• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 #include <linux/iversion.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67 
68 enum {
69 	VDS_POS_PRIMARY_VOL_DESC,
70 	VDS_POS_UNALLOC_SPACE_DESC,
71 	VDS_POS_LOGICAL_VOL_DESC,
72 	VDS_POS_IMP_USE_VOL_DESC,
73 	VDS_POS_LENGTH
74 };
75 
76 #define VSD_FIRST_SECTOR_OFFSET		32768
77 #define VSD_MAX_SECTOR_OFFSET		0x800000
78 
79 /*
80  * Maximum number of Terminating Descriptor / Logical Volume Integrity
81  * Descriptor redirections. The chosen numbers are arbitrary - just that we
82  * hopefully don't limit any real use of rewritten inode on write-once media
83  * but avoid looping for too long on corrupted media.
84  */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87 
88 enum { UDF_MAX_LINKS = 0xffff };
89 
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static void udf_open_lvid(struct super_block *);
97 static void udf_close_lvid(struct super_block *);
98 static unsigned int udf_count_free(struct super_block *);
99 static int udf_statfs(struct dentry *, struct kstatfs *);
100 static int udf_show_options(struct seq_file *, struct dentry *);
101 
udf_sb_lvidiu(struct super_block * sb)102 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
103 {
104 	struct logicalVolIntegrityDesc *lvid;
105 	unsigned int partnum;
106 	unsigned int offset;
107 
108 	if (!UDF_SB(sb)->s_lvid_bh)
109 		return NULL;
110 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
111 	partnum = le32_to_cpu(lvid->numOfPartitions);
112 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
113 	offset = partnum * 2 * sizeof(uint32_t);
114 	return (struct logicalVolIntegrityDescImpUse *)
115 					(((uint8_t *)(lvid + 1)) + offset);
116 }
117 
118 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)119 static struct dentry *udf_mount(struct file_system_type *fs_type,
120 		      int flags, const char *dev_name, void *data)
121 {
122 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
123 }
124 
125 static struct file_system_type udf_fstype = {
126 	.owner		= THIS_MODULE,
127 	.name		= "udf",
128 	.mount		= udf_mount,
129 	.kill_sb	= kill_block_super,
130 	.fs_flags	= FS_REQUIRES_DEV,
131 };
132 MODULE_ALIAS_FS("udf");
133 
134 static struct kmem_cache *udf_inode_cachep;
135 
udf_alloc_inode(struct super_block * sb)136 static struct inode *udf_alloc_inode(struct super_block *sb)
137 {
138 	struct udf_inode_info *ei;
139 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
140 	if (!ei)
141 		return NULL;
142 
143 	ei->i_unique = 0;
144 	ei->i_lenExtents = 0;
145 	ei->i_lenStreams = 0;
146 	ei->i_next_alloc_block = 0;
147 	ei->i_next_alloc_goal = 0;
148 	ei->i_strat4096 = 0;
149 	ei->i_streamdir = 0;
150 	ei->i_hidden = 0;
151 	init_rwsem(&ei->i_data_sem);
152 	ei->cached_extent.lstart = -1;
153 	spin_lock_init(&ei->i_extent_cache_lock);
154 	inode_set_iversion(&ei->vfs_inode, 1);
155 
156 	return &ei->vfs_inode;
157 }
158 
udf_free_in_core_inode(struct inode * inode)159 static void udf_free_in_core_inode(struct inode *inode)
160 {
161 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163 
init_once(void * foo)164 static void init_once(void *foo)
165 {
166 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
167 
168 	ei->i_ext.i_data = NULL;
169 	inode_init_once(&ei->vfs_inode);
170 }
171 
init_inodecache(void)172 static int __init init_inodecache(void)
173 {
174 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
175 					     sizeof(struct udf_inode_info),
176 					     0, (SLAB_RECLAIM_ACCOUNT |
177 						 SLAB_MEM_SPREAD |
178 						 SLAB_ACCOUNT),
179 					     init_once);
180 	if (!udf_inode_cachep)
181 		return -ENOMEM;
182 	return 0;
183 }
184 
destroy_inodecache(void)185 static void destroy_inodecache(void)
186 {
187 	/*
188 	 * Make sure all delayed rcu free inodes are flushed before we
189 	 * destroy cache.
190 	 */
191 	rcu_barrier();
192 	kmem_cache_destroy(udf_inode_cachep);
193 }
194 
195 /* Superblock operations */
196 static const struct super_operations udf_sb_ops = {
197 	.alloc_inode	= udf_alloc_inode,
198 	.free_inode	= udf_free_in_core_inode,
199 	.write_inode	= udf_write_inode,
200 	.evict_inode	= udf_evict_inode,
201 	.put_super	= udf_put_super,
202 	.sync_fs	= udf_sync_fs,
203 	.statfs		= udf_statfs,
204 	.remount_fs	= udf_remount_fs,
205 	.show_options	= udf_show_options,
206 };
207 
208 struct udf_options {
209 	unsigned char novrs;
210 	unsigned int blocksize;
211 	unsigned int session;
212 	unsigned int lastblock;
213 	unsigned int anchor;
214 	unsigned int flags;
215 	umode_t umask;
216 	kgid_t gid;
217 	kuid_t uid;
218 	umode_t fmode;
219 	umode_t dmode;
220 	struct nls_table *nls_map;
221 };
222 
init_udf_fs(void)223 static int __init init_udf_fs(void)
224 {
225 	int err;
226 
227 	err = init_inodecache();
228 	if (err)
229 		goto out1;
230 	err = register_filesystem(&udf_fstype);
231 	if (err)
232 		goto out;
233 
234 	return 0;
235 
236 out:
237 	destroy_inodecache();
238 
239 out1:
240 	return err;
241 }
242 
exit_udf_fs(void)243 static void __exit exit_udf_fs(void)
244 {
245 	unregister_filesystem(&udf_fstype);
246 	destroy_inodecache();
247 }
248 
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)249 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
250 {
251 	struct udf_sb_info *sbi = UDF_SB(sb);
252 
253 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
254 	if (!sbi->s_partmaps) {
255 		sbi->s_partitions = 0;
256 		return -ENOMEM;
257 	}
258 
259 	sbi->s_partitions = count;
260 	return 0;
261 }
262 
udf_sb_free_bitmap(struct udf_bitmap * bitmap)263 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
264 {
265 	int i;
266 	int nr_groups = bitmap->s_nr_groups;
267 
268 	for (i = 0; i < nr_groups; i++)
269 		brelse(bitmap->s_block_bitmap[i]);
270 
271 	kvfree(bitmap);
272 }
273 
udf_free_partition(struct udf_part_map * map)274 static void udf_free_partition(struct udf_part_map *map)
275 {
276 	int i;
277 	struct udf_meta_data *mdata;
278 
279 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
280 		iput(map->s_uspace.s_table);
281 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
282 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
283 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
284 		for (i = 0; i < 4; i++)
285 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
286 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
287 		mdata = &map->s_type_specific.s_metadata;
288 		iput(mdata->s_metadata_fe);
289 		mdata->s_metadata_fe = NULL;
290 
291 		iput(mdata->s_mirror_fe);
292 		mdata->s_mirror_fe = NULL;
293 
294 		iput(mdata->s_bitmap_fe);
295 		mdata->s_bitmap_fe = NULL;
296 	}
297 }
298 
udf_sb_free_partitions(struct super_block * sb)299 static void udf_sb_free_partitions(struct super_block *sb)
300 {
301 	struct udf_sb_info *sbi = UDF_SB(sb);
302 	int i;
303 
304 	if (!sbi->s_partmaps)
305 		return;
306 	for (i = 0; i < sbi->s_partitions; i++)
307 		udf_free_partition(&sbi->s_partmaps[i]);
308 	kfree(sbi->s_partmaps);
309 	sbi->s_partmaps = NULL;
310 }
311 
udf_show_options(struct seq_file * seq,struct dentry * root)312 static int udf_show_options(struct seq_file *seq, struct dentry *root)
313 {
314 	struct super_block *sb = root->d_sb;
315 	struct udf_sb_info *sbi = UDF_SB(sb);
316 
317 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
318 		seq_puts(seq, ",nostrict");
319 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
320 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
321 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
322 		seq_puts(seq, ",unhide");
323 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
324 		seq_puts(seq, ",undelete");
325 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
326 		seq_puts(seq, ",noadinicb");
327 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
328 		seq_puts(seq, ",shortad");
329 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
330 		seq_puts(seq, ",uid=forget");
331 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
332 		seq_puts(seq, ",gid=forget");
333 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
334 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
335 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
336 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
337 	if (sbi->s_umask != 0)
338 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
339 	if (sbi->s_fmode != UDF_INVALID_MODE)
340 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
341 	if (sbi->s_dmode != UDF_INVALID_MODE)
342 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
343 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
344 		seq_printf(seq, ",session=%d", sbi->s_session);
345 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
346 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
347 	if (sbi->s_anchor != 0)
348 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
349 	if (sbi->s_nls_map)
350 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
351 	else
352 		seq_puts(seq, ",iocharset=utf8");
353 
354 	return 0;
355 }
356 
357 /*
358  * udf_parse_options
359  *
360  * PURPOSE
361  *	Parse mount options.
362  *
363  * DESCRIPTION
364  *	The following mount options are supported:
365  *
366  *	gid=		Set the default group.
367  *	umask=		Set the default umask.
368  *	mode=		Set the default file permissions.
369  *	dmode=		Set the default directory permissions.
370  *	uid=		Set the default user.
371  *	bs=		Set the block size.
372  *	unhide		Show otherwise hidden files.
373  *	undelete	Show deleted files in lists.
374  *	adinicb		Embed data in the inode (default)
375  *	noadinicb	Don't embed data in the inode
376  *	shortad		Use short ad's
377  *	longad		Use long ad's (default)
378  *	nostrict	Unset strict conformance
379  *	iocharset=	Set the NLS character set
380  *
381  *	The remaining are for debugging and disaster recovery:
382  *
383  *	novrs		Skip volume sequence recognition
384  *
385  *	The following expect a offset from 0.
386  *
387  *	session=	Set the CDROM session (default= last session)
388  *	anchor=		Override standard anchor location. (default= 256)
389  *	volume=		Override the VolumeDesc location. (unused)
390  *	partition=	Override the PartitionDesc location. (unused)
391  *	lastblock=	Set the last block of the filesystem/
392  *
393  *	The following expect a offset from the partition root.
394  *
395  *	fileset=	Override the fileset block location. (unused)
396  *	rootdir=	Override the root directory location. (unused)
397  *		WARNING: overriding the rootdir to a non-directory may
398  *		yield highly unpredictable results.
399  *
400  * PRE-CONDITIONS
401  *	options		Pointer to mount options string.
402  *	uopts		Pointer to mount options variable.
403  *
404  * POST-CONDITIONS
405  *	<return>	1	Mount options parsed okay.
406  *	<return>	0	Error parsing mount options.
407  *
408  * HISTORY
409  *	July 1, 1997 - Andrew E. Mileski
410  *	Written, tested, and released.
411  */
412 
413 enum {
414 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
415 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
416 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
417 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
418 	Opt_rootdir, Opt_utf8, Opt_iocharset,
419 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
420 	Opt_fmode, Opt_dmode
421 };
422 
423 static const match_table_t tokens = {
424 	{Opt_novrs,	"novrs"},
425 	{Opt_nostrict,	"nostrict"},
426 	{Opt_bs,	"bs=%u"},
427 	{Opt_unhide,	"unhide"},
428 	{Opt_undelete,	"undelete"},
429 	{Opt_noadinicb,	"noadinicb"},
430 	{Opt_adinicb,	"adinicb"},
431 	{Opt_shortad,	"shortad"},
432 	{Opt_longad,	"longad"},
433 	{Opt_uforget,	"uid=forget"},
434 	{Opt_uignore,	"uid=ignore"},
435 	{Opt_gforget,	"gid=forget"},
436 	{Opt_gignore,	"gid=ignore"},
437 	{Opt_gid,	"gid=%u"},
438 	{Opt_uid,	"uid=%u"},
439 	{Opt_umask,	"umask=%o"},
440 	{Opt_session,	"session=%u"},
441 	{Opt_lastblock,	"lastblock=%u"},
442 	{Opt_anchor,	"anchor=%u"},
443 	{Opt_volume,	"volume=%u"},
444 	{Opt_partition,	"partition=%u"},
445 	{Opt_fileset,	"fileset=%u"},
446 	{Opt_rootdir,	"rootdir=%u"},
447 	{Opt_utf8,	"utf8"},
448 	{Opt_iocharset,	"iocharset=%s"},
449 	{Opt_fmode,     "mode=%o"},
450 	{Opt_dmode,     "dmode=%o"},
451 	{Opt_err,	NULL}
452 };
453 
udf_parse_options(char * options,struct udf_options * uopt,bool remount)454 static int udf_parse_options(char *options, struct udf_options *uopt,
455 			     bool remount)
456 {
457 	char *p;
458 	int option;
459 
460 	uopt->novrs = 0;
461 	uopt->session = 0xFFFFFFFF;
462 	uopt->lastblock = 0;
463 	uopt->anchor = 0;
464 
465 	if (!options)
466 		return 1;
467 
468 	while ((p = strsep(&options, ",")) != NULL) {
469 		substring_t args[MAX_OPT_ARGS];
470 		int token;
471 		unsigned n;
472 		if (!*p)
473 			continue;
474 
475 		token = match_token(p, tokens, args);
476 		switch (token) {
477 		case Opt_novrs:
478 			uopt->novrs = 1;
479 			break;
480 		case Opt_bs:
481 			if (match_int(&args[0], &option))
482 				return 0;
483 			n = option;
484 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
485 				return 0;
486 			uopt->blocksize = n;
487 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
488 			break;
489 		case Opt_unhide:
490 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
491 			break;
492 		case Opt_undelete:
493 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
494 			break;
495 		case Opt_noadinicb:
496 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
497 			break;
498 		case Opt_adinicb:
499 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
500 			break;
501 		case Opt_shortad:
502 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
503 			break;
504 		case Opt_longad:
505 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
506 			break;
507 		case Opt_gid:
508 			if (match_int(args, &option))
509 				return 0;
510 			uopt->gid = make_kgid(current_user_ns(), option);
511 			if (!gid_valid(uopt->gid))
512 				return 0;
513 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
514 			break;
515 		case Opt_uid:
516 			if (match_int(args, &option))
517 				return 0;
518 			uopt->uid = make_kuid(current_user_ns(), option);
519 			if (!uid_valid(uopt->uid))
520 				return 0;
521 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
522 			break;
523 		case Opt_umask:
524 			if (match_octal(args, &option))
525 				return 0;
526 			uopt->umask = option;
527 			break;
528 		case Opt_nostrict:
529 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
530 			break;
531 		case Opt_session:
532 			if (match_int(args, &option))
533 				return 0;
534 			uopt->session = option;
535 			if (!remount)
536 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
537 			break;
538 		case Opt_lastblock:
539 			if (match_int(args, &option))
540 				return 0;
541 			uopt->lastblock = option;
542 			if (!remount)
543 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
544 			break;
545 		case Opt_anchor:
546 			if (match_int(args, &option))
547 				return 0;
548 			uopt->anchor = option;
549 			break;
550 		case Opt_volume:
551 		case Opt_partition:
552 		case Opt_fileset:
553 		case Opt_rootdir:
554 			/* Ignored (never implemented properly) */
555 			break;
556 		case Opt_utf8:
557 			if (!remount) {
558 				unload_nls(uopt->nls_map);
559 				uopt->nls_map = NULL;
560 			}
561 			break;
562 		case Opt_iocharset:
563 			if (!remount) {
564 				unload_nls(uopt->nls_map);
565 				uopt->nls_map = NULL;
566 			}
567 			/* When nls_map is not loaded then UTF-8 is used */
568 			if (!remount && strcmp(args[0].from, "utf8") != 0) {
569 				uopt->nls_map = load_nls(args[0].from);
570 				if (!uopt->nls_map) {
571 					pr_err("iocharset %s not found\n",
572 						args[0].from);
573 					return 0;
574 				}
575 			}
576 			break;
577 		case Opt_uforget:
578 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
579 			break;
580 		case Opt_uignore:
581 		case Opt_gignore:
582 			/* These options are superseeded by uid=<number> */
583 			break;
584 		case Opt_gforget:
585 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
586 			break;
587 		case Opt_fmode:
588 			if (match_octal(args, &option))
589 				return 0;
590 			uopt->fmode = option & 0777;
591 			break;
592 		case Opt_dmode:
593 			if (match_octal(args, &option))
594 				return 0;
595 			uopt->dmode = option & 0777;
596 			break;
597 		default:
598 			pr_err("bad mount option \"%s\" or missing value\n", p);
599 			return 0;
600 		}
601 	}
602 	return 1;
603 }
604 
udf_remount_fs(struct super_block * sb,int * flags,char * options)605 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
606 {
607 	struct udf_options uopt;
608 	struct udf_sb_info *sbi = UDF_SB(sb);
609 	int error = 0;
610 
611 	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
612 		return -EACCES;
613 
614 	sync_filesystem(sb);
615 
616 	uopt.flags = sbi->s_flags;
617 	uopt.uid   = sbi->s_uid;
618 	uopt.gid   = sbi->s_gid;
619 	uopt.umask = sbi->s_umask;
620 	uopt.fmode = sbi->s_fmode;
621 	uopt.dmode = sbi->s_dmode;
622 	uopt.nls_map = NULL;
623 
624 	if (!udf_parse_options(options, &uopt, true))
625 		return -EINVAL;
626 
627 	write_lock(&sbi->s_cred_lock);
628 	sbi->s_flags = uopt.flags;
629 	sbi->s_uid   = uopt.uid;
630 	sbi->s_gid   = uopt.gid;
631 	sbi->s_umask = uopt.umask;
632 	sbi->s_fmode = uopt.fmode;
633 	sbi->s_dmode = uopt.dmode;
634 	write_unlock(&sbi->s_cred_lock);
635 
636 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
637 		goto out_unlock;
638 
639 	if (*flags & SB_RDONLY)
640 		udf_close_lvid(sb);
641 	else
642 		udf_open_lvid(sb);
643 
644 out_unlock:
645 	return error;
646 }
647 
648 /*
649  * Check VSD descriptor. Returns -1 in case we are at the end of volume
650  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
651  * we found one of NSR descriptors we are looking for.
652  */
identify_vsd(const struct volStructDesc * vsd)653 static int identify_vsd(const struct volStructDesc *vsd)
654 {
655 	int ret = 0;
656 
657 	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
658 		switch (vsd->structType) {
659 		case 0:
660 			udf_debug("ISO9660 Boot Record found\n");
661 			break;
662 		case 1:
663 			udf_debug("ISO9660 Primary Volume Descriptor found\n");
664 			break;
665 		case 2:
666 			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
667 			break;
668 		case 3:
669 			udf_debug("ISO9660 Volume Partition Descriptor found\n");
670 			break;
671 		case 255:
672 			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
673 			break;
674 		default:
675 			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
676 			break;
677 		}
678 	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
679 		; /* ret = 0 */
680 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
681 		ret = 1;
682 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
683 		ret = 1;
684 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
685 		; /* ret = 0 */
686 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
687 		; /* ret = 0 */
688 	else {
689 		/* TEA01 or invalid id : end of volume recognition area */
690 		ret = -1;
691 	}
692 
693 	return ret;
694 }
695 
696 /*
697  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
698  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
699  * @return   1 if NSR02 or NSR03 found,
700  *	    -1 if first sector read error, 0 otherwise
701  */
udf_check_vsd(struct super_block * sb)702 static int udf_check_vsd(struct super_block *sb)
703 {
704 	struct volStructDesc *vsd = NULL;
705 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
706 	int sectorsize;
707 	struct buffer_head *bh = NULL;
708 	int nsr = 0;
709 	struct udf_sb_info *sbi;
710 	loff_t session_offset;
711 
712 	sbi = UDF_SB(sb);
713 	if (sb->s_blocksize < sizeof(struct volStructDesc))
714 		sectorsize = sizeof(struct volStructDesc);
715 	else
716 		sectorsize = sb->s_blocksize;
717 
718 	session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
719 	sector += session_offset;
720 
721 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
722 		  (unsigned int)(sector >> sb->s_blocksize_bits),
723 		  sb->s_blocksize);
724 	/* Process the sequence (if applicable). The hard limit on the sector
725 	 * offset is arbitrary, hopefully large enough so that all valid UDF
726 	 * filesystems will be recognised. There is no mention of an upper
727 	 * bound to the size of the volume recognition area in the standard.
728 	 *  The limit will prevent the code to read all the sectors of a
729 	 * specially crafted image (like a bluray disc full of CD001 sectors),
730 	 * potentially causing minutes or even hours of uninterruptible I/O
731 	 * activity. This actually happened with uninitialised SSD partitions
732 	 * (all 0xFF) before the check for the limit and all valid IDs were
733 	 * added */
734 	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
735 		/* Read a block */
736 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
737 		if (!bh)
738 			break;
739 
740 		vsd = (struct volStructDesc *)(bh->b_data +
741 					      (sector & (sb->s_blocksize - 1)));
742 		nsr = identify_vsd(vsd);
743 		/* Found NSR or end? */
744 		if (nsr) {
745 			brelse(bh);
746 			break;
747 		}
748 		/*
749 		 * Special handling for improperly formatted VRS (e.g., Win10)
750 		 * where components are separated by 2048 bytes even though
751 		 * sectors are 4K
752 		 */
753 		if (sb->s_blocksize == 4096) {
754 			nsr = identify_vsd(vsd + 1);
755 			/* Ignore unknown IDs... */
756 			if (nsr < 0)
757 				nsr = 0;
758 		}
759 		brelse(bh);
760 	}
761 
762 	if (nsr > 0)
763 		return 1;
764 	else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
765 		return -1;
766 	else
767 		return 0;
768 }
769 
udf_verify_domain_identifier(struct super_block * sb,struct regid * ident,char * dname)770 static int udf_verify_domain_identifier(struct super_block *sb,
771 					struct regid *ident, char *dname)
772 {
773 	struct domainEntityIDSuffix *suffix;
774 
775 	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
776 		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
777 		goto force_ro;
778 	}
779 	if (ident->flags & (1 << ENTITYID_FLAGS_DIRTY)) {
780 		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
781 			 dname);
782 		goto force_ro;
783 	}
784 	suffix = (struct domainEntityIDSuffix *)ident->identSuffix;
785 	if (suffix->flags & (1 << ENTITYIDSUFFIX_FLAGS_HARDWRITEPROTECT) ||
786 	    suffix->flags & (1 << ENTITYIDSUFFIX_FLAGS_SOFTWRITEPROTECT)) {
787 		if (!sb_rdonly(sb)) {
788 			udf_warn(sb, "Descriptor for %s marked write protected."
789 				 " Forcing read only mount.\n", dname);
790 		}
791 		goto force_ro;
792 	}
793 	return 0;
794 
795 force_ro:
796 	if (!sb_rdonly(sb))
797 		return -EACCES;
798 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
799 	return 0;
800 }
801 
udf_load_fileset(struct super_block * sb,struct fileSetDesc * fset,struct kernel_lb_addr * root)802 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
803 			    struct kernel_lb_addr *root)
804 {
805 	int ret;
806 
807 	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
808 	if (ret < 0)
809 		return ret;
810 
811 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
812 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
813 
814 	udf_debug("Rootdir at block=%u, partition=%u\n",
815 		  root->logicalBlockNum, root->partitionReferenceNum);
816 	return 0;
817 }
818 
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)819 static int udf_find_fileset(struct super_block *sb,
820 			    struct kernel_lb_addr *fileset,
821 			    struct kernel_lb_addr *root)
822 {
823 	struct buffer_head *bh = NULL;
824 	uint16_t ident;
825 	int ret;
826 
827 	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
828 	    fileset->partitionReferenceNum == 0xFFFF)
829 		return -EINVAL;
830 
831 	bh = udf_read_ptagged(sb, fileset, 0, &ident);
832 	if (!bh)
833 		return -EIO;
834 	if (ident != TAG_IDENT_FSD) {
835 		brelse(bh);
836 		return -EINVAL;
837 	}
838 
839 	udf_debug("Fileset at block=%u, partition=%u\n",
840 		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
841 
842 	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
843 	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
844 	brelse(bh);
845 	return ret;
846 }
847 
848 /*
849  * Load primary Volume Descriptor Sequence
850  *
851  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
852  * should be tried.
853  */
udf_load_pvoldesc(struct super_block * sb,sector_t block)854 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
855 {
856 	struct primaryVolDesc *pvoldesc;
857 	uint8_t *outstr;
858 	struct buffer_head *bh;
859 	uint16_t ident;
860 	int ret = -ENOMEM;
861 	struct timestamp *ts;
862 
863 	outstr = kmalloc(128, GFP_NOFS);
864 	if (!outstr)
865 		return -ENOMEM;
866 
867 	bh = udf_read_tagged(sb, block, block, &ident);
868 	if (!bh) {
869 		ret = -EAGAIN;
870 		goto out2;
871 	}
872 
873 	if (ident != TAG_IDENT_PVD) {
874 		ret = -EIO;
875 		goto out_bh;
876 	}
877 
878 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
879 
880 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
881 			      pvoldesc->recordingDateAndTime);
882 	ts = &pvoldesc->recordingDateAndTime;
883 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
884 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
885 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
886 
887 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
888 	if (ret < 0) {
889 		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
890 		pr_warn("incorrect volume identification, setting to "
891 			"'InvalidName'\n");
892 	} else {
893 		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
894 	}
895 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
896 
897 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
898 	if (ret < 0) {
899 		ret = 0;
900 		goto out_bh;
901 	}
902 	outstr[ret] = 0;
903 	udf_debug("volSetIdent[] = '%s'\n", outstr);
904 
905 	ret = 0;
906 out_bh:
907 	brelse(bh);
908 out2:
909 	kfree(outstr);
910 	return ret;
911 }
912 
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)913 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
914 					u32 meta_file_loc, u32 partition_ref)
915 {
916 	struct kernel_lb_addr addr;
917 	struct inode *metadata_fe;
918 
919 	addr.logicalBlockNum = meta_file_loc;
920 	addr.partitionReferenceNum = partition_ref;
921 
922 	metadata_fe = udf_iget_special(sb, &addr);
923 
924 	if (IS_ERR(metadata_fe)) {
925 		udf_warn(sb, "metadata inode efe not found\n");
926 		return metadata_fe;
927 	}
928 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
929 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
930 		iput(metadata_fe);
931 		return ERR_PTR(-EIO);
932 	}
933 
934 	return metadata_fe;
935 }
936 
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)937 static int udf_load_metadata_files(struct super_block *sb, int partition,
938 				   int type1_index)
939 {
940 	struct udf_sb_info *sbi = UDF_SB(sb);
941 	struct udf_part_map *map;
942 	struct udf_meta_data *mdata;
943 	struct kernel_lb_addr addr;
944 	struct inode *fe;
945 
946 	map = &sbi->s_partmaps[partition];
947 	mdata = &map->s_type_specific.s_metadata;
948 	mdata->s_phys_partition_ref = type1_index;
949 
950 	/* metadata address */
951 	udf_debug("Metadata file location: block = %u part = %u\n",
952 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
953 
954 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
955 					 mdata->s_phys_partition_ref);
956 	if (IS_ERR(fe)) {
957 		/* mirror file entry */
958 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
959 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
960 
961 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
962 						 mdata->s_phys_partition_ref);
963 
964 		if (IS_ERR(fe)) {
965 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
966 			return PTR_ERR(fe);
967 		}
968 		mdata->s_mirror_fe = fe;
969 	} else
970 		mdata->s_metadata_fe = fe;
971 
972 
973 	/*
974 	 * bitmap file entry
975 	 * Note:
976 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
977 	*/
978 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
979 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
980 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
981 
982 		udf_debug("Bitmap file location: block = %u part = %u\n",
983 			  addr.logicalBlockNum, addr.partitionReferenceNum);
984 
985 		fe = udf_iget_special(sb, &addr);
986 		if (IS_ERR(fe)) {
987 			if (sb_rdonly(sb))
988 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
989 			else {
990 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
991 				return PTR_ERR(fe);
992 			}
993 		} else
994 			mdata->s_bitmap_fe = fe;
995 	}
996 
997 	udf_debug("udf_load_metadata_files Ok\n");
998 	return 0;
999 }
1000 
udf_compute_nr_groups(struct super_block * sb,u32 partition)1001 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1002 {
1003 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1004 	return DIV_ROUND_UP(map->s_partition_len +
1005 			    (sizeof(struct spaceBitmapDesc) << 3),
1006 			    sb->s_blocksize * 8);
1007 }
1008 
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1009 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1010 {
1011 	struct udf_bitmap *bitmap;
1012 	int nr_groups;
1013 	int size;
1014 
1015 	nr_groups = udf_compute_nr_groups(sb, index);
1016 	size = sizeof(struct udf_bitmap) +
1017 		(sizeof(struct buffer_head *) * nr_groups);
1018 
1019 	if (size <= PAGE_SIZE)
1020 		bitmap = kzalloc(size, GFP_KERNEL);
1021 	else
1022 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1023 
1024 	if (!bitmap)
1025 		return NULL;
1026 
1027 	bitmap->s_nr_groups = nr_groups;
1028 	return bitmap;
1029 }
1030 
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)1031 static int check_partition_desc(struct super_block *sb,
1032 				struct partitionDesc *p,
1033 				struct udf_part_map *map)
1034 {
1035 	bool umap, utable, fmap, ftable;
1036 	struct partitionHeaderDesc *phd;
1037 
1038 	switch (le32_to_cpu(p->accessType)) {
1039 	case PD_ACCESS_TYPE_READ_ONLY:
1040 	case PD_ACCESS_TYPE_WRITE_ONCE:
1041 	case PD_ACCESS_TYPE_NONE:
1042 		goto force_ro;
1043 	}
1044 
1045 	/* No Partition Header Descriptor? */
1046 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1047 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1048 		goto force_ro;
1049 
1050 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1051 	utable = phd->unallocSpaceTable.extLength;
1052 	umap = phd->unallocSpaceBitmap.extLength;
1053 	ftable = phd->freedSpaceTable.extLength;
1054 	fmap = phd->freedSpaceBitmap.extLength;
1055 
1056 	/* No allocation info? */
1057 	if (!utable && !umap && !ftable && !fmap)
1058 		goto force_ro;
1059 
1060 	/* We don't support blocks that require erasing before overwrite */
1061 	if (ftable || fmap)
1062 		goto force_ro;
1063 	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1064 	if (utable && umap)
1065 		goto force_ro;
1066 
1067 	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1068 	    map->s_partition_type == UDF_VIRTUAL_MAP20)
1069 		goto force_ro;
1070 
1071 	return 0;
1072 force_ro:
1073 	if (!sb_rdonly(sb))
1074 		return -EACCES;
1075 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1076 	return 0;
1077 }
1078 
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1079 static int udf_fill_partdesc_info(struct super_block *sb,
1080 		struct partitionDesc *p, int p_index)
1081 {
1082 	struct udf_part_map *map;
1083 	struct udf_sb_info *sbi = UDF_SB(sb);
1084 	struct partitionHeaderDesc *phd;
1085 	int err;
1086 
1087 	map = &sbi->s_partmaps[p_index];
1088 
1089 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1090 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1091 
1092 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1093 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1094 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1095 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1096 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1097 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1098 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1099 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1100 
1101 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1102 		  p_index, map->s_partition_type,
1103 		  map->s_partition_root, map->s_partition_len);
1104 
1105 	err = check_partition_desc(sb, p, map);
1106 	if (err)
1107 		return err;
1108 
1109 	/*
1110 	 * Skip loading allocation info it we cannot ever write to the fs.
1111 	 * This is a correctness thing as we may have decided to force ro mount
1112 	 * to avoid allocation info we don't support.
1113 	 */
1114 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1115 		return 0;
1116 
1117 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1118 	if (phd->unallocSpaceTable.extLength) {
1119 		struct kernel_lb_addr loc = {
1120 			.logicalBlockNum = le32_to_cpu(
1121 				phd->unallocSpaceTable.extPosition),
1122 			.partitionReferenceNum = p_index,
1123 		};
1124 		struct inode *inode;
1125 
1126 		inode = udf_iget_special(sb, &loc);
1127 		if (IS_ERR(inode)) {
1128 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1129 				  p_index);
1130 			return PTR_ERR(inode);
1131 		}
1132 		map->s_uspace.s_table = inode;
1133 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1134 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1135 			  p_index, map->s_uspace.s_table->i_ino);
1136 	}
1137 
1138 	if (phd->unallocSpaceBitmap.extLength) {
1139 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1140 		if (!bitmap)
1141 			return -ENOMEM;
1142 		map->s_uspace.s_bitmap = bitmap;
1143 		bitmap->s_extPosition = le32_to_cpu(
1144 				phd->unallocSpaceBitmap.extPosition);
1145 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1146 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1147 			  p_index, bitmap->s_extPosition);
1148 	}
1149 
1150 	return 0;
1151 }
1152 
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1153 static void udf_find_vat_block(struct super_block *sb, int p_index,
1154 			       int type1_index, sector_t start_block)
1155 {
1156 	struct udf_sb_info *sbi = UDF_SB(sb);
1157 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1158 	sector_t vat_block;
1159 	struct kernel_lb_addr ino;
1160 	struct inode *inode;
1161 
1162 	/*
1163 	 * VAT file entry is in the last recorded block. Some broken disks have
1164 	 * it a few blocks before so try a bit harder...
1165 	 */
1166 	ino.partitionReferenceNum = type1_index;
1167 	for (vat_block = start_block;
1168 	     vat_block >= map->s_partition_root &&
1169 	     vat_block >= start_block - 3; vat_block--) {
1170 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1171 		inode = udf_iget_special(sb, &ino);
1172 		if (!IS_ERR(inode)) {
1173 			sbi->s_vat_inode = inode;
1174 			break;
1175 		}
1176 	}
1177 }
1178 
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1179 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1180 {
1181 	struct udf_sb_info *sbi = UDF_SB(sb);
1182 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1183 	struct buffer_head *bh = NULL;
1184 	struct udf_inode_info *vati;
1185 	uint32_t pos;
1186 	struct virtualAllocationTable20 *vat20;
1187 	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1188 			  sb->s_blocksize_bits;
1189 
1190 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1191 	if (!sbi->s_vat_inode &&
1192 	    sbi->s_last_block != blocks - 1) {
1193 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1194 			  (unsigned long)sbi->s_last_block,
1195 			  (unsigned long)blocks - 1);
1196 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1197 	}
1198 	if (!sbi->s_vat_inode)
1199 		return -EIO;
1200 
1201 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1202 		map->s_type_specific.s_virtual.s_start_offset = 0;
1203 		map->s_type_specific.s_virtual.s_num_entries =
1204 			(sbi->s_vat_inode->i_size - 36) >> 2;
1205 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1206 		vati = UDF_I(sbi->s_vat_inode);
1207 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1208 			pos = udf_block_map(sbi->s_vat_inode, 0);
1209 			bh = sb_bread(sb, pos);
1210 			if (!bh)
1211 				return -EIO;
1212 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1213 		} else {
1214 			vat20 = (struct virtualAllocationTable20 *)
1215 							vati->i_ext.i_data;
1216 		}
1217 
1218 		map->s_type_specific.s_virtual.s_start_offset =
1219 			le16_to_cpu(vat20->lengthHeader);
1220 		map->s_type_specific.s_virtual.s_num_entries =
1221 			(sbi->s_vat_inode->i_size -
1222 				map->s_type_specific.s_virtual.
1223 					s_start_offset) >> 2;
1224 		brelse(bh);
1225 	}
1226 	return 0;
1227 }
1228 
1229 /*
1230  * Load partition descriptor block
1231  *
1232  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1233  * sequence.
1234  */
udf_load_partdesc(struct super_block * sb,sector_t block)1235 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1236 {
1237 	struct buffer_head *bh;
1238 	struct partitionDesc *p;
1239 	struct udf_part_map *map;
1240 	struct udf_sb_info *sbi = UDF_SB(sb);
1241 	int i, type1_idx;
1242 	uint16_t partitionNumber;
1243 	uint16_t ident;
1244 	int ret;
1245 
1246 	bh = udf_read_tagged(sb, block, block, &ident);
1247 	if (!bh)
1248 		return -EAGAIN;
1249 	if (ident != TAG_IDENT_PD) {
1250 		ret = 0;
1251 		goto out_bh;
1252 	}
1253 
1254 	p = (struct partitionDesc *)bh->b_data;
1255 	partitionNumber = le16_to_cpu(p->partitionNumber);
1256 
1257 	/* First scan for TYPE1 and SPARABLE partitions */
1258 	for (i = 0; i < sbi->s_partitions; i++) {
1259 		map = &sbi->s_partmaps[i];
1260 		udf_debug("Searching map: (%u == %u)\n",
1261 			  map->s_partition_num, partitionNumber);
1262 		if (map->s_partition_num == partitionNumber &&
1263 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1264 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1265 			break;
1266 	}
1267 
1268 	if (i >= sbi->s_partitions) {
1269 		udf_debug("Partition (%u) not found in partition map\n",
1270 			  partitionNumber);
1271 		ret = 0;
1272 		goto out_bh;
1273 	}
1274 
1275 	ret = udf_fill_partdesc_info(sb, p, i);
1276 	if (ret < 0)
1277 		goto out_bh;
1278 
1279 	/*
1280 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1281 	 * PHYSICAL partitions are already set up
1282 	 */
1283 	type1_idx = i;
1284 	map = NULL; /* supress 'maybe used uninitialized' warning */
1285 	for (i = 0; i < sbi->s_partitions; i++) {
1286 		map = &sbi->s_partmaps[i];
1287 
1288 		if (map->s_partition_num == partitionNumber &&
1289 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1290 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1291 		     map->s_partition_type == UDF_METADATA_MAP25))
1292 			break;
1293 	}
1294 
1295 	if (i >= sbi->s_partitions) {
1296 		ret = 0;
1297 		goto out_bh;
1298 	}
1299 
1300 	ret = udf_fill_partdesc_info(sb, p, i);
1301 	if (ret < 0)
1302 		goto out_bh;
1303 
1304 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1305 		ret = udf_load_metadata_files(sb, i, type1_idx);
1306 		if (ret < 0) {
1307 			udf_err(sb, "error loading MetaData partition map %d\n",
1308 				i);
1309 			goto out_bh;
1310 		}
1311 	} else {
1312 		/*
1313 		 * If we have a partition with virtual map, we don't handle
1314 		 * writing to it (we overwrite blocks instead of relocating
1315 		 * them).
1316 		 */
1317 		if (!sb_rdonly(sb)) {
1318 			ret = -EACCES;
1319 			goto out_bh;
1320 		}
1321 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1322 		ret = udf_load_vat(sb, i, type1_idx);
1323 		if (ret < 0)
1324 			goto out_bh;
1325 	}
1326 	ret = 0;
1327 out_bh:
1328 	/* In case loading failed, we handle cleanup in udf_fill_super */
1329 	brelse(bh);
1330 	return ret;
1331 }
1332 
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1333 static int udf_load_sparable_map(struct super_block *sb,
1334 				 struct udf_part_map *map,
1335 				 struct sparablePartitionMap *spm)
1336 {
1337 	uint32_t loc;
1338 	uint16_t ident;
1339 	struct sparingTable *st;
1340 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1341 	int i;
1342 	struct buffer_head *bh;
1343 
1344 	map->s_partition_type = UDF_SPARABLE_MAP15;
1345 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1346 	if (!is_power_of_2(sdata->s_packet_len)) {
1347 		udf_err(sb, "error loading logical volume descriptor: "
1348 			"Invalid packet length %u\n",
1349 			(unsigned)sdata->s_packet_len);
1350 		return -EIO;
1351 	}
1352 	if (spm->numSparingTables > 4) {
1353 		udf_err(sb, "error loading logical volume descriptor: "
1354 			"Too many sparing tables (%d)\n",
1355 			(int)spm->numSparingTables);
1356 		return -EIO;
1357 	}
1358 	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1359 		udf_err(sb, "error loading logical volume descriptor: "
1360 			"Too big sparing table size (%u)\n",
1361 			le32_to_cpu(spm->sizeSparingTable));
1362 		return -EIO;
1363 	}
1364 
1365 	for (i = 0; i < spm->numSparingTables; i++) {
1366 		loc = le32_to_cpu(spm->locSparingTable[i]);
1367 		bh = udf_read_tagged(sb, loc, loc, &ident);
1368 		if (!bh)
1369 			continue;
1370 
1371 		st = (struct sparingTable *)bh->b_data;
1372 		if (ident != 0 ||
1373 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1374 			    strlen(UDF_ID_SPARING)) ||
1375 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1376 							sb->s_blocksize) {
1377 			brelse(bh);
1378 			continue;
1379 		}
1380 
1381 		sdata->s_spar_map[i] = bh;
1382 	}
1383 	map->s_partition_func = udf_get_pblock_spar15;
1384 	return 0;
1385 }
1386 
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1387 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1388 			       struct kernel_lb_addr *fileset)
1389 {
1390 	struct logicalVolDesc *lvd;
1391 	int i, offset;
1392 	uint8_t type;
1393 	struct udf_sb_info *sbi = UDF_SB(sb);
1394 	struct genericPartitionMap *gpm;
1395 	uint16_t ident;
1396 	struct buffer_head *bh;
1397 	unsigned int table_len;
1398 	int ret;
1399 
1400 	bh = udf_read_tagged(sb, block, block, &ident);
1401 	if (!bh)
1402 		return -EAGAIN;
1403 	BUG_ON(ident != TAG_IDENT_LVD);
1404 	lvd = (struct logicalVolDesc *)bh->b_data;
1405 	table_len = le32_to_cpu(lvd->mapTableLength);
1406 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1407 		udf_err(sb, "error loading logical volume descriptor: "
1408 			"Partition table too long (%u > %lu)\n", table_len,
1409 			sb->s_blocksize - sizeof(*lvd));
1410 		ret = -EIO;
1411 		goto out_bh;
1412 	}
1413 
1414 	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1415 					   "logical volume");
1416 	if (ret)
1417 		goto out_bh;
1418 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1419 	if (ret)
1420 		goto out_bh;
1421 
1422 	for (i = 0, offset = 0;
1423 	     i < sbi->s_partitions && offset < table_len;
1424 	     i++, offset += gpm->partitionMapLength) {
1425 		struct udf_part_map *map = &sbi->s_partmaps[i];
1426 		gpm = (struct genericPartitionMap *)
1427 				&(lvd->partitionMaps[offset]);
1428 		type = gpm->partitionMapType;
1429 		if (type == 1) {
1430 			struct genericPartitionMap1 *gpm1 =
1431 				(struct genericPartitionMap1 *)gpm;
1432 			map->s_partition_type = UDF_TYPE1_MAP15;
1433 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1434 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1435 			map->s_partition_func = NULL;
1436 		} else if (type == 2) {
1437 			struct udfPartitionMap2 *upm2 =
1438 						(struct udfPartitionMap2 *)gpm;
1439 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1440 						strlen(UDF_ID_VIRTUAL))) {
1441 				u16 suf =
1442 					le16_to_cpu(((__le16 *)upm2->partIdent.
1443 							identSuffix)[0]);
1444 				if (suf < 0x0200) {
1445 					map->s_partition_type =
1446 							UDF_VIRTUAL_MAP15;
1447 					map->s_partition_func =
1448 							udf_get_pblock_virt15;
1449 				} else {
1450 					map->s_partition_type =
1451 							UDF_VIRTUAL_MAP20;
1452 					map->s_partition_func =
1453 							udf_get_pblock_virt20;
1454 				}
1455 			} else if (!strncmp(upm2->partIdent.ident,
1456 						UDF_ID_SPARABLE,
1457 						strlen(UDF_ID_SPARABLE))) {
1458 				ret = udf_load_sparable_map(sb, map,
1459 					(struct sparablePartitionMap *)gpm);
1460 				if (ret < 0)
1461 					goto out_bh;
1462 			} else if (!strncmp(upm2->partIdent.ident,
1463 						UDF_ID_METADATA,
1464 						strlen(UDF_ID_METADATA))) {
1465 				struct udf_meta_data *mdata =
1466 					&map->s_type_specific.s_metadata;
1467 				struct metadataPartitionMap *mdm =
1468 						(struct metadataPartitionMap *)
1469 						&(lvd->partitionMaps[offset]);
1470 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1471 					  i, type, UDF_ID_METADATA);
1472 
1473 				map->s_partition_type = UDF_METADATA_MAP25;
1474 				map->s_partition_func = udf_get_pblock_meta25;
1475 
1476 				mdata->s_meta_file_loc   =
1477 					le32_to_cpu(mdm->metadataFileLoc);
1478 				mdata->s_mirror_file_loc =
1479 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1480 				mdata->s_bitmap_file_loc =
1481 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1482 				mdata->s_alloc_unit_size =
1483 					le32_to_cpu(mdm->allocUnitSize);
1484 				mdata->s_align_unit_size =
1485 					le16_to_cpu(mdm->alignUnitSize);
1486 				if (mdm->flags & 0x01)
1487 					mdata->s_flags |= MF_DUPLICATE_MD;
1488 
1489 				udf_debug("Metadata Ident suffix=0x%x\n",
1490 					  le16_to_cpu(*(__le16 *)
1491 						      mdm->partIdent.identSuffix));
1492 				udf_debug("Metadata part num=%u\n",
1493 					  le16_to_cpu(mdm->partitionNum));
1494 				udf_debug("Metadata part alloc unit size=%u\n",
1495 					  le32_to_cpu(mdm->allocUnitSize));
1496 				udf_debug("Metadata file loc=%u\n",
1497 					  le32_to_cpu(mdm->metadataFileLoc));
1498 				udf_debug("Mirror file loc=%u\n",
1499 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1500 				udf_debug("Bitmap file loc=%u\n",
1501 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1502 				udf_debug("Flags: %d %u\n",
1503 					  mdata->s_flags, mdm->flags);
1504 			} else {
1505 				udf_debug("Unknown ident: %s\n",
1506 					  upm2->partIdent.ident);
1507 				continue;
1508 			}
1509 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1510 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1511 		}
1512 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1513 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1514 	}
1515 
1516 	if (fileset) {
1517 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1518 
1519 		*fileset = lelb_to_cpu(la->extLocation);
1520 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1521 			  fileset->logicalBlockNum,
1522 			  fileset->partitionReferenceNum);
1523 	}
1524 	if (lvd->integritySeqExt.extLength)
1525 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1526 	ret = 0;
1527 
1528 	if (!sbi->s_lvid_bh) {
1529 		/* We can't generate unique IDs without a valid LVID */
1530 		if (sb_rdonly(sb)) {
1531 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1532 		} else {
1533 			udf_warn(sb, "Damaged or missing LVID, forcing "
1534 				     "readonly mount\n");
1535 			ret = -EACCES;
1536 		}
1537 	}
1538 out_bh:
1539 	brelse(bh);
1540 	return ret;
1541 }
1542 
1543 /*
1544  * Find the prevailing Logical Volume Integrity Descriptor.
1545  */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1546 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1547 {
1548 	struct buffer_head *bh, *final_bh;
1549 	uint16_t ident;
1550 	struct udf_sb_info *sbi = UDF_SB(sb);
1551 	struct logicalVolIntegrityDesc *lvid;
1552 	int indirections = 0;
1553 	u32 parts, impuselen;
1554 
1555 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1556 		final_bh = NULL;
1557 		while (loc.extLength > 0 &&
1558 			(bh = udf_read_tagged(sb, loc.extLocation,
1559 					loc.extLocation, &ident))) {
1560 			if (ident != TAG_IDENT_LVID) {
1561 				brelse(bh);
1562 				break;
1563 			}
1564 
1565 			brelse(final_bh);
1566 			final_bh = bh;
1567 
1568 			loc.extLength -= sb->s_blocksize;
1569 			loc.extLocation++;
1570 		}
1571 
1572 		if (!final_bh)
1573 			return;
1574 
1575 		brelse(sbi->s_lvid_bh);
1576 		sbi->s_lvid_bh = final_bh;
1577 
1578 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1579 		if (lvid->nextIntegrityExt.extLength == 0)
1580 			goto check;
1581 
1582 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1583 	}
1584 
1585 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1586 		UDF_MAX_LVID_NESTING);
1587 out_err:
1588 	brelse(sbi->s_lvid_bh);
1589 	sbi->s_lvid_bh = NULL;
1590 	return;
1591 check:
1592 	parts = le32_to_cpu(lvid->numOfPartitions);
1593 	impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1594 	if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1595 	    sizeof(struct logicalVolIntegrityDesc) + impuselen +
1596 	    2 * parts * sizeof(u32) > sb->s_blocksize) {
1597 		udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1598 			 "ignoring.\n", parts, impuselen);
1599 		goto out_err;
1600 	}
1601 }
1602 
1603 /*
1604  * Step for reallocation of table of partition descriptor sequence numbers.
1605  * Must be power of 2.
1606  */
1607 #define PART_DESC_ALLOC_STEP 32
1608 
1609 struct part_desc_seq_scan_data {
1610 	struct udf_vds_record rec;
1611 	u32 partnum;
1612 };
1613 
1614 struct desc_seq_scan_data {
1615 	struct udf_vds_record vds[VDS_POS_LENGTH];
1616 	unsigned int size_part_descs;
1617 	unsigned int num_part_descs;
1618 	struct part_desc_seq_scan_data *part_descs_loc;
1619 };
1620 
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1621 static struct udf_vds_record *handle_partition_descriptor(
1622 				struct buffer_head *bh,
1623 				struct desc_seq_scan_data *data)
1624 {
1625 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1626 	int partnum;
1627 	int i;
1628 
1629 	partnum = le16_to_cpu(desc->partitionNumber);
1630 	for (i = 0; i < data->num_part_descs; i++)
1631 		if (partnum == data->part_descs_loc[i].partnum)
1632 			return &(data->part_descs_loc[i].rec);
1633 	if (data->num_part_descs >= data->size_part_descs) {
1634 		struct part_desc_seq_scan_data *new_loc;
1635 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1636 
1637 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1638 		if (!new_loc)
1639 			return ERR_PTR(-ENOMEM);
1640 		memcpy(new_loc, data->part_descs_loc,
1641 		       data->size_part_descs * sizeof(*new_loc));
1642 		kfree(data->part_descs_loc);
1643 		data->part_descs_loc = new_loc;
1644 		data->size_part_descs = new_size;
1645 	}
1646 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1647 }
1648 
1649 
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1650 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1651 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1652 {
1653 	switch (ident) {
1654 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1655 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1656 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1657 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1658 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1659 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1660 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1661 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1662 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1663 		return handle_partition_descriptor(bh, data);
1664 	}
1665 	return NULL;
1666 }
1667 
1668 /*
1669  * Process a main/reserve volume descriptor sequence.
1670  *   @block		First block of first extent of the sequence.
1671  *   @lastblock		Lastblock of first extent of the sequence.
1672  *   @fileset		There we store extent containing root fileset
1673  *
1674  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1675  * sequence
1676  */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1677 static noinline int udf_process_sequence(
1678 		struct super_block *sb,
1679 		sector_t block, sector_t lastblock,
1680 		struct kernel_lb_addr *fileset)
1681 {
1682 	struct buffer_head *bh = NULL;
1683 	struct udf_vds_record *curr;
1684 	struct generic_desc *gd;
1685 	struct volDescPtr *vdp;
1686 	bool done = false;
1687 	uint32_t vdsn;
1688 	uint16_t ident;
1689 	int ret;
1690 	unsigned int indirections = 0;
1691 	struct desc_seq_scan_data data;
1692 	unsigned int i;
1693 
1694 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1695 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1696 	data.num_part_descs = 0;
1697 	data.part_descs_loc = kcalloc(data.size_part_descs,
1698 				      sizeof(*data.part_descs_loc),
1699 				      GFP_KERNEL);
1700 	if (!data.part_descs_loc)
1701 		return -ENOMEM;
1702 
1703 	/*
1704 	 * Read the main descriptor sequence and find which descriptors
1705 	 * are in it.
1706 	 */
1707 	for (; (!done && block <= lastblock); block++) {
1708 		bh = udf_read_tagged(sb, block, block, &ident);
1709 		if (!bh)
1710 			break;
1711 
1712 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1713 		gd = (struct generic_desc *)bh->b_data;
1714 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1715 		switch (ident) {
1716 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1717 			if (++indirections > UDF_MAX_TD_NESTING) {
1718 				udf_err(sb, "too many Volume Descriptor "
1719 					"Pointers (max %u supported)\n",
1720 					UDF_MAX_TD_NESTING);
1721 				brelse(bh);
1722 				ret = -EIO;
1723 				goto out;
1724 			}
1725 
1726 			vdp = (struct volDescPtr *)bh->b_data;
1727 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1728 			lastblock = le32_to_cpu(
1729 				vdp->nextVolDescSeqExt.extLength) >>
1730 				sb->s_blocksize_bits;
1731 			lastblock += block - 1;
1732 			/* For loop is going to increment 'block' again */
1733 			block--;
1734 			break;
1735 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1736 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1737 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1738 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1739 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1740 			curr = get_volume_descriptor_record(ident, bh, &data);
1741 			if (IS_ERR(curr)) {
1742 				brelse(bh);
1743 				ret = PTR_ERR(curr);
1744 				goto out;
1745 			}
1746 			/* Descriptor we don't care about? */
1747 			if (!curr)
1748 				break;
1749 			if (vdsn >= curr->volDescSeqNum) {
1750 				curr->volDescSeqNum = vdsn;
1751 				curr->block = block;
1752 			}
1753 			break;
1754 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1755 			done = true;
1756 			break;
1757 		}
1758 		brelse(bh);
1759 	}
1760 	/*
1761 	 * Now read interesting descriptors again and process them
1762 	 * in a suitable order
1763 	 */
1764 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1765 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1766 		ret = -EAGAIN;
1767 		goto out;
1768 	}
1769 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1770 	if (ret < 0)
1771 		goto out;
1772 
1773 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1774 		ret = udf_load_logicalvol(sb,
1775 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1776 				fileset);
1777 		if (ret < 0)
1778 			goto out;
1779 	}
1780 
1781 	/* Now handle prevailing Partition Descriptors */
1782 	for (i = 0; i < data.num_part_descs; i++) {
1783 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1784 		if (ret < 0)
1785 			goto out;
1786 	}
1787 	ret = 0;
1788 out:
1789 	kfree(data.part_descs_loc);
1790 	return ret;
1791 }
1792 
1793 /*
1794  * Load Volume Descriptor Sequence described by anchor in bh
1795  *
1796  * Returns <0 on error, 0 on success
1797  */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1798 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1799 			     struct kernel_lb_addr *fileset)
1800 {
1801 	struct anchorVolDescPtr *anchor;
1802 	sector_t main_s, main_e, reserve_s, reserve_e;
1803 	int ret;
1804 
1805 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1806 
1807 	/* Locate the main sequence */
1808 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1809 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1810 	main_e = main_e >> sb->s_blocksize_bits;
1811 	main_e += main_s - 1;
1812 
1813 	/* Locate the reserve sequence */
1814 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1815 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1816 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1817 	reserve_e += reserve_s - 1;
1818 
1819 	/* Process the main & reserve sequences */
1820 	/* responsible for finding the PartitionDesc(s) */
1821 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1822 	if (ret != -EAGAIN)
1823 		return ret;
1824 	udf_sb_free_partitions(sb);
1825 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1826 	if (ret < 0) {
1827 		udf_sb_free_partitions(sb);
1828 		/* No sequence was OK, return -EIO */
1829 		if (ret == -EAGAIN)
1830 			ret = -EIO;
1831 	}
1832 	return ret;
1833 }
1834 
1835 /*
1836  * Check whether there is an anchor block in the given block and
1837  * load Volume Descriptor Sequence if so.
1838  *
1839  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1840  * block
1841  */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1842 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1843 				  struct kernel_lb_addr *fileset)
1844 {
1845 	struct buffer_head *bh;
1846 	uint16_t ident;
1847 	int ret;
1848 
1849 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1850 	    udf_fixed_to_variable(block) >=
1851 	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1852 		return -EAGAIN;
1853 
1854 	bh = udf_read_tagged(sb, block, block, &ident);
1855 	if (!bh)
1856 		return -EAGAIN;
1857 	if (ident != TAG_IDENT_AVDP) {
1858 		brelse(bh);
1859 		return -EAGAIN;
1860 	}
1861 	ret = udf_load_sequence(sb, bh, fileset);
1862 	brelse(bh);
1863 	return ret;
1864 }
1865 
1866 /*
1867  * Search for an anchor volume descriptor pointer.
1868  *
1869  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1870  * of anchors.
1871  */
udf_scan_anchors(struct super_block * sb,sector_t * lastblock,struct kernel_lb_addr * fileset)1872 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1873 			    struct kernel_lb_addr *fileset)
1874 {
1875 	sector_t last[6];
1876 	int i;
1877 	struct udf_sb_info *sbi = UDF_SB(sb);
1878 	int last_count = 0;
1879 	int ret;
1880 
1881 	/* First try user provided anchor */
1882 	if (sbi->s_anchor) {
1883 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1884 		if (ret != -EAGAIN)
1885 			return ret;
1886 	}
1887 	/*
1888 	 * according to spec, anchor is in either:
1889 	 *     block 256
1890 	 *     lastblock-256
1891 	 *     lastblock
1892 	 *  however, if the disc isn't closed, it could be 512.
1893 	 */
1894 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1895 	if (ret != -EAGAIN)
1896 		return ret;
1897 	/*
1898 	 * The trouble is which block is the last one. Drives often misreport
1899 	 * this so we try various possibilities.
1900 	 */
1901 	last[last_count++] = *lastblock;
1902 	if (*lastblock >= 1)
1903 		last[last_count++] = *lastblock - 1;
1904 	last[last_count++] = *lastblock + 1;
1905 	if (*lastblock >= 2)
1906 		last[last_count++] = *lastblock - 2;
1907 	if (*lastblock >= 150)
1908 		last[last_count++] = *lastblock - 150;
1909 	if (*lastblock >= 152)
1910 		last[last_count++] = *lastblock - 152;
1911 
1912 	for (i = 0; i < last_count; i++) {
1913 		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1914 				sb->s_blocksize_bits)
1915 			continue;
1916 		ret = udf_check_anchor_block(sb, last[i], fileset);
1917 		if (ret != -EAGAIN) {
1918 			if (!ret)
1919 				*lastblock = last[i];
1920 			return ret;
1921 		}
1922 		if (last[i] < 256)
1923 			continue;
1924 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1925 		if (ret != -EAGAIN) {
1926 			if (!ret)
1927 				*lastblock = last[i];
1928 			return ret;
1929 		}
1930 	}
1931 
1932 	/* Finally try block 512 in case media is open */
1933 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1934 }
1935 
1936 /*
1937  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1938  * area specified by it. The function expects sbi->s_lastblock to be the last
1939  * block on the media.
1940  *
1941  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1942  * was not found.
1943  */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1944 static int udf_find_anchor(struct super_block *sb,
1945 			   struct kernel_lb_addr *fileset)
1946 {
1947 	struct udf_sb_info *sbi = UDF_SB(sb);
1948 	sector_t lastblock = sbi->s_last_block;
1949 	int ret;
1950 
1951 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1952 	if (ret != -EAGAIN)
1953 		goto out;
1954 
1955 	/* No anchor found? Try VARCONV conversion of block numbers */
1956 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1957 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1958 	/* Firstly, we try to not convert number of the last block */
1959 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1960 	if (ret != -EAGAIN)
1961 		goto out;
1962 
1963 	lastblock = sbi->s_last_block;
1964 	/* Secondly, we try with converted number of the last block */
1965 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1966 	if (ret < 0) {
1967 		/* VARCONV didn't help. Clear it. */
1968 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1969 	}
1970 out:
1971 	if (ret == 0)
1972 		sbi->s_last_block = lastblock;
1973 	return ret;
1974 }
1975 
1976 /*
1977  * Check Volume Structure Descriptor, find Anchor block and load Volume
1978  * Descriptor Sequence.
1979  *
1980  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1981  * block was not found.
1982  */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1983 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1984 			int silent, struct kernel_lb_addr *fileset)
1985 {
1986 	struct udf_sb_info *sbi = UDF_SB(sb);
1987 	int nsr = 0;
1988 	int ret;
1989 
1990 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1991 		if (!silent)
1992 			udf_warn(sb, "Bad block size\n");
1993 		return -EINVAL;
1994 	}
1995 	sbi->s_last_block = uopt->lastblock;
1996 	if (!uopt->novrs) {
1997 		/* Check that it is NSR02 compliant */
1998 		nsr = udf_check_vsd(sb);
1999 		if (!nsr) {
2000 			if (!silent)
2001 				udf_warn(sb, "No VRS found\n");
2002 			return -EINVAL;
2003 		}
2004 		if (nsr == -1)
2005 			udf_debug("Failed to read sector at offset %d. "
2006 				  "Assuming open disc. Skipping validity "
2007 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
2008 		if (!sbi->s_last_block)
2009 			sbi->s_last_block = udf_get_last_block(sb);
2010 	} else {
2011 		udf_debug("Validity check skipped because of novrs option\n");
2012 	}
2013 
2014 	/* Look for anchor block and load Volume Descriptor Sequence */
2015 	sbi->s_anchor = uopt->anchor;
2016 	ret = udf_find_anchor(sb, fileset);
2017 	if (ret < 0) {
2018 		if (!silent && ret == -EAGAIN)
2019 			udf_warn(sb, "No anchor found\n");
2020 		return ret;
2021 	}
2022 	return 0;
2023 }
2024 
udf_finalize_lvid(struct logicalVolIntegrityDesc * lvid)2025 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2026 {
2027 	struct timespec64 ts;
2028 
2029 	ktime_get_real_ts64(&ts);
2030 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2031 	lvid->descTag.descCRC = cpu_to_le16(
2032 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2033 			le16_to_cpu(lvid->descTag.descCRCLength)));
2034 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2035 }
2036 
udf_open_lvid(struct super_block * sb)2037 static void udf_open_lvid(struct super_block *sb)
2038 {
2039 	struct udf_sb_info *sbi = UDF_SB(sb);
2040 	struct buffer_head *bh = sbi->s_lvid_bh;
2041 	struct logicalVolIntegrityDesc *lvid;
2042 	struct logicalVolIntegrityDescImpUse *lvidiu;
2043 
2044 	if (!bh)
2045 		return;
2046 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2047 	lvidiu = udf_sb_lvidiu(sb);
2048 	if (!lvidiu)
2049 		return;
2050 
2051 	mutex_lock(&sbi->s_alloc_mutex);
2052 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2053 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2054 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2055 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2056 	else
2057 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2058 
2059 	udf_finalize_lvid(lvid);
2060 	mark_buffer_dirty(bh);
2061 	sbi->s_lvid_dirty = 0;
2062 	mutex_unlock(&sbi->s_alloc_mutex);
2063 	/* Make opening of filesystem visible on the media immediately */
2064 	sync_dirty_buffer(bh);
2065 }
2066 
udf_close_lvid(struct super_block * sb)2067 static void udf_close_lvid(struct super_block *sb)
2068 {
2069 	struct udf_sb_info *sbi = UDF_SB(sb);
2070 	struct buffer_head *bh = sbi->s_lvid_bh;
2071 	struct logicalVolIntegrityDesc *lvid;
2072 	struct logicalVolIntegrityDescImpUse *lvidiu;
2073 
2074 	if (!bh)
2075 		return;
2076 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2077 	lvidiu = udf_sb_lvidiu(sb);
2078 	if (!lvidiu)
2079 		return;
2080 
2081 	mutex_lock(&sbi->s_alloc_mutex);
2082 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2083 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2084 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2085 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2086 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2087 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2088 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2089 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2090 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2091 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2092 
2093 	/*
2094 	 * We set buffer uptodate unconditionally here to avoid spurious
2095 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2096 	 * the buffer as !uptodate
2097 	 */
2098 	set_buffer_uptodate(bh);
2099 	udf_finalize_lvid(lvid);
2100 	mark_buffer_dirty(bh);
2101 	sbi->s_lvid_dirty = 0;
2102 	mutex_unlock(&sbi->s_alloc_mutex);
2103 	/* Make closing of filesystem visible on the media immediately */
2104 	sync_dirty_buffer(bh);
2105 }
2106 
lvid_get_unique_id(struct super_block * sb)2107 u64 lvid_get_unique_id(struct super_block *sb)
2108 {
2109 	struct buffer_head *bh;
2110 	struct udf_sb_info *sbi = UDF_SB(sb);
2111 	struct logicalVolIntegrityDesc *lvid;
2112 	struct logicalVolHeaderDesc *lvhd;
2113 	u64 uniqueID;
2114 	u64 ret;
2115 
2116 	bh = sbi->s_lvid_bh;
2117 	if (!bh)
2118 		return 0;
2119 
2120 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2121 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2122 
2123 	mutex_lock(&sbi->s_alloc_mutex);
2124 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2125 	if (!(++uniqueID & 0xFFFFFFFF))
2126 		uniqueID += 16;
2127 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2128 	udf_updated_lvid(sb);
2129 	mutex_unlock(&sbi->s_alloc_mutex);
2130 
2131 	return ret;
2132 }
2133 
udf_fill_super(struct super_block * sb,void * options,int silent)2134 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2135 {
2136 	int ret = -EINVAL;
2137 	struct inode *inode = NULL;
2138 	struct udf_options uopt;
2139 	struct kernel_lb_addr rootdir, fileset;
2140 	struct udf_sb_info *sbi;
2141 	bool lvid_open = false;
2142 
2143 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2144 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2145 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2146 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2147 	uopt.umask = 0;
2148 	uopt.fmode = UDF_INVALID_MODE;
2149 	uopt.dmode = UDF_INVALID_MODE;
2150 	uopt.nls_map = NULL;
2151 
2152 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2153 	if (!sbi)
2154 		return -ENOMEM;
2155 
2156 	sb->s_fs_info = sbi;
2157 
2158 	mutex_init(&sbi->s_alloc_mutex);
2159 
2160 	if (!udf_parse_options((char *)options, &uopt, false))
2161 		goto parse_options_failure;
2162 
2163 	fileset.logicalBlockNum = 0xFFFFFFFF;
2164 	fileset.partitionReferenceNum = 0xFFFF;
2165 
2166 	sbi->s_flags = uopt.flags;
2167 	sbi->s_uid = uopt.uid;
2168 	sbi->s_gid = uopt.gid;
2169 	sbi->s_umask = uopt.umask;
2170 	sbi->s_fmode = uopt.fmode;
2171 	sbi->s_dmode = uopt.dmode;
2172 	sbi->s_nls_map = uopt.nls_map;
2173 	rwlock_init(&sbi->s_cred_lock);
2174 
2175 	if (uopt.session == 0xFFFFFFFF)
2176 		sbi->s_session = udf_get_last_session(sb);
2177 	else
2178 		sbi->s_session = uopt.session;
2179 
2180 	udf_debug("Multi-session=%d\n", sbi->s_session);
2181 
2182 	/* Fill in the rest of the superblock */
2183 	sb->s_op = &udf_sb_ops;
2184 	sb->s_export_op = &udf_export_ops;
2185 
2186 	sb->s_magic = UDF_SUPER_MAGIC;
2187 	sb->s_time_gran = 1000;
2188 
2189 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2190 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2191 	} else {
2192 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2193 		while (uopt.blocksize <= 4096) {
2194 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2195 			if (ret < 0) {
2196 				if (!silent && ret != -EACCES) {
2197 					pr_notice("Scanning with blocksize %u failed\n",
2198 						  uopt.blocksize);
2199 				}
2200 				brelse(sbi->s_lvid_bh);
2201 				sbi->s_lvid_bh = NULL;
2202 				/*
2203 				 * EACCES is special - we want to propagate to
2204 				 * upper layers that we cannot handle RW mount.
2205 				 */
2206 				if (ret == -EACCES)
2207 					break;
2208 			} else
2209 				break;
2210 
2211 			uopt.blocksize <<= 1;
2212 		}
2213 	}
2214 	if (ret < 0) {
2215 		if (ret == -EAGAIN) {
2216 			udf_warn(sb, "No partition found (1)\n");
2217 			ret = -EINVAL;
2218 		}
2219 		goto error_out;
2220 	}
2221 
2222 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2223 
2224 	if (sbi->s_lvid_bh) {
2225 		struct logicalVolIntegrityDescImpUse *lvidiu =
2226 							udf_sb_lvidiu(sb);
2227 		uint16_t minUDFReadRev;
2228 		uint16_t minUDFWriteRev;
2229 
2230 		if (!lvidiu) {
2231 			ret = -EINVAL;
2232 			goto error_out;
2233 		}
2234 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2235 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2236 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2237 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2238 				minUDFReadRev,
2239 				UDF_MAX_READ_VERSION);
2240 			ret = -EINVAL;
2241 			goto error_out;
2242 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2243 			if (!sb_rdonly(sb)) {
2244 				ret = -EACCES;
2245 				goto error_out;
2246 			}
2247 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2248 		}
2249 
2250 		sbi->s_udfrev = minUDFWriteRev;
2251 
2252 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2253 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2254 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2255 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2256 	}
2257 
2258 	if (!sbi->s_partitions) {
2259 		udf_warn(sb, "No partition found (2)\n");
2260 		ret = -EINVAL;
2261 		goto error_out;
2262 	}
2263 
2264 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2265 			UDF_PART_FLAG_READ_ONLY) {
2266 		if (!sb_rdonly(sb)) {
2267 			ret = -EACCES;
2268 			goto error_out;
2269 		}
2270 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2271 	}
2272 
2273 	ret = udf_find_fileset(sb, &fileset, &rootdir);
2274 	if (ret < 0) {
2275 		udf_warn(sb, "No fileset found\n");
2276 		goto error_out;
2277 	}
2278 
2279 	if (!silent) {
2280 		struct timestamp ts;
2281 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2282 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2283 			 sbi->s_volume_ident,
2284 			 le16_to_cpu(ts.year), ts.month, ts.day,
2285 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2286 	}
2287 	if (!sb_rdonly(sb)) {
2288 		udf_open_lvid(sb);
2289 		lvid_open = true;
2290 	}
2291 
2292 	/* Assign the root inode */
2293 	/* assign inodes by physical block number */
2294 	/* perhaps it's not extensible enough, but for now ... */
2295 	inode = udf_iget(sb, &rootdir);
2296 	if (IS_ERR(inode)) {
2297 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2298 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2299 		ret = PTR_ERR(inode);
2300 		goto error_out;
2301 	}
2302 
2303 	/* Allocate a dentry for the root inode */
2304 	sb->s_root = d_make_root(inode);
2305 	if (!sb->s_root) {
2306 		udf_err(sb, "Couldn't allocate root dentry\n");
2307 		ret = -ENOMEM;
2308 		goto error_out;
2309 	}
2310 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2311 	sb->s_max_links = UDF_MAX_LINKS;
2312 	return 0;
2313 
2314 error_out:
2315 	iput(sbi->s_vat_inode);
2316 parse_options_failure:
2317 	unload_nls(uopt.nls_map);
2318 	if (lvid_open)
2319 		udf_close_lvid(sb);
2320 	brelse(sbi->s_lvid_bh);
2321 	udf_sb_free_partitions(sb);
2322 	kfree(sbi);
2323 	sb->s_fs_info = NULL;
2324 
2325 	return ret;
2326 }
2327 
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2328 void _udf_err(struct super_block *sb, const char *function,
2329 	      const char *fmt, ...)
2330 {
2331 	struct va_format vaf;
2332 	va_list args;
2333 
2334 	va_start(args, fmt);
2335 
2336 	vaf.fmt = fmt;
2337 	vaf.va = &args;
2338 
2339 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2340 
2341 	va_end(args);
2342 }
2343 
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2344 void _udf_warn(struct super_block *sb, const char *function,
2345 	       const char *fmt, ...)
2346 {
2347 	struct va_format vaf;
2348 	va_list args;
2349 
2350 	va_start(args, fmt);
2351 
2352 	vaf.fmt = fmt;
2353 	vaf.va = &args;
2354 
2355 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2356 
2357 	va_end(args);
2358 }
2359 
udf_put_super(struct super_block * sb)2360 static void udf_put_super(struct super_block *sb)
2361 {
2362 	struct udf_sb_info *sbi;
2363 
2364 	sbi = UDF_SB(sb);
2365 
2366 	iput(sbi->s_vat_inode);
2367 	unload_nls(sbi->s_nls_map);
2368 	if (!sb_rdonly(sb))
2369 		udf_close_lvid(sb);
2370 	brelse(sbi->s_lvid_bh);
2371 	udf_sb_free_partitions(sb);
2372 	mutex_destroy(&sbi->s_alloc_mutex);
2373 	kfree(sb->s_fs_info);
2374 	sb->s_fs_info = NULL;
2375 }
2376 
udf_sync_fs(struct super_block * sb,int wait)2377 static int udf_sync_fs(struct super_block *sb, int wait)
2378 {
2379 	struct udf_sb_info *sbi = UDF_SB(sb);
2380 
2381 	mutex_lock(&sbi->s_alloc_mutex);
2382 	if (sbi->s_lvid_dirty) {
2383 		struct buffer_head *bh = sbi->s_lvid_bh;
2384 		struct logicalVolIntegrityDesc *lvid;
2385 
2386 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2387 		udf_finalize_lvid(lvid);
2388 
2389 		/*
2390 		 * Blockdevice will be synced later so we don't have to submit
2391 		 * the buffer for IO
2392 		 */
2393 		mark_buffer_dirty(bh);
2394 		sbi->s_lvid_dirty = 0;
2395 	}
2396 	mutex_unlock(&sbi->s_alloc_mutex);
2397 
2398 	return 0;
2399 }
2400 
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2401 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2402 {
2403 	struct super_block *sb = dentry->d_sb;
2404 	struct udf_sb_info *sbi = UDF_SB(sb);
2405 	struct logicalVolIntegrityDescImpUse *lvidiu;
2406 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2407 
2408 	lvidiu = udf_sb_lvidiu(sb);
2409 	buf->f_type = UDF_SUPER_MAGIC;
2410 	buf->f_bsize = sb->s_blocksize;
2411 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2412 	buf->f_bfree = udf_count_free(sb);
2413 	buf->f_bavail = buf->f_bfree;
2414 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2415 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2416 			+ buf->f_bfree;
2417 	buf->f_ffree = buf->f_bfree;
2418 	buf->f_namelen = UDF_NAME_LEN;
2419 	buf->f_fsid.val[0] = (u32)id;
2420 	buf->f_fsid.val[1] = (u32)(id >> 32);
2421 
2422 	return 0;
2423 }
2424 
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2425 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2426 					  struct udf_bitmap *bitmap)
2427 {
2428 	struct buffer_head *bh = NULL;
2429 	unsigned int accum = 0;
2430 	int index;
2431 	udf_pblk_t block = 0, newblock;
2432 	struct kernel_lb_addr loc;
2433 	uint32_t bytes;
2434 	uint8_t *ptr;
2435 	uint16_t ident;
2436 	struct spaceBitmapDesc *bm;
2437 
2438 	loc.logicalBlockNum = bitmap->s_extPosition;
2439 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2440 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2441 
2442 	if (!bh) {
2443 		udf_err(sb, "udf_count_free failed\n");
2444 		goto out;
2445 	} else if (ident != TAG_IDENT_SBD) {
2446 		brelse(bh);
2447 		udf_err(sb, "udf_count_free failed\n");
2448 		goto out;
2449 	}
2450 
2451 	bm = (struct spaceBitmapDesc *)bh->b_data;
2452 	bytes = le32_to_cpu(bm->numOfBytes);
2453 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2454 	ptr = (uint8_t *)bh->b_data;
2455 
2456 	while (bytes > 0) {
2457 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2458 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2459 					cur_bytes * 8);
2460 		bytes -= cur_bytes;
2461 		if (bytes) {
2462 			brelse(bh);
2463 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2464 			bh = udf_tread(sb, newblock);
2465 			if (!bh) {
2466 				udf_debug("read failed\n");
2467 				goto out;
2468 			}
2469 			index = 0;
2470 			ptr = (uint8_t *)bh->b_data;
2471 		}
2472 	}
2473 	brelse(bh);
2474 out:
2475 	return accum;
2476 }
2477 
udf_count_free_table(struct super_block * sb,struct inode * table)2478 static unsigned int udf_count_free_table(struct super_block *sb,
2479 					 struct inode *table)
2480 {
2481 	unsigned int accum = 0;
2482 	uint32_t elen;
2483 	struct kernel_lb_addr eloc;
2484 	int8_t etype;
2485 	struct extent_position epos;
2486 
2487 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2488 	epos.block = UDF_I(table)->i_location;
2489 	epos.offset = sizeof(struct unallocSpaceEntry);
2490 	epos.bh = NULL;
2491 
2492 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2493 		accum += (elen >> table->i_sb->s_blocksize_bits);
2494 
2495 	brelse(epos.bh);
2496 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2497 
2498 	return accum;
2499 }
2500 
udf_count_free(struct super_block * sb)2501 static unsigned int udf_count_free(struct super_block *sb)
2502 {
2503 	unsigned int accum = 0;
2504 	struct udf_sb_info *sbi = UDF_SB(sb);
2505 	struct udf_part_map *map;
2506 	unsigned int part = sbi->s_partition;
2507 	int ptype = sbi->s_partmaps[part].s_partition_type;
2508 
2509 	if (ptype == UDF_METADATA_MAP25) {
2510 		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2511 							s_phys_partition_ref;
2512 	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2513 		/*
2514 		 * Filesystems with VAT are append-only and we cannot write to
2515  		 * them. Let's just report 0 here.
2516 		 */
2517 		return 0;
2518 	}
2519 
2520 	if (sbi->s_lvid_bh) {
2521 		struct logicalVolIntegrityDesc *lvid =
2522 			(struct logicalVolIntegrityDesc *)
2523 			sbi->s_lvid_bh->b_data;
2524 		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2525 			accum = le32_to_cpu(
2526 					lvid->freeSpaceTable[part]);
2527 			if (accum == 0xFFFFFFFF)
2528 				accum = 0;
2529 		}
2530 	}
2531 
2532 	if (accum)
2533 		return accum;
2534 
2535 	map = &sbi->s_partmaps[part];
2536 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2537 		accum += udf_count_free_bitmap(sb,
2538 					       map->s_uspace.s_bitmap);
2539 	}
2540 	if (accum)
2541 		return accum;
2542 
2543 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2544 		accum += udf_count_free_table(sb,
2545 					      map->s_uspace.s_table);
2546 	}
2547 	return accum;
2548 }
2549 
2550 MODULE_AUTHOR("Ben Fennema");
2551 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2552 MODULE_LICENSE("GPL");
2553 module_init(init_udf_fs)
2554 module_exit(exit_udf_fs)
2555