• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * Copyright (c) 2012 Red Hat, Inc.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_bit.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_btree.h"
18 #include "xfs_trans.h"
19 #include "xfs_alloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_bmap_btree.h"
23 #include "xfs_rtalloc.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_trans_space.h"
27 #include "xfs_trace.h"
28 #include "xfs_icache.h"
29 #include "xfs_iomap.h"
30 #include "xfs_reflink.h"
31 
32 /* Kernel only BMAP related definitions and functions */
33 
34 /*
35  * Convert the given file system block to a disk block.  We have to treat it
36  * differently based on whether the file is a real time file or not, because the
37  * bmap code does.
38  */
39 xfs_daddr_t
xfs_fsb_to_db(struct xfs_inode * ip,xfs_fsblock_t fsb)40 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
41 {
42 	if (XFS_IS_REALTIME_INODE(ip))
43 		return XFS_FSB_TO_BB(ip->i_mount, fsb);
44 	return XFS_FSB_TO_DADDR(ip->i_mount, fsb);
45 }
46 
47 /*
48  * Routine to zero an extent on disk allocated to the specific inode.
49  *
50  * The VFS functions take a linearised filesystem block offset, so we have to
51  * convert the sparse xfs fsb to the right format first.
52  * VFS types are real funky, too.
53  */
54 int
xfs_zero_extent(struct xfs_inode * ip,xfs_fsblock_t start_fsb,xfs_off_t count_fsb)55 xfs_zero_extent(
56 	struct xfs_inode *ip,
57 	xfs_fsblock_t	start_fsb,
58 	xfs_off_t	count_fsb)
59 {
60 	struct xfs_mount *mp = ip->i_mount;
61 	xfs_daddr_t	sector = xfs_fsb_to_db(ip, start_fsb);
62 	sector_t	block = XFS_BB_TO_FSBT(mp, sector);
63 
64 	return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)),
65 		block << (mp->m_super->s_blocksize_bits - 9),
66 		count_fsb << (mp->m_super->s_blocksize_bits - 9),
67 		GFP_NOFS, 0);
68 }
69 
70 #ifdef CONFIG_XFS_RT
71 int
xfs_bmap_rtalloc(struct xfs_bmalloca * ap)72 xfs_bmap_rtalloc(
73 	struct xfs_bmalloca	*ap)	/* bmap alloc argument struct */
74 {
75 	int		error;		/* error return value */
76 	xfs_mount_t	*mp;		/* mount point structure */
77 	xfs_extlen_t	prod = 0;	/* product factor for allocators */
78 	xfs_extlen_t	mod = 0;	/* product factor for allocators */
79 	xfs_extlen_t	ralen = 0;	/* realtime allocation length */
80 	xfs_extlen_t	align;		/* minimum allocation alignment */
81 	xfs_rtblock_t	rtb;
82 
83 	mp = ap->ip->i_mount;
84 	align = xfs_get_extsz_hint(ap->ip);
85 	prod = align / mp->m_sb.sb_rextsize;
86 	error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
87 					align, 1, ap->eof, 0,
88 					ap->conv, &ap->offset, &ap->length);
89 	if (error)
90 		return error;
91 	ASSERT(ap->length);
92 	ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
93 
94 	/*
95 	 * If the offset & length are not perfectly aligned
96 	 * then kill prod, it will just get us in trouble.
97 	 */
98 	div_u64_rem(ap->offset, align, &mod);
99 	if (mod || ap->length % align)
100 		prod = 1;
101 	/*
102 	 * Set ralen to be the actual requested length in rtextents.
103 	 */
104 	ralen = ap->length / mp->m_sb.sb_rextsize;
105 	/*
106 	 * If the old value was close enough to MAXEXTLEN that
107 	 * we rounded up to it, cut it back so it's valid again.
108 	 * Note that if it's a really large request (bigger than
109 	 * MAXEXTLEN), we don't hear about that number, and can't
110 	 * adjust the starting point to match it.
111 	 */
112 	if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
113 		ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
114 
115 	/*
116 	 * Lock out modifications to both the RT bitmap and summary inodes
117 	 */
118 	xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP);
119 	xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
120 	xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM);
121 	xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL);
122 
123 	/*
124 	 * If it's an allocation to an empty file at offset 0,
125 	 * pick an extent that will space things out in the rt area.
126 	 */
127 	if (ap->eof && ap->offset == 0) {
128 		xfs_rtblock_t rtx; /* realtime extent no */
129 
130 		error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
131 		if (error)
132 			return error;
133 		ap->blkno = rtx * mp->m_sb.sb_rextsize;
134 	} else {
135 		ap->blkno = 0;
136 	}
137 
138 	xfs_bmap_adjacent(ap);
139 
140 	/*
141 	 * Realtime allocation, done through xfs_rtallocate_extent.
142 	 */
143 	do_div(ap->blkno, mp->m_sb.sb_rextsize);
144 	rtb = ap->blkno;
145 	ap->length = ralen;
146 	error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
147 				&ralen, ap->wasdel, prod, &rtb);
148 	if (error)
149 		return error;
150 
151 	ap->blkno = rtb;
152 	if (ap->blkno != NULLFSBLOCK) {
153 		ap->blkno *= mp->m_sb.sb_rextsize;
154 		ralen *= mp->m_sb.sb_rextsize;
155 		ap->length = ralen;
156 		ap->ip->i_d.di_nblocks += ralen;
157 		xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
158 		if (ap->wasdel)
159 			ap->ip->i_delayed_blks -= ralen;
160 		/*
161 		 * Adjust the disk quota also. This was reserved
162 		 * earlier.
163 		 */
164 		xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
165 			ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
166 					XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
167 
168 		/* Zero the extent if we were asked to do so */
169 		if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) {
170 			error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
171 			if (error)
172 				return error;
173 		}
174 	} else {
175 		ap->length = 0;
176 	}
177 	return 0;
178 }
179 #endif /* CONFIG_XFS_RT */
180 
181 /*
182  * Check if the endoff is outside the last extent. If so the caller will grow
183  * the allocation to a stripe unit boundary.  All offsets are considered outside
184  * the end of file for an empty fork, so 1 is returned in *eof in that case.
185  */
186 int
xfs_bmap_eof(struct xfs_inode * ip,xfs_fileoff_t endoff,int whichfork,int * eof)187 xfs_bmap_eof(
188 	struct xfs_inode	*ip,
189 	xfs_fileoff_t		endoff,
190 	int			whichfork,
191 	int			*eof)
192 {
193 	struct xfs_bmbt_irec	rec;
194 	int			error;
195 
196 	error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
197 	if (error || *eof)
198 		return error;
199 
200 	*eof = endoff >= rec.br_startoff + rec.br_blockcount;
201 	return 0;
202 }
203 
204 /*
205  * Extent tree block counting routines.
206  */
207 
208 /*
209  * Count leaf blocks given a range of extent records.  Delayed allocation
210  * extents are not counted towards the totals.
211  */
212 xfs_extnum_t
xfs_bmap_count_leaves(struct xfs_ifork * ifp,xfs_filblks_t * count)213 xfs_bmap_count_leaves(
214 	struct xfs_ifork	*ifp,
215 	xfs_filblks_t		*count)
216 {
217 	struct xfs_iext_cursor	icur;
218 	struct xfs_bmbt_irec	got;
219 	xfs_extnum_t		numrecs = 0;
220 
221 	for_each_xfs_iext(ifp, &icur, &got) {
222 		if (!isnullstartblock(got.br_startblock)) {
223 			*count += got.br_blockcount;
224 			numrecs++;
225 		}
226 	}
227 
228 	return numrecs;
229 }
230 
231 /*
232  * Count leaf blocks given a range of extent records originally
233  * in btree format.
234  */
235 STATIC void
xfs_bmap_disk_count_leaves(struct xfs_mount * mp,struct xfs_btree_block * block,int numrecs,xfs_filblks_t * count)236 xfs_bmap_disk_count_leaves(
237 	struct xfs_mount	*mp,
238 	struct xfs_btree_block	*block,
239 	int			numrecs,
240 	xfs_filblks_t		*count)
241 {
242 	int		b;
243 	xfs_bmbt_rec_t	*frp;
244 
245 	for (b = 1; b <= numrecs; b++) {
246 		frp = XFS_BMBT_REC_ADDR(mp, block, b);
247 		*count += xfs_bmbt_disk_get_blockcount(frp);
248 	}
249 }
250 
251 /*
252  * Recursively walks each level of a btree
253  * to count total fsblocks in use.
254  */
255 STATIC int
xfs_bmap_count_tree(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_ifork * ifp,xfs_fsblock_t blockno,int levelin,xfs_extnum_t * nextents,xfs_filblks_t * count)256 xfs_bmap_count_tree(
257 	struct xfs_mount	*mp,
258 	struct xfs_trans	*tp,
259 	struct xfs_ifork	*ifp,
260 	xfs_fsblock_t		blockno,
261 	int			levelin,
262 	xfs_extnum_t		*nextents,
263 	xfs_filblks_t		*count)
264 {
265 	int			error;
266 	struct xfs_buf		*bp, *nbp;
267 	int			level = levelin;
268 	__be64			*pp;
269 	xfs_fsblock_t           bno = blockno;
270 	xfs_fsblock_t		nextbno;
271 	struct xfs_btree_block	*block, *nextblock;
272 	int			numrecs;
273 
274 	error = xfs_btree_read_bufl(mp, tp, bno, &bp, XFS_BMAP_BTREE_REF,
275 						&xfs_bmbt_buf_ops);
276 	if (error)
277 		return error;
278 	*count += 1;
279 	block = XFS_BUF_TO_BLOCK(bp);
280 
281 	if (--level) {
282 		/* Not at node above leaves, count this level of nodes */
283 		nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
284 		while (nextbno != NULLFSBLOCK) {
285 			error = xfs_btree_read_bufl(mp, tp, nextbno, &nbp,
286 						XFS_BMAP_BTREE_REF,
287 						&xfs_bmbt_buf_ops);
288 			if (error)
289 				return error;
290 			*count += 1;
291 			nextblock = XFS_BUF_TO_BLOCK(nbp);
292 			nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
293 			xfs_trans_brelse(tp, nbp);
294 		}
295 
296 		/* Dive to the next level */
297 		pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
298 		bno = be64_to_cpu(*pp);
299 		error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, nextents,
300 				count);
301 		if (error) {
302 			xfs_trans_brelse(tp, bp);
303 			XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
304 					 XFS_ERRLEVEL_LOW, mp);
305 			return -EFSCORRUPTED;
306 		}
307 		xfs_trans_brelse(tp, bp);
308 	} else {
309 		/* count all level 1 nodes and their leaves */
310 		for (;;) {
311 			nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
312 			numrecs = be16_to_cpu(block->bb_numrecs);
313 			(*nextents) += numrecs;
314 			xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
315 			xfs_trans_brelse(tp, bp);
316 			if (nextbno == NULLFSBLOCK)
317 				break;
318 			bno = nextbno;
319 			error = xfs_btree_read_bufl(mp, tp, bno, &bp,
320 						XFS_BMAP_BTREE_REF,
321 						&xfs_bmbt_buf_ops);
322 			if (error)
323 				return error;
324 			*count += 1;
325 			block = XFS_BUF_TO_BLOCK(bp);
326 		}
327 	}
328 	return 0;
329 }
330 
331 /*
332  * Count fsblocks of the given fork.  Delayed allocation extents are
333  * not counted towards the totals.
334  */
335 int
xfs_bmap_count_blocks(struct xfs_trans * tp,struct xfs_inode * ip,int whichfork,xfs_extnum_t * nextents,xfs_filblks_t * count)336 xfs_bmap_count_blocks(
337 	struct xfs_trans	*tp,
338 	struct xfs_inode	*ip,
339 	int			whichfork,
340 	xfs_extnum_t		*nextents,
341 	xfs_filblks_t		*count)
342 {
343 	struct xfs_mount	*mp;	/* file system mount structure */
344 	__be64			*pp;	/* pointer to block address */
345 	struct xfs_btree_block	*block;	/* current btree block */
346 	struct xfs_ifork	*ifp;	/* fork structure */
347 	xfs_fsblock_t		bno;	/* block # of "block" */
348 	int			level;	/* btree level, for checking */
349 	int			error;
350 
351 	bno = NULLFSBLOCK;
352 	mp = ip->i_mount;
353 	*nextents = 0;
354 	*count = 0;
355 	ifp = XFS_IFORK_PTR(ip, whichfork);
356 	if (!ifp)
357 		return 0;
358 
359 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
360 	case XFS_DINODE_FMT_EXTENTS:
361 		*nextents = xfs_bmap_count_leaves(ifp, count);
362 		return 0;
363 	case XFS_DINODE_FMT_BTREE:
364 		if (!(ifp->if_flags & XFS_IFEXTENTS)) {
365 			error = xfs_iread_extents(tp, ip, whichfork);
366 			if (error)
367 				return error;
368 		}
369 
370 		/*
371 		 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
372 		 */
373 		block = ifp->if_broot;
374 		level = be16_to_cpu(block->bb_level);
375 		ASSERT(level > 0);
376 		pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
377 		bno = be64_to_cpu(*pp);
378 		ASSERT(bno != NULLFSBLOCK);
379 		ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
380 		ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
381 
382 		error = xfs_bmap_count_tree(mp, tp, ifp, bno, level,
383 				nextents, count);
384 		if (error) {
385 			XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)",
386 					XFS_ERRLEVEL_LOW, mp);
387 			return -EFSCORRUPTED;
388 		}
389 		return 0;
390 	}
391 
392 	return 0;
393 }
394 
395 static int
xfs_getbmap_report_one(struct xfs_inode * ip,struct getbmapx * bmv,struct kgetbmap * out,int64_t bmv_end,struct xfs_bmbt_irec * got)396 xfs_getbmap_report_one(
397 	struct xfs_inode	*ip,
398 	struct getbmapx		*bmv,
399 	struct kgetbmap		*out,
400 	int64_t			bmv_end,
401 	struct xfs_bmbt_irec	*got)
402 {
403 	struct kgetbmap		*p = out + bmv->bmv_entries;
404 	bool			shared = false;
405 	int			error;
406 
407 	error = xfs_reflink_trim_around_shared(ip, got, &shared);
408 	if (error)
409 		return error;
410 
411 	if (isnullstartblock(got->br_startblock) ||
412 	    got->br_startblock == DELAYSTARTBLOCK) {
413 		/*
414 		 * Delalloc extents that start beyond EOF can occur due to
415 		 * speculative EOF allocation when the delalloc extent is larger
416 		 * than the largest freespace extent at conversion time.  These
417 		 * extents cannot be converted by data writeback, so can exist
418 		 * here even if we are not supposed to be finding delalloc
419 		 * extents.
420 		 */
421 		if (got->br_startoff < XFS_B_TO_FSB(ip->i_mount, XFS_ISIZE(ip)))
422 			ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0);
423 
424 		p->bmv_oflags |= BMV_OF_DELALLOC;
425 		p->bmv_block = -2;
426 	} else {
427 		p->bmv_block = xfs_fsb_to_db(ip, got->br_startblock);
428 	}
429 
430 	if (got->br_state == XFS_EXT_UNWRITTEN &&
431 	    (bmv->bmv_iflags & BMV_IF_PREALLOC))
432 		p->bmv_oflags |= BMV_OF_PREALLOC;
433 
434 	if (shared)
435 		p->bmv_oflags |= BMV_OF_SHARED;
436 
437 	p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, got->br_startoff);
438 	p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, got->br_blockcount);
439 
440 	bmv->bmv_offset = p->bmv_offset + p->bmv_length;
441 	bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset);
442 	bmv->bmv_entries++;
443 	return 0;
444 }
445 
446 static void
xfs_getbmap_report_hole(struct xfs_inode * ip,struct getbmapx * bmv,struct kgetbmap * out,int64_t bmv_end,xfs_fileoff_t bno,xfs_fileoff_t end)447 xfs_getbmap_report_hole(
448 	struct xfs_inode	*ip,
449 	struct getbmapx		*bmv,
450 	struct kgetbmap		*out,
451 	int64_t			bmv_end,
452 	xfs_fileoff_t		bno,
453 	xfs_fileoff_t		end)
454 {
455 	struct kgetbmap		*p = out + bmv->bmv_entries;
456 
457 	if (bmv->bmv_iflags & BMV_IF_NO_HOLES)
458 		return;
459 
460 	p->bmv_block = -1;
461 	p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, bno);
462 	p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, end - bno);
463 
464 	bmv->bmv_offset = p->bmv_offset + p->bmv_length;
465 	bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset);
466 	bmv->bmv_entries++;
467 }
468 
469 static inline bool
xfs_getbmap_full(struct getbmapx * bmv)470 xfs_getbmap_full(
471 	struct getbmapx		*bmv)
472 {
473 	return bmv->bmv_length == 0 || bmv->bmv_entries >= bmv->bmv_count - 1;
474 }
475 
476 static bool
xfs_getbmap_next_rec(struct xfs_bmbt_irec * rec,xfs_fileoff_t total_end)477 xfs_getbmap_next_rec(
478 	struct xfs_bmbt_irec	*rec,
479 	xfs_fileoff_t		total_end)
480 {
481 	xfs_fileoff_t		end = rec->br_startoff + rec->br_blockcount;
482 
483 	if (end == total_end)
484 		return false;
485 
486 	rec->br_startoff += rec->br_blockcount;
487 	if (!isnullstartblock(rec->br_startblock) &&
488 	    rec->br_startblock != DELAYSTARTBLOCK)
489 		rec->br_startblock += rec->br_blockcount;
490 	rec->br_blockcount = total_end - end;
491 	return true;
492 }
493 
494 /*
495  * Get inode's extents as described in bmv, and format for output.
496  * Calls formatter to fill the user's buffer until all extents
497  * are mapped, until the passed-in bmv->bmv_count slots have
498  * been filled, or until the formatter short-circuits the loop,
499  * if it is tracking filled-in extents on its own.
500  */
501 int						/* error code */
xfs_getbmap(struct xfs_inode * ip,struct getbmapx * bmv,struct kgetbmap * out)502 xfs_getbmap(
503 	struct xfs_inode	*ip,
504 	struct getbmapx		*bmv,		/* user bmap structure */
505 	struct kgetbmap		*out)
506 {
507 	struct xfs_mount	*mp = ip->i_mount;
508 	int			iflags = bmv->bmv_iflags;
509 	int			whichfork, lock, error = 0;
510 	int64_t			bmv_end, max_len;
511 	xfs_fileoff_t		bno, first_bno;
512 	struct xfs_ifork	*ifp;
513 	struct xfs_bmbt_irec	got, rec;
514 	xfs_filblks_t		len;
515 	struct xfs_iext_cursor	icur;
516 
517 	if (bmv->bmv_iflags & ~BMV_IF_VALID)
518 		return -EINVAL;
519 #ifndef DEBUG
520 	/* Only allow CoW fork queries if we're debugging. */
521 	if (iflags & BMV_IF_COWFORK)
522 		return -EINVAL;
523 #endif
524 	if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK))
525 		return -EINVAL;
526 
527 	if (bmv->bmv_length < -1)
528 		return -EINVAL;
529 	bmv->bmv_entries = 0;
530 	if (bmv->bmv_length == 0)
531 		return 0;
532 
533 	if (iflags & BMV_IF_ATTRFORK)
534 		whichfork = XFS_ATTR_FORK;
535 	else if (iflags & BMV_IF_COWFORK)
536 		whichfork = XFS_COW_FORK;
537 	else
538 		whichfork = XFS_DATA_FORK;
539 	ifp = XFS_IFORK_PTR(ip, whichfork);
540 
541 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
542 	switch (whichfork) {
543 	case XFS_ATTR_FORK:
544 		if (!XFS_IFORK_Q(ip))
545 			goto out_unlock_iolock;
546 
547 		max_len = 1LL << 32;
548 		lock = xfs_ilock_attr_map_shared(ip);
549 		break;
550 	case XFS_COW_FORK:
551 		/* No CoW fork? Just return */
552 		if (!ifp)
553 			goto out_unlock_iolock;
554 
555 		if (xfs_get_cowextsz_hint(ip))
556 			max_len = mp->m_super->s_maxbytes;
557 		else
558 			max_len = XFS_ISIZE(ip);
559 
560 		lock = XFS_ILOCK_SHARED;
561 		xfs_ilock(ip, lock);
562 		break;
563 	case XFS_DATA_FORK:
564 		if (!(iflags & BMV_IF_DELALLOC) &&
565 		    (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
566 			error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
567 			if (error)
568 				goto out_unlock_iolock;
569 
570 			/*
571 			 * Even after flushing the inode, there can still be
572 			 * delalloc blocks on the inode beyond EOF due to
573 			 * speculative preallocation.  These are not removed
574 			 * until the release function is called or the inode
575 			 * is inactivated.  Hence we cannot assert here that
576 			 * ip->i_delayed_blks == 0.
577 			 */
578 		}
579 
580 		if (xfs_get_extsz_hint(ip) ||
581 		    (ip->i_d.di_flags &
582 		     (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)))
583 			max_len = mp->m_super->s_maxbytes;
584 		else
585 			max_len = XFS_ISIZE(ip);
586 
587 		lock = xfs_ilock_data_map_shared(ip);
588 		break;
589 	}
590 
591 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
592 	case XFS_DINODE_FMT_EXTENTS:
593 	case XFS_DINODE_FMT_BTREE:
594 		break;
595 	case XFS_DINODE_FMT_LOCAL:
596 		/* Local format inode forks report no extents. */
597 		goto out_unlock_ilock;
598 	default:
599 		error = -EINVAL;
600 		goto out_unlock_ilock;
601 	}
602 
603 	if (bmv->bmv_length == -1) {
604 		max_len = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, max_len));
605 		bmv->bmv_length = max(0LL, max_len - bmv->bmv_offset);
606 	}
607 
608 	bmv_end = bmv->bmv_offset + bmv->bmv_length;
609 
610 	first_bno = bno = XFS_BB_TO_FSBT(mp, bmv->bmv_offset);
611 	len = XFS_BB_TO_FSB(mp, bmv->bmv_length);
612 
613 	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
614 		error = xfs_iread_extents(NULL, ip, whichfork);
615 		if (error)
616 			goto out_unlock_ilock;
617 	}
618 
619 	if (!xfs_iext_lookup_extent(ip, ifp, bno, &icur, &got)) {
620 		/*
621 		 * Report a whole-file hole if the delalloc flag is set to
622 		 * stay compatible with the old implementation.
623 		 */
624 		if (iflags & BMV_IF_DELALLOC)
625 			xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno,
626 					XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
627 		goto out_unlock_ilock;
628 	}
629 
630 	while (!xfs_getbmap_full(bmv)) {
631 		xfs_trim_extent(&got, first_bno, len);
632 
633 		/*
634 		 * Report an entry for a hole if this extent doesn't directly
635 		 * follow the previous one.
636 		 */
637 		if (got.br_startoff > bno) {
638 			xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno,
639 					got.br_startoff);
640 			if (xfs_getbmap_full(bmv))
641 				break;
642 		}
643 
644 		/*
645 		 * In order to report shared extents accurately, we report each
646 		 * distinct shared / unshared part of a single bmbt record with
647 		 * an individual getbmapx record.
648 		 */
649 		bno = got.br_startoff + got.br_blockcount;
650 		rec = got;
651 		do {
652 			error = xfs_getbmap_report_one(ip, bmv, out, bmv_end,
653 					&rec);
654 			if (error || xfs_getbmap_full(bmv))
655 				goto out_unlock_ilock;
656 		} while (xfs_getbmap_next_rec(&rec, bno));
657 
658 		if (!xfs_iext_next_extent(ifp, &icur, &got)) {
659 			xfs_fileoff_t	end = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
660 
661 			out[bmv->bmv_entries - 1].bmv_oflags |= BMV_OF_LAST;
662 
663 			if (whichfork != XFS_ATTR_FORK && bno < end &&
664 			    !xfs_getbmap_full(bmv)) {
665 				xfs_getbmap_report_hole(ip, bmv, out, bmv_end,
666 						bno, end);
667 			}
668 			break;
669 		}
670 
671 		if (bno >= first_bno + len)
672 			break;
673 	}
674 
675 out_unlock_ilock:
676 	xfs_iunlock(ip, lock);
677 out_unlock_iolock:
678 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
679 	return error;
680 }
681 
682 /*
683  * Dead simple method of punching delalyed allocation blocks from a range in
684  * the inode.  This will always punch out both the start and end blocks, even
685  * if the ranges only partially overlap them, so it is up to the caller to
686  * ensure that partial blocks are not passed in.
687  */
688 int
xfs_bmap_punch_delalloc_range(struct xfs_inode * ip,xfs_fileoff_t start_fsb,xfs_fileoff_t length)689 xfs_bmap_punch_delalloc_range(
690 	struct xfs_inode	*ip,
691 	xfs_fileoff_t		start_fsb,
692 	xfs_fileoff_t		length)
693 {
694 	struct xfs_ifork	*ifp = &ip->i_df;
695 	xfs_fileoff_t		end_fsb = start_fsb + length;
696 	struct xfs_bmbt_irec	got, del;
697 	struct xfs_iext_cursor	icur;
698 	int			error = 0;
699 
700 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
701 
702 	xfs_ilock(ip, XFS_ILOCK_EXCL);
703 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
704 		goto out_unlock;
705 
706 	while (got.br_startoff + got.br_blockcount > start_fsb) {
707 		del = got;
708 		xfs_trim_extent(&del, start_fsb, length);
709 
710 		/*
711 		 * A delete can push the cursor forward. Step back to the
712 		 * previous extent on non-delalloc or extents outside the
713 		 * target range.
714 		 */
715 		if (!del.br_blockcount ||
716 		    !isnullstartblock(del.br_startblock)) {
717 			if (!xfs_iext_prev_extent(ifp, &icur, &got))
718 				break;
719 			continue;
720 		}
721 
722 		error = xfs_bmap_del_extent_delay(ip, XFS_DATA_FORK, &icur,
723 						  &got, &del);
724 		if (error || !xfs_iext_get_extent(ifp, &icur, &got))
725 			break;
726 	}
727 
728 out_unlock:
729 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
730 	return error;
731 }
732 
733 /*
734  * Test whether it is appropriate to check an inode for and free post EOF
735  * blocks. The 'force' parameter determines whether we should also consider
736  * regular files that are marked preallocated or append-only.
737  */
738 bool
xfs_can_free_eofblocks(struct xfs_inode * ip,bool force)739 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
740 {
741 	/* prealloc/delalloc exists only on regular files */
742 	if (!S_ISREG(VFS_I(ip)->i_mode))
743 		return false;
744 
745 	/*
746 	 * Zero sized files with no cached pages and delalloc blocks will not
747 	 * have speculative prealloc/delalloc blocks to remove.
748 	 */
749 	if (VFS_I(ip)->i_size == 0 &&
750 	    VFS_I(ip)->i_mapping->nrpages == 0 &&
751 	    ip->i_delayed_blks == 0)
752 		return false;
753 
754 	/* If we haven't read in the extent list, then don't do it now. */
755 	if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
756 		return false;
757 
758 	/*
759 	 * Do not free real preallocated or append-only files unless the file
760 	 * has delalloc blocks and we are forced to remove them.
761 	 */
762 	if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
763 		if (!force || ip->i_delayed_blks == 0)
764 			return false;
765 
766 	return true;
767 }
768 
769 /*
770  * This is called to free any blocks beyond eof. The caller must hold
771  * IOLOCK_EXCL unless we are in the inode reclaim path and have the only
772  * reference to the inode.
773  */
774 int
xfs_free_eofblocks(struct xfs_inode * ip)775 xfs_free_eofblocks(
776 	struct xfs_inode	*ip)
777 {
778 	struct xfs_trans	*tp;
779 	int			error;
780 	xfs_fileoff_t		end_fsb;
781 	xfs_fileoff_t		last_fsb;
782 	xfs_filblks_t		map_len;
783 	int			nimaps;
784 	struct xfs_bmbt_irec	imap;
785 	struct xfs_mount	*mp = ip->i_mount;
786 
787 	/*
788 	 * Figure out if there are any blocks beyond the end
789 	 * of the file.  If not, then there is nothing to do.
790 	 */
791 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
792 	last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
793 	if (last_fsb <= end_fsb)
794 		return 0;
795 	map_len = last_fsb - end_fsb;
796 
797 	nimaps = 1;
798 	xfs_ilock(ip, XFS_ILOCK_SHARED);
799 	error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
800 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
801 
802 	/*
803 	 * If there are blocks after the end of file, truncate the file to its
804 	 * current size to free them up.
805 	 */
806 	if (!error && (nimaps != 0) &&
807 	    (imap.br_startblock != HOLESTARTBLOCK ||
808 	     ip->i_delayed_blks)) {
809 		/*
810 		 * Attach the dquots to the inode up front.
811 		 */
812 		error = xfs_qm_dqattach(ip);
813 		if (error)
814 			return error;
815 
816 		/* wait on dio to ensure i_size has settled */
817 		inode_dio_wait(VFS_I(ip));
818 
819 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0,
820 				&tp);
821 		if (error) {
822 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
823 			return error;
824 		}
825 
826 		xfs_ilock(ip, XFS_ILOCK_EXCL);
827 		xfs_trans_ijoin(tp, ip, 0);
828 
829 		/*
830 		 * Do not update the on-disk file size.  If we update the
831 		 * on-disk file size and then the system crashes before the
832 		 * contents of the file are flushed to disk then the files
833 		 * may be full of holes (ie NULL files bug).
834 		 */
835 		error = xfs_itruncate_extents_flags(&tp, ip, XFS_DATA_FORK,
836 					XFS_ISIZE(ip), XFS_BMAPI_NODISCARD);
837 		if (error) {
838 			/*
839 			 * If we get an error at this point we simply don't
840 			 * bother truncating the file.
841 			 */
842 			xfs_trans_cancel(tp);
843 		} else {
844 			error = xfs_trans_commit(tp);
845 			if (!error)
846 				xfs_inode_clear_eofblocks_tag(ip);
847 		}
848 
849 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
850 	}
851 	return error;
852 }
853 
854 int
xfs_alloc_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len,int alloc_type)855 xfs_alloc_file_space(
856 	struct xfs_inode	*ip,
857 	xfs_off_t		offset,
858 	xfs_off_t		len,
859 	int			alloc_type)
860 {
861 	xfs_mount_t		*mp = ip->i_mount;
862 	xfs_off_t		count;
863 	xfs_filblks_t		allocated_fsb;
864 	xfs_filblks_t		allocatesize_fsb;
865 	xfs_extlen_t		extsz, temp;
866 	xfs_fileoff_t		startoffset_fsb;
867 	xfs_fileoff_t		endoffset_fsb;
868 	int			nimaps;
869 	int			quota_flag;
870 	int			rt;
871 	xfs_trans_t		*tp;
872 	xfs_bmbt_irec_t		imaps[1], *imapp;
873 	uint			qblocks, resblks, resrtextents;
874 	int			error;
875 
876 	trace_xfs_alloc_file_space(ip);
877 
878 	if (XFS_FORCED_SHUTDOWN(mp))
879 		return -EIO;
880 
881 	error = xfs_qm_dqattach(ip);
882 	if (error)
883 		return error;
884 
885 	if (len <= 0)
886 		return -EINVAL;
887 
888 	rt = XFS_IS_REALTIME_INODE(ip);
889 	extsz = xfs_get_extsz_hint(ip);
890 
891 	count = len;
892 	imapp = &imaps[0];
893 	nimaps = 1;
894 	startoffset_fsb	= XFS_B_TO_FSBT(mp, offset);
895 	endoffset_fsb = XFS_B_TO_FSB(mp, offset + count);
896 	allocatesize_fsb = endoffset_fsb - startoffset_fsb;
897 
898 	/*
899 	 * Allocate file space until done or until there is an error
900 	 */
901 	while (allocatesize_fsb && !error) {
902 		xfs_fileoff_t	s, e;
903 
904 		/*
905 		 * Determine space reservations for data/realtime.
906 		 */
907 		if (unlikely(extsz)) {
908 			s = startoffset_fsb;
909 			do_div(s, extsz);
910 			s *= extsz;
911 			e = startoffset_fsb + allocatesize_fsb;
912 			div_u64_rem(startoffset_fsb, extsz, &temp);
913 			if (temp)
914 				e += temp;
915 			div_u64_rem(e, extsz, &temp);
916 			if (temp)
917 				e += extsz - temp;
918 		} else {
919 			s = 0;
920 			e = allocatesize_fsb;
921 		}
922 
923 		/*
924 		 * The transaction reservation is limited to a 32-bit block
925 		 * count, hence we need to limit the number of blocks we are
926 		 * trying to reserve to avoid an overflow. We can't allocate
927 		 * more than @nimaps extents, and an extent is limited on disk
928 		 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
929 		 */
930 		resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
931 		if (unlikely(rt)) {
932 			resrtextents = qblocks = resblks;
933 			resrtextents /= mp->m_sb.sb_rextsize;
934 			resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
935 			quota_flag = XFS_QMOPT_RES_RTBLKS;
936 		} else {
937 			resrtextents = 0;
938 			resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
939 			quota_flag = XFS_QMOPT_RES_REGBLKS;
940 		}
941 
942 		/*
943 		 * Allocate and setup the transaction.
944 		 */
945 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks,
946 				resrtextents, 0, &tp);
947 
948 		/*
949 		 * Check for running out of space
950 		 */
951 		if (error) {
952 			/*
953 			 * Free the transaction structure.
954 			 */
955 			ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
956 			break;
957 		}
958 		xfs_ilock(ip, XFS_ILOCK_EXCL);
959 		error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
960 						      0, quota_flag);
961 		if (error)
962 			goto error1;
963 
964 		xfs_trans_ijoin(tp, ip, 0);
965 
966 		error = xfs_bmapi_write(tp, ip, startoffset_fsb,
967 					allocatesize_fsb, alloc_type, resblks,
968 					imapp, &nimaps);
969 		if (error)
970 			goto error0;
971 
972 		/*
973 		 * Complete the transaction
974 		 */
975 		error = xfs_trans_commit(tp);
976 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
977 		if (error)
978 			break;
979 
980 		allocated_fsb = imapp->br_blockcount;
981 
982 		if (nimaps == 0) {
983 			error = -ENOSPC;
984 			break;
985 		}
986 
987 		startoffset_fsb += allocated_fsb;
988 		allocatesize_fsb -= allocated_fsb;
989 	}
990 
991 	return error;
992 
993 error0:	/* unlock inode, unreserve quota blocks, cancel trans */
994 	xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
995 
996 error1:	/* Just cancel transaction */
997 	xfs_trans_cancel(tp);
998 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
999 	return error;
1000 }
1001 
1002 static int
xfs_unmap_extent(struct xfs_inode * ip,xfs_fileoff_t startoffset_fsb,xfs_filblks_t len_fsb,int * done)1003 xfs_unmap_extent(
1004 	struct xfs_inode	*ip,
1005 	xfs_fileoff_t		startoffset_fsb,
1006 	xfs_filblks_t		len_fsb,
1007 	int			*done)
1008 {
1009 	struct xfs_mount	*mp = ip->i_mount;
1010 	struct xfs_trans	*tp;
1011 	uint			resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1012 	int			error;
1013 
1014 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1015 	if (error) {
1016 		ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1017 		return error;
1018 	}
1019 
1020 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1021 	error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot,
1022 			ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS);
1023 	if (error)
1024 		goto out_trans_cancel;
1025 
1026 	xfs_trans_ijoin(tp, ip, 0);
1027 
1028 	error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, done);
1029 	if (error)
1030 		goto out_trans_cancel;
1031 
1032 	error = xfs_trans_commit(tp);
1033 out_unlock:
1034 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1035 	return error;
1036 
1037 out_trans_cancel:
1038 	xfs_trans_cancel(tp);
1039 	goto out_unlock;
1040 }
1041 
1042 /* Caller must first wait for the completion of any pending DIOs if required. */
1043 int
xfs_flush_unmap_range(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1044 xfs_flush_unmap_range(
1045 	struct xfs_inode	*ip,
1046 	xfs_off_t		offset,
1047 	xfs_off_t		len)
1048 {
1049 	struct xfs_mount	*mp = ip->i_mount;
1050 	struct inode		*inode = VFS_I(ip);
1051 	xfs_off_t		rounding, start, end;
1052 	int			error;
1053 
1054 	rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE);
1055 	start = round_down(offset, rounding);
1056 	end = round_up(offset + len, rounding) - 1;
1057 
1058 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
1059 	if (error)
1060 		return error;
1061 	truncate_pagecache_range(inode, start, end);
1062 	return 0;
1063 }
1064 
1065 int
xfs_free_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1066 xfs_free_file_space(
1067 	struct xfs_inode	*ip,
1068 	xfs_off_t		offset,
1069 	xfs_off_t		len)
1070 {
1071 	struct xfs_mount	*mp = ip->i_mount;
1072 	xfs_fileoff_t		startoffset_fsb;
1073 	xfs_fileoff_t		endoffset_fsb;
1074 	int			done = 0, error;
1075 
1076 	trace_xfs_free_file_space(ip);
1077 
1078 	error = xfs_qm_dqattach(ip);
1079 	if (error)
1080 		return error;
1081 
1082 	if (len <= 0)	/* if nothing being freed */
1083 		return 0;
1084 
1085 	startoffset_fsb = XFS_B_TO_FSB(mp, offset);
1086 	endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
1087 
1088 	/*
1089 	 * Need to zero the stuff we're not freeing, on disk.
1090 	 */
1091 	if (endoffset_fsb > startoffset_fsb) {
1092 		while (!done) {
1093 			error = xfs_unmap_extent(ip, startoffset_fsb,
1094 					endoffset_fsb - startoffset_fsb, &done);
1095 			if (error)
1096 				return error;
1097 		}
1098 	}
1099 
1100 	/*
1101 	 * Now that we've unmap all full blocks we'll have to zero out any
1102 	 * partial block at the beginning and/or end.  iomap_zero_range is smart
1103 	 * enough to skip any holes, including those we just created, but we
1104 	 * must take care not to zero beyond EOF and enlarge i_size.
1105 	 */
1106 	if (offset >= XFS_ISIZE(ip))
1107 		return 0;
1108 	if (offset + len > XFS_ISIZE(ip))
1109 		len = XFS_ISIZE(ip) - offset;
1110 	error = iomap_zero_range(VFS_I(ip), offset, len, NULL, &xfs_iomap_ops);
1111 	if (error)
1112 		return error;
1113 
1114 	/*
1115 	 * If we zeroed right up to EOF and EOF straddles a page boundary we
1116 	 * must make sure that the post-EOF area is also zeroed because the
1117 	 * page could be mmap'd and iomap_zero_range doesn't do that for us.
1118 	 * Writeback of the eof page will do this, albeit clumsily.
1119 	 */
1120 	if (offset + len >= XFS_ISIZE(ip) && offset_in_page(offset + len) > 0) {
1121 		error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1122 				round_down(offset + len, PAGE_SIZE), LLONG_MAX);
1123 	}
1124 
1125 	return error;
1126 }
1127 
1128 /*
1129  * Preallocate and zero a range of a file. This mechanism has the allocation
1130  * semantics of fallocate and in addition converts data in the range to zeroes.
1131  */
1132 int
xfs_zero_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1133 xfs_zero_file_space(
1134 	struct xfs_inode	*ip,
1135 	xfs_off_t		offset,
1136 	xfs_off_t		len)
1137 {
1138 	struct xfs_mount	*mp = ip->i_mount;
1139 	uint			blksize;
1140 	int			error;
1141 
1142 	trace_xfs_zero_file_space(ip);
1143 
1144 	blksize = 1 << mp->m_sb.sb_blocklog;
1145 
1146 	/*
1147 	 * Punch a hole and prealloc the range. We use hole punch rather than
1148 	 * unwritten extent conversion for two reasons:
1149 	 *
1150 	 * 1.) Hole punch handles partial block zeroing for us.
1151 	 *
1152 	 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1153 	 * by virtue of the hole punch.
1154 	 */
1155 	error = xfs_free_file_space(ip, offset, len);
1156 	if (error || xfs_is_always_cow_inode(ip))
1157 		return error;
1158 
1159 	return xfs_alloc_file_space(ip, round_down(offset, blksize),
1160 				     round_up(offset + len, blksize) -
1161 				     round_down(offset, blksize),
1162 				     XFS_BMAPI_PREALLOC);
1163 }
1164 
1165 static int
xfs_prepare_shift(struct xfs_inode * ip,loff_t offset)1166 xfs_prepare_shift(
1167 	struct xfs_inode	*ip,
1168 	loff_t			offset)
1169 {
1170 	struct xfs_mount	*mp = ip->i_mount;
1171 	int			error;
1172 
1173 	/*
1174 	 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1175 	 * into the accessible region of the file.
1176 	 */
1177 	if (xfs_can_free_eofblocks(ip, true)) {
1178 		error = xfs_free_eofblocks(ip);
1179 		if (error)
1180 			return error;
1181 	}
1182 
1183 	/*
1184 	 * Shift operations must stabilize the start block offset boundary along
1185 	 * with the full range of the operation. If we don't, a COW writeback
1186 	 * completion could race with an insert, front merge with the start
1187 	 * extent (after split) during the shift and corrupt the file. Start
1188 	 * with the block just prior to the start to stabilize the boundary.
1189 	 */
1190 	offset = round_down(offset, 1 << mp->m_sb.sb_blocklog);
1191 	if (offset)
1192 		offset -= (1 << mp->m_sb.sb_blocklog);
1193 
1194 	/*
1195 	 * Writeback and invalidate cache for the remainder of the file as we're
1196 	 * about to shift down every extent from offset to EOF.
1197 	 */
1198 	error = xfs_flush_unmap_range(ip, offset, XFS_ISIZE(ip));
1199 	if (error)
1200 		return error;
1201 
1202 	/*
1203 	 * Clean out anything hanging around in the cow fork now that
1204 	 * we've flushed all the dirty data out to disk to avoid having
1205 	 * CoW extents at the wrong offsets.
1206 	 */
1207 	if (xfs_inode_has_cow_data(ip)) {
1208 		error = xfs_reflink_cancel_cow_range(ip, offset, NULLFILEOFF,
1209 				true);
1210 		if (error)
1211 			return error;
1212 	}
1213 
1214 	return 0;
1215 }
1216 
1217 /*
1218  * xfs_collapse_file_space()
1219  *	This routine frees disk space and shift extent for the given file.
1220  *	The first thing we do is to free data blocks in the specified range
1221  *	by calling xfs_free_file_space(). It would also sync dirty data
1222  *	and invalidate page cache over the region on which collapse range
1223  *	is working. And Shift extent records to the left to cover a hole.
1224  * RETURNS:
1225  *	0 on success
1226  *	errno on error
1227  *
1228  */
1229 int
xfs_collapse_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1230 xfs_collapse_file_space(
1231 	struct xfs_inode	*ip,
1232 	xfs_off_t		offset,
1233 	xfs_off_t		len)
1234 {
1235 	struct xfs_mount	*mp = ip->i_mount;
1236 	struct xfs_trans	*tp;
1237 	int			error;
1238 	xfs_fileoff_t		next_fsb = XFS_B_TO_FSB(mp, offset + len);
1239 	xfs_fileoff_t		shift_fsb = XFS_B_TO_FSB(mp, len);
1240 	bool			done = false;
1241 
1242 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1243 	ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
1244 
1245 	trace_xfs_collapse_file_space(ip);
1246 
1247 	error = xfs_free_file_space(ip, offset, len);
1248 	if (error)
1249 		return error;
1250 
1251 	error = xfs_prepare_shift(ip, offset);
1252 	if (error)
1253 		return error;
1254 
1255 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1256 	if (error)
1257 		return error;
1258 
1259 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1260 	xfs_trans_ijoin(tp, ip, 0);
1261 
1262 	while (!done) {
1263 		error = xfs_bmap_collapse_extents(tp, ip, &next_fsb, shift_fsb,
1264 				&done);
1265 		if (error)
1266 			goto out_trans_cancel;
1267 		if (done)
1268 			break;
1269 
1270 		/* finish any deferred frees and roll the transaction */
1271 		error = xfs_defer_finish(&tp);
1272 		if (error)
1273 			goto out_trans_cancel;
1274 	}
1275 
1276 	error = xfs_trans_commit(tp);
1277 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1278 	return error;
1279 
1280 out_trans_cancel:
1281 	xfs_trans_cancel(tp);
1282 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1283 	return error;
1284 }
1285 
1286 /*
1287  * xfs_insert_file_space()
1288  *	This routine create hole space by shifting extents for the given file.
1289  *	The first thing we do is to sync dirty data and invalidate page cache
1290  *	over the region on which insert range is working. And split an extent
1291  *	to two extents at given offset by calling xfs_bmap_split_extent.
1292  *	And shift all extent records which are laying between [offset,
1293  *	last allocated extent] to the right to reserve hole range.
1294  * RETURNS:
1295  *	0 on success
1296  *	errno on error
1297  */
1298 int
xfs_insert_file_space(struct xfs_inode * ip,loff_t offset,loff_t len)1299 xfs_insert_file_space(
1300 	struct xfs_inode	*ip,
1301 	loff_t			offset,
1302 	loff_t			len)
1303 {
1304 	struct xfs_mount	*mp = ip->i_mount;
1305 	struct xfs_trans	*tp;
1306 	int			error;
1307 	xfs_fileoff_t		stop_fsb = XFS_B_TO_FSB(mp, offset);
1308 	xfs_fileoff_t		next_fsb = NULLFSBLOCK;
1309 	xfs_fileoff_t		shift_fsb = XFS_B_TO_FSB(mp, len);
1310 	bool			done = false;
1311 
1312 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1313 	ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
1314 
1315 	trace_xfs_insert_file_space(ip);
1316 
1317 	error = xfs_bmap_can_insert_extents(ip, stop_fsb, shift_fsb);
1318 	if (error)
1319 		return error;
1320 
1321 	error = xfs_prepare_shift(ip, offset);
1322 	if (error)
1323 		return error;
1324 
1325 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write,
1326 			XFS_DIOSTRAT_SPACE_RES(mp, 0), 0, 0, &tp);
1327 	if (error)
1328 		return error;
1329 
1330 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1331 	xfs_trans_ijoin(tp, ip, 0);
1332 
1333 	/*
1334 	 * The extent shifting code works on extent granularity. So, if stop_fsb
1335 	 * is not the starting block of extent, we need to split the extent at
1336 	 * stop_fsb.
1337 	 */
1338 	error = xfs_bmap_split_extent(tp, ip, stop_fsb);
1339 	if (error)
1340 		goto out_trans_cancel;
1341 
1342 	do {
1343 		error = xfs_defer_finish(&tp);
1344 		if (error)
1345 			goto out_trans_cancel;
1346 
1347 		error = xfs_bmap_insert_extents(tp, ip, &next_fsb, shift_fsb,
1348 				&done, stop_fsb);
1349 		if (error)
1350 			goto out_trans_cancel;
1351 	} while (!done);
1352 
1353 	error = xfs_trans_commit(tp);
1354 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1355 	return error;
1356 
1357 out_trans_cancel:
1358 	xfs_trans_cancel(tp);
1359 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1360 	return error;
1361 }
1362 
1363 /*
1364  * We need to check that the format of the data fork in the temporary inode is
1365  * valid for the target inode before doing the swap. This is not a problem with
1366  * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1367  * data fork depending on the space the attribute fork is taking so we can get
1368  * invalid formats on the target inode.
1369  *
1370  * E.g. target has space for 7 extents in extent format, temp inode only has
1371  * space for 6.  If we defragment down to 7 extents, then the tmp format is a
1372  * btree, but when swapped it needs to be in extent format. Hence we can't just
1373  * blindly swap data forks on attr2 filesystems.
1374  *
1375  * Note that we check the swap in both directions so that we don't end up with
1376  * a corrupt temporary inode, either.
1377  *
1378  * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1379  * inode will prevent this situation from occurring, so all we do here is
1380  * reject and log the attempt. basically we are putting the responsibility on
1381  * userspace to get this right.
1382  */
1383 static int
xfs_swap_extents_check_format(struct xfs_inode * ip,struct xfs_inode * tip)1384 xfs_swap_extents_check_format(
1385 	struct xfs_inode	*ip,	/* target inode */
1386 	struct xfs_inode	*tip)	/* tmp inode */
1387 {
1388 
1389 	/* Should never get a local format */
1390 	if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
1391 	    tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
1392 		return -EINVAL;
1393 
1394 	/*
1395 	 * if the target inode has less extents that then temporary inode then
1396 	 * why did userspace call us?
1397 	 */
1398 	if (ip->i_d.di_nextents < tip->i_d.di_nextents)
1399 		return -EINVAL;
1400 
1401 	/*
1402 	 * If we have to use the (expensive) rmap swap method, we can
1403 	 * handle any number of extents and any format.
1404 	 */
1405 	if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb))
1406 		return 0;
1407 
1408 	/*
1409 	 * if the target inode is in extent form and the temp inode is in btree
1410 	 * form then we will end up with the target inode in the wrong format
1411 	 * as we already know there are less extents in the temp inode.
1412 	 */
1413 	if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1414 	    tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1415 		return -EINVAL;
1416 
1417 	/* Check temp in extent form to max in target */
1418 	if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1419 	    XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
1420 			XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1421 		return -EINVAL;
1422 
1423 	/* Check target in extent form to max in temp */
1424 	if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1425 	    XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
1426 			XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1427 		return -EINVAL;
1428 
1429 	/*
1430 	 * If we are in a btree format, check that the temp root block will fit
1431 	 * in the target and that it has enough extents to be in btree format
1432 	 * in the target.
1433 	 *
1434 	 * Note that we have to be careful to allow btree->extent conversions
1435 	 * (a common defrag case) which will occur when the temp inode is in
1436 	 * extent format...
1437 	 */
1438 	if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1439 		if (XFS_IFORK_Q(ip) &&
1440 		    XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
1441 			return -EINVAL;
1442 		if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
1443 		    XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1444 			return -EINVAL;
1445 	}
1446 
1447 	/* Reciprocal target->temp btree format checks */
1448 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1449 		if (XFS_IFORK_Q(tip) &&
1450 		    XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
1451 			return -EINVAL;
1452 		if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
1453 		    XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1454 			return -EINVAL;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 static int
xfs_swap_extent_flush(struct xfs_inode * ip)1461 xfs_swap_extent_flush(
1462 	struct xfs_inode	*ip)
1463 {
1464 	int	error;
1465 
1466 	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1467 	if (error)
1468 		return error;
1469 	truncate_pagecache_range(VFS_I(ip), 0, -1);
1470 
1471 	/* Verify O_DIRECT for ftmp */
1472 	if (VFS_I(ip)->i_mapping->nrpages)
1473 		return -EINVAL;
1474 	return 0;
1475 }
1476 
1477 /*
1478  * Move extents from one file to another, when rmap is enabled.
1479  */
1480 STATIC int
xfs_swap_extent_rmap(struct xfs_trans ** tpp,struct xfs_inode * ip,struct xfs_inode * tip)1481 xfs_swap_extent_rmap(
1482 	struct xfs_trans		**tpp,
1483 	struct xfs_inode		*ip,
1484 	struct xfs_inode		*tip)
1485 {
1486 	struct xfs_trans		*tp = *tpp;
1487 	struct xfs_bmbt_irec		irec;
1488 	struct xfs_bmbt_irec		uirec;
1489 	struct xfs_bmbt_irec		tirec;
1490 	xfs_fileoff_t			offset_fsb;
1491 	xfs_fileoff_t			end_fsb;
1492 	xfs_filblks_t			count_fsb;
1493 	int				error;
1494 	xfs_filblks_t			ilen;
1495 	xfs_filblks_t			rlen;
1496 	int				nimaps;
1497 	uint64_t			tip_flags2;
1498 
1499 	/*
1500 	 * If the source file has shared blocks, we must flag the donor
1501 	 * file as having shared blocks so that we get the shared-block
1502 	 * rmap functions when we go to fix up the rmaps.  The flags
1503 	 * will be switch for reals later.
1504 	 */
1505 	tip_flags2 = tip->i_d.di_flags2;
1506 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)
1507 		tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
1508 
1509 	offset_fsb = 0;
1510 	end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip)));
1511 	count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb);
1512 
1513 	while (count_fsb) {
1514 		/* Read extent from the donor file */
1515 		nimaps = 1;
1516 		error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec,
1517 				&nimaps, 0);
1518 		if (error)
1519 			goto out;
1520 		ASSERT(nimaps == 1);
1521 		ASSERT(tirec.br_startblock != DELAYSTARTBLOCK);
1522 
1523 		trace_xfs_swap_extent_rmap_remap(tip, &tirec);
1524 		ilen = tirec.br_blockcount;
1525 
1526 		/* Unmap the old blocks in the source file. */
1527 		while (tirec.br_blockcount) {
1528 			ASSERT(tp->t_firstblock == NULLFSBLOCK);
1529 			trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec);
1530 
1531 			/* Read extent from the source file */
1532 			nimaps = 1;
1533 			error = xfs_bmapi_read(ip, tirec.br_startoff,
1534 					tirec.br_blockcount, &irec,
1535 					&nimaps, 0);
1536 			if (error)
1537 				goto out;
1538 			ASSERT(nimaps == 1);
1539 			ASSERT(tirec.br_startoff == irec.br_startoff);
1540 			trace_xfs_swap_extent_rmap_remap_piece(ip, &irec);
1541 
1542 			/* Trim the extent. */
1543 			uirec = tirec;
1544 			uirec.br_blockcount = rlen = min_t(xfs_filblks_t,
1545 					tirec.br_blockcount,
1546 					irec.br_blockcount);
1547 			trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec);
1548 
1549 			/* Remove the mapping from the donor file. */
1550 			xfs_bmap_unmap_extent(tp, tip, &uirec);
1551 
1552 			/* Remove the mapping from the source file. */
1553 			xfs_bmap_unmap_extent(tp, ip, &irec);
1554 
1555 			/* Map the donor file's blocks into the source file. */
1556 			xfs_bmap_map_extent(tp, ip, &uirec);
1557 
1558 			/* Map the source file's blocks into the donor file. */
1559 			xfs_bmap_map_extent(tp, tip, &irec);
1560 
1561 			error = xfs_defer_finish(tpp);
1562 			tp = *tpp;
1563 			if (error)
1564 				goto out;
1565 
1566 			tirec.br_startoff += rlen;
1567 			if (tirec.br_startblock != HOLESTARTBLOCK &&
1568 			    tirec.br_startblock != DELAYSTARTBLOCK)
1569 				tirec.br_startblock += rlen;
1570 			tirec.br_blockcount -= rlen;
1571 		}
1572 
1573 		/* Roll on... */
1574 		count_fsb -= ilen;
1575 		offset_fsb += ilen;
1576 	}
1577 
1578 	tip->i_d.di_flags2 = tip_flags2;
1579 	return 0;
1580 
1581 out:
1582 	trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_);
1583 	tip->i_d.di_flags2 = tip_flags2;
1584 	return error;
1585 }
1586 
1587 /* Swap the extents of two files by swapping data forks. */
1588 STATIC int
xfs_swap_extent_forks(struct xfs_trans * tp,struct xfs_inode * ip,struct xfs_inode * tip,int * src_log_flags,int * target_log_flags)1589 xfs_swap_extent_forks(
1590 	struct xfs_trans	*tp,
1591 	struct xfs_inode	*ip,
1592 	struct xfs_inode	*tip,
1593 	int			*src_log_flags,
1594 	int			*target_log_flags)
1595 {
1596 	xfs_filblks_t		aforkblks = 0;
1597 	xfs_filblks_t		taforkblks = 0;
1598 	xfs_extnum_t		junk;
1599 	uint64_t		tmp;
1600 	int			error;
1601 
1602 	/*
1603 	 * Count the number of extended attribute blocks
1604 	 */
1605 	if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
1606 	     (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1607 		error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk,
1608 				&aforkblks);
1609 		if (error)
1610 			return error;
1611 	}
1612 	if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
1613 	     (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1614 		error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk,
1615 				&taforkblks);
1616 		if (error)
1617 			return error;
1618 	}
1619 
1620 	/*
1621 	 * Btree format (v3) inodes have the inode number stamped in the bmbt
1622 	 * block headers. We can't start changing the bmbt blocks until the
1623 	 * inode owner change is logged so recovery does the right thing in the
1624 	 * event of a crash. Set the owner change log flags now and leave the
1625 	 * bmbt scan as the last step.
1626 	 */
1627 	if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) {
1628 		if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1629 			(*target_log_flags) |= XFS_ILOG_DOWNER;
1630 		if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1631 			(*src_log_flags) |= XFS_ILOG_DOWNER;
1632 	}
1633 
1634 	/*
1635 	 * Swap the data forks of the inodes
1636 	 */
1637 	swap(ip->i_df, tip->i_df);
1638 
1639 	/*
1640 	 * Fix the on-disk inode values
1641 	 */
1642 	tmp = (uint64_t)ip->i_d.di_nblocks;
1643 	ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
1644 	tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
1645 
1646 	swap(ip->i_d.di_nextents, tip->i_d.di_nextents);
1647 	swap(ip->i_d.di_format, tip->i_d.di_format);
1648 
1649 	/*
1650 	 * The extents in the source inode could still contain speculative
1651 	 * preallocation beyond EOF (e.g. the file is open but not modified
1652 	 * while defrag is in progress). In that case, we need to copy over the
1653 	 * number of delalloc blocks the data fork in the source inode is
1654 	 * tracking beyond EOF so that when the fork is truncated away when the
1655 	 * temporary inode is unlinked we don't underrun the i_delayed_blks
1656 	 * counter on that inode.
1657 	 */
1658 	ASSERT(tip->i_delayed_blks == 0);
1659 	tip->i_delayed_blks = ip->i_delayed_blks;
1660 	ip->i_delayed_blks = 0;
1661 
1662 	switch (ip->i_d.di_format) {
1663 	case XFS_DINODE_FMT_EXTENTS:
1664 		(*src_log_flags) |= XFS_ILOG_DEXT;
1665 		break;
1666 	case XFS_DINODE_FMT_BTREE:
1667 		ASSERT(!xfs_sb_version_has_v3inode(&ip->i_mount->m_sb) ||
1668 		       (*src_log_flags & XFS_ILOG_DOWNER));
1669 		(*src_log_flags) |= XFS_ILOG_DBROOT;
1670 		break;
1671 	}
1672 
1673 	switch (tip->i_d.di_format) {
1674 	case XFS_DINODE_FMT_EXTENTS:
1675 		(*target_log_flags) |= XFS_ILOG_DEXT;
1676 		break;
1677 	case XFS_DINODE_FMT_BTREE:
1678 		(*target_log_flags) |= XFS_ILOG_DBROOT;
1679 		ASSERT(!xfs_sb_version_has_v3inode(&ip->i_mount->m_sb) ||
1680 		       (*target_log_flags & XFS_ILOG_DOWNER));
1681 		break;
1682 	}
1683 
1684 	return 0;
1685 }
1686 
1687 /*
1688  * Fix up the owners of the bmbt blocks to refer to the current inode. The
1689  * change owner scan attempts to order all modified buffers in the current
1690  * transaction. In the event of ordered buffer failure, the offending buffer is
1691  * physically logged as a fallback and the scan returns -EAGAIN. We must roll
1692  * the transaction in this case to replenish the fallback log reservation and
1693  * restart the scan. This process repeats until the scan completes.
1694  */
1695 static int
xfs_swap_change_owner(struct xfs_trans ** tpp,struct xfs_inode * ip,struct xfs_inode * tmpip)1696 xfs_swap_change_owner(
1697 	struct xfs_trans	**tpp,
1698 	struct xfs_inode	*ip,
1699 	struct xfs_inode	*tmpip)
1700 {
1701 	int			error;
1702 	struct xfs_trans	*tp = *tpp;
1703 
1704 	do {
1705 		error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino,
1706 					      NULL);
1707 		/* success or fatal error */
1708 		if (error != -EAGAIN)
1709 			break;
1710 
1711 		error = xfs_trans_roll(tpp);
1712 		if (error)
1713 			break;
1714 		tp = *tpp;
1715 
1716 		/*
1717 		 * Redirty both inodes so they can relog and keep the log tail
1718 		 * moving forward.
1719 		 */
1720 		xfs_trans_ijoin(tp, ip, 0);
1721 		xfs_trans_ijoin(tp, tmpip, 0);
1722 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1723 		xfs_trans_log_inode(tp, tmpip, XFS_ILOG_CORE);
1724 	} while (true);
1725 
1726 	return error;
1727 }
1728 
1729 int
xfs_swap_extents(struct xfs_inode * ip,struct xfs_inode * tip,struct xfs_swapext * sxp)1730 xfs_swap_extents(
1731 	struct xfs_inode	*ip,	/* target inode */
1732 	struct xfs_inode	*tip,	/* tmp inode */
1733 	struct xfs_swapext	*sxp)
1734 {
1735 	struct xfs_mount	*mp = ip->i_mount;
1736 	struct xfs_trans	*tp;
1737 	struct xfs_bstat	*sbp = &sxp->sx_stat;
1738 	int			src_log_flags, target_log_flags;
1739 	int			error = 0;
1740 	int			lock_flags;
1741 	uint64_t		f;
1742 	int			resblks = 0;
1743 	unsigned int		flags = 0;
1744 
1745 	/*
1746 	 * Lock the inodes against other IO, page faults and truncate to
1747 	 * begin with.  Then we can ensure the inodes are flushed and have no
1748 	 * page cache safely. Once we have done this we can take the ilocks and
1749 	 * do the rest of the checks.
1750 	 */
1751 	lock_two_nondirectories(VFS_I(ip), VFS_I(tip));
1752 	lock_flags = XFS_MMAPLOCK_EXCL;
1753 	xfs_lock_two_inodes(ip, XFS_MMAPLOCK_EXCL, tip, XFS_MMAPLOCK_EXCL);
1754 
1755 	/* Verify that both files have the same format */
1756 	if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
1757 		error = -EINVAL;
1758 		goto out_unlock;
1759 	}
1760 
1761 	/* Verify both files are either real-time or non-realtime */
1762 	if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
1763 		error = -EINVAL;
1764 		goto out_unlock;
1765 	}
1766 
1767 	error = xfs_swap_extent_flush(ip);
1768 	if (error)
1769 		goto out_unlock;
1770 	error = xfs_swap_extent_flush(tip);
1771 	if (error)
1772 		goto out_unlock;
1773 
1774 	if (xfs_inode_has_cow_data(tip)) {
1775 		error = xfs_reflink_cancel_cow_range(tip, 0, NULLFILEOFF, true);
1776 		if (error)
1777 			goto out_unlock;
1778 	}
1779 
1780 	/*
1781 	 * Extent "swapping" with rmap requires a permanent reservation and
1782 	 * a block reservation because it's really just a remap operation
1783 	 * performed with log redo items!
1784 	 */
1785 	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
1786 		int		w	= XFS_DATA_FORK;
1787 		uint32_t	ipnext	= XFS_IFORK_NEXTENTS(ip, w);
1788 		uint32_t	tipnext	= XFS_IFORK_NEXTENTS(tip, w);
1789 
1790 		/*
1791 		 * Conceptually this shouldn't affect the shape of either bmbt,
1792 		 * but since we atomically move extents one by one, we reserve
1793 		 * enough space to rebuild both trees.
1794 		 */
1795 		resblks = XFS_SWAP_RMAP_SPACE_RES(mp, ipnext, w);
1796 		resblks +=  XFS_SWAP_RMAP_SPACE_RES(mp, tipnext, w);
1797 
1798 		/*
1799 		 * If either inode straddles a bmapbt block allocation boundary,
1800 		 * the rmapbt algorithm triggers repeated allocs and frees as
1801 		 * extents are remapped. This can exhaust the block reservation
1802 		 * prematurely and cause shutdown. Return freed blocks to the
1803 		 * transaction reservation to counter this behavior.
1804 		 */
1805 		flags |= XFS_TRANS_RES_FDBLKS;
1806 	}
1807 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, flags,
1808 				&tp);
1809 	if (error)
1810 		goto out_unlock;
1811 
1812 	/*
1813 	 * Lock and join the inodes to the tansaction so that transaction commit
1814 	 * or cancel will unlock the inodes from this point onwards.
1815 	 */
1816 	xfs_lock_two_inodes(ip, XFS_ILOCK_EXCL, tip, XFS_ILOCK_EXCL);
1817 	lock_flags |= XFS_ILOCK_EXCL;
1818 	xfs_trans_ijoin(tp, ip, 0);
1819 	xfs_trans_ijoin(tp, tip, 0);
1820 
1821 
1822 	/* Verify all data are being swapped */
1823 	if (sxp->sx_offset != 0 ||
1824 	    sxp->sx_length != ip->i_d.di_size ||
1825 	    sxp->sx_length != tip->i_d.di_size) {
1826 		error = -EFAULT;
1827 		goto out_trans_cancel;
1828 	}
1829 
1830 	trace_xfs_swap_extent_before(ip, 0);
1831 	trace_xfs_swap_extent_before(tip, 1);
1832 
1833 	/* check inode formats now that data is flushed */
1834 	error = xfs_swap_extents_check_format(ip, tip);
1835 	if (error) {
1836 		xfs_notice(mp,
1837 		    "%s: inode 0x%llx format is incompatible for exchanging.",
1838 				__func__, ip->i_ino);
1839 		goto out_trans_cancel;
1840 	}
1841 
1842 	/*
1843 	 * Compare the current change & modify times with that
1844 	 * passed in.  If they differ, we abort this swap.
1845 	 * This is the mechanism used to ensure the calling
1846 	 * process that the file was not changed out from
1847 	 * under it.
1848 	 */
1849 	if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
1850 	    (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
1851 	    (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
1852 	    (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
1853 		error = -EBUSY;
1854 		goto out_trans_cancel;
1855 	}
1856 
1857 	/*
1858 	 * Note the trickiness in setting the log flags - we set the owner log
1859 	 * flag on the opposite inode (i.e. the inode we are setting the new
1860 	 * owner to be) because once we swap the forks and log that, log
1861 	 * recovery is going to see the fork as owned by the swapped inode,
1862 	 * not the pre-swapped inodes.
1863 	 */
1864 	src_log_flags = XFS_ILOG_CORE;
1865 	target_log_flags = XFS_ILOG_CORE;
1866 
1867 	if (xfs_sb_version_hasrmapbt(&mp->m_sb))
1868 		error = xfs_swap_extent_rmap(&tp, ip, tip);
1869 	else
1870 		error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags,
1871 				&target_log_flags);
1872 	if (error)
1873 		goto out_trans_cancel;
1874 
1875 	/* Do we have to swap reflink flags? */
1876 	if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^
1877 	    (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) {
1878 		f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
1879 		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1880 		ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
1881 		tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1882 		tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK;
1883 	}
1884 
1885 	/* Swap the cow forks. */
1886 	if (xfs_sb_version_hasreflink(&mp->m_sb)) {
1887 		ASSERT(ip->i_cformat == XFS_DINODE_FMT_EXTENTS);
1888 		ASSERT(tip->i_cformat == XFS_DINODE_FMT_EXTENTS);
1889 
1890 		swap(ip->i_cnextents, tip->i_cnextents);
1891 		swap(ip->i_cowfp, tip->i_cowfp);
1892 
1893 		if (ip->i_cowfp && ip->i_cowfp->if_bytes)
1894 			xfs_inode_set_cowblocks_tag(ip);
1895 		else
1896 			xfs_inode_clear_cowblocks_tag(ip);
1897 		if (tip->i_cowfp && tip->i_cowfp->if_bytes)
1898 			xfs_inode_set_cowblocks_tag(tip);
1899 		else
1900 			xfs_inode_clear_cowblocks_tag(tip);
1901 	}
1902 
1903 	xfs_trans_log_inode(tp, ip,  src_log_flags);
1904 	xfs_trans_log_inode(tp, tip, target_log_flags);
1905 
1906 	/*
1907 	 * The extent forks have been swapped, but crc=1,rmapbt=0 filesystems
1908 	 * have inode number owner values in the bmbt blocks that still refer to
1909 	 * the old inode. Scan each bmbt to fix up the owner values with the
1910 	 * inode number of the current inode.
1911 	 */
1912 	if (src_log_flags & XFS_ILOG_DOWNER) {
1913 		error = xfs_swap_change_owner(&tp, ip, tip);
1914 		if (error)
1915 			goto out_trans_cancel;
1916 	}
1917 	if (target_log_flags & XFS_ILOG_DOWNER) {
1918 		error = xfs_swap_change_owner(&tp, tip, ip);
1919 		if (error)
1920 			goto out_trans_cancel;
1921 	}
1922 
1923 	/*
1924 	 * If this is a synchronous mount, make sure that the
1925 	 * transaction goes to disk before returning to the user.
1926 	 */
1927 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1928 		xfs_trans_set_sync(tp);
1929 
1930 	error = xfs_trans_commit(tp);
1931 
1932 	trace_xfs_swap_extent_after(ip, 0);
1933 	trace_xfs_swap_extent_after(tip, 1);
1934 
1935 out_unlock:
1936 	xfs_iunlock(ip, lock_flags);
1937 	xfs_iunlock(tip, lock_flags);
1938 	unlock_two_nondirectories(VFS_I(ip), VFS_I(tip));
1939 	return error;
1940 
1941 out_trans_cancel:
1942 	xfs_trans_cancel(tp);
1943 	goto out_unlock;
1944 }
1945