1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 #include <linux/iversion.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67
68 enum {
69 VDS_POS_PRIMARY_VOL_DESC,
70 VDS_POS_UNALLOC_SPACE_DESC,
71 VDS_POS_LOGICAL_VOL_DESC,
72 VDS_POS_IMP_USE_VOL_DESC,
73 VDS_POS_LENGTH
74 };
75
76 #define VSD_FIRST_SECTOR_OFFSET 32768
77 #define VSD_MAX_SECTOR_OFFSET 0x800000
78
79 /*
80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
82 * hopefully don't limit any real use of rewritten inode on write-once media
83 * but avoid looping for too long on corrupted media.
84 */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87
88 enum { UDF_MAX_LINKS = 0xffff };
89
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static void udf_open_lvid(struct super_block *);
97 static void udf_close_lvid(struct super_block *);
98 static unsigned int udf_count_free(struct super_block *);
99 static int udf_statfs(struct dentry *, struct kstatfs *);
100 static int udf_show_options(struct seq_file *, struct dentry *);
101
udf_sb_lvidiu(struct super_block * sb)102 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
103 {
104 struct logicalVolIntegrityDesc *lvid;
105 unsigned int partnum;
106 unsigned int offset;
107
108 if (!UDF_SB(sb)->s_lvid_bh)
109 return NULL;
110 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
111 partnum = le32_to_cpu(lvid->numOfPartitions);
112 /* The offset is to skip freeSpaceTable and sizeTable arrays */
113 offset = partnum * 2 * sizeof(uint32_t);
114 return (struct logicalVolIntegrityDescImpUse *)
115 (((uint8_t *)(lvid + 1)) + offset);
116 }
117
118 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)119 static struct dentry *udf_mount(struct file_system_type *fs_type,
120 int flags, const char *dev_name, void *data)
121 {
122 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
123 }
124
125 static struct file_system_type udf_fstype = {
126 .owner = THIS_MODULE,
127 .name = "udf",
128 .mount = udf_mount,
129 .kill_sb = kill_block_super,
130 .fs_flags = FS_REQUIRES_DEV,
131 };
132 MODULE_ALIAS_FS("udf");
133
134 static struct kmem_cache *udf_inode_cachep;
135
udf_alloc_inode(struct super_block * sb)136 static struct inode *udf_alloc_inode(struct super_block *sb)
137 {
138 struct udf_inode_info *ei;
139 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
140 if (!ei)
141 return NULL;
142
143 ei->i_unique = 0;
144 ei->i_lenExtents = 0;
145 ei->i_lenStreams = 0;
146 ei->i_next_alloc_block = 0;
147 ei->i_next_alloc_goal = 0;
148 ei->i_strat4096 = 0;
149 ei->i_streamdir = 0;
150 ei->i_hidden = 0;
151 init_rwsem(&ei->i_data_sem);
152 ei->cached_extent.lstart = -1;
153 spin_lock_init(&ei->i_extent_cache_lock);
154 inode_set_iversion(&ei->vfs_inode, 1);
155
156 return &ei->vfs_inode;
157 }
158
udf_free_in_core_inode(struct inode * inode)159 static void udf_free_in_core_inode(struct inode *inode)
160 {
161 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163
init_once(void * foo)164 static void init_once(void *foo)
165 {
166 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
167
168 ei->i_ext.i_data = NULL;
169 inode_init_once(&ei->vfs_inode);
170 }
171
init_inodecache(void)172 static int __init init_inodecache(void)
173 {
174 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
175 sizeof(struct udf_inode_info),
176 0, (SLAB_RECLAIM_ACCOUNT |
177 SLAB_MEM_SPREAD |
178 SLAB_ACCOUNT),
179 init_once);
180 if (!udf_inode_cachep)
181 return -ENOMEM;
182 return 0;
183 }
184
destroy_inodecache(void)185 static void destroy_inodecache(void)
186 {
187 /*
188 * Make sure all delayed rcu free inodes are flushed before we
189 * destroy cache.
190 */
191 rcu_barrier();
192 kmem_cache_destroy(udf_inode_cachep);
193 }
194
195 /* Superblock operations */
196 static const struct super_operations udf_sb_ops = {
197 .alloc_inode = udf_alloc_inode,
198 .free_inode = udf_free_in_core_inode,
199 .write_inode = udf_write_inode,
200 .evict_inode = udf_evict_inode,
201 .put_super = udf_put_super,
202 .sync_fs = udf_sync_fs,
203 .statfs = udf_statfs,
204 .remount_fs = udf_remount_fs,
205 .show_options = udf_show_options,
206 };
207
208 struct udf_options {
209 unsigned char novrs;
210 unsigned int blocksize;
211 unsigned int session;
212 unsigned int lastblock;
213 unsigned int anchor;
214 unsigned int flags;
215 umode_t umask;
216 kgid_t gid;
217 kuid_t uid;
218 umode_t fmode;
219 umode_t dmode;
220 struct nls_table *nls_map;
221 };
222
init_udf_fs(void)223 static int __init init_udf_fs(void)
224 {
225 int err;
226
227 err = init_inodecache();
228 if (err)
229 goto out1;
230 err = register_filesystem(&udf_fstype);
231 if (err)
232 goto out;
233
234 return 0;
235
236 out:
237 destroy_inodecache();
238
239 out1:
240 return err;
241 }
242
exit_udf_fs(void)243 static void __exit exit_udf_fs(void)
244 {
245 unregister_filesystem(&udf_fstype);
246 destroy_inodecache();
247 }
248
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)249 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
250 {
251 struct udf_sb_info *sbi = UDF_SB(sb);
252
253 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
254 if (!sbi->s_partmaps) {
255 sbi->s_partitions = 0;
256 return -ENOMEM;
257 }
258
259 sbi->s_partitions = count;
260 return 0;
261 }
262
udf_sb_free_bitmap(struct udf_bitmap * bitmap)263 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
264 {
265 int i;
266 int nr_groups = bitmap->s_nr_groups;
267
268 for (i = 0; i < nr_groups; i++)
269 brelse(bitmap->s_block_bitmap[i]);
270
271 kvfree(bitmap);
272 }
273
udf_free_partition(struct udf_part_map * map)274 static void udf_free_partition(struct udf_part_map *map)
275 {
276 int i;
277 struct udf_meta_data *mdata;
278
279 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
280 iput(map->s_uspace.s_table);
281 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
282 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
283 if (map->s_partition_type == UDF_SPARABLE_MAP15)
284 for (i = 0; i < 4; i++)
285 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
286 else if (map->s_partition_type == UDF_METADATA_MAP25) {
287 mdata = &map->s_type_specific.s_metadata;
288 iput(mdata->s_metadata_fe);
289 mdata->s_metadata_fe = NULL;
290
291 iput(mdata->s_mirror_fe);
292 mdata->s_mirror_fe = NULL;
293
294 iput(mdata->s_bitmap_fe);
295 mdata->s_bitmap_fe = NULL;
296 }
297 }
298
udf_sb_free_partitions(struct super_block * sb)299 static void udf_sb_free_partitions(struct super_block *sb)
300 {
301 struct udf_sb_info *sbi = UDF_SB(sb);
302 int i;
303
304 if (!sbi->s_partmaps)
305 return;
306 for (i = 0; i < sbi->s_partitions; i++)
307 udf_free_partition(&sbi->s_partmaps[i]);
308 kfree(sbi->s_partmaps);
309 sbi->s_partmaps = NULL;
310 }
311
udf_show_options(struct seq_file * seq,struct dentry * root)312 static int udf_show_options(struct seq_file *seq, struct dentry *root)
313 {
314 struct super_block *sb = root->d_sb;
315 struct udf_sb_info *sbi = UDF_SB(sb);
316
317 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
318 seq_puts(seq, ",nostrict");
319 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
320 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
321 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
322 seq_puts(seq, ",unhide");
323 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
324 seq_puts(seq, ",undelete");
325 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
326 seq_puts(seq, ",noadinicb");
327 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
328 seq_puts(seq, ",shortad");
329 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
330 seq_puts(seq, ",uid=forget");
331 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
332 seq_puts(seq, ",gid=forget");
333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
334 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
336 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
337 if (sbi->s_umask != 0)
338 seq_printf(seq, ",umask=%ho", sbi->s_umask);
339 if (sbi->s_fmode != UDF_INVALID_MODE)
340 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
341 if (sbi->s_dmode != UDF_INVALID_MODE)
342 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
344 seq_printf(seq, ",session=%d", sbi->s_session);
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
346 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
347 if (sbi->s_anchor != 0)
348 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
349 if (sbi->s_nls_map)
350 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
351 else
352 seq_puts(seq, ",iocharset=utf8");
353
354 return 0;
355 }
356
357 /*
358 * udf_parse_options
359 *
360 * PURPOSE
361 * Parse mount options.
362 *
363 * DESCRIPTION
364 * The following mount options are supported:
365 *
366 * gid= Set the default group.
367 * umask= Set the default umask.
368 * mode= Set the default file permissions.
369 * dmode= Set the default directory permissions.
370 * uid= Set the default user.
371 * bs= Set the block size.
372 * unhide Show otherwise hidden files.
373 * undelete Show deleted files in lists.
374 * adinicb Embed data in the inode (default)
375 * noadinicb Don't embed data in the inode
376 * shortad Use short ad's
377 * longad Use long ad's (default)
378 * nostrict Unset strict conformance
379 * iocharset= Set the NLS character set
380 *
381 * The remaining are for debugging and disaster recovery:
382 *
383 * novrs Skip volume sequence recognition
384 *
385 * The following expect a offset from 0.
386 *
387 * session= Set the CDROM session (default= last session)
388 * anchor= Override standard anchor location. (default= 256)
389 * volume= Override the VolumeDesc location. (unused)
390 * partition= Override the PartitionDesc location. (unused)
391 * lastblock= Set the last block of the filesystem/
392 *
393 * The following expect a offset from the partition root.
394 *
395 * fileset= Override the fileset block location. (unused)
396 * rootdir= Override the root directory location. (unused)
397 * WARNING: overriding the rootdir to a non-directory may
398 * yield highly unpredictable results.
399 *
400 * PRE-CONDITIONS
401 * options Pointer to mount options string.
402 * uopts Pointer to mount options variable.
403 *
404 * POST-CONDITIONS
405 * <return> 1 Mount options parsed okay.
406 * <return> 0 Error parsing mount options.
407 *
408 * HISTORY
409 * July 1, 1997 - Andrew E. Mileski
410 * Written, tested, and released.
411 */
412
413 enum {
414 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
415 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
416 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
417 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
418 Opt_rootdir, Opt_utf8, Opt_iocharset,
419 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
420 Opt_fmode, Opt_dmode
421 };
422
423 static const match_table_t tokens = {
424 {Opt_novrs, "novrs"},
425 {Opt_nostrict, "nostrict"},
426 {Opt_bs, "bs=%u"},
427 {Opt_unhide, "unhide"},
428 {Opt_undelete, "undelete"},
429 {Opt_noadinicb, "noadinicb"},
430 {Opt_adinicb, "adinicb"},
431 {Opt_shortad, "shortad"},
432 {Opt_longad, "longad"},
433 {Opt_uforget, "uid=forget"},
434 {Opt_uignore, "uid=ignore"},
435 {Opt_gforget, "gid=forget"},
436 {Opt_gignore, "gid=ignore"},
437 {Opt_gid, "gid=%u"},
438 {Opt_uid, "uid=%u"},
439 {Opt_umask, "umask=%o"},
440 {Opt_session, "session=%u"},
441 {Opt_lastblock, "lastblock=%u"},
442 {Opt_anchor, "anchor=%u"},
443 {Opt_volume, "volume=%u"},
444 {Opt_partition, "partition=%u"},
445 {Opt_fileset, "fileset=%u"},
446 {Opt_rootdir, "rootdir=%u"},
447 {Opt_utf8, "utf8"},
448 {Opt_iocharset, "iocharset=%s"},
449 {Opt_fmode, "mode=%o"},
450 {Opt_dmode, "dmode=%o"},
451 {Opt_err, NULL}
452 };
453
udf_parse_options(char * options,struct udf_options * uopt,bool remount)454 static int udf_parse_options(char *options, struct udf_options *uopt,
455 bool remount)
456 {
457 char *p;
458 int option;
459
460 uopt->novrs = 0;
461 uopt->session = 0xFFFFFFFF;
462 uopt->lastblock = 0;
463 uopt->anchor = 0;
464
465 if (!options)
466 return 1;
467
468 while ((p = strsep(&options, ",")) != NULL) {
469 substring_t args[MAX_OPT_ARGS];
470 int token;
471 unsigned n;
472 if (!*p)
473 continue;
474
475 token = match_token(p, tokens, args);
476 switch (token) {
477 case Opt_novrs:
478 uopt->novrs = 1;
479 break;
480 case Opt_bs:
481 if (match_int(&args[0], &option))
482 return 0;
483 n = option;
484 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
485 return 0;
486 uopt->blocksize = n;
487 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
488 break;
489 case Opt_unhide:
490 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
491 break;
492 case Opt_undelete:
493 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
494 break;
495 case Opt_noadinicb:
496 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
497 break;
498 case Opt_adinicb:
499 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
500 break;
501 case Opt_shortad:
502 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
503 break;
504 case Opt_longad:
505 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
506 break;
507 case Opt_gid:
508 if (match_int(args, &option))
509 return 0;
510 uopt->gid = make_kgid(current_user_ns(), option);
511 if (!gid_valid(uopt->gid))
512 return 0;
513 uopt->flags |= (1 << UDF_FLAG_GID_SET);
514 break;
515 case Opt_uid:
516 if (match_int(args, &option))
517 return 0;
518 uopt->uid = make_kuid(current_user_ns(), option);
519 if (!uid_valid(uopt->uid))
520 return 0;
521 uopt->flags |= (1 << UDF_FLAG_UID_SET);
522 break;
523 case Opt_umask:
524 if (match_octal(args, &option))
525 return 0;
526 uopt->umask = option;
527 break;
528 case Opt_nostrict:
529 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
530 break;
531 case Opt_session:
532 if (match_int(args, &option))
533 return 0;
534 uopt->session = option;
535 if (!remount)
536 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
537 break;
538 case Opt_lastblock:
539 if (match_int(args, &option))
540 return 0;
541 uopt->lastblock = option;
542 if (!remount)
543 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
544 break;
545 case Opt_anchor:
546 if (match_int(args, &option))
547 return 0;
548 uopt->anchor = option;
549 break;
550 case Opt_volume:
551 case Opt_partition:
552 case Opt_fileset:
553 case Opt_rootdir:
554 /* Ignored (never implemented properly) */
555 break;
556 case Opt_utf8:
557 if (!remount) {
558 unload_nls(uopt->nls_map);
559 uopt->nls_map = NULL;
560 }
561 break;
562 case Opt_iocharset:
563 if (!remount) {
564 unload_nls(uopt->nls_map);
565 uopt->nls_map = NULL;
566 }
567 /* When nls_map is not loaded then UTF-8 is used */
568 if (!remount && strcmp(args[0].from, "utf8") != 0) {
569 uopt->nls_map = load_nls(args[0].from);
570 if (!uopt->nls_map) {
571 pr_err("iocharset %s not found\n",
572 args[0].from);
573 return 0;
574 }
575 }
576 break;
577 case Opt_uforget:
578 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
579 break;
580 case Opt_uignore:
581 case Opt_gignore:
582 /* These options are superseeded by uid=<number> */
583 break;
584 case Opt_gforget:
585 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
586 break;
587 case Opt_fmode:
588 if (match_octal(args, &option))
589 return 0;
590 uopt->fmode = option & 0777;
591 break;
592 case Opt_dmode:
593 if (match_octal(args, &option))
594 return 0;
595 uopt->dmode = option & 0777;
596 break;
597 default:
598 pr_err("bad mount option \"%s\" or missing value\n", p);
599 return 0;
600 }
601 }
602 return 1;
603 }
604
udf_remount_fs(struct super_block * sb,int * flags,char * options)605 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
606 {
607 struct udf_options uopt;
608 struct udf_sb_info *sbi = UDF_SB(sb);
609 int error = 0;
610
611 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
612 return -EACCES;
613
614 sync_filesystem(sb);
615
616 uopt.flags = sbi->s_flags;
617 uopt.uid = sbi->s_uid;
618 uopt.gid = sbi->s_gid;
619 uopt.umask = sbi->s_umask;
620 uopt.fmode = sbi->s_fmode;
621 uopt.dmode = sbi->s_dmode;
622 uopt.nls_map = NULL;
623
624 if (!udf_parse_options(options, &uopt, true))
625 return -EINVAL;
626
627 write_lock(&sbi->s_cred_lock);
628 sbi->s_flags = uopt.flags;
629 sbi->s_uid = uopt.uid;
630 sbi->s_gid = uopt.gid;
631 sbi->s_umask = uopt.umask;
632 sbi->s_fmode = uopt.fmode;
633 sbi->s_dmode = uopt.dmode;
634 write_unlock(&sbi->s_cred_lock);
635
636 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
637 goto out_unlock;
638
639 if (*flags & SB_RDONLY)
640 udf_close_lvid(sb);
641 else
642 udf_open_lvid(sb);
643
644 out_unlock:
645 return error;
646 }
647
648 /*
649 * Check VSD descriptor. Returns -1 in case we are at the end of volume
650 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
651 * we found one of NSR descriptors we are looking for.
652 */
identify_vsd(const struct volStructDesc * vsd)653 static int identify_vsd(const struct volStructDesc *vsd)
654 {
655 int ret = 0;
656
657 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
658 switch (vsd->structType) {
659 case 0:
660 udf_debug("ISO9660 Boot Record found\n");
661 break;
662 case 1:
663 udf_debug("ISO9660 Primary Volume Descriptor found\n");
664 break;
665 case 2:
666 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
667 break;
668 case 3:
669 udf_debug("ISO9660 Volume Partition Descriptor found\n");
670 break;
671 case 255:
672 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
673 break;
674 default:
675 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
676 break;
677 }
678 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
679 ; /* ret = 0 */
680 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
681 ret = 1;
682 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
683 ret = 1;
684 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
685 ; /* ret = 0 */
686 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
687 ; /* ret = 0 */
688 else {
689 /* TEA01 or invalid id : end of volume recognition area */
690 ret = -1;
691 }
692
693 return ret;
694 }
695
696 /*
697 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
698 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
699 * @return 1 if NSR02 or NSR03 found,
700 * -1 if first sector read error, 0 otherwise
701 */
udf_check_vsd(struct super_block * sb)702 static int udf_check_vsd(struct super_block *sb)
703 {
704 struct volStructDesc *vsd = NULL;
705 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
706 int sectorsize;
707 struct buffer_head *bh = NULL;
708 int nsr = 0;
709 struct udf_sb_info *sbi;
710 loff_t session_offset;
711
712 sbi = UDF_SB(sb);
713 if (sb->s_blocksize < sizeof(struct volStructDesc))
714 sectorsize = sizeof(struct volStructDesc);
715 else
716 sectorsize = sb->s_blocksize;
717
718 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
719 sector += session_offset;
720
721 udf_debug("Starting at sector %u (%lu byte sectors)\n",
722 (unsigned int)(sector >> sb->s_blocksize_bits),
723 sb->s_blocksize);
724 /* Process the sequence (if applicable). The hard limit on the sector
725 * offset is arbitrary, hopefully large enough so that all valid UDF
726 * filesystems will be recognised. There is no mention of an upper
727 * bound to the size of the volume recognition area in the standard.
728 * The limit will prevent the code to read all the sectors of a
729 * specially crafted image (like a bluray disc full of CD001 sectors),
730 * potentially causing minutes or even hours of uninterruptible I/O
731 * activity. This actually happened with uninitialised SSD partitions
732 * (all 0xFF) before the check for the limit and all valid IDs were
733 * added */
734 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
735 /* Read a block */
736 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
737 if (!bh)
738 break;
739
740 vsd = (struct volStructDesc *)(bh->b_data +
741 (sector & (sb->s_blocksize - 1)));
742 nsr = identify_vsd(vsd);
743 /* Found NSR or end? */
744 if (nsr) {
745 brelse(bh);
746 break;
747 }
748 /*
749 * Special handling for improperly formatted VRS (e.g., Win10)
750 * where components are separated by 2048 bytes even though
751 * sectors are 4K
752 */
753 if (sb->s_blocksize == 4096) {
754 nsr = identify_vsd(vsd + 1);
755 /* Ignore unknown IDs... */
756 if (nsr < 0)
757 nsr = 0;
758 }
759 brelse(bh);
760 }
761
762 if (nsr > 0)
763 return 1;
764 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
765 return -1;
766 else
767 return 0;
768 }
769
udf_verify_domain_identifier(struct super_block * sb,struct regid * ident,char * dname)770 static int udf_verify_domain_identifier(struct super_block *sb,
771 struct regid *ident, char *dname)
772 {
773 struct domainEntityIDSuffix *suffix;
774
775 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
776 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
777 goto force_ro;
778 }
779 if (ident->flags & (1 << ENTITYID_FLAGS_DIRTY)) {
780 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
781 dname);
782 goto force_ro;
783 }
784 suffix = (struct domainEntityIDSuffix *)ident->identSuffix;
785 if (suffix->flags & (1 << ENTITYIDSUFFIX_FLAGS_HARDWRITEPROTECT) ||
786 suffix->flags & (1 << ENTITYIDSUFFIX_FLAGS_SOFTWRITEPROTECT)) {
787 if (!sb_rdonly(sb)) {
788 udf_warn(sb, "Descriptor for %s marked write protected."
789 " Forcing read only mount.\n", dname);
790 }
791 goto force_ro;
792 }
793 return 0;
794
795 force_ro:
796 if (!sb_rdonly(sb))
797 return -EACCES;
798 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
799 return 0;
800 }
801
udf_load_fileset(struct super_block * sb,struct fileSetDesc * fset,struct kernel_lb_addr * root)802 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
803 struct kernel_lb_addr *root)
804 {
805 int ret;
806
807 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
808 if (ret < 0)
809 return ret;
810
811 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
812 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
813
814 udf_debug("Rootdir at block=%u, partition=%u\n",
815 root->logicalBlockNum, root->partitionReferenceNum);
816 return 0;
817 }
818
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)819 static int udf_find_fileset(struct super_block *sb,
820 struct kernel_lb_addr *fileset,
821 struct kernel_lb_addr *root)
822 {
823 struct buffer_head *bh = NULL;
824 uint16_t ident;
825 int ret;
826
827 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
828 fileset->partitionReferenceNum == 0xFFFF)
829 return -EINVAL;
830
831 bh = udf_read_ptagged(sb, fileset, 0, &ident);
832 if (!bh)
833 return -EIO;
834 if (ident != TAG_IDENT_FSD) {
835 brelse(bh);
836 return -EINVAL;
837 }
838
839 udf_debug("Fileset at block=%u, partition=%u\n",
840 fileset->logicalBlockNum, fileset->partitionReferenceNum);
841
842 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
843 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
844 brelse(bh);
845 return ret;
846 }
847
848 /*
849 * Load primary Volume Descriptor Sequence
850 *
851 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
852 * should be tried.
853 */
udf_load_pvoldesc(struct super_block * sb,sector_t block)854 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
855 {
856 struct primaryVolDesc *pvoldesc;
857 uint8_t *outstr;
858 struct buffer_head *bh;
859 uint16_t ident;
860 int ret = -ENOMEM;
861 struct timestamp *ts;
862
863 outstr = kmalloc(128, GFP_NOFS);
864 if (!outstr)
865 return -ENOMEM;
866
867 bh = udf_read_tagged(sb, block, block, &ident);
868 if (!bh) {
869 ret = -EAGAIN;
870 goto out2;
871 }
872
873 if (ident != TAG_IDENT_PVD) {
874 ret = -EIO;
875 goto out_bh;
876 }
877
878 pvoldesc = (struct primaryVolDesc *)bh->b_data;
879
880 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
881 pvoldesc->recordingDateAndTime);
882 ts = &pvoldesc->recordingDateAndTime;
883 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
884 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
885 ts->minute, le16_to_cpu(ts->typeAndTimezone));
886
887 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
888 if (ret < 0) {
889 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
890 pr_warn("incorrect volume identification, setting to "
891 "'InvalidName'\n");
892 } else {
893 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
894 }
895 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
896
897 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
898 if (ret < 0) {
899 ret = 0;
900 goto out_bh;
901 }
902 outstr[ret] = 0;
903 udf_debug("volSetIdent[] = '%s'\n", outstr);
904
905 ret = 0;
906 out_bh:
907 brelse(bh);
908 out2:
909 kfree(outstr);
910 return ret;
911 }
912
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)913 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
914 u32 meta_file_loc, u32 partition_ref)
915 {
916 struct kernel_lb_addr addr;
917 struct inode *metadata_fe;
918
919 addr.logicalBlockNum = meta_file_loc;
920 addr.partitionReferenceNum = partition_ref;
921
922 metadata_fe = udf_iget_special(sb, &addr);
923
924 if (IS_ERR(metadata_fe)) {
925 udf_warn(sb, "metadata inode efe not found\n");
926 return metadata_fe;
927 }
928 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
929 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
930 iput(metadata_fe);
931 return ERR_PTR(-EIO);
932 }
933
934 return metadata_fe;
935 }
936
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)937 static int udf_load_metadata_files(struct super_block *sb, int partition,
938 int type1_index)
939 {
940 struct udf_sb_info *sbi = UDF_SB(sb);
941 struct udf_part_map *map;
942 struct udf_meta_data *mdata;
943 struct kernel_lb_addr addr;
944 struct inode *fe;
945
946 map = &sbi->s_partmaps[partition];
947 mdata = &map->s_type_specific.s_metadata;
948 mdata->s_phys_partition_ref = type1_index;
949
950 /* metadata address */
951 udf_debug("Metadata file location: block = %u part = %u\n",
952 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
953
954 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
955 mdata->s_phys_partition_ref);
956 if (IS_ERR(fe)) {
957 /* mirror file entry */
958 udf_debug("Mirror metadata file location: block = %u part = %u\n",
959 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
960
961 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
962 mdata->s_phys_partition_ref);
963
964 if (IS_ERR(fe)) {
965 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
966 return PTR_ERR(fe);
967 }
968 mdata->s_mirror_fe = fe;
969 } else
970 mdata->s_metadata_fe = fe;
971
972
973 /*
974 * bitmap file entry
975 * Note:
976 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
977 */
978 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
979 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
980 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
981
982 udf_debug("Bitmap file location: block = %u part = %u\n",
983 addr.logicalBlockNum, addr.partitionReferenceNum);
984
985 fe = udf_iget_special(sb, &addr);
986 if (IS_ERR(fe)) {
987 if (sb_rdonly(sb))
988 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
989 else {
990 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
991 return PTR_ERR(fe);
992 }
993 } else
994 mdata->s_bitmap_fe = fe;
995 }
996
997 udf_debug("udf_load_metadata_files Ok\n");
998 return 0;
999 }
1000
udf_compute_nr_groups(struct super_block * sb,u32 partition)1001 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1002 {
1003 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1004 return DIV_ROUND_UP(map->s_partition_len +
1005 (sizeof(struct spaceBitmapDesc) << 3),
1006 sb->s_blocksize * 8);
1007 }
1008
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1009 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1010 {
1011 struct udf_bitmap *bitmap;
1012 int nr_groups;
1013 int size;
1014
1015 nr_groups = udf_compute_nr_groups(sb, index);
1016 size = sizeof(struct udf_bitmap) +
1017 (sizeof(struct buffer_head *) * nr_groups);
1018
1019 if (size <= PAGE_SIZE)
1020 bitmap = kzalloc(size, GFP_KERNEL);
1021 else
1022 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1023
1024 if (!bitmap)
1025 return NULL;
1026
1027 bitmap->s_nr_groups = nr_groups;
1028 return bitmap;
1029 }
1030
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)1031 static int check_partition_desc(struct super_block *sb,
1032 struct partitionDesc *p,
1033 struct udf_part_map *map)
1034 {
1035 bool umap, utable, fmap, ftable;
1036 struct partitionHeaderDesc *phd;
1037
1038 switch (le32_to_cpu(p->accessType)) {
1039 case PD_ACCESS_TYPE_READ_ONLY:
1040 case PD_ACCESS_TYPE_WRITE_ONCE:
1041 case PD_ACCESS_TYPE_NONE:
1042 goto force_ro;
1043 }
1044
1045 /* No Partition Header Descriptor? */
1046 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1047 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1048 goto force_ro;
1049
1050 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1051 utable = phd->unallocSpaceTable.extLength;
1052 umap = phd->unallocSpaceBitmap.extLength;
1053 ftable = phd->freedSpaceTable.extLength;
1054 fmap = phd->freedSpaceBitmap.extLength;
1055
1056 /* No allocation info? */
1057 if (!utable && !umap && !ftable && !fmap)
1058 goto force_ro;
1059
1060 /* We don't support blocks that require erasing before overwrite */
1061 if (ftable || fmap)
1062 goto force_ro;
1063 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1064 if (utable && umap)
1065 goto force_ro;
1066
1067 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1068 map->s_partition_type == UDF_VIRTUAL_MAP20)
1069 goto force_ro;
1070
1071 return 0;
1072 force_ro:
1073 if (!sb_rdonly(sb))
1074 return -EACCES;
1075 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1076 return 0;
1077 }
1078
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1079 static int udf_fill_partdesc_info(struct super_block *sb,
1080 struct partitionDesc *p, int p_index)
1081 {
1082 struct udf_part_map *map;
1083 struct udf_sb_info *sbi = UDF_SB(sb);
1084 struct partitionHeaderDesc *phd;
1085 int err;
1086
1087 map = &sbi->s_partmaps[p_index];
1088
1089 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1090 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1091
1092 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1093 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1094 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1095 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1096 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1097 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1098 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1099 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1100
1101 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1102 p_index, map->s_partition_type,
1103 map->s_partition_root, map->s_partition_len);
1104
1105 err = check_partition_desc(sb, p, map);
1106 if (err)
1107 return err;
1108
1109 /*
1110 * Skip loading allocation info it we cannot ever write to the fs.
1111 * This is a correctness thing as we may have decided to force ro mount
1112 * to avoid allocation info we don't support.
1113 */
1114 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1115 return 0;
1116
1117 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1118 if (phd->unallocSpaceTable.extLength) {
1119 struct kernel_lb_addr loc = {
1120 .logicalBlockNum = le32_to_cpu(
1121 phd->unallocSpaceTable.extPosition),
1122 .partitionReferenceNum = p_index,
1123 };
1124 struct inode *inode;
1125
1126 inode = udf_iget_special(sb, &loc);
1127 if (IS_ERR(inode)) {
1128 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1129 p_index);
1130 return PTR_ERR(inode);
1131 }
1132 map->s_uspace.s_table = inode;
1133 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1134 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1135 p_index, map->s_uspace.s_table->i_ino);
1136 }
1137
1138 if (phd->unallocSpaceBitmap.extLength) {
1139 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1140 if (!bitmap)
1141 return -ENOMEM;
1142 map->s_uspace.s_bitmap = bitmap;
1143 bitmap->s_extPosition = le32_to_cpu(
1144 phd->unallocSpaceBitmap.extPosition);
1145 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1146 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1147 p_index, bitmap->s_extPosition);
1148 }
1149
1150 return 0;
1151 }
1152
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1153 static void udf_find_vat_block(struct super_block *sb, int p_index,
1154 int type1_index, sector_t start_block)
1155 {
1156 struct udf_sb_info *sbi = UDF_SB(sb);
1157 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1158 sector_t vat_block;
1159 struct kernel_lb_addr ino;
1160 struct inode *inode;
1161
1162 /*
1163 * VAT file entry is in the last recorded block. Some broken disks have
1164 * it a few blocks before so try a bit harder...
1165 */
1166 ino.partitionReferenceNum = type1_index;
1167 for (vat_block = start_block;
1168 vat_block >= map->s_partition_root &&
1169 vat_block >= start_block - 3; vat_block--) {
1170 ino.logicalBlockNum = vat_block - map->s_partition_root;
1171 inode = udf_iget_special(sb, &ino);
1172 if (!IS_ERR(inode)) {
1173 sbi->s_vat_inode = inode;
1174 break;
1175 }
1176 }
1177 }
1178
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1179 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1180 {
1181 struct udf_sb_info *sbi = UDF_SB(sb);
1182 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1183 struct buffer_head *bh = NULL;
1184 struct udf_inode_info *vati;
1185 uint32_t pos;
1186 struct virtualAllocationTable20 *vat20;
1187 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1188 sb->s_blocksize_bits;
1189
1190 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1191 if (!sbi->s_vat_inode &&
1192 sbi->s_last_block != blocks - 1) {
1193 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1194 (unsigned long)sbi->s_last_block,
1195 (unsigned long)blocks - 1);
1196 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1197 }
1198 if (!sbi->s_vat_inode)
1199 return -EIO;
1200
1201 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1202 map->s_type_specific.s_virtual.s_start_offset = 0;
1203 map->s_type_specific.s_virtual.s_num_entries =
1204 (sbi->s_vat_inode->i_size - 36) >> 2;
1205 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1206 vati = UDF_I(sbi->s_vat_inode);
1207 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1208 pos = udf_block_map(sbi->s_vat_inode, 0);
1209 bh = sb_bread(sb, pos);
1210 if (!bh)
1211 return -EIO;
1212 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1213 } else {
1214 vat20 = (struct virtualAllocationTable20 *)
1215 vati->i_ext.i_data;
1216 }
1217
1218 map->s_type_specific.s_virtual.s_start_offset =
1219 le16_to_cpu(vat20->lengthHeader);
1220 map->s_type_specific.s_virtual.s_num_entries =
1221 (sbi->s_vat_inode->i_size -
1222 map->s_type_specific.s_virtual.
1223 s_start_offset) >> 2;
1224 brelse(bh);
1225 }
1226 return 0;
1227 }
1228
1229 /*
1230 * Load partition descriptor block
1231 *
1232 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1233 * sequence.
1234 */
udf_load_partdesc(struct super_block * sb,sector_t block)1235 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1236 {
1237 struct buffer_head *bh;
1238 struct partitionDesc *p;
1239 struct udf_part_map *map;
1240 struct udf_sb_info *sbi = UDF_SB(sb);
1241 int i, type1_idx;
1242 uint16_t partitionNumber;
1243 uint16_t ident;
1244 int ret;
1245
1246 bh = udf_read_tagged(sb, block, block, &ident);
1247 if (!bh)
1248 return -EAGAIN;
1249 if (ident != TAG_IDENT_PD) {
1250 ret = 0;
1251 goto out_bh;
1252 }
1253
1254 p = (struct partitionDesc *)bh->b_data;
1255 partitionNumber = le16_to_cpu(p->partitionNumber);
1256
1257 /* First scan for TYPE1 and SPARABLE partitions */
1258 for (i = 0; i < sbi->s_partitions; i++) {
1259 map = &sbi->s_partmaps[i];
1260 udf_debug("Searching map: (%u == %u)\n",
1261 map->s_partition_num, partitionNumber);
1262 if (map->s_partition_num == partitionNumber &&
1263 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1264 map->s_partition_type == UDF_SPARABLE_MAP15))
1265 break;
1266 }
1267
1268 if (i >= sbi->s_partitions) {
1269 udf_debug("Partition (%u) not found in partition map\n",
1270 partitionNumber);
1271 ret = 0;
1272 goto out_bh;
1273 }
1274
1275 ret = udf_fill_partdesc_info(sb, p, i);
1276 if (ret < 0)
1277 goto out_bh;
1278
1279 /*
1280 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1281 * PHYSICAL partitions are already set up
1282 */
1283 type1_idx = i;
1284 map = NULL; /* supress 'maybe used uninitialized' warning */
1285 for (i = 0; i < sbi->s_partitions; i++) {
1286 map = &sbi->s_partmaps[i];
1287
1288 if (map->s_partition_num == partitionNumber &&
1289 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1290 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1291 map->s_partition_type == UDF_METADATA_MAP25))
1292 break;
1293 }
1294
1295 if (i >= sbi->s_partitions) {
1296 ret = 0;
1297 goto out_bh;
1298 }
1299
1300 ret = udf_fill_partdesc_info(sb, p, i);
1301 if (ret < 0)
1302 goto out_bh;
1303
1304 if (map->s_partition_type == UDF_METADATA_MAP25) {
1305 ret = udf_load_metadata_files(sb, i, type1_idx);
1306 if (ret < 0) {
1307 udf_err(sb, "error loading MetaData partition map %d\n",
1308 i);
1309 goto out_bh;
1310 }
1311 } else {
1312 /*
1313 * If we have a partition with virtual map, we don't handle
1314 * writing to it (we overwrite blocks instead of relocating
1315 * them).
1316 */
1317 if (!sb_rdonly(sb)) {
1318 ret = -EACCES;
1319 goto out_bh;
1320 }
1321 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1322 ret = udf_load_vat(sb, i, type1_idx);
1323 if (ret < 0)
1324 goto out_bh;
1325 }
1326 ret = 0;
1327 out_bh:
1328 /* In case loading failed, we handle cleanup in udf_fill_super */
1329 brelse(bh);
1330 return ret;
1331 }
1332
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1333 static int udf_load_sparable_map(struct super_block *sb,
1334 struct udf_part_map *map,
1335 struct sparablePartitionMap *spm)
1336 {
1337 uint32_t loc;
1338 uint16_t ident;
1339 struct sparingTable *st;
1340 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1341 int i;
1342 struct buffer_head *bh;
1343
1344 map->s_partition_type = UDF_SPARABLE_MAP15;
1345 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1346 if (!is_power_of_2(sdata->s_packet_len)) {
1347 udf_err(sb, "error loading logical volume descriptor: "
1348 "Invalid packet length %u\n",
1349 (unsigned)sdata->s_packet_len);
1350 return -EIO;
1351 }
1352 if (spm->numSparingTables > 4) {
1353 udf_err(sb, "error loading logical volume descriptor: "
1354 "Too many sparing tables (%d)\n",
1355 (int)spm->numSparingTables);
1356 return -EIO;
1357 }
1358 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1359 udf_err(sb, "error loading logical volume descriptor: "
1360 "Too big sparing table size (%u)\n",
1361 le32_to_cpu(spm->sizeSparingTable));
1362 return -EIO;
1363 }
1364
1365 for (i = 0; i < spm->numSparingTables; i++) {
1366 loc = le32_to_cpu(spm->locSparingTable[i]);
1367 bh = udf_read_tagged(sb, loc, loc, &ident);
1368 if (!bh)
1369 continue;
1370
1371 st = (struct sparingTable *)bh->b_data;
1372 if (ident != 0 ||
1373 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1374 strlen(UDF_ID_SPARING)) ||
1375 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1376 sb->s_blocksize) {
1377 brelse(bh);
1378 continue;
1379 }
1380
1381 sdata->s_spar_map[i] = bh;
1382 }
1383 map->s_partition_func = udf_get_pblock_spar15;
1384 return 0;
1385 }
1386
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1387 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1388 struct kernel_lb_addr *fileset)
1389 {
1390 struct logicalVolDesc *lvd;
1391 int i, offset;
1392 uint8_t type;
1393 struct udf_sb_info *sbi = UDF_SB(sb);
1394 struct genericPartitionMap *gpm;
1395 uint16_t ident;
1396 struct buffer_head *bh;
1397 unsigned int table_len;
1398 int ret;
1399
1400 bh = udf_read_tagged(sb, block, block, &ident);
1401 if (!bh)
1402 return -EAGAIN;
1403 BUG_ON(ident != TAG_IDENT_LVD);
1404 lvd = (struct logicalVolDesc *)bh->b_data;
1405 table_len = le32_to_cpu(lvd->mapTableLength);
1406 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1407 udf_err(sb, "error loading logical volume descriptor: "
1408 "Partition table too long (%u > %lu)\n", table_len,
1409 sb->s_blocksize - sizeof(*lvd));
1410 ret = -EIO;
1411 goto out_bh;
1412 }
1413
1414 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1415 "logical volume");
1416 if (ret)
1417 goto out_bh;
1418 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1419 if (ret)
1420 goto out_bh;
1421
1422 for (i = 0, offset = 0;
1423 i < sbi->s_partitions && offset < table_len;
1424 i++, offset += gpm->partitionMapLength) {
1425 struct udf_part_map *map = &sbi->s_partmaps[i];
1426 gpm = (struct genericPartitionMap *)
1427 &(lvd->partitionMaps[offset]);
1428 type = gpm->partitionMapType;
1429 if (type == 1) {
1430 struct genericPartitionMap1 *gpm1 =
1431 (struct genericPartitionMap1 *)gpm;
1432 map->s_partition_type = UDF_TYPE1_MAP15;
1433 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1434 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1435 map->s_partition_func = NULL;
1436 } else if (type == 2) {
1437 struct udfPartitionMap2 *upm2 =
1438 (struct udfPartitionMap2 *)gpm;
1439 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1440 strlen(UDF_ID_VIRTUAL))) {
1441 u16 suf =
1442 le16_to_cpu(((__le16 *)upm2->partIdent.
1443 identSuffix)[0]);
1444 if (suf < 0x0200) {
1445 map->s_partition_type =
1446 UDF_VIRTUAL_MAP15;
1447 map->s_partition_func =
1448 udf_get_pblock_virt15;
1449 } else {
1450 map->s_partition_type =
1451 UDF_VIRTUAL_MAP20;
1452 map->s_partition_func =
1453 udf_get_pblock_virt20;
1454 }
1455 } else if (!strncmp(upm2->partIdent.ident,
1456 UDF_ID_SPARABLE,
1457 strlen(UDF_ID_SPARABLE))) {
1458 ret = udf_load_sparable_map(sb, map,
1459 (struct sparablePartitionMap *)gpm);
1460 if (ret < 0)
1461 goto out_bh;
1462 } else if (!strncmp(upm2->partIdent.ident,
1463 UDF_ID_METADATA,
1464 strlen(UDF_ID_METADATA))) {
1465 struct udf_meta_data *mdata =
1466 &map->s_type_specific.s_metadata;
1467 struct metadataPartitionMap *mdm =
1468 (struct metadataPartitionMap *)
1469 &(lvd->partitionMaps[offset]);
1470 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1471 i, type, UDF_ID_METADATA);
1472
1473 map->s_partition_type = UDF_METADATA_MAP25;
1474 map->s_partition_func = udf_get_pblock_meta25;
1475
1476 mdata->s_meta_file_loc =
1477 le32_to_cpu(mdm->metadataFileLoc);
1478 mdata->s_mirror_file_loc =
1479 le32_to_cpu(mdm->metadataMirrorFileLoc);
1480 mdata->s_bitmap_file_loc =
1481 le32_to_cpu(mdm->metadataBitmapFileLoc);
1482 mdata->s_alloc_unit_size =
1483 le32_to_cpu(mdm->allocUnitSize);
1484 mdata->s_align_unit_size =
1485 le16_to_cpu(mdm->alignUnitSize);
1486 if (mdm->flags & 0x01)
1487 mdata->s_flags |= MF_DUPLICATE_MD;
1488
1489 udf_debug("Metadata Ident suffix=0x%x\n",
1490 le16_to_cpu(*(__le16 *)
1491 mdm->partIdent.identSuffix));
1492 udf_debug("Metadata part num=%u\n",
1493 le16_to_cpu(mdm->partitionNum));
1494 udf_debug("Metadata part alloc unit size=%u\n",
1495 le32_to_cpu(mdm->allocUnitSize));
1496 udf_debug("Metadata file loc=%u\n",
1497 le32_to_cpu(mdm->metadataFileLoc));
1498 udf_debug("Mirror file loc=%u\n",
1499 le32_to_cpu(mdm->metadataMirrorFileLoc));
1500 udf_debug("Bitmap file loc=%u\n",
1501 le32_to_cpu(mdm->metadataBitmapFileLoc));
1502 udf_debug("Flags: %d %u\n",
1503 mdata->s_flags, mdm->flags);
1504 } else {
1505 udf_debug("Unknown ident: %s\n",
1506 upm2->partIdent.ident);
1507 continue;
1508 }
1509 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1510 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1511 }
1512 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1513 i, map->s_partition_num, type, map->s_volumeseqnum);
1514 }
1515
1516 if (fileset) {
1517 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1518
1519 *fileset = lelb_to_cpu(la->extLocation);
1520 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1521 fileset->logicalBlockNum,
1522 fileset->partitionReferenceNum);
1523 }
1524 if (lvd->integritySeqExt.extLength)
1525 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1526 ret = 0;
1527
1528 if (!sbi->s_lvid_bh) {
1529 /* We can't generate unique IDs without a valid LVID */
1530 if (sb_rdonly(sb)) {
1531 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1532 } else {
1533 udf_warn(sb, "Damaged or missing LVID, forcing "
1534 "readonly mount\n");
1535 ret = -EACCES;
1536 }
1537 }
1538 out_bh:
1539 brelse(bh);
1540 return ret;
1541 }
1542
1543 /*
1544 * Find the prevailing Logical Volume Integrity Descriptor.
1545 */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1546 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1547 {
1548 struct buffer_head *bh, *final_bh;
1549 uint16_t ident;
1550 struct udf_sb_info *sbi = UDF_SB(sb);
1551 struct logicalVolIntegrityDesc *lvid;
1552 int indirections = 0;
1553 u32 parts, impuselen;
1554
1555 while (++indirections <= UDF_MAX_LVID_NESTING) {
1556 final_bh = NULL;
1557 while (loc.extLength > 0 &&
1558 (bh = udf_read_tagged(sb, loc.extLocation,
1559 loc.extLocation, &ident))) {
1560 if (ident != TAG_IDENT_LVID) {
1561 brelse(bh);
1562 break;
1563 }
1564
1565 brelse(final_bh);
1566 final_bh = bh;
1567
1568 loc.extLength -= sb->s_blocksize;
1569 loc.extLocation++;
1570 }
1571
1572 if (!final_bh)
1573 return;
1574
1575 brelse(sbi->s_lvid_bh);
1576 sbi->s_lvid_bh = final_bh;
1577
1578 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1579 if (lvid->nextIntegrityExt.extLength == 0)
1580 goto check;
1581
1582 loc = leea_to_cpu(lvid->nextIntegrityExt);
1583 }
1584
1585 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1586 UDF_MAX_LVID_NESTING);
1587 out_err:
1588 brelse(sbi->s_lvid_bh);
1589 sbi->s_lvid_bh = NULL;
1590 return;
1591 check:
1592 parts = le32_to_cpu(lvid->numOfPartitions);
1593 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1594 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1595 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1596 2 * parts * sizeof(u32) > sb->s_blocksize) {
1597 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1598 "ignoring.\n", parts, impuselen);
1599 goto out_err;
1600 }
1601 }
1602
1603 /*
1604 * Step for reallocation of table of partition descriptor sequence numbers.
1605 * Must be power of 2.
1606 */
1607 #define PART_DESC_ALLOC_STEP 32
1608
1609 struct part_desc_seq_scan_data {
1610 struct udf_vds_record rec;
1611 u32 partnum;
1612 };
1613
1614 struct desc_seq_scan_data {
1615 struct udf_vds_record vds[VDS_POS_LENGTH];
1616 unsigned int size_part_descs;
1617 unsigned int num_part_descs;
1618 struct part_desc_seq_scan_data *part_descs_loc;
1619 };
1620
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1621 static struct udf_vds_record *handle_partition_descriptor(
1622 struct buffer_head *bh,
1623 struct desc_seq_scan_data *data)
1624 {
1625 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1626 int partnum;
1627 int i;
1628
1629 partnum = le16_to_cpu(desc->partitionNumber);
1630 for (i = 0; i < data->num_part_descs; i++)
1631 if (partnum == data->part_descs_loc[i].partnum)
1632 return &(data->part_descs_loc[i].rec);
1633 if (data->num_part_descs >= data->size_part_descs) {
1634 struct part_desc_seq_scan_data *new_loc;
1635 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1636
1637 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1638 if (!new_loc)
1639 return ERR_PTR(-ENOMEM);
1640 memcpy(new_loc, data->part_descs_loc,
1641 data->size_part_descs * sizeof(*new_loc));
1642 kfree(data->part_descs_loc);
1643 data->part_descs_loc = new_loc;
1644 data->size_part_descs = new_size;
1645 }
1646 return &(data->part_descs_loc[data->num_part_descs++].rec);
1647 }
1648
1649
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1650 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1651 struct buffer_head *bh, struct desc_seq_scan_data *data)
1652 {
1653 switch (ident) {
1654 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1655 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1656 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1657 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1658 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1659 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1660 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1661 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1662 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1663 return handle_partition_descriptor(bh, data);
1664 }
1665 return NULL;
1666 }
1667
1668 /*
1669 * Process a main/reserve volume descriptor sequence.
1670 * @block First block of first extent of the sequence.
1671 * @lastblock Lastblock of first extent of the sequence.
1672 * @fileset There we store extent containing root fileset
1673 *
1674 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1675 * sequence
1676 */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1677 static noinline int udf_process_sequence(
1678 struct super_block *sb,
1679 sector_t block, sector_t lastblock,
1680 struct kernel_lb_addr *fileset)
1681 {
1682 struct buffer_head *bh = NULL;
1683 struct udf_vds_record *curr;
1684 struct generic_desc *gd;
1685 struct volDescPtr *vdp;
1686 bool done = false;
1687 uint32_t vdsn;
1688 uint16_t ident;
1689 int ret;
1690 unsigned int indirections = 0;
1691 struct desc_seq_scan_data data;
1692 unsigned int i;
1693
1694 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1695 data.size_part_descs = PART_DESC_ALLOC_STEP;
1696 data.num_part_descs = 0;
1697 data.part_descs_loc = kcalloc(data.size_part_descs,
1698 sizeof(*data.part_descs_loc),
1699 GFP_KERNEL);
1700 if (!data.part_descs_loc)
1701 return -ENOMEM;
1702
1703 /*
1704 * Read the main descriptor sequence and find which descriptors
1705 * are in it.
1706 */
1707 for (; (!done && block <= lastblock); block++) {
1708 bh = udf_read_tagged(sb, block, block, &ident);
1709 if (!bh)
1710 break;
1711
1712 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1713 gd = (struct generic_desc *)bh->b_data;
1714 vdsn = le32_to_cpu(gd->volDescSeqNum);
1715 switch (ident) {
1716 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1717 if (++indirections > UDF_MAX_TD_NESTING) {
1718 udf_err(sb, "too many Volume Descriptor "
1719 "Pointers (max %u supported)\n",
1720 UDF_MAX_TD_NESTING);
1721 brelse(bh);
1722 ret = -EIO;
1723 goto out;
1724 }
1725
1726 vdp = (struct volDescPtr *)bh->b_data;
1727 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1728 lastblock = le32_to_cpu(
1729 vdp->nextVolDescSeqExt.extLength) >>
1730 sb->s_blocksize_bits;
1731 lastblock += block - 1;
1732 /* For loop is going to increment 'block' again */
1733 block--;
1734 break;
1735 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1736 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1737 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1738 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1739 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1740 curr = get_volume_descriptor_record(ident, bh, &data);
1741 if (IS_ERR(curr)) {
1742 brelse(bh);
1743 ret = PTR_ERR(curr);
1744 goto out;
1745 }
1746 /* Descriptor we don't care about? */
1747 if (!curr)
1748 break;
1749 if (vdsn >= curr->volDescSeqNum) {
1750 curr->volDescSeqNum = vdsn;
1751 curr->block = block;
1752 }
1753 break;
1754 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1755 done = true;
1756 break;
1757 }
1758 brelse(bh);
1759 }
1760 /*
1761 * Now read interesting descriptors again and process them
1762 * in a suitable order
1763 */
1764 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1765 udf_err(sb, "Primary Volume Descriptor not found!\n");
1766 ret = -EAGAIN;
1767 goto out;
1768 }
1769 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1770 if (ret < 0)
1771 goto out;
1772
1773 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1774 ret = udf_load_logicalvol(sb,
1775 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1776 fileset);
1777 if (ret < 0)
1778 goto out;
1779 }
1780
1781 /* Now handle prevailing Partition Descriptors */
1782 for (i = 0; i < data.num_part_descs; i++) {
1783 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1784 if (ret < 0)
1785 goto out;
1786 }
1787 ret = 0;
1788 out:
1789 kfree(data.part_descs_loc);
1790 return ret;
1791 }
1792
1793 /*
1794 * Load Volume Descriptor Sequence described by anchor in bh
1795 *
1796 * Returns <0 on error, 0 on success
1797 */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1798 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1799 struct kernel_lb_addr *fileset)
1800 {
1801 struct anchorVolDescPtr *anchor;
1802 sector_t main_s, main_e, reserve_s, reserve_e;
1803 int ret;
1804
1805 anchor = (struct anchorVolDescPtr *)bh->b_data;
1806
1807 /* Locate the main sequence */
1808 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1809 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1810 main_e = main_e >> sb->s_blocksize_bits;
1811 main_e += main_s - 1;
1812
1813 /* Locate the reserve sequence */
1814 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1815 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1816 reserve_e = reserve_e >> sb->s_blocksize_bits;
1817 reserve_e += reserve_s - 1;
1818
1819 /* Process the main & reserve sequences */
1820 /* responsible for finding the PartitionDesc(s) */
1821 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1822 if (ret != -EAGAIN)
1823 return ret;
1824 udf_sb_free_partitions(sb);
1825 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1826 if (ret < 0) {
1827 udf_sb_free_partitions(sb);
1828 /* No sequence was OK, return -EIO */
1829 if (ret == -EAGAIN)
1830 ret = -EIO;
1831 }
1832 return ret;
1833 }
1834
1835 /*
1836 * Check whether there is an anchor block in the given block and
1837 * load Volume Descriptor Sequence if so.
1838 *
1839 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1840 * block
1841 */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1842 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1843 struct kernel_lb_addr *fileset)
1844 {
1845 struct buffer_head *bh;
1846 uint16_t ident;
1847 int ret;
1848
1849 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1850 udf_fixed_to_variable(block) >=
1851 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1852 return -EAGAIN;
1853
1854 bh = udf_read_tagged(sb, block, block, &ident);
1855 if (!bh)
1856 return -EAGAIN;
1857 if (ident != TAG_IDENT_AVDP) {
1858 brelse(bh);
1859 return -EAGAIN;
1860 }
1861 ret = udf_load_sequence(sb, bh, fileset);
1862 brelse(bh);
1863 return ret;
1864 }
1865
1866 /*
1867 * Search for an anchor volume descriptor pointer.
1868 *
1869 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1870 * of anchors.
1871 */
udf_scan_anchors(struct super_block * sb,sector_t * lastblock,struct kernel_lb_addr * fileset)1872 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1873 struct kernel_lb_addr *fileset)
1874 {
1875 sector_t last[6];
1876 int i;
1877 struct udf_sb_info *sbi = UDF_SB(sb);
1878 int last_count = 0;
1879 int ret;
1880
1881 /* First try user provided anchor */
1882 if (sbi->s_anchor) {
1883 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1884 if (ret != -EAGAIN)
1885 return ret;
1886 }
1887 /*
1888 * according to spec, anchor is in either:
1889 * block 256
1890 * lastblock-256
1891 * lastblock
1892 * however, if the disc isn't closed, it could be 512.
1893 */
1894 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1895 if (ret != -EAGAIN)
1896 return ret;
1897 /*
1898 * The trouble is which block is the last one. Drives often misreport
1899 * this so we try various possibilities.
1900 */
1901 last[last_count++] = *lastblock;
1902 if (*lastblock >= 1)
1903 last[last_count++] = *lastblock - 1;
1904 last[last_count++] = *lastblock + 1;
1905 if (*lastblock >= 2)
1906 last[last_count++] = *lastblock - 2;
1907 if (*lastblock >= 150)
1908 last[last_count++] = *lastblock - 150;
1909 if (*lastblock >= 152)
1910 last[last_count++] = *lastblock - 152;
1911
1912 for (i = 0; i < last_count; i++) {
1913 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1914 sb->s_blocksize_bits)
1915 continue;
1916 ret = udf_check_anchor_block(sb, last[i], fileset);
1917 if (ret != -EAGAIN) {
1918 if (!ret)
1919 *lastblock = last[i];
1920 return ret;
1921 }
1922 if (last[i] < 256)
1923 continue;
1924 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1925 if (ret != -EAGAIN) {
1926 if (!ret)
1927 *lastblock = last[i];
1928 return ret;
1929 }
1930 }
1931
1932 /* Finally try block 512 in case media is open */
1933 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1934 }
1935
1936 /*
1937 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1938 * area specified by it. The function expects sbi->s_lastblock to be the last
1939 * block on the media.
1940 *
1941 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1942 * was not found.
1943 */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1944 static int udf_find_anchor(struct super_block *sb,
1945 struct kernel_lb_addr *fileset)
1946 {
1947 struct udf_sb_info *sbi = UDF_SB(sb);
1948 sector_t lastblock = sbi->s_last_block;
1949 int ret;
1950
1951 ret = udf_scan_anchors(sb, &lastblock, fileset);
1952 if (ret != -EAGAIN)
1953 goto out;
1954
1955 /* No anchor found? Try VARCONV conversion of block numbers */
1956 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1957 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1958 /* Firstly, we try to not convert number of the last block */
1959 ret = udf_scan_anchors(sb, &lastblock, fileset);
1960 if (ret != -EAGAIN)
1961 goto out;
1962
1963 lastblock = sbi->s_last_block;
1964 /* Secondly, we try with converted number of the last block */
1965 ret = udf_scan_anchors(sb, &lastblock, fileset);
1966 if (ret < 0) {
1967 /* VARCONV didn't help. Clear it. */
1968 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1969 }
1970 out:
1971 if (ret == 0)
1972 sbi->s_last_block = lastblock;
1973 return ret;
1974 }
1975
1976 /*
1977 * Check Volume Structure Descriptor, find Anchor block and load Volume
1978 * Descriptor Sequence.
1979 *
1980 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1981 * block was not found.
1982 */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1983 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1984 int silent, struct kernel_lb_addr *fileset)
1985 {
1986 struct udf_sb_info *sbi = UDF_SB(sb);
1987 int nsr = 0;
1988 int ret;
1989
1990 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1991 if (!silent)
1992 udf_warn(sb, "Bad block size\n");
1993 return -EINVAL;
1994 }
1995 sbi->s_last_block = uopt->lastblock;
1996 if (!uopt->novrs) {
1997 /* Check that it is NSR02 compliant */
1998 nsr = udf_check_vsd(sb);
1999 if (!nsr) {
2000 if (!silent)
2001 udf_warn(sb, "No VRS found\n");
2002 return -EINVAL;
2003 }
2004 if (nsr == -1)
2005 udf_debug("Failed to read sector at offset %d. "
2006 "Assuming open disc. Skipping validity "
2007 "check\n", VSD_FIRST_SECTOR_OFFSET);
2008 if (!sbi->s_last_block)
2009 sbi->s_last_block = udf_get_last_block(sb);
2010 } else {
2011 udf_debug("Validity check skipped because of novrs option\n");
2012 }
2013
2014 /* Look for anchor block and load Volume Descriptor Sequence */
2015 sbi->s_anchor = uopt->anchor;
2016 ret = udf_find_anchor(sb, fileset);
2017 if (ret < 0) {
2018 if (!silent && ret == -EAGAIN)
2019 udf_warn(sb, "No anchor found\n");
2020 return ret;
2021 }
2022 return 0;
2023 }
2024
udf_finalize_lvid(struct logicalVolIntegrityDesc * lvid)2025 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2026 {
2027 struct timespec64 ts;
2028
2029 ktime_get_real_ts64(&ts);
2030 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2031 lvid->descTag.descCRC = cpu_to_le16(
2032 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2033 le16_to_cpu(lvid->descTag.descCRCLength)));
2034 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2035 }
2036
udf_open_lvid(struct super_block * sb)2037 static void udf_open_lvid(struct super_block *sb)
2038 {
2039 struct udf_sb_info *sbi = UDF_SB(sb);
2040 struct buffer_head *bh = sbi->s_lvid_bh;
2041 struct logicalVolIntegrityDesc *lvid;
2042 struct logicalVolIntegrityDescImpUse *lvidiu;
2043
2044 if (!bh)
2045 return;
2046 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2047 lvidiu = udf_sb_lvidiu(sb);
2048 if (!lvidiu)
2049 return;
2050
2051 mutex_lock(&sbi->s_alloc_mutex);
2052 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2053 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2054 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2055 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2056 else
2057 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2058
2059 udf_finalize_lvid(lvid);
2060 mark_buffer_dirty(bh);
2061 sbi->s_lvid_dirty = 0;
2062 mutex_unlock(&sbi->s_alloc_mutex);
2063 /* Make opening of filesystem visible on the media immediately */
2064 sync_dirty_buffer(bh);
2065 }
2066
udf_close_lvid(struct super_block * sb)2067 static void udf_close_lvid(struct super_block *sb)
2068 {
2069 struct udf_sb_info *sbi = UDF_SB(sb);
2070 struct buffer_head *bh = sbi->s_lvid_bh;
2071 struct logicalVolIntegrityDesc *lvid;
2072 struct logicalVolIntegrityDescImpUse *lvidiu;
2073
2074 if (!bh)
2075 return;
2076 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2077 lvidiu = udf_sb_lvidiu(sb);
2078 if (!lvidiu)
2079 return;
2080
2081 mutex_lock(&sbi->s_alloc_mutex);
2082 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2083 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2084 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2085 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2086 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2087 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2088 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2089 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2090 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2091 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2092
2093 /*
2094 * We set buffer uptodate unconditionally here to avoid spurious
2095 * warnings from mark_buffer_dirty() when previous EIO has marked
2096 * the buffer as !uptodate
2097 */
2098 set_buffer_uptodate(bh);
2099 udf_finalize_lvid(lvid);
2100 mark_buffer_dirty(bh);
2101 sbi->s_lvid_dirty = 0;
2102 mutex_unlock(&sbi->s_alloc_mutex);
2103 /* Make closing of filesystem visible on the media immediately */
2104 sync_dirty_buffer(bh);
2105 }
2106
lvid_get_unique_id(struct super_block * sb)2107 u64 lvid_get_unique_id(struct super_block *sb)
2108 {
2109 struct buffer_head *bh;
2110 struct udf_sb_info *sbi = UDF_SB(sb);
2111 struct logicalVolIntegrityDesc *lvid;
2112 struct logicalVolHeaderDesc *lvhd;
2113 u64 uniqueID;
2114 u64 ret;
2115
2116 bh = sbi->s_lvid_bh;
2117 if (!bh)
2118 return 0;
2119
2120 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2121 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2122
2123 mutex_lock(&sbi->s_alloc_mutex);
2124 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2125 if (!(++uniqueID & 0xFFFFFFFF))
2126 uniqueID += 16;
2127 lvhd->uniqueID = cpu_to_le64(uniqueID);
2128 udf_updated_lvid(sb);
2129 mutex_unlock(&sbi->s_alloc_mutex);
2130
2131 return ret;
2132 }
2133
udf_fill_super(struct super_block * sb,void * options,int silent)2134 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2135 {
2136 int ret = -EINVAL;
2137 struct inode *inode = NULL;
2138 struct udf_options uopt;
2139 struct kernel_lb_addr rootdir, fileset;
2140 struct udf_sb_info *sbi;
2141 bool lvid_open = false;
2142
2143 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2144 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2145 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2146 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2147 uopt.umask = 0;
2148 uopt.fmode = UDF_INVALID_MODE;
2149 uopt.dmode = UDF_INVALID_MODE;
2150 uopt.nls_map = NULL;
2151
2152 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2153 if (!sbi)
2154 return -ENOMEM;
2155
2156 sb->s_fs_info = sbi;
2157
2158 mutex_init(&sbi->s_alloc_mutex);
2159
2160 if (!udf_parse_options((char *)options, &uopt, false))
2161 goto parse_options_failure;
2162
2163 fileset.logicalBlockNum = 0xFFFFFFFF;
2164 fileset.partitionReferenceNum = 0xFFFF;
2165
2166 sbi->s_flags = uopt.flags;
2167 sbi->s_uid = uopt.uid;
2168 sbi->s_gid = uopt.gid;
2169 sbi->s_umask = uopt.umask;
2170 sbi->s_fmode = uopt.fmode;
2171 sbi->s_dmode = uopt.dmode;
2172 sbi->s_nls_map = uopt.nls_map;
2173 rwlock_init(&sbi->s_cred_lock);
2174
2175 if (uopt.session == 0xFFFFFFFF)
2176 sbi->s_session = udf_get_last_session(sb);
2177 else
2178 sbi->s_session = uopt.session;
2179
2180 udf_debug("Multi-session=%d\n", sbi->s_session);
2181
2182 /* Fill in the rest of the superblock */
2183 sb->s_op = &udf_sb_ops;
2184 sb->s_export_op = &udf_export_ops;
2185
2186 sb->s_magic = UDF_SUPER_MAGIC;
2187 sb->s_time_gran = 1000;
2188
2189 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2190 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2191 } else {
2192 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2193 while (uopt.blocksize <= 4096) {
2194 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2195 if (ret < 0) {
2196 if (!silent && ret != -EACCES) {
2197 pr_notice("Scanning with blocksize %u failed\n",
2198 uopt.blocksize);
2199 }
2200 brelse(sbi->s_lvid_bh);
2201 sbi->s_lvid_bh = NULL;
2202 /*
2203 * EACCES is special - we want to propagate to
2204 * upper layers that we cannot handle RW mount.
2205 */
2206 if (ret == -EACCES)
2207 break;
2208 } else
2209 break;
2210
2211 uopt.blocksize <<= 1;
2212 }
2213 }
2214 if (ret < 0) {
2215 if (ret == -EAGAIN) {
2216 udf_warn(sb, "No partition found (1)\n");
2217 ret = -EINVAL;
2218 }
2219 goto error_out;
2220 }
2221
2222 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2223
2224 if (sbi->s_lvid_bh) {
2225 struct logicalVolIntegrityDescImpUse *lvidiu =
2226 udf_sb_lvidiu(sb);
2227 uint16_t minUDFReadRev;
2228 uint16_t minUDFWriteRev;
2229
2230 if (!lvidiu) {
2231 ret = -EINVAL;
2232 goto error_out;
2233 }
2234 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2235 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2236 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2237 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2238 minUDFReadRev,
2239 UDF_MAX_READ_VERSION);
2240 ret = -EINVAL;
2241 goto error_out;
2242 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2243 if (!sb_rdonly(sb)) {
2244 ret = -EACCES;
2245 goto error_out;
2246 }
2247 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2248 }
2249
2250 sbi->s_udfrev = minUDFWriteRev;
2251
2252 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2253 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2254 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2255 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2256 }
2257
2258 if (!sbi->s_partitions) {
2259 udf_warn(sb, "No partition found (2)\n");
2260 ret = -EINVAL;
2261 goto error_out;
2262 }
2263
2264 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2265 UDF_PART_FLAG_READ_ONLY) {
2266 if (!sb_rdonly(sb)) {
2267 ret = -EACCES;
2268 goto error_out;
2269 }
2270 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2271 }
2272
2273 ret = udf_find_fileset(sb, &fileset, &rootdir);
2274 if (ret < 0) {
2275 udf_warn(sb, "No fileset found\n");
2276 goto error_out;
2277 }
2278
2279 if (!silent) {
2280 struct timestamp ts;
2281 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2282 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2283 sbi->s_volume_ident,
2284 le16_to_cpu(ts.year), ts.month, ts.day,
2285 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2286 }
2287 if (!sb_rdonly(sb)) {
2288 udf_open_lvid(sb);
2289 lvid_open = true;
2290 }
2291
2292 /* Assign the root inode */
2293 /* assign inodes by physical block number */
2294 /* perhaps it's not extensible enough, but for now ... */
2295 inode = udf_iget(sb, &rootdir);
2296 if (IS_ERR(inode)) {
2297 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2298 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2299 ret = PTR_ERR(inode);
2300 goto error_out;
2301 }
2302
2303 /* Allocate a dentry for the root inode */
2304 sb->s_root = d_make_root(inode);
2305 if (!sb->s_root) {
2306 udf_err(sb, "Couldn't allocate root dentry\n");
2307 ret = -ENOMEM;
2308 goto error_out;
2309 }
2310 sb->s_maxbytes = MAX_LFS_FILESIZE;
2311 sb->s_max_links = UDF_MAX_LINKS;
2312 return 0;
2313
2314 error_out:
2315 iput(sbi->s_vat_inode);
2316 parse_options_failure:
2317 unload_nls(uopt.nls_map);
2318 if (lvid_open)
2319 udf_close_lvid(sb);
2320 brelse(sbi->s_lvid_bh);
2321 udf_sb_free_partitions(sb);
2322 kfree(sbi);
2323 sb->s_fs_info = NULL;
2324
2325 return ret;
2326 }
2327
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2328 void _udf_err(struct super_block *sb, const char *function,
2329 const char *fmt, ...)
2330 {
2331 struct va_format vaf;
2332 va_list args;
2333
2334 va_start(args, fmt);
2335
2336 vaf.fmt = fmt;
2337 vaf.va = &args;
2338
2339 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2340
2341 va_end(args);
2342 }
2343
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2344 void _udf_warn(struct super_block *sb, const char *function,
2345 const char *fmt, ...)
2346 {
2347 struct va_format vaf;
2348 va_list args;
2349
2350 va_start(args, fmt);
2351
2352 vaf.fmt = fmt;
2353 vaf.va = &args;
2354
2355 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2356
2357 va_end(args);
2358 }
2359
udf_put_super(struct super_block * sb)2360 static void udf_put_super(struct super_block *sb)
2361 {
2362 struct udf_sb_info *sbi;
2363
2364 sbi = UDF_SB(sb);
2365
2366 iput(sbi->s_vat_inode);
2367 unload_nls(sbi->s_nls_map);
2368 if (!sb_rdonly(sb))
2369 udf_close_lvid(sb);
2370 brelse(sbi->s_lvid_bh);
2371 udf_sb_free_partitions(sb);
2372 mutex_destroy(&sbi->s_alloc_mutex);
2373 kfree(sb->s_fs_info);
2374 sb->s_fs_info = NULL;
2375 }
2376
udf_sync_fs(struct super_block * sb,int wait)2377 static int udf_sync_fs(struct super_block *sb, int wait)
2378 {
2379 struct udf_sb_info *sbi = UDF_SB(sb);
2380
2381 mutex_lock(&sbi->s_alloc_mutex);
2382 if (sbi->s_lvid_dirty) {
2383 struct buffer_head *bh = sbi->s_lvid_bh;
2384 struct logicalVolIntegrityDesc *lvid;
2385
2386 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2387 udf_finalize_lvid(lvid);
2388
2389 /*
2390 * Blockdevice will be synced later so we don't have to submit
2391 * the buffer for IO
2392 */
2393 mark_buffer_dirty(bh);
2394 sbi->s_lvid_dirty = 0;
2395 }
2396 mutex_unlock(&sbi->s_alloc_mutex);
2397
2398 return 0;
2399 }
2400
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2401 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2402 {
2403 struct super_block *sb = dentry->d_sb;
2404 struct udf_sb_info *sbi = UDF_SB(sb);
2405 struct logicalVolIntegrityDescImpUse *lvidiu;
2406 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2407
2408 lvidiu = udf_sb_lvidiu(sb);
2409 buf->f_type = UDF_SUPER_MAGIC;
2410 buf->f_bsize = sb->s_blocksize;
2411 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2412 buf->f_bfree = udf_count_free(sb);
2413 buf->f_bavail = buf->f_bfree;
2414 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2415 le32_to_cpu(lvidiu->numDirs)) : 0)
2416 + buf->f_bfree;
2417 buf->f_ffree = buf->f_bfree;
2418 buf->f_namelen = UDF_NAME_LEN;
2419 buf->f_fsid.val[0] = (u32)id;
2420 buf->f_fsid.val[1] = (u32)(id >> 32);
2421
2422 return 0;
2423 }
2424
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2425 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2426 struct udf_bitmap *bitmap)
2427 {
2428 struct buffer_head *bh = NULL;
2429 unsigned int accum = 0;
2430 int index;
2431 udf_pblk_t block = 0, newblock;
2432 struct kernel_lb_addr loc;
2433 uint32_t bytes;
2434 uint8_t *ptr;
2435 uint16_t ident;
2436 struct spaceBitmapDesc *bm;
2437
2438 loc.logicalBlockNum = bitmap->s_extPosition;
2439 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2440 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2441
2442 if (!bh) {
2443 udf_err(sb, "udf_count_free failed\n");
2444 goto out;
2445 } else if (ident != TAG_IDENT_SBD) {
2446 brelse(bh);
2447 udf_err(sb, "udf_count_free failed\n");
2448 goto out;
2449 }
2450
2451 bm = (struct spaceBitmapDesc *)bh->b_data;
2452 bytes = le32_to_cpu(bm->numOfBytes);
2453 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2454 ptr = (uint8_t *)bh->b_data;
2455
2456 while (bytes > 0) {
2457 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2458 accum += bitmap_weight((const unsigned long *)(ptr + index),
2459 cur_bytes * 8);
2460 bytes -= cur_bytes;
2461 if (bytes) {
2462 brelse(bh);
2463 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2464 bh = udf_tread(sb, newblock);
2465 if (!bh) {
2466 udf_debug("read failed\n");
2467 goto out;
2468 }
2469 index = 0;
2470 ptr = (uint8_t *)bh->b_data;
2471 }
2472 }
2473 brelse(bh);
2474 out:
2475 return accum;
2476 }
2477
udf_count_free_table(struct super_block * sb,struct inode * table)2478 static unsigned int udf_count_free_table(struct super_block *sb,
2479 struct inode *table)
2480 {
2481 unsigned int accum = 0;
2482 uint32_t elen;
2483 struct kernel_lb_addr eloc;
2484 int8_t etype;
2485 struct extent_position epos;
2486
2487 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2488 epos.block = UDF_I(table)->i_location;
2489 epos.offset = sizeof(struct unallocSpaceEntry);
2490 epos.bh = NULL;
2491
2492 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2493 accum += (elen >> table->i_sb->s_blocksize_bits);
2494
2495 brelse(epos.bh);
2496 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2497
2498 return accum;
2499 }
2500
udf_count_free(struct super_block * sb)2501 static unsigned int udf_count_free(struct super_block *sb)
2502 {
2503 unsigned int accum = 0;
2504 struct udf_sb_info *sbi = UDF_SB(sb);
2505 struct udf_part_map *map;
2506 unsigned int part = sbi->s_partition;
2507 int ptype = sbi->s_partmaps[part].s_partition_type;
2508
2509 if (ptype == UDF_METADATA_MAP25) {
2510 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2511 s_phys_partition_ref;
2512 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2513 /*
2514 * Filesystems with VAT are append-only and we cannot write to
2515 * them. Let's just report 0 here.
2516 */
2517 return 0;
2518 }
2519
2520 if (sbi->s_lvid_bh) {
2521 struct logicalVolIntegrityDesc *lvid =
2522 (struct logicalVolIntegrityDesc *)
2523 sbi->s_lvid_bh->b_data;
2524 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2525 accum = le32_to_cpu(
2526 lvid->freeSpaceTable[part]);
2527 if (accum == 0xFFFFFFFF)
2528 accum = 0;
2529 }
2530 }
2531
2532 if (accum)
2533 return accum;
2534
2535 map = &sbi->s_partmaps[part];
2536 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2537 accum += udf_count_free_bitmap(sb,
2538 map->s_uspace.s_bitmap);
2539 }
2540 if (accum)
2541 return accum;
2542
2543 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2544 accum += udf_count_free_table(sb,
2545 map->s_uspace.s_table);
2546 }
2547 return accum;
2548 }
2549
2550 MODULE_AUTHOR("Ben Fennema");
2551 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2552 MODULE_LICENSE("GPL");
2553 module_init(init_udf_fs)
2554 module_exit(exit_udf_fs)
2555