack the item anyway 2301 * (it will unmap bh if it packs). 2302 * 2303 * it is enough to reserve space in transaction for 2 balancings: 2304 * one for "save" link adding and another for the first 2305 * cut_from_item. 1 is for update_sd 2306 */ 2307 error = journal_begin(&th, inode->i_sb, 2308 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2309 if (error) 2310 goto out; 2311 reiserfs_update_inode_transaction(inode); 2312 if (update_timestamps) 2313 /* 2314 * we are doing real truncate: if the system crashes 2315 * before the last transaction of truncating gets committed 2316 * - on reboot the file either appears truncated properly 2317 * or not truncated at all 2318 */ 2319 add_save_link(&th, inode, 1); 2320 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps); 2321 error = journal_end(&th); 2322 if (error) 2323 goto out; 2324 2325 /* check reiserfs_do_truncate after ending the transaction */ 2326 if (err2) { 2327 error = err2; 2328 goto out; 2329 } 2330 2331 if (update_timestamps) { 2332 error = remove_save_link(inode, 1 /* truncate */); 2333 if (error) 2334 goto out; 2335 } 2336 2337 if (page) { 2338 length = offset & (blocksize - 1); 2339 /* if we are not on a block boundary */ 2340 if (length) { 2341 length = blocksize - length; 2342 zero_user(page, offset, length); 2343 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2344 mark_buffer_dirty(bh); 2345 } 2346 } 2347 unlock_page(page); 2348 put_page(page); 2349 } 2350 2351 reiserfs_write_unlock(inode->i_sb); 2352 2353 return 0; 2354 out: 2355 if (page) { 2356 unlock_page(page); 2357 put_page(page); 2358 } 2359 2360 reiserfs_write_unlock(inode->i_sb); 2361 2362 return error; 2363 } 2364 map_block_for_writepage(struct inode * inode,struct buffer_head * bh_result,unsigned long block)2365 static int map_block_for_writepage(struct inode *inode, 2366 struct buffer_head *bh_result, 2367 unsigned long block) 2368 { 2369 struct reiserfs_transaction_handle th; 2370 int fs_gen; 2371 struct item_head tmp_ih; 2372 struct item_head *ih; 2373 struct buffer_head *bh; 2374 __le32 *item; 2375 struct cpu_key key; 2376 INITIALIZE_PATH(path); 2377 int pos_in_item; 2378 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2379 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2380 int retval; 2381 int use_get_block = 0; 2382 int bytes_copied = 0; 2383 int copy_size; 2384 int trans_running = 0; 2385 2386 /* 2387 * catch places below that try to log something without 2388 * starting a trans 2389 */ 2390 th.t_trans_id = 0; 2391 2392 if (!buffer_uptodate(bh_result)) { 2393 return -EIO; 2394 } 2395 2396 kmap(bh_result->b_page); 2397 start_over: 2398 reiserfs_write_lock(inode->i_sb); 2399 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2400 2401 research: 2402 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2403 if (retval != POSITION_FOUND) { 2404 use_get_block = 1; 2405 goto out; 2406 } 2407 2408 bh = get_last_bh(&path); 2409 ih = tp_item_head(&path); 2410 item = tp_item_body(&path); 2411 pos_in_item = path.pos_in_item; 2412 2413 /* we've found an unformatted node */ 2414 if (indirect_item_found(retval, ih)) { 2415 if (bytes_copied > 0) { 2416 reiserfs_warning(inode->i_sb, "clm-6002", 2417 "bytes_copied %d", bytes_copied); 2418 } 2419 if (!get_block_num(item, pos_in_item)) { 2420 /* crap, we are writing to a hole */ 2421 use_get_block = 1; 2422 goto out; 2423 } 2424 set_block_dev_mapped(bh_result, 2425 get_block_num(item, pos_in_item), inode); 2426 } else if (is_direct_le_ih(ih)) { 2427 char *p; 2428 p = page_address(bh_result->b_page); 2429 p += (byte_offset - 1) & (PAGE_SIZE - 1); 2430 copy_size = ih_item_len(ih) - pos_in_item; 2431 2432 fs_gen = get_generation(inode->i_sb); 2433 copy_item_head(&tmp_ih, ih); 2434 2435 if (!trans_running) { 2436 /* vs-3050 is gone, no need to drop the path */ 2437 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2438 if (retval) 2439 goto out; 2440 reiserfs_update_inode_transaction(inode); 2441 trans_running = 1; 2442 if (fs_changed(fs_gen, inode->i_sb) 2443 && item_moved(&tmp_ih, &path)) { 2444 reiserfs_restore_prepared_buffer(inode->i_sb, 2445 bh); 2446 goto research; 2447 } 2448 } 2449 2450 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2451 2452 if (fs_changed(fs_gen, inode->i_sb) 2453 && item_moved(&tmp_ih, &path)) { 2454 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2455 goto research; 2456 } 2457 2458 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied, 2459 copy_size); 2460 2461 journal_mark_dirty(&th, bh); 2462 bytes_copied += copy_size; 2463 set_block_dev_mapped(bh_result, 0, inode); 2464 2465 /* are there still bytes left? */ 2466 if (bytes_copied < bh_result->b_size && 2467 (byte_offset + bytes_copied) < inode->i_size) { 2468 set_cpu_key_k_offset(&key, 2469 cpu_key_k_offset(&key) + 2470 copy_size); 2471 goto research; 2472 } 2473 } else { 2474 reiserfs_warning(inode->i_sb, "clm-6003", 2475 "bad item inode %lu", inode->i_ino); 2476 retval = -EIO; 2477 goto out; 2478 } 2479 retval = 0; 2480 2481 out: 2482 pathrelse(&path); 2483 if (trans_running) { 2484 int err = journal_end(&th); 2485 if (err) 2486 retval = err; 2487 trans_running = 0; 2488 } 2489 reiserfs_write_unlock(inode->i_sb); 2490 2491 /* this is where we fill in holes in the file. */ 2492 if (use_get_block) { 2493 retval = reiserfs_get_block(inode, block, bh_result, 2494 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2495 | GET_BLOCK_NO_DANGLE); 2496 if (!retval) { 2497 if (!buffer_mapped(bh_result) 2498 || bh_result->b_blocknr == 0) { 2499 /* get_block failed to find a mapped unformatted node. */ 2500 use_get_block = 0; 2501 goto start_over; 2502 } 2503 } 2504 } 2505 kunmap(bh_result->b_page); 2506 2507 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2508 /* 2509 * we've copied data from the page into the direct item, so the 2510 * buffer in the page is now clean, mark it to reflect that. 2511 */ 2512 lock_buffer(bh_result); 2513 clear_buffer_dirty(bh_result); 2514 unlock_buffer(bh_result); 2515 } 2516 return retval; 2517 } 2518 2519 /* 2520 * mason@suse.com: updated in 2.5.54 to follow the same general io 2521 * start/recovery path as __block_write_full_page, along with special 2522 * code to handle reiserfs tails. 2523 */ reiserfs_write_full_page(struct page * page,struct writeback_control * wbc)2524 static int reiserfs_write_full_page(struct page *page, 2525 struct writeback_control *wbc) 2526 { 2527 struct inode *inode = page->mapping->host; 2528 unsigned long end_index = inode->i_size >> PAGE_SHIFT; 2529 int error = 0; 2530 unsigned long block; 2531 sector_t last_block; 2532 struct buffer_head *head, *bh; 2533 int partial = 0; 2534 int nr = 0; 2535 int checked = PageChecked(page); 2536 struct reiserfs_transaction_handle th; 2537 struct super_block *s = inode->i_sb; 2538 int bh_per_page = PAGE_SIZE / s->s_blocksize; 2539 th.t_trans_id = 0; 2540 2541 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2542 if (checked && (current->flags & PF_MEMALLOC)) { 2543 redirty_page_for_writepage(wbc, page); 2544 unlock_page(page); 2545 return 0; 2546 } 2547 2548 /* 2549 * The page dirty bit is cleared before writepage is called, which 2550 * means we have to tell create_empty_buffers to make dirty buffers 2551 * The page really should be up to date at this point, so tossing 2552 * in the BH_Uptodate is just a sanity check. 2553 */ 2554 if (!page_has_buffers(page)) { 2555 create_empty_buffers(page, s->s_blocksize, 2556 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2557 } 2558 head = page_buffers(page); 2559 2560 /* 2561 * last page in the file, zero out any contents past the 2562 * last byte in the file 2563 */ 2564 if (page->index >= end_index) { 2565 unsigned last_offset; 2566 2567 last_offset = inode->i_size & (PAGE_SIZE - 1); 2568 /* no file contents in this page */ 2569 if (page->index >= end_index + 1 || !last_offset) { 2570 unlock_page(page); 2571 return 0; 2572 } 2573 zero_user_segment(page, last_offset, PAGE_SIZE); 2574 } 2575 bh = head; 2576 block = page->index << (PAGE_SHIFT - s->s_blocksize_bits); 2577 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2578 /* first map all the buffers, logging any direct items we find */ 2579 do { 2580 if (block > last_block) { 2581 /* 2582 * This can happen when the block size is less than 2583 * the page size. The corresponding bytes in the page 2584 * were zero filled above 2585 */ 2586 clear_buffer_dirty(bh); 2587 set_buffer_uptodate(bh); 2588 } else if ((checked || buffer_dirty(bh)) && 2589 (!buffer_mapped(bh) || (buffer_mapped(bh) 2590 && bh->b_blocknr == 2591 0))) { 2592 /* 2593 * not mapped yet, or it points to a direct item, search 2594 * the btree for the mapping info, and log any direct 2595 * items found 2596 */ 2597 if ((error = map_block_for_writepage(inode, bh, block))) { 2598 goto fail; 2599 } 2600 } 2601 bh = bh->b_this_page; 2602 block++; 2603 } while (bh != head); 2604 2605 /* 2606 * we start the transaction after map_block_for_writepage, 2607 * because it can create holes in the file (an unbounded operation). 2608 * starting it here, we can make a reliable estimate for how many 2609 * blocks we're going to log 2610 */ 2611 if (checked) { 2612 ClearPageChecked(page); 2613 reiserfs_write_lock(s); 2614 error = journal_begin(&th, s, bh_per_page + 1); 2615 if (error) { 2616 reiserfs_write_unlock(s); 2617 goto fail; 2618 } 2619 reiserfs_update_inode_transaction(inode); 2620 } 2621 /* now go through and lock any dirty buffers on the page */ 2622 do { 2623 get_bh(bh); 2624 if (!buffer_mapped(bh)) 2625 continue; 2626 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2627 continue; 2628 2629 if (checked) { 2630 reiserfs_prepare_for_journal(s, bh, 1); 2631 journal_mark_dirty(&th, bh); 2632 continue; 2633 } 2634 /* 2635 * from this point on, we know the buffer is mapped to a 2636 * real block and not a direct item 2637 */ 2638 if (wbc->sync_mode != WB_SYNC_NONE) { 2639 lock_buffer(bh); 2640 } else { 2641 if (!trylock_buffer(bh)) { 2642 redirty_page_for_writepage(wbc, page); 2643 continue; 2644 } 2645 } 2646 if (test_clear_buffer_dirty(bh)) { 2647 mark_buffer_async_write(bh); 2648 } else { 2649 unlock_buffer(bh); 2650 } 2651 } while ((bh = bh->b_this_page) != head); 2652 2653 if (checked) { 2654 error = journal_end(&th); 2655 reiserfs_write_unlock(s); 2656 if (error) 2657 goto fail; 2658 } 2659 BUG_ON(PageWriteback(page)); 2660 set_page_writeback(page); 2661 unlock_page(page); 2662 2663 /* 2664 * since any buffer might be the only dirty buffer on the page, 2665 * the first submit_bh can bring the page out of writeback. 2666 * be careful with the buffers. 2667 */ 2668 do { 2669 struct buffer_head *next = bh->b_this_page; 2670 if (buffer_async_write(bh)) { 2671 submit_bh(REQ_OP_WRITE, 0, bh); 2672 nr++; 2673 } 2674 put_bh(bh); 2675 bh = next; 2676 } while (bh != head); 2677 2678 error = 0; 2679 done: 2680 if (nr == 0) { 2681 /* 2682 * if this page only had a direct item, it is very possible for 2683 * no io to be required without there being an error. Or, 2684 * someone else could have locked them and sent them down the 2685 * pipe without locking the page 2686 */ 2687 bh = head; 2688 do { 2689 if (!buffer_uptodate(bh)) { 2690 partial = 1; 2691 break; 2692 } 2693 bh = bh->b_this_page; 2694 } while (bh != head); 2695 if (!partial) 2696 SetPageUptodate(page); 2697 end_page_writeback(page); 2698 } 2699 return error; 2700 2701 fail: 2702 /* 2703 * catches various errors, we need to make sure any valid dirty blocks 2704 * get to the media. The page is currently locked and not marked for 2705 * writeback 2706 */ 2707 ClearPageUptodate(page); 2708 bh = head; 2709 do { 2710 get_bh(bh); 2711 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2712 lock_buffer(bh); 2713 mark_buffer_async_write(bh); 2714 } else { 2715 /* 2716 * clear any dirty bits that might have come from 2717 * getting attached to a dirty page 2718 */ 2719 clear_buffer_dirty(bh); 2720 } 2721 bh = bh->b_this_page; 2722 } while (bh != head); 2723 SetPageError(page); 2724 BUG_ON(PageWriteback(page)); 2725 set_page_writeback(page); 2726 unlock_page(page); 2727 do { 2728 struct buffer_head *next = bh->b_this_page; 2729 if (buffer_async_write(bh)) { 2730 clear_buffer_dirty(bh); 2731 submit_bh(REQ_OP_WRITE, 0, bh); 2732 nr++; 2733 } 2734 put_bh(bh); 2735 bh = next; 2736 } while (bh != head); 2737 goto done; 2738 } 2739 reiserfs_readpage(struct file * f,struct page * page)2740 static int reiserfs_readpage(struct file *f, struct page *page) 2741 { 2742 return block_read_full_page(page, reiserfs_get_block); 2743 } 2744 reiserfs_writepage(struct page * page,struct writeback_control * wbc)2745 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2746 { 2747 struct inode *inode = page->mapping->host; 2748 reiserfs_wait_on_write_block(inode->i_sb); 2749 return reiserfs_write_full_page(page, wbc); 2750 } 2751 reiserfs_truncate_failed_write(struct inode * inode)2752 static void reiserfs_truncate_failed_write(struct inode *inode) 2753 { 2754 truncate_inode_pages(inode->i_mapping, inode->i_size); 2755 reiserfs_truncate_file(inode, 0); 2756 } 2757 reiserfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2758 static int reiserfs_write_begin(struct file *file, 2759 struct address_space *mapping, 2760 loff_t pos, unsigned len, unsigned flags, 2761 struct page **pagep, void **fsdata) 2762 { 2763 struct inode *inode; 2764 struct page *page; 2765 pgoff_t index; 2766 int ret; 2767 int old_ref = 0; 2768 2769 inode = mapping->host; 2770 *fsdata = NULL; 2771 if (flags & AOP_FLAG_CONT_EXPAND && 2772 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2773 pos ++; 2774 *fsdata = (void *)(unsigned long)flags; 2775 } 2776 2777 index = pos >> PAGE_SHIFT; 2778 page = grab_cache_page_write_begin(mapping, index, flags); 2779 if (!page) 2780 return -ENOMEM; 2781 *pagep = page; 2782 2783 reiserfs_wait_on_write_block(inode->i_sb); 2784 fix_tail_page_for_writing(page); 2785 if (reiserfs_transaction_running(inode->i_sb)) { 2786 struct reiserfs_transaction_handle *th; 2787 th = (struct reiserfs_transaction_handle *)current-> 2788 journal_info; 2789 BUG_ON(!th->t_refcount); 2790 BUG_ON(!th->t_trans_id); 2791 old_ref = th->t_refcount; 2792 th->t_refcount++; 2793 } 2794 ret = __block_write_begin(page, pos, len, reiserfs_get_block); 2795 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2796 struct reiserfs_transaction_handle *th = current->journal_info; 2797 /* 2798 * this gets a little ugly. If reiserfs_get_block returned an 2799 * error and left a transacstion running, we've got to close 2800 * it, and we've got to free handle if it was a persistent 2801 * transaction. 2802 * 2803 * But, if we had nested into an existing transaction, we need 2804 * to just drop the ref count on the handle. 2805 * 2806 * If old_ref == 0, the transaction is from reiserfs_get_block, 2807 * and it was a persistent trans. Otherwise, it was nested 2808 * above. 2809 */ 2810 if (th->t_refcount > old_ref) { 2811 if (old_ref) 2812 th->t_refcount--; 2813 else { 2814 int err; 2815 reiserfs_write_lock(inode->i_sb); 2816 err = reiserfs_end_persistent_transaction(th); 2817 reiserfs_write_unlock(inode->i_sb); 2818 if (err) 2819 ret = err; 2820 } 2821 } 2822 } 2823 if (ret) { 2824 unlock_page(page); 2825 put_page(page); 2826 /* Truncate allocated blocks */ 2827 reiserfs_truncate_failed_write(inode); 2828 } 2829 return ret; 2830 } 2831 __reiserfs_write_begin(struct page * page,unsigned from,unsigned len)2832 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len) 2833 { 2834 struct inode *inode = page->mapping->host; 2835 int ret; 2836 int old_ref = 0; 2837 int depth; 2838 2839 depth = reiserfs_write_unlock_nested(inode->i_sb); 2840 reiserfs_wait_on_write_block(inode->i_sb); 2841 reiserfs_write_lock_nested(inode->i_sb, depth); 2842 2843 fix_tail_page_for_writing(page); 2844 if (reiserfs_transaction_running(inode->i_sb)) { 2845 struct reiserfs_transaction_handle *th; 2846 th = (struct reiserfs_transaction_handle *)current-> 2847 journal_info; 2848 BUG_ON(!th->t_refcount); 2849 BUG_ON(!th->t_trans_id); 2850 old_ref = th->t_refcount; 2851 th->t_refcount++; 2852 } 2853 2854 ret = __block_write_begin(page, from, len, reiserfs_get_block); 2855 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2856 struct reiserfs_transaction_handle *th = current->journal_info; 2857 /* 2858 * this gets a little ugly. If reiserfs_get_block returned an 2859 * error and left a transacstion running, we've got to close 2860 * it, and we've got to free handle if it was a persistent 2861 * transaction. 2862 * 2863 * But, if we had nested into an existing transaction, we need 2864 * to just drop the ref count on the handle. 2865 * 2866 * If old_ref == 0, the transaction is from reiserfs_get_block, 2867 * and it was a persistent trans. Otherwise, it was nested 2868 * above. 2869 */ 2870 if (th->t_refcount > old_ref) { 2871 if (old_ref) 2872 th->t_refcount--; 2873 else { 2874 int err; 2875 reiserfs_write_lock(inode->i_sb); 2876 err = reiserfs_end_persistent_transaction(th); 2877 reiserfs_write_unlock(inode->i_sb); 2878 if (err) 2879 ret = err; 2880 } 2881 } 2882 } 2883 return ret; 2884 2885 } 2886 reiserfs_aop_bmap(struct address_space * as,sector_t block)2887 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2888 { 2889 return generic_block_bmap(as, block, reiserfs_bmap); 2890 } 2891 reiserfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2892 static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2893 loff_t pos, unsigned len, unsigned copied, 2894 struct page *page, void *fsdata) 2895 { 2896 struct inode *inode = page->mapping->host; 2897 int ret = 0; 2898 int update_sd = 0; 2899 struct reiserfs_transaction_handle *th; 2900 unsigned start; 2901 bool locked = false; 2902 2903 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2904 pos ++; 2905 2906 reiserfs_wait_on_write_block(inode->i_sb); 2907 if (reiserfs_transaction_running(inode->i_sb)) 2908 th = current->journal_info; 2909 else 2910 th = NULL; 2911 2912 start = pos & (PAGE_SIZE - 1); 2913 if (unlikely(copied < len)) { 2914 if (!PageUptodate(page)) 2915 copied = 0; 2916 2917 page_zero_new_buffers(page, start + copied, start + len); 2918 } 2919 flush_dcache_page(page); 2920 2921 reiserfs_commit_page(inode, page, start, start + copied); 2922 2923 /* 2924 * generic_commit_write does this for us, but does not update the 2925 * transaction tracking stuff when the size changes. So, we have 2926 * to do the i_size updates here. 2927 */ 2928 if (pos + copied > inode->i_size) { 2929 struct reiserfs_transaction_handle myth; 2930 reiserfs_write_lock(inode->i_sb); 2931 locked = true; 2932 /* 2933 * If the file have grown beyond the border where it 2934 * can have a tail, unmark it as needing a tail 2935 * packing 2936 */ 2937 if ((have_large_tails(inode->i_sb) 2938 && inode->i_size > i_block_size(inode) * 4) 2939 || (have_small_tails(inode->i_sb) 2940 && inode->i_size > i_block_size(inode))) 2941 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2942 2943 ret = journal_begin(&myth, inode->i_sb, 1); 2944 if (ret) 2945 goto journal_error; 2946 2947 reiserfs_update_inode_transaction(inode); 2948 inode->i_size = pos + copied; 2949 /* 2950 * this will just nest into our transaction. It's important 2951 * to use mark_inode_dirty so the inode gets pushed around on 2952 * the dirty lists, and so that O_SYNC works as expected 2953 */ 2954 mark_inode_dirty(inode); 2955 reiserfs_update_sd(&myth, inode); 2956 update_sd = 1; 2957 ret = journal_end(&myth); 2958 if (ret) 2959 goto journal_error; 2960 } 2961 if (th) { 2962 if (!locked) { 2963 reiserfs_write_lock(inode->i_sb); 2964 locked = true; 2965 } 2966 if (!update_sd) 2967 mark_inode_dirty(inode); 2968 ret = reiserfs_end_persistent_transaction(th); 2969 if (ret) 2970 goto out; 2971 } 2972 2973 out: 2974 if (locked) 2975 reiserfs_write_unlock(inode->i_sb); 2976 unlock_page(page); 2977 put_page(page); 2978 2979 if (pos + len > inode->i_size) 2980 reiserfs_truncate_failed_write(inode); 2981 2982 return ret == 0 ? copied : ret; 2983 2984 journal_error: 2985 reiserfs_write_unlock(inode->i_sb); 2986 locked = false; 2987 if (th) { 2988 if (!update_sd) 2989 reiserfs_update_sd(th, inode); 2990 ret = reiserfs_end_persistent_transaction(th); 2991 } 2992 goto out; 2993 } 2994 reiserfs_commit_write(struct file * f,struct page * page,unsigned from,unsigned to)2995 int reiserfs_commit_write(struct file *f, struct page *page, 2996 unsigned from, unsigned to) 2997 { 2998 struct inode *inode = page->mapping->host; 2999 loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to; 3000 int ret = 0; 3001 int update_sd = 0; 3002 struct reiserfs_transaction_handle *th = NULL; 3003 int depth; 3004 3005 depth = reiserfs_write_unlock_nested(inode->i_sb); 3006 reiserfs_wait_on_write_block(inode->i_sb); 3007 reiserfs_write_lock_nested(inode->i_sb, depth); 3008 3009 if (reiserfs_transaction_running(inode->i_sb)) { 3010 th = current->journal_info; 3011 } 3012 reiserfs_commit_page(inode, page, from, to); 3013 3014 /* 3015 * generic_commit_write does this for us, but does not update the 3016 * transaction tracking stuff when the size changes. So, we have 3017 * to do the i_size updates here. 3018 */ 3019 if (pos > inode->i_size) { 3020 struct reiserfs_transaction_handle myth; 3021 /* 3022 * If the file have grown beyond the border where it 3023 * can have a tail, unmark it as needing a tail 3024 * packing 3025 */ 3026 if ((have_large_tails(inode->i_sb) 3027 && inode->i_size > i_block_size(inode) * 4) 3028 || (have_small_tails(inode->i_sb) 3029 && inode->i_size > i_block_size(inode))) 3030 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 3031 3032 ret = journal_begin(&myth, inode->i_sb, 1); 3033 if (ret) 3034 goto journal_error; 3035 3036 reiserfs_update_inode_transaction(inode); 3037 inode->i_size = pos; 3038 /* 3039 * this will just nest into our transaction. It's important 3040 * to use mark_inode_dirty so the inode gets pushed around 3041 * on the dirty lists, and so that O_SYNC works as expected 3042 */ 3043 mark_inode_dirty(inode); 3044 reiserfs_update_sd(&myth, inode); 3045 update_sd = 1; 3046 ret = journal_end(&myth); 3047 if (ret) 3048 goto journal_error; 3049 } 3050 if (th) { 3051 if (!update_sd) 3052 mark_inode_dirty(inode); 3053 ret = reiserfs_end_persistent_transaction(th); 3054 if (ret) 3055 goto out; 3056 } 3057 3058 out: 3059 return ret; 3060 3061 journal_error: 3062 if (th) { 3063 if (!update_sd) 3064 reiserfs_update_sd(th, inode); 3065 ret = reiserfs_end_persistent_transaction(th); 3066 } 3067 3068 return ret; 3069 } 3070 sd_attrs_to_i_attrs(__u16 sd_attrs,struct inode * inode)3071 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 3072 { 3073 if (reiserfs_attrs(inode->i_sb)) { 3074 if (sd_attrs & REISERFS_SYNC_FL) 3075 inode->i_flags |= S_SYNC; 3076 else 3077 inode->i_flags &= ~S_SYNC; 3078 if (sd_attrs & REISERFS_IMMUTABLE_FL) 3079 inode->i_flags |= S_IMMUTABLE; 3080 else 3081 inode->i_flags &= ~S_IMMUTABLE; 3082 if (sd_attrs & REISERFS_APPEND_FL) 3083 inode->i_flags |= S_APPEND; 3084 else 3085 inode->i_flags &= ~S_APPEND; 3086 if (sd_attrs & REISERFS_NOATIME_FL) 3087 inode->i_flags |= S_NOATIME; 3088 else 3089 inode->i_flags &= ~S_NOATIME; 3090 if (sd_attrs & REISERFS_NOTAIL_FL) 3091 REISERFS_I(inode)->i_flags |= i_nopack_mask; 3092 else 3093 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 3094 } 3095 } 3096 3097 /* 3098 * decide if this buffer needs to stay around for data logging or ordered 3099 * write purposes 3100 */ invalidatepage_can_drop(struct inode * inode,struct buffer_head * bh)3101 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 3102 { 3103 int ret = 1; 3104 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3105 3106 lock_buffer(bh); 3107 spin_lock(&j->j_dirty_buffers_lock); 3108 if (!buffer_mapped(bh)) { 3109 goto free_jh; 3110 } 3111 /* 3112 * the page is locked, and the only places that log a data buffer 3113 * also lock the page. 3114 */ 3115 if (reiserfs_file_data_log(inode)) { 3116 /* 3117 * very conservative, leave the buffer pinned if 3118 * anyone might need it. 3119 */ 3120 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 3121 ret = 0; 3122 } 3123 } else if (buffer_dirty(bh)) { 3124 struct reiserfs_journal_list *jl; 3125 struct reiserfs_jh *jh = bh->b_private; 3126 3127 /* 3128 * why is this safe? 3129 * reiserfs_setattr updates i_size in the on disk 3130 * stat data before allowing vmtruncate to be called. 3131 * 3132 * If buffer was put onto the ordered list for this 3133 * transaction, we know for sure either this transaction 3134 * or an older one already has updated i_size on disk, 3135 * and this ordered data won't be referenced in the file 3136 * if we crash. 3137 * 3138 * if the buffer was put onto the ordered list for an older 3139 * transaction, we need to leave it around 3140 */ 3141 if (jh && (jl = jh->jl) 3142 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 3143 ret = 0; 3144 } 3145 free_jh: 3146 if (ret && bh->b_private) { 3147 reiserfs_free_jh(bh); 3148 } 3149 spin_unlock(&j->j_dirty_buffers_lock); 3150 unlock_buffer(bh); 3151 return ret; 3152 } 3153 3154 /* clm -- taken from fs/buffer.c:block_invalidate_page */ reiserfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3155 static void reiserfs_invalidatepage(struct page *page, unsigned int offset, 3156 unsigned int length) 3157 { 3158 struct buffer_head *head, *bh, *next; 3159 struct inode *inode = page->mapping->host; 3160 unsigned int curr_off = 0; 3161 unsigned int stop = offset + length; 3162 int partial_page = (offset || length < PAGE_SIZE); 3163 int ret = 1; 3164 3165 BUG_ON(!PageLocked(page)); 3166 3167 if (!partial_page) 3168 ClearPageChecked(page); 3169 3170 if (!page_has_buffers(page)) 3171 goto out; 3172 3173 head = page_buffers(page); 3174 bh = head; 3175 do { 3176 unsigned int next_off = curr_off + bh->b_size; 3177 next = bh->b_this_page; 3178 3179 if (next_off > stop) 3180 goto out; 3181 3182 /* 3183 * is this block fully invalidated? 3184 */ 3185 if (offset <= curr_off) { 3186 if (invalidatepage_can_drop(inode, bh)) 3187 reiserfs_unmap_buffer(bh); 3188 else 3189 ret = 0; 3190 } 3191 curr_off = next_off; 3192 bh = next; 3193 } while (bh != head); 3194 3195 /* 3196 * We release buffers only if the entire page is being invalidated. 3197 * The get_block cached value has been unconditionally invalidated, 3198 * so real IO is not possible anymore. 3199 */ 3200 if (!partial_page && ret) { 3201 ret = try_to_release_page(page, 0); 3202 /* maybe should BUG_ON(!ret); - neilb */ 3203 } 3204 out: 3205 return; 3206 } 3207 reiserfs_set_page_dirty(struct page * page)3208 static int reiserfs_set_page_dirty(struct page *page) 3209 { 3210 struct inode *inode = page->mapping->host; 3211 if (reiserfs_file_data_log(inode)) { 3212 SetPageChecked(page); 3213 return __set_page_dirty_nobuffers(page); 3214 } 3215 return __set_page_dirty_buffers(page); 3216 } 3217 3218 /* 3219 * Returns 1 if the page's buffers were dropped. The page is locked. 3220 * 3221 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 3222 * in the buffers at page_buffers(page). 3223 * 3224 * even in -o notail mode, we can't be sure an old mount without -o notail 3225 * didn't create files with tails. 3226 */ reiserfs_releasepage(struct page * page,gfp_t unused_gfp_flags)3227 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3228 { 3229 struct inode *inode = page->mapping->host; 3230 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3231 struct buffer_head *head; 3232 struct buffer_head *bh; 3233 int ret = 1; 3234 3235 WARN_ON(PageChecked(page)); 3236 spin_lock(&j->j_dirty_buffers_lock); 3237 head = page_buffers(page); 3238 bh = head; 3239 do { 3240 if (bh->b_private) { 3241 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3242 reiserfs_free_jh(bh); 3243 } else { 3244 ret = 0; 3245 break; 3246 } 3247 } 3248 bh = bh->b_this_page; 3249 } while (bh != head); 3250 if (ret) 3251 ret = try_to_free_buffers(page); 3252 spin_unlock(&j->j_dirty_buffers_lock); 3253 return ret; 3254 } 3255 3256 /* 3257 * We thank Mingming Cao for helping us understand in great detail what 3258 * to do in this section of the code. 3259 */ reiserfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3260 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3261 { 3262 struct file *file = iocb->ki_filp; 3263 struct inode *inode = file->f_mapping->host; 3264 size_t count = iov_iter_count(iter); 3265 ssize_t ret; 3266 3267 ret = blockdev_direct_IO(iocb, inode, iter, 3268 reiserfs_get_blocks_direct_io); 3269 3270 /* 3271 * In case of error extending write may have instantiated a few 3272 * blocks outside i_size. Trim these off again. 3273 */ 3274 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) { 3275 loff_t isize = i_size_read(inode); 3276 loff_t end = iocb->ki_pos + count; 3277 3278 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) { 3279 truncate_setsize(inode, isize); 3280 reiserfs_vfs_truncate_file(inode); 3281 } 3282 } 3283 3284 return ret; 3285 } 3286 reiserfs_setattr(struct dentry * dentry,struct iattr * attr)3287 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3288 { 3289 struct inode *inode = d_inode(dentry); 3290 unsigned int ia_valid; 3291 int error; 3292 3293 error = setattr_prepare(dentry, attr); 3294 if (error) 3295 return error; 3296 3297 /* must be turned off for recursive notify_change calls */ 3298 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3299 3300 if (is_quota_modification(inode, attr)) { 3301 error = dquot_initialize(inode); 3302 if (error) 3303 return error; 3304 } 3305 reiserfs_write_lock(inode->i_sb); 3306 if (attr->ia_valid & ATTR_SIZE) { 3307 /* 3308 * version 2 items will be caught by the s_maxbytes check 3309 * done for us in vmtruncate 3310 */ 3311 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3312 attr->ia_size > MAX_NON_LFS) { 3313 reiserfs_write_unlock(inode->i_sb); 3314 error = -EFBIG; 3315 goto out; 3316 } 3317 3318 inode_dio_wait(inode); 3319 3320 /* fill in hole pointers in the expanding truncate case. */ 3321 if (attr->ia_size > inode->i_size) { 3322 error = generic_cont_expand_simple(inode, attr->ia_size); 3323 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3324 int err; 3325 struct reiserfs_transaction_handle th; 3326 /* we're changing at most 2 bitmaps, inode + super */ 3327 err = journal_begin(&th, inode->i_sb, 4); 3328 if (!err) { 3329 reiserfs_discard_prealloc(&th, inode); 3330 err = journal_end(&th); 3331 } 3332 if (err) 3333 error = err; 3334 } 3335 if (error) { 3336 reiserfs_write_unlock(inode->i_sb); 3337 goto out; 3338 } 3339 /* 3340 * file size is changed, ctime and mtime are 3341 * to be updated 3342 */ 3343 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3344 } 3345 } 3346 reiserfs_write_unlock(inode->i_sb); 3347 3348 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) || 3349 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) && 3350 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3351 /* stat data of format v3.5 has 16 bit uid and gid */ 3352 error = -EINVAL; 3353 goto out; 3354 } 3355 3356 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 3357 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 3358 struct reiserfs_transaction_handle th; 3359 int jbegin_count = 3360 2 * 3361 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3362 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3363 2; 3364 3365 error = reiserfs_chown_xattrs(inode, attr); 3366 3367 if (error) 3368 return error; 3369 3370 /* 3371 * (user+group)*(old+new) structure - we count quota 3372 * info and , inode write (sb, inode) 3373 */ 3374 reiserfs_write_lock(inode->i_sb); 3375 error = journal_begin(&th, inode->i_sb, jbegin_count); 3376 reiserfs_write_unlock(inode->i_sb); 3377 if (error) 3378 goto out; 3379 error = dquot_transfer(inode, attr); 3380 reiserfs_write_lock(inode->i_sb); 3381 if (error) { 3382 journal_end(&th); 3383 reiserfs_write_unlock(inode->i_sb); 3384 goto out; 3385 } 3386 3387 /* 3388 * Update corresponding info in inode so that everything 3389 * is in one transaction 3390 */ 3391 if (attr->ia_valid & ATTR_UID) 3392 inode->i_uid = attr->ia_uid; 3393 if (attr->ia_valid & ATTR_GID) 3394 inode->i_gid = attr->ia_gid; 3395 mark_inode_dirty(inode); 3396 error = journal_end(&th); 3397 reiserfs_write_unlock(inode->i_sb); 3398 if (error) 3399 goto out; 3400 } 3401 3402 if ((attr->ia_valid & ATTR_SIZE) && 3403 attr->ia_size != i_size_read(inode)) { 3404 error = inode_newsize_ok(inode, attr->ia_size); 3405 if (!error) { 3406 /* 3407 * Could race against reiserfs_file_release 3408 * if called from NFS, so take tailpack mutex. 3409 */ 3410 mutex_lock(&REISERFS_I(inode)->tailpack); 3411 truncate_setsize(inode, attr->ia_size); 3412 reiserfs_truncate_file(inode, 1); 3413 mutex_unlock(&REISERFS_I(inode)->tailpack); 3414 } 3415 } 3416 3417 if (!error) { 3418 setattr_copy(inode, attr); 3419 mark_inode_dirty(inode); 3420 } 3421 3422 if (!error && reiserfs_posixacl(inode->i_sb)) { 3423 if (attr->ia_valid & ATTR_MODE) 3424 error = reiserfs_acl_chmod(inode); 3425 } 3426 3427 out: 3428 return error; 3429 } 3430 3431 const struct address_space_operations reiserfs_address_space_operations = { 3432 .writepage = reiserfs_writepage, 3433 .readpage = reiserfs_readpage, 3434 .readpages = reiserfs_readpages, 3435 .releasepage = reiserfs_releasepage, 3436 .invalidatepage = reiserfs_invalidatepage, 3437 .write_begin = reiserfs_write_begin, 3438 .write_end = reiserfs_write_end, 3439 .bmap = reiserfs_aop_bmap, 3440 .direct_IO = reiserfs_direct_IO, 3441 .set_page_dirty = reiserfs_set_page_dirty, 3442 }; 3443