• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_log_recover.h"
21 #include "xfs_inode_item.h"
22 #include "xfs_extfree_item.h"
23 #include "xfs_trans_priv.h"
24 #include "xfs_alloc.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_quota.h"
27 #include "xfs_trace.h"
28 #include "xfs_icache.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_error.h"
31 #include "xfs_dir2.h"
32 #include "xfs_rmap_item.h"
33 #include "xfs_buf_item.h"
34 #include "xfs_refcount_item.h"
35 #include "xfs_bmap_item.h"
36 
37 #define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
38 
39 STATIC int
40 xlog_find_zeroed(
41 	struct xlog	*,
42 	xfs_daddr_t	*);
43 STATIC int
44 xlog_clear_stale_blocks(
45 	struct xlog	*,
46 	xfs_lsn_t);
47 #if defined(DEBUG)
48 STATIC void
49 xlog_recover_check_summary(
50 	struct xlog *);
51 #else
52 #define	xlog_recover_check_summary(log)
53 #endif
54 STATIC int
55 xlog_do_recovery_pass(
56         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
57 
58 /*
59  * This structure is used during recovery to record the buf log items which
60  * have been canceled and should not be replayed.
61  */
62 struct xfs_buf_cancel {
63 	xfs_daddr_t		bc_blkno;
64 	uint			bc_len;
65 	int			bc_refcount;
66 	struct list_head	bc_list;
67 };
68 
69 /*
70  * Sector aligned buffer routines for buffer create/read/write/access
71  */
72 
73 /*
74  * Verify the log-relative block number and length in basic blocks are valid for
75  * an operation involving the given XFS log buffer. Returns true if the fields
76  * are valid, false otherwise.
77  */
78 static inline bool
xlog_verify_bno(struct xlog * log,xfs_daddr_t blk_no,int bbcount)79 xlog_verify_bno(
80 	struct xlog	*log,
81 	xfs_daddr_t	blk_no,
82 	int		bbcount)
83 {
84 	if (blk_no < 0 || blk_no >= log->l_logBBsize)
85 		return false;
86 	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
87 		return false;
88 	return true;
89 }
90 
91 /*
92  * Allocate a buffer to hold log data.  The buffer needs to be able to map to
93  * a range of nbblks basic blocks at any valid offset within the log.
94  */
95 static char *
xlog_alloc_buffer(struct xlog * log,int nbblks)96 xlog_alloc_buffer(
97 	struct xlog	*log,
98 	int		nbblks)
99 {
100 	int align_mask = xfs_buftarg_dma_alignment(log->l_targ);
101 
102 	/*
103 	 * Pass log block 0 since we don't have an addr yet, buffer will be
104 	 * verified on read.
105 	 */
106 	if (!xlog_verify_bno(log, 0, nbblks)) {
107 		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
108 			nbblks);
109 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
110 		return NULL;
111 	}
112 
113 	/*
114 	 * We do log I/O in units of log sectors (a power-of-2 multiple of the
115 	 * basic block size), so we round up the requested size to accommodate
116 	 * the basic blocks required for complete log sectors.
117 	 *
118 	 * In addition, the buffer may be used for a non-sector-aligned block
119 	 * offset, in which case an I/O of the requested size could extend
120 	 * beyond the end of the buffer.  If the requested size is only 1 basic
121 	 * block it will never straddle a sector boundary, so this won't be an
122 	 * issue.  Nor will this be a problem if the log I/O is done in basic
123 	 * blocks (sector size 1).  But otherwise we extend the buffer by one
124 	 * extra log sector to ensure there's space to accommodate this
125 	 * possibility.
126 	 */
127 	if (nbblks > 1 && log->l_sectBBsize > 1)
128 		nbblks += log->l_sectBBsize;
129 	nbblks = round_up(nbblks, log->l_sectBBsize);
130 	return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO);
131 }
132 
133 /*
134  * Return the address of the start of the given block number's data
135  * in a log buffer.  The buffer covers a log sector-aligned region.
136  */
137 static inline unsigned int
xlog_align(struct xlog * log,xfs_daddr_t blk_no)138 xlog_align(
139 	struct xlog	*log,
140 	xfs_daddr_t	blk_no)
141 {
142 	return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
143 }
144 
145 static int
xlog_do_io(struct xlog * log,xfs_daddr_t blk_no,unsigned int nbblks,char * data,unsigned int op)146 xlog_do_io(
147 	struct xlog		*log,
148 	xfs_daddr_t		blk_no,
149 	unsigned int		nbblks,
150 	char			*data,
151 	unsigned int		op)
152 {
153 	int			error;
154 
155 	if (!xlog_verify_bno(log, blk_no, nbblks)) {
156 		xfs_warn(log->l_mp,
157 			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
158 			 blk_no, nbblks);
159 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
160 		return -EFSCORRUPTED;
161 	}
162 
163 	blk_no = round_down(blk_no, log->l_sectBBsize);
164 	nbblks = round_up(nbblks, log->l_sectBBsize);
165 	ASSERT(nbblks > 0);
166 
167 	error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
168 			BBTOB(nbblks), data, op);
169 	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) {
170 		xfs_alert(log->l_mp,
171 			  "log recovery %s I/O error at daddr 0x%llx len %d error %d",
172 			  op == REQ_OP_WRITE ? "write" : "read",
173 			  blk_no, nbblks, error);
174 	}
175 	return error;
176 }
177 
178 STATIC int
xlog_bread_noalign(struct xlog * log,xfs_daddr_t blk_no,int nbblks,char * data)179 xlog_bread_noalign(
180 	struct xlog	*log,
181 	xfs_daddr_t	blk_no,
182 	int		nbblks,
183 	char		*data)
184 {
185 	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
186 }
187 
188 STATIC int
xlog_bread(struct xlog * log,xfs_daddr_t blk_no,int nbblks,char * data,char ** offset)189 xlog_bread(
190 	struct xlog	*log,
191 	xfs_daddr_t	blk_no,
192 	int		nbblks,
193 	char		*data,
194 	char		**offset)
195 {
196 	int		error;
197 
198 	error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
199 	if (!error)
200 		*offset = data + xlog_align(log, blk_no);
201 	return error;
202 }
203 
204 STATIC int
xlog_bwrite(struct xlog * log,xfs_daddr_t blk_no,int nbblks,char * data)205 xlog_bwrite(
206 	struct xlog	*log,
207 	xfs_daddr_t	blk_no,
208 	int		nbblks,
209 	char		*data)
210 {
211 	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
212 }
213 
214 #ifdef DEBUG
215 /*
216  * dump debug superblock and log record information
217  */
218 STATIC void
xlog_header_check_dump(xfs_mount_t * mp,xlog_rec_header_t * head)219 xlog_header_check_dump(
220 	xfs_mount_t		*mp,
221 	xlog_rec_header_t	*head)
222 {
223 	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
224 		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
225 	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
226 		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
227 }
228 #else
229 #define xlog_header_check_dump(mp, head)
230 #endif
231 
232 /*
233  * check log record header for recovery
234  */
235 STATIC int
xlog_header_check_recover(xfs_mount_t * mp,xlog_rec_header_t * head)236 xlog_header_check_recover(
237 	xfs_mount_t		*mp,
238 	xlog_rec_header_t	*head)
239 {
240 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
241 
242 	/*
243 	 * IRIX doesn't write the h_fmt field and leaves it zeroed
244 	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
245 	 * a dirty log created in IRIX.
246 	 */
247 	if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
248 		xfs_warn(mp,
249 	"dirty log written in incompatible format - can't recover");
250 		xlog_header_check_dump(mp, head);
251 		XFS_ERROR_REPORT("xlog_header_check_recover(1)",
252 				 XFS_ERRLEVEL_HIGH, mp);
253 		return -EFSCORRUPTED;
254 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
255 		xfs_warn(mp,
256 	"dirty log entry has mismatched uuid - can't recover");
257 		xlog_header_check_dump(mp, head);
258 		XFS_ERROR_REPORT("xlog_header_check_recover(2)",
259 				 XFS_ERRLEVEL_HIGH, mp);
260 		return -EFSCORRUPTED;
261 	}
262 	return 0;
263 }
264 
265 /*
266  * read the head block of the log and check the header
267  */
268 STATIC int
xlog_header_check_mount(xfs_mount_t * mp,xlog_rec_header_t * head)269 xlog_header_check_mount(
270 	xfs_mount_t		*mp,
271 	xlog_rec_header_t	*head)
272 {
273 	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
274 
275 	if (uuid_is_null(&head->h_fs_uuid)) {
276 		/*
277 		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
278 		 * h_fs_uuid is null, we assume this log was last mounted
279 		 * by IRIX and continue.
280 		 */
281 		xfs_warn(mp, "null uuid in log - IRIX style log");
282 	} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
283 		xfs_warn(mp, "log has mismatched uuid - can't recover");
284 		xlog_header_check_dump(mp, head);
285 		XFS_ERROR_REPORT("xlog_header_check_mount",
286 				 XFS_ERRLEVEL_HIGH, mp);
287 		return -EFSCORRUPTED;
288 	}
289 	return 0;
290 }
291 
292 STATIC void
xlog_recover_iodone(struct xfs_buf * bp)293 xlog_recover_iodone(
294 	struct xfs_buf	*bp)
295 {
296 	if (bp->b_error) {
297 		/*
298 		 * We're not going to bother about retrying
299 		 * this during recovery. One strike!
300 		 */
301 		if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) {
302 			xfs_buf_ioerror_alert(bp, __func__);
303 			xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
304 		}
305 	}
306 
307 	/*
308 	 * On v5 supers, a bli could be attached to update the metadata LSN.
309 	 * Clean it up.
310 	 */
311 	if (bp->b_log_item)
312 		xfs_buf_item_relse(bp);
313 	ASSERT(bp->b_log_item == NULL);
314 
315 	bp->b_iodone = NULL;
316 	xfs_buf_ioend(bp);
317 }
318 
319 /*
320  * This routine finds (to an approximation) the first block in the physical
321  * log which contains the given cycle.  It uses a binary search algorithm.
322  * Note that the algorithm can not be perfect because the disk will not
323  * necessarily be perfect.
324  */
325 STATIC int
xlog_find_cycle_start(struct xlog * log,char * buffer,xfs_daddr_t first_blk,xfs_daddr_t * last_blk,uint cycle)326 xlog_find_cycle_start(
327 	struct xlog	*log,
328 	char		*buffer,
329 	xfs_daddr_t	first_blk,
330 	xfs_daddr_t	*last_blk,
331 	uint		cycle)
332 {
333 	char		*offset;
334 	xfs_daddr_t	mid_blk;
335 	xfs_daddr_t	end_blk;
336 	uint		mid_cycle;
337 	int		error;
338 
339 	end_blk = *last_blk;
340 	mid_blk = BLK_AVG(first_blk, end_blk);
341 	while (mid_blk != first_blk && mid_blk != end_blk) {
342 		error = xlog_bread(log, mid_blk, 1, buffer, &offset);
343 		if (error)
344 			return error;
345 		mid_cycle = xlog_get_cycle(offset);
346 		if (mid_cycle == cycle)
347 			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
348 		else
349 			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
350 		mid_blk = BLK_AVG(first_blk, end_blk);
351 	}
352 	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
353 	       (mid_blk == end_blk && mid_blk-1 == first_blk));
354 
355 	*last_blk = end_blk;
356 
357 	return 0;
358 }
359 
360 /*
361  * Check that a range of blocks does not contain stop_on_cycle_no.
362  * Fill in *new_blk with the block offset where such a block is
363  * found, or with -1 (an invalid block number) if there is no such
364  * block in the range.  The scan needs to occur from front to back
365  * and the pointer into the region must be updated since a later
366  * routine will need to perform another test.
367  */
368 STATIC int
xlog_find_verify_cycle(struct xlog * log,xfs_daddr_t start_blk,int nbblks,uint stop_on_cycle_no,xfs_daddr_t * new_blk)369 xlog_find_verify_cycle(
370 	struct xlog	*log,
371 	xfs_daddr_t	start_blk,
372 	int		nbblks,
373 	uint		stop_on_cycle_no,
374 	xfs_daddr_t	*new_blk)
375 {
376 	xfs_daddr_t	i, j;
377 	uint		cycle;
378 	char		*buffer;
379 	xfs_daddr_t	bufblks;
380 	char		*buf = NULL;
381 	int		error = 0;
382 
383 	/*
384 	 * Greedily allocate a buffer big enough to handle the full
385 	 * range of basic blocks we'll be examining.  If that fails,
386 	 * try a smaller size.  We need to be able to read at least
387 	 * a log sector, or we're out of luck.
388 	 */
389 	bufblks = 1 << ffs(nbblks);
390 	while (bufblks > log->l_logBBsize)
391 		bufblks >>= 1;
392 	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
393 		bufblks >>= 1;
394 		if (bufblks < log->l_sectBBsize)
395 			return -ENOMEM;
396 	}
397 
398 	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
399 		int	bcount;
400 
401 		bcount = min(bufblks, (start_blk + nbblks - i));
402 
403 		error = xlog_bread(log, i, bcount, buffer, &buf);
404 		if (error)
405 			goto out;
406 
407 		for (j = 0; j < bcount; j++) {
408 			cycle = xlog_get_cycle(buf);
409 			if (cycle == stop_on_cycle_no) {
410 				*new_blk = i+j;
411 				goto out;
412 			}
413 
414 			buf += BBSIZE;
415 		}
416 	}
417 
418 	*new_blk = -1;
419 
420 out:
421 	kmem_free(buffer);
422 	return error;
423 }
424 
425 /*
426  * Potentially backup over partial log record write.
427  *
428  * In the typical case, last_blk is the number of the block directly after
429  * a good log record.  Therefore, we subtract one to get the block number
430  * of the last block in the given buffer.  extra_bblks contains the number
431  * of blocks we would have read on a previous read.  This happens when the
432  * last log record is split over the end of the physical log.
433  *
434  * extra_bblks is the number of blocks potentially verified on a previous
435  * call to this routine.
436  */
437 STATIC int
xlog_find_verify_log_record(struct xlog * log,xfs_daddr_t start_blk,xfs_daddr_t * last_blk,int extra_bblks)438 xlog_find_verify_log_record(
439 	struct xlog		*log,
440 	xfs_daddr_t		start_blk,
441 	xfs_daddr_t		*last_blk,
442 	int			extra_bblks)
443 {
444 	xfs_daddr_t		i;
445 	char			*buffer;
446 	char			*offset = NULL;
447 	xlog_rec_header_t	*head = NULL;
448 	int			error = 0;
449 	int			smallmem = 0;
450 	int			num_blks = *last_blk - start_blk;
451 	int			xhdrs;
452 
453 	ASSERT(start_blk != 0 || *last_blk != start_blk);
454 
455 	buffer = xlog_alloc_buffer(log, num_blks);
456 	if (!buffer) {
457 		buffer = xlog_alloc_buffer(log, 1);
458 		if (!buffer)
459 			return -ENOMEM;
460 		smallmem = 1;
461 	} else {
462 		error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
463 		if (error)
464 			goto out;
465 		offset += ((num_blks - 1) << BBSHIFT);
466 	}
467 
468 	for (i = (*last_blk) - 1; i >= 0; i--) {
469 		if (i < start_blk) {
470 			/* valid log record not found */
471 			xfs_warn(log->l_mp,
472 		"Log inconsistent (didn't find previous header)");
473 			ASSERT(0);
474 			error = -EFSCORRUPTED;
475 			goto out;
476 		}
477 
478 		if (smallmem) {
479 			error = xlog_bread(log, i, 1, buffer, &offset);
480 			if (error)
481 				goto out;
482 		}
483 
484 		head = (xlog_rec_header_t *)offset;
485 
486 		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
487 			break;
488 
489 		if (!smallmem)
490 			offset -= BBSIZE;
491 	}
492 
493 	/*
494 	 * We hit the beginning of the physical log & still no header.  Return
495 	 * to caller.  If caller can handle a return of -1, then this routine
496 	 * will be called again for the end of the physical log.
497 	 */
498 	if (i == -1) {
499 		error = 1;
500 		goto out;
501 	}
502 
503 	/*
504 	 * We have the final block of the good log (the first block
505 	 * of the log record _before_ the head. So we check the uuid.
506 	 */
507 	if ((error = xlog_header_check_mount(log->l_mp, head)))
508 		goto out;
509 
510 	/*
511 	 * We may have found a log record header before we expected one.
512 	 * last_blk will be the 1st block # with a given cycle #.  We may end
513 	 * up reading an entire log record.  In this case, we don't want to
514 	 * reset last_blk.  Only when last_blk points in the middle of a log
515 	 * record do we update last_blk.
516 	 */
517 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
518 		uint	h_size = be32_to_cpu(head->h_size);
519 
520 		xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
521 		if (h_size % XLOG_HEADER_CYCLE_SIZE)
522 			xhdrs++;
523 	} else {
524 		xhdrs = 1;
525 	}
526 
527 	if (*last_blk - i + extra_bblks !=
528 	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
529 		*last_blk = i;
530 
531 out:
532 	kmem_free(buffer);
533 	return error;
534 }
535 
536 /*
537  * Head is defined to be the point of the log where the next log write
538  * could go.  This means that incomplete LR writes at the end are
539  * eliminated when calculating the head.  We aren't guaranteed that previous
540  * LR have complete transactions.  We only know that a cycle number of
541  * current cycle number -1 won't be present in the log if we start writing
542  * from our current block number.
543  *
544  * last_blk contains the block number of the first block with a given
545  * cycle number.
546  *
547  * Return: zero if normal, non-zero if error.
548  */
549 STATIC int
xlog_find_head(struct xlog * log,xfs_daddr_t * return_head_blk)550 xlog_find_head(
551 	struct xlog	*log,
552 	xfs_daddr_t	*return_head_blk)
553 {
554 	char		*buffer;
555 	char		*offset;
556 	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
557 	int		num_scan_bblks;
558 	uint		first_half_cycle, last_half_cycle;
559 	uint		stop_on_cycle;
560 	int		error, log_bbnum = log->l_logBBsize;
561 
562 	/* Is the end of the log device zeroed? */
563 	error = xlog_find_zeroed(log, &first_blk);
564 	if (error < 0) {
565 		xfs_warn(log->l_mp, "empty log check failed");
566 		return error;
567 	}
568 	if (error == 1) {
569 		*return_head_blk = first_blk;
570 
571 		/* Is the whole lot zeroed? */
572 		if (!first_blk) {
573 			/* Linux XFS shouldn't generate totally zeroed logs -
574 			 * mkfs etc write a dummy unmount record to a fresh
575 			 * log so we can store the uuid in there
576 			 */
577 			xfs_warn(log->l_mp, "totally zeroed log");
578 		}
579 
580 		return 0;
581 	}
582 
583 	first_blk = 0;			/* get cycle # of 1st block */
584 	buffer = xlog_alloc_buffer(log, 1);
585 	if (!buffer)
586 		return -ENOMEM;
587 
588 	error = xlog_bread(log, 0, 1, buffer, &offset);
589 	if (error)
590 		goto out_free_buffer;
591 
592 	first_half_cycle = xlog_get_cycle(offset);
593 
594 	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
595 	error = xlog_bread(log, last_blk, 1, buffer, &offset);
596 	if (error)
597 		goto out_free_buffer;
598 
599 	last_half_cycle = xlog_get_cycle(offset);
600 	ASSERT(last_half_cycle != 0);
601 
602 	/*
603 	 * If the 1st half cycle number is equal to the last half cycle number,
604 	 * then the entire log is stamped with the same cycle number.  In this
605 	 * case, head_blk can't be set to zero (which makes sense).  The below
606 	 * math doesn't work out properly with head_blk equal to zero.  Instead,
607 	 * we set it to log_bbnum which is an invalid block number, but this
608 	 * value makes the math correct.  If head_blk doesn't changed through
609 	 * all the tests below, *head_blk is set to zero at the very end rather
610 	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
611 	 * in a circular file.
612 	 */
613 	if (first_half_cycle == last_half_cycle) {
614 		/*
615 		 * In this case we believe that the entire log should have
616 		 * cycle number last_half_cycle.  We need to scan backwards
617 		 * from the end verifying that there are no holes still
618 		 * containing last_half_cycle - 1.  If we find such a hole,
619 		 * then the start of that hole will be the new head.  The
620 		 * simple case looks like
621 		 *        x | x ... | x - 1 | x
622 		 * Another case that fits this picture would be
623 		 *        x | x + 1 | x ... | x
624 		 * In this case the head really is somewhere at the end of the
625 		 * log, as one of the latest writes at the beginning was
626 		 * incomplete.
627 		 * One more case is
628 		 *        x | x + 1 | x ... | x - 1 | x
629 		 * This is really the combination of the above two cases, and
630 		 * the head has to end up at the start of the x-1 hole at the
631 		 * end of the log.
632 		 *
633 		 * In the 256k log case, we will read from the beginning to the
634 		 * end of the log and search for cycle numbers equal to x-1.
635 		 * We don't worry about the x+1 blocks that we encounter,
636 		 * because we know that they cannot be the head since the log
637 		 * started with x.
638 		 */
639 		head_blk = log_bbnum;
640 		stop_on_cycle = last_half_cycle - 1;
641 	} else {
642 		/*
643 		 * In this case we want to find the first block with cycle
644 		 * number matching last_half_cycle.  We expect the log to be
645 		 * some variation on
646 		 *        x + 1 ... | x ... | x
647 		 * The first block with cycle number x (last_half_cycle) will
648 		 * be where the new head belongs.  First we do a binary search
649 		 * for the first occurrence of last_half_cycle.  The binary
650 		 * search may not be totally accurate, so then we scan back
651 		 * from there looking for occurrences of last_half_cycle before
652 		 * us.  If that backwards scan wraps around the beginning of
653 		 * the log, then we look for occurrences of last_half_cycle - 1
654 		 * at the end of the log.  The cases we're looking for look
655 		 * like
656 		 *                               v binary search stopped here
657 		 *        x + 1 ... | x | x + 1 | x ... | x
658 		 *                   ^ but we want to locate this spot
659 		 * or
660 		 *        <---------> less than scan distance
661 		 *        x + 1 ... | x ... | x - 1 | x
662 		 *                           ^ we want to locate this spot
663 		 */
664 		stop_on_cycle = last_half_cycle;
665 		error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
666 				last_half_cycle);
667 		if (error)
668 			goto out_free_buffer;
669 	}
670 
671 	/*
672 	 * Now validate the answer.  Scan back some number of maximum possible
673 	 * blocks and make sure each one has the expected cycle number.  The
674 	 * maximum is determined by the total possible amount of buffering
675 	 * in the in-core log.  The following number can be made tighter if
676 	 * we actually look at the block size of the filesystem.
677 	 */
678 	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
679 	if (head_blk >= num_scan_bblks) {
680 		/*
681 		 * We are guaranteed that the entire check can be performed
682 		 * in one buffer.
683 		 */
684 		start_blk = head_blk - num_scan_bblks;
685 		if ((error = xlog_find_verify_cycle(log,
686 						start_blk, num_scan_bblks,
687 						stop_on_cycle, &new_blk)))
688 			goto out_free_buffer;
689 		if (new_blk != -1)
690 			head_blk = new_blk;
691 	} else {		/* need to read 2 parts of log */
692 		/*
693 		 * We are going to scan backwards in the log in two parts.
694 		 * First we scan the physical end of the log.  In this part
695 		 * of the log, we are looking for blocks with cycle number
696 		 * last_half_cycle - 1.
697 		 * If we find one, then we know that the log starts there, as
698 		 * we've found a hole that didn't get written in going around
699 		 * the end of the physical log.  The simple case for this is
700 		 *        x + 1 ... | x ... | x - 1 | x
701 		 *        <---------> less than scan distance
702 		 * If all of the blocks at the end of the log have cycle number
703 		 * last_half_cycle, then we check the blocks at the start of
704 		 * the log looking for occurrences of last_half_cycle.  If we
705 		 * find one, then our current estimate for the location of the
706 		 * first occurrence of last_half_cycle is wrong and we move
707 		 * back to the hole we've found.  This case looks like
708 		 *        x + 1 ... | x | x + 1 | x ...
709 		 *                               ^ binary search stopped here
710 		 * Another case we need to handle that only occurs in 256k
711 		 * logs is
712 		 *        x + 1 ... | x ... | x+1 | x ...
713 		 *                   ^ binary search stops here
714 		 * In a 256k log, the scan at the end of the log will see the
715 		 * x + 1 blocks.  We need to skip past those since that is
716 		 * certainly not the head of the log.  By searching for
717 		 * last_half_cycle-1 we accomplish that.
718 		 */
719 		ASSERT(head_blk <= INT_MAX &&
720 			(xfs_daddr_t) num_scan_bblks >= head_blk);
721 		start_blk = log_bbnum - (num_scan_bblks - head_blk);
722 		if ((error = xlog_find_verify_cycle(log, start_blk,
723 					num_scan_bblks - (int)head_blk,
724 					(stop_on_cycle - 1), &new_blk)))
725 			goto out_free_buffer;
726 		if (new_blk != -1) {
727 			head_blk = new_blk;
728 			goto validate_head;
729 		}
730 
731 		/*
732 		 * Scan beginning of log now.  The last part of the physical
733 		 * log is good.  This scan needs to verify that it doesn't find
734 		 * the last_half_cycle.
735 		 */
736 		start_blk = 0;
737 		ASSERT(head_blk <= INT_MAX);
738 		if ((error = xlog_find_verify_cycle(log,
739 					start_blk, (int)head_blk,
740 					stop_on_cycle, &new_blk)))
741 			goto out_free_buffer;
742 		if (new_blk != -1)
743 			head_blk = new_blk;
744 	}
745 
746 validate_head:
747 	/*
748 	 * Now we need to make sure head_blk is not pointing to a block in
749 	 * the middle of a log record.
750 	 */
751 	num_scan_bblks = XLOG_REC_SHIFT(log);
752 	if (head_blk >= num_scan_bblks) {
753 		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
754 
755 		/* start ptr at last block ptr before head_blk */
756 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
757 		if (error == 1)
758 			error = -EIO;
759 		if (error)
760 			goto out_free_buffer;
761 	} else {
762 		start_blk = 0;
763 		ASSERT(head_blk <= INT_MAX);
764 		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
765 		if (error < 0)
766 			goto out_free_buffer;
767 		if (error == 1) {
768 			/* We hit the beginning of the log during our search */
769 			start_blk = log_bbnum - (num_scan_bblks - head_blk);
770 			new_blk = log_bbnum;
771 			ASSERT(start_blk <= INT_MAX &&
772 				(xfs_daddr_t) log_bbnum-start_blk >= 0);
773 			ASSERT(head_blk <= INT_MAX);
774 			error = xlog_find_verify_log_record(log, start_blk,
775 							&new_blk, (int)head_blk);
776 			if (error == 1)
777 				error = -EIO;
778 			if (error)
779 				goto out_free_buffer;
780 			if (new_blk != log_bbnum)
781 				head_blk = new_blk;
782 		} else if (error)
783 			goto out_free_buffer;
784 	}
785 
786 	kmem_free(buffer);
787 	if (head_blk == log_bbnum)
788 		*return_head_blk = 0;
789 	else
790 		*return_head_blk = head_blk;
791 	/*
792 	 * When returning here, we have a good block number.  Bad block
793 	 * means that during a previous crash, we didn't have a clean break
794 	 * from cycle number N to cycle number N-1.  In this case, we need
795 	 * to find the first block with cycle number N-1.
796 	 */
797 	return 0;
798 
799 out_free_buffer:
800 	kmem_free(buffer);
801 	if (error)
802 		xfs_warn(log->l_mp, "failed to find log head");
803 	return error;
804 }
805 
806 /*
807  * Seek backwards in the log for log record headers.
808  *
809  * Given a starting log block, walk backwards until we find the provided number
810  * of records or hit the provided tail block. The return value is the number of
811  * records encountered or a negative error code. The log block and buffer
812  * pointer of the last record seen are returned in rblk and rhead respectively.
813  */
814 STATIC int
xlog_rseek_logrec_hdr(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk,int count,char * buffer,xfs_daddr_t * rblk,struct xlog_rec_header ** rhead,bool * wrapped)815 xlog_rseek_logrec_hdr(
816 	struct xlog		*log,
817 	xfs_daddr_t		head_blk,
818 	xfs_daddr_t		tail_blk,
819 	int			count,
820 	char			*buffer,
821 	xfs_daddr_t		*rblk,
822 	struct xlog_rec_header	**rhead,
823 	bool			*wrapped)
824 {
825 	int			i;
826 	int			error;
827 	int			found = 0;
828 	char			*offset = NULL;
829 	xfs_daddr_t		end_blk;
830 
831 	*wrapped = false;
832 
833 	/*
834 	 * Walk backwards from the head block until we hit the tail or the first
835 	 * block in the log.
836 	 */
837 	end_blk = head_blk > tail_blk ? tail_blk : 0;
838 	for (i = (int) head_blk - 1; i >= end_blk; i--) {
839 		error = xlog_bread(log, i, 1, buffer, &offset);
840 		if (error)
841 			goto out_error;
842 
843 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
844 			*rblk = i;
845 			*rhead = (struct xlog_rec_header *) offset;
846 			if (++found == count)
847 				break;
848 		}
849 	}
850 
851 	/*
852 	 * If we haven't hit the tail block or the log record header count,
853 	 * start looking again from the end of the physical log. Note that
854 	 * callers can pass head == tail if the tail is not yet known.
855 	 */
856 	if (tail_blk >= head_blk && found != count) {
857 		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
858 			error = xlog_bread(log, i, 1, buffer, &offset);
859 			if (error)
860 				goto out_error;
861 
862 			if (*(__be32 *)offset ==
863 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
864 				*wrapped = true;
865 				*rblk = i;
866 				*rhead = (struct xlog_rec_header *) offset;
867 				if (++found == count)
868 					break;
869 			}
870 		}
871 	}
872 
873 	return found;
874 
875 out_error:
876 	return error;
877 }
878 
879 /*
880  * Seek forward in the log for log record headers.
881  *
882  * Given head and tail blocks, walk forward from the tail block until we find
883  * the provided number of records or hit the head block. The return value is the
884  * number of records encountered or a negative error code. The log block and
885  * buffer pointer of the last record seen are returned in rblk and rhead
886  * respectively.
887  */
888 STATIC int
xlog_seek_logrec_hdr(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk,int count,char * buffer,xfs_daddr_t * rblk,struct xlog_rec_header ** rhead,bool * wrapped)889 xlog_seek_logrec_hdr(
890 	struct xlog		*log,
891 	xfs_daddr_t		head_blk,
892 	xfs_daddr_t		tail_blk,
893 	int			count,
894 	char			*buffer,
895 	xfs_daddr_t		*rblk,
896 	struct xlog_rec_header	**rhead,
897 	bool			*wrapped)
898 {
899 	int			i;
900 	int			error;
901 	int			found = 0;
902 	char			*offset = NULL;
903 	xfs_daddr_t		end_blk;
904 
905 	*wrapped = false;
906 
907 	/*
908 	 * Walk forward from the tail block until we hit the head or the last
909 	 * block in the log.
910 	 */
911 	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
912 	for (i = (int) tail_blk; i <= end_blk; i++) {
913 		error = xlog_bread(log, i, 1, buffer, &offset);
914 		if (error)
915 			goto out_error;
916 
917 		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
918 			*rblk = i;
919 			*rhead = (struct xlog_rec_header *) offset;
920 			if (++found == count)
921 				break;
922 		}
923 	}
924 
925 	/*
926 	 * If we haven't hit the head block or the log record header count,
927 	 * start looking again from the start of the physical log.
928 	 */
929 	if (tail_blk > head_blk && found != count) {
930 		for (i = 0; i < (int) head_blk; i++) {
931 			error = xlog_bread(log, i, 1, buffer, &offset);
932 			if (error)
933 				goto out_error;
934 
935 			if (*(__be32 *)offset ==
936 			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
937 				*wrapped = true;
938 				*rblk = i;
939 				*rhead = (struct xlog_rec_header *) offset;
940 				if (++found == count)
941 					break;
942 			}
943 		}
944 	}
945 
946 	return found;
947 
948 out_error:
949 	return error;
950 }
951 
952 /*
953  * Calculate distance from head to tail (i.e., unused space in the log).
954  */
955 static inline int
xlog_tail_distance(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)956 xlog_tail_distance(
957 	struct xlog	*log,
958 	xfs_daddr_t	head_blk,
959 	xfs_daddr_t	tail_blk)
960 {
961 	if (head_blk < tail_blk)
962 		return tail_blk - head_blk;
963 
964 	return tail_blk + (log->l_logBBsize - head_blk);
965 }
966 
967 /*
968  * Verify the log tail. This is particularly important when torn or incomplete
969  * writes have been detected near the front of the log and the head has been
970  * walked back accordingly.
971  *
972  * We also have to handle the case where the tail was pinned and the head
973  * blocked behind the tail right before a crash. If the tail had been pushed
974  * immediately prior to the crash and the subsequent checkpoint was only
975  * partially written, it's possible it overwrote the last referenced tail in the
976  * log with garbage. This is not a coherency problem because the tail must have
977  * been pushed before it can be overwritten, but appears as log corruption to
978  * recovery because we have no way to know the tail was updated if the
979  * subsequent checkpoint didn't write successfully.
980  *
981  * Therefore, CRC check the log from tail to head. If a failure occurs and the
982  * offending record is within max iclog bufs from the head, walk the tail
983  * forward and retry until a valid tail is found or corruption is detected out
984  * of the range of a possible overwrite.
985  */
986 STATIC int
xlog_verify_tail(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t * tail_blk,int hsize)987 xlog_verify_tail(
988 	struct xlog		*log,
989 	xfs_daddr_t		head_blk,
990 	xfs_daddr_t		*tail_blk,
991 	int			hsize)
992 {
993 	struct xlog_rec_header	*thead;
994 	char			*buffer;
995 	xfs_daddr_t		first_bad;
996 	int			error = 0;
997 	bool			wrapped;
998 	xfs_daddr_t		tmp_tail;
999 	xfs_daddr_t		orig_tail = *tail_blk;
1000 
1001 	buffer = xlog_alloc_buffer(log, 1);
1002 	if (!buffer)
1003 		return -ENOMEM;
1004 
1005 	/*
1006 	 * Make sure the tail points to a record (returns positive count on
1007 	 * success).
1008 	 */
1009 	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
1010 			&tmp_tail, &thead, &wrapped);
1011 	if (error < 0)
1012 		goto out;
1013 	if (*tail_blk != tmp_tail)
1014 		*tail_blk = tmp_tail;
1015 
1016 	/*
1017 	 * Run a CRC check from the tail to the head. We can't just check
1018 	 * MAX_ICLOGS records past the tail because the tail may point to stale
1019 	 * blocks cleared during the search for the head/tail. These blocks are
1020 	 * overwritten with zero-length records and thus record count is not a
1021 	 * reliable indicator of the iclog state before a crash.
1022 	 */
1023 	first_bad = 0;
1024 	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1025 				      XLOG_RECOVER_CRCPASS, &first_bad);
1026 	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1027 		int	tail_distance;
1028 
1029 		/*
1030 		 * Is corruption within range of the head? If so, retry from
1031 		 * the next record. Otherwise return an error.
1032 		 */
1033 		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1034 		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1035 			break;
1036 
1037 		/* skip to the next record; returns positive count on success */
1038 		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
1039 				buffer, &tmp_tail, &thead, &wrapped);
1040 		if (error < 0)
1041 			goto out;
1042 
1043 		*tail_blk = tmp_tail;
1044 		first_bad = 0;
1045 		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1046 					      XLOG_RECOVER_CRCPASS, &first_bad);
1047 	}
1048 
1049 	if (!error && *tail_blk != orig_tail)
1050 		xfs_warn(log->l_mp,
1051 		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1052 			 orig_tail, *tail_blk);
1053 out:
1054 	kmem_free(buffer);
1055 	return error;
1056 }
1057 
1058 /*
1059  * Detect and trim torn writes from the head of the log.
1060  *
1061  * Storage without sector atomicity guarantees can result in torn writes in the
1062  * log in the event of a crash. Our only means to detect this scenario is via
1063  * CRC verification. While we can't always be certain that CRC verification
1064  * failure is due to a torn write vs. an unrelated corruption, we do know that
1065  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1066  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1067  * the log and treat failures in this range as torn writes as a matter of
1068  * policy. In the event of CRC failure, the head is walked back to the last good
1069  * record in the log and the tail is updated from that record and verified.
1070  */
1071 STATIC int
xlog_verify_head(struct xlog * log,xfs_daddr_t * head_blk,xfs_daddr_t * tail_blk,char * buffer,xfs_daddr_t * rhead_blk,struct xlog_rec_header ** rhead,bool * wrapped)1072 xlog_verify_head(
1073 	struct xlog		*log,
1074 	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1075 	xfs_daddr_t		*tail_blk,	/* out: tail block */
1076 	char			*buffer,
1077 	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1078 	struct xlog_rec_header	**rhead,	/* ptr to last record */
1079 	bool			*wrapped)	/* last rec. wraps phys. log */
1080 {
1081 	struct xlog_rec_header	*tmp_rhead;
1082 	char			*tmp_buffer;
1083 	xfs_daddr_t		first_bad;
1084 	xfs_daddr_t		tmp_rhead_blk;
1085 	int			found;
1086 	int			error;
1087 	bool			tmp_wrapped;
1088 
1089 	/*
1090 	 * Check the head of the log for torn writes. Search backwards from the
1091 	 * head until we hit the tail or the maximum number of log record I/Os
1092 	 * that could have been in flight at one time. Use a temporary buffer so
1093 	 * we don't trash the rhead/buffer pointers from the caller.
1094 	 */
1095 	tmp_buffer = xlog_alloc_buffer(log, 1);
1096 	if (!tmp_buffer)
1097 		return -ENOMEM;
1098 	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1099 				      XLOG_MAX_ICLOGS, tmp_buffer,
1100 				      &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1101 	kmem_free(tmp_buffer);
1102 	if (error < 0)
1103 		return error;
1104 
1105 	/*
1106 	 * Now run a CRC verification pass over the records starting at the
1107 	 * block found above to the current head. If a CRC failure occurs, the
1108 	 * log block of the first bad record is saved in first_bad.
1109 	 */
1110 	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1111 				      XLOG_RECOVER_CRCPASS, &first_bad);
1112 	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1113 		/*
1114 		 * We've hit a potential torn write. Reset the error and warn
1115 		 * about it.
1116 		 */
1117 		error = 0;
1118 		xfs_warn(log->l_mp,
1119 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1120 			 first_bad, *head_blk);
1121 
1122 		/*
1123 		 * Get the header block and buffer pointer for the last good
1124 		 * record before the bad record.
1125 		 *
1126 		 * Note that xlog_find_tail() clears the blocks at the new head
1127 		 * (i.e., the records with invalid CRC) if the cycle number
1128 		 * matches the the current cycle.
1129 		 */
1130 		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1131 				buffer, rhead_blk, rhead, wrapped);
1132 		if (found < 0)
1133 			return found;
1134 		if (found == 0)		/* XXX: right thing to do here? */
1135 			return -EIO;
1136 
1137 		/*
1138 		 * Reset the head block to the starting block of the first bad
1139 		 * log record and set the tail block based on the last good
1140 		 * record.
1141 		 *
1142 		 * Bail out if the updated head/tail match as this indicates
1143 		 * possible corruption outside of the acceptable
1144 		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1145 		 */
1146 		*head_blk = first_bad;
1147 		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1148 		if (*head_blk == *tail_blk) {
1149 			ASSERT(0);
1150 			return 0;
1151 		}
1152 	}
1153 	if (error)
1154 		return error;
1155 
1156 	return xlog_verify_tail(log, *head_blk, tail_blk,
1157 				be32_to_cpu((*rhead)->h_size));
1158 }
1159 
1160 /*
1161  * We need to make sure we handle log wrapping properly, so we can't use the
1162  * calculated logbno directly. Make sure it wraps to the correct bno inside the
1163  * log.
1164  *
1165  * The log is limited to 32 bit sizes, so we use the appropriate modulus
1166  * operation here and cast it back to a 64 bit daddr on return.
1167  */
1168 static inline xfs_daddr_t
xlog_wrap_logbno(struct xlog * log,xfs_daddr_t bno)1169 xlog_wrap_logbno(
1170 	struct xlog		*log,
1171 	xfs_daddr_t		bno)
1172 {
1173 	int			mod;
1174 
1175 	div_s64_rem(bno, log->l_logBBsize, &mod);
1176 	return mod;
1177 }
1178 
1179 /*
1180  * Check whether the head of the log points to an unmount record. In other
1181  * words, determine whether the log is clean. If so, update the in-core state
1182  * appropriately.
1183  */
1184 static int
xlog_check_unmount_rec(struct xlog * log,xfs_daddr_t * head_blk,xfs_daddr_t * tail_blk,struct xlog_rec_header * rhead,xfs_daddr_t rhead_blk,char * buffer,bool * clean)1185 xlog_check_unmount_rec(
1186 	struct xlog		*log,
1187 	xfs_daddr_t		*head_blk,
1188 	xfs_daddr_t		*tail_blk,
1189 	struct xlog_rec_header	*rhead,
1190 	xfs_daddr_t		rhead_blk,
1191 	char			*buffer,
1192 	bool			*clean)
1193 {
1194 	struct xlog_op_header	*op_head;
1195 	xfs_daddr_t		umount_data_blk;
1196 	xfs_daddr_t		after_umount_blk;
1197 	int			hblks;
1198 	int			error;
1199 	char			*offset;
1200 
1201 	*clean = false;
1202 
1203 	/*
1204 	 * Look for unmount record. If we find it, then we know there was a
1205 	 * clean unmount. Since 'i' could be the last block in the physical
1206 	 * log, we convert to a log block before comparing to the head_blk.
1207 	 *
1208 	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1209 	 * below. We won't want to clear the unmount record if there is one, so
1210 	 * we pass the lsn of the unmount record rather than the block after it.
1211 	 */
1212 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1213 		int	h_size = be32_to_cpu(rhead->h_size);
1214 		int	h_version = be32_to_cpu(rhead->h_version);
1215 
1216 		if ((h_version & XLOG_VERSION_2) &&
1217 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1218 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1219 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
1220 				hblks++;
1221 		} else {
1222 			hblks = 1;
1223 		}
1224 	} else {
1225 		hblks = 1;
1226 	}
1227 
1228 	after_umount_blk = xlog_wrap_logbno(log,
1229 			rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1230 
1231 	if (*head_blk == after_umount_blk &&
1232 	    be32_to_cpu(rhead->h_num_logops) == 1) {
1233 		umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1234 		error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1235 		if (error)
1236 			return error;
1237 
1238 		op_head = (struct xlog_op_header *)offset;
1239 		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1240 			/*
1241 			 * Set tail and last sync so that newly written log
1242 			 * records will point recovery to after the current
1243 			 * unmount record.
1244 			 */
1245 			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1246 					log->l_curr_cycle, after_umount_blk);
1247 			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1248 					log->l_curr_cycle, after_umount_blk);
1249 			*tail_blk = after_umount_blk;
1250 
1251 			*clean = true;
1252 		}
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 static void
xlog_set_state(struct xlog * log,xfs_daddr_t head_blk,struct xlog_rec_header * rhead,xfs_daddr_t rhead_blk,bool bump_cycle)1259 xlog_set_state(
1260 	struct xlog		*log,
1261 	xfs_daddr_t		head_blk,
1262 	struct xlog_rec_header	*rhead,
1263 	xfs_daddr_t		rhead_blk,
1264 	bool			bump_cycle)
1265 {
1266 	/*
1267 	 * Reset log values according to the state of the log when we
1268 	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1269 	 * one because the next write starts a new cycle rather than
1270 	 * continuing the cycle of the last good log record.  At this
1271 	 * point we have guaranteed that all partial log records have been
1272 	 * accounted for.  Therefore, we know that the last good log record
1273 	 * written was complete and ended exactly on the end boundary
1274 	 * of the physical log.
1275 	 */
1276 	log->l_prev_block = rhead_blk;
1277 	log->l_curr_block = (int)head_blk;
1278 	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1279 	if (bump_cycle)
1280 		log->l_curr_cycle++;
1281 	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1282 	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1283 	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1284 					BBTOB(log->l_curr_block));
1285 	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1286 					BBTOB(log->l_curr_block));
1287 }
1288 
1289 /*
1290  * Find the sync block number or the tail of the log.
1291  *
1292  * This will be the block number of the last record to have its
1293  * associated buffers synced to disk.  Every log record header has
1294  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1295  * to get a sync block number.  The only concern is to figure out which
1296  * log record header to believe.
1297  *
1298  * The following algorithm uses the log record header with the largest
1299  * lsn.  The entire log record does not need to be valid.  We only care
1300  * that the header is valid.
1301  *
1302  * We could speed up search by using current head_blk buffer, but it is not
1303  * available.
1304  */
1305 STATIC int
xlog_find_tail(struct xlog * log,xfs_daddr_t * head_blk,xfs_daddr_t * tail_blk)1306 xlog_find_tail(
1307 	struct xlog		*log,
1308 	xfs_daddr_t		*head_blk,
1309 	xfs_daddr_t		*tail_blk)
1310 {
1311 	xlog_rec_header_t	*rhead;
1312 	char			*offset = NULL;
1313 	char			*buffer;
1314 	int			error;
1315 	xfs_daddr_t		rhead_blk;
1316 	xfs_lsn_t		tail_lsn;
1317 	bool			wrapped = false;
1318 	bool			clean = false;
1319 
1320 	/*
1321 	 * Find previous log record
1322 	 */
1323 	if ((error = xlog_find_head(log, head_blk)))
1324 		return error;
1325 	ASSERT(*head_blk < INT_MAX);
1326 
1327 	buffer = xlog_alloc_buffer(log, 1);
1328 	if (!buffer)
1329 		return -ENOMEM;
1330 	if (*head_blk == 0) {				/* special case */
1331 		error = xlog_bread(log, 0, 1, buffer, &offset);
1332 		if (error)
1333 			goto done;
1334 
1335 		if (xlog_get_cycle(offset) == 0) {
1336 			*tail_blk = 0;
1337 			/* leave all other log inited values alone */
1338 			goto done;
1339 		}
1340 	}
1341 
1342 	/*
1343 	 * Search backwards through the log looking for the log record header
1344 	 * block. This wraps all the way back around to the head so something is
1345 	 * seriously wrong if we can't find it.
1346 	 */
1347 	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1348 				      &rhead_blk, &rhead, &wrapped);
1349 	if (error < 0)
1350 		goto done;
1351 	if (!error) {
1352 		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1353 		error = -EFSCORRUPTED;
1354 		goto done;
1355 	}
1356 	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1357 
1358 	/*
1359 	 * Set the log state based on the current head record.
1360 	 */
1361 	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1362 	tail_lsn = atomic64_read(&log->l_tail_lsn);
1363 
1364 	/*
1365 	 * Look for an unmount record at the head of the log. This sets the log
1366 	 * state to determine whether recovery is necessary.
1367 	 */
1368 	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1369 				       rhead_blk, buffer, &clean);
1370 	if (error)
1371 		goto done;
1372 
1373 	/*
1374 	 * Verify the log head if the log is not clean (e.g., we have anything
1375 	 * but an unmount record at the head). This uses CRC verification to
1376 	 * detect and trim torn writes. If discovered, CRC failures are
1377 	 * considered torn writes and the log head is trimmed accordingly.
1378 	 *
1379 	 * Note that we can only run CRC verification when the log is dirty
1380 	 * because there's no guarantee that the log data behind an unmount
1381 	 * record is compatible with the current architecture.
1382 	 */
1383 	if (!clean) {
1384 		xfs_daddr_t	orig_head = *head_blk;
1385 
1386 		error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1387 					 &rhead_blk, &rhead, &wrapped);
1388 		if (error)
1389 			goto done;
1390 
1391 		/* update in-core state again if the head changed */
1392 		if (*head_blk != orig_head) {
1393 			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1394 				       wrapped);
1395 			tail_lsn = atomic64_read(&log->l_tail_lsn);
1396 			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1397 						       rhead, rhead_blk, buffer,
1398 						       &clean);
1399 			if (error)
1400 				goto done;
1401 		}
1402 	}
1403 
1404 	/*
1405 	 * Note that the unmount was clean. If the unmount was not clean, we
1406 	 * need to know this to rebuild the superblock counters from the perag
1407 	 * headers if we have a filesystem using non-persistent counters.
1408 	 */
1409 	if (clean)
1410 		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1411 
1412 	/*
1413 	 * Make sure that there are no blocks in front of the head
1414 	 * with the same cycle number as the head.  This can happen
1415 	 * because we allow multiple outstanding log writes concurrently,
1416 	 * and the later writes might make it out before earlier ones.
1417 	 *
1418 	 * We use the lsn from before modifying it so that we'll never
1419 	 * overwrite the unmount record after a clean unmount.
1420 	 *
1421 	 * Do this only if we are going to recover the filesystem
1422 	 *
1423 	 * NOTE: This used to say "if (!readonly)"
1424 	 * However on Linux, we can & do recover a read-only filesystem.
1425 	 * We only skip recovery if NORECOVERY is specified on mount,
1426 	 * in which case we would not be here.
1427 	 *
1428 	 * But... if the -device- itself is readonly, just skip this.
1429 	 * We can't recover this device anyway, so it won't matter.
1430 	 */
1431 	if (!xfs_readonly_buftarg(log->l_targ))
1432 		error = xlog_clear_stale_blocks(log, tail_lsn);
1433 
1434 done:
1435 	kmem_free(buffer);
1436 
1437 	if (error)
1438 		xfs_warn(log->l_mp, "failed to locate log tail");
1439 	return error;
1440 }
1441 
1442 /*
1443  * Is the log zeroed at all?
1444  *
1445  * The last binary search should be changed to perform an X block read
1446  * once X becomes small enough.  You can then search linearly through
1447  * the X blocks.  This will cut down on the number of reads we need to do.
1448  *
1449  * If the log is partially zeroed, this routine will pass back the blkno
1450  * of the first block with cycle number 0.  It won't have a complete LR
1451  * preceding it.
1452  *
1453  * Return:
1454  *	0  => the log is completely written to
1455  *	1 => use *blk_no as the first block of the log
1456  *	<0 => error has occurred
1457  */
1458 STATIC int
xlog_find_zeroed(struct xlog * log,xfs_daddr_t * blk_no)1459 xlog_find_zeroed(
1460 	struct xlog	*log,
1461 	xfs_daddr_t	*blk_no)
1462 {
1463 	char		*buffer;
1464 	char		*offset;
1465 	uint	        first_cycle, last_cycle;
1466 	xfs_daddr_t	new_blk, last_blk, start_blk;
1467 	xfs_daddr_t     num_scan_bblks;
1468 	int	        error, log_bbnum = log->l_logBBsize;
1469 
1470 	*blk_no = 0;
1471 
1472 	/* check totally zeroed log */
1473 	buffer = xlog_alloc_buffer(log, 1);
1474 	if (!buffer)
1475 		return -ENOMEM;
1476 	error = xlog_bread(log, 0, 1, buffer, &offset);
1477 	if (error)
1478 		goto out_free_buffer;
1479 
1480 	first_cycle = xlog_get_cycle(offset);
1481 	if (first_cycle == 0) {		/* completely zeroed log */
1482 		*blk_no = 0;
1483 		kmem_free(buffer);
1484 		return 1;
1485 	}
1486 
1487 	/* check partially zeroed log */
1488 	error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1489 	if (error)
1490 		goto out_free_buffer;
1491 
1492 	last_cycle = xlog_get_cycle(offset);
1493 	if (last_cycle != 0) {		/* log completely written to */
1494 		kmem_free(buffer);
1495 		return 0;
1496 	}
1497 
1498 	/* we have a partially zeroed log */
1499 	last_blk = log_bbnum-1;
1500 	error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1501 	if (error)
1502 		goto out_free_buffer;
1503 
1504 	/*
1505 	 * Validate the answer.  Because there is no way to guarantee that
1506 	 * the entire log is made up of log records which are the same size,
1507 	 * we scan over the defined maximum blocks.  At this point, the maximum
1508 	 * is not chosen to mean anything special.   XXXmiken
1509 	 */
1510 	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1511 	ASSERT(num_scan_bblks <= INT_MAX);
1512 
1513 	if (last_blk < num_scan_bblks)
1514 		num_scan_bblks = last_blk;
1515 	start_blk = last_blk - num_scan_bblks;
1516 
1517 	/*
1518 	 * We search for any instances of cycle number 0 that occur before
1519 	 * our current estimate of the head.  What we're trying to detect is
1520 	 *        1 ... | 0 | 1 | 0...
1521 	 *                       ^ binary search ends here
1522 	 */
1523 	if ((error = xlog_find_verify_cycle(log, start_blk,
1524 					 (int)num_scan_bblks, 0, &new_blk)))
1525 		goto out_free_buffer;
1526 	if (new_blk != -1)
1527 		last_blk = new_blk;
1528 
1529 	/*
1530 	 * Potentially backup over partial log record write.  We don't need
1531 	 * to search the end of the log because we know it is zero.
1532 	 */
1533 	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1534 	if (error == 1)
1535 		error = -EIO;
1536 	if (error)
1537 		goto out_free_buffer;
1538 
1539 	*blk_no = last_blk;
1540 out_free_buffer:
1541 	kmem_free(buffer);
1542 	if (error)
1543 		return error;
1544 	return 1;
1545 }
1546 
1547 /*
1548  * These are simple subroutines used by xlog_clear_stale_blocks() below
1549  * to initialize a buffer full of empty log record headers and write
1550  * them into the log.
1551  */
1552 STATIC void
xlog_add_record(struct xlog * log,char * buf,int cycle,int block,int tail_cycle,int tail_block)1553 xlog_add_record(
1554 	struct xlog		*log,
1555 	char			*buf,
1556 	int			cycle,
1557 	int			block,
1558 	int			tail_cycle,
1559 	int			tail_block)
1560 {
1561 	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1562 
1563 	memset(buf, 0, BBSIZE);
1564 	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1565 	recp->h_cycle = cpu_to_be32(cycle);
1566 	recp->h_version = cpu_to_be32(
1567 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1568 	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1569 	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1570 	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1571 	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1572 }
1573 
1574 STATIC int
xlog_write_log_records(struct xlog * log,int cycle,int start_block,int blocks,int tail_cycle,int tail_block)1575 xlog_write_log_records(
1576 	struct xlog	*log,
1577 	int		cycle,
1578 	int		start_block,
1579 	int		blocks,
1580 	int		tail_cycle,
1581 	int		tail_block)
1582 {
1583 	char		*offset;
1584 	char		*buffer;
1585 	int		balign, ealign;
1586 	int		sectbb = log->l_sectBBsize;
1587 	int		end_block = start_block + blocks;
1588 	int		bufblks;
1589 	int		error = 0;
1590 	int		i, j = 0;
1591 
1592 	/*
1593 	 * Greedily allocate a buffer big enough to handle the full
1594 	 * range of basic blocks to be written.  If that fails, try
1595 	 * a smaller size.  We need to be able to write at least a
1596 	 * log sector, or we're out of luck.
1597 	 */
1598 	bufblks = 1 << ffs(blocks);
1599 	while (bufblks > log->l_logBBsize)
1600 		bufblks >>= 1;
1601 	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1602 		bufblks >>= 1;
1603 		if (bufblks < sectbb)
1604 			return -ENOMEM;
1605 	}
1606 
1607 	/* We may need to do a read at the start to fill in part of
1608 	 * the buffer in the starting sector not covered by the first
1609 	 * write below.
1610 	 */
1611 	balign = round_down(start_block, sectbb);
1612 	if (balign != start_block) {
1613 		error = xlog_bread_noalign(log, start_block, 1, buffer);
1614 		if (error)
1615 			goto out_free_buffer;
1616 
1617 		j = start_block - balign;
1618 	}
1619 
1620 	for (i = start_block; i < end_block; i += bufblks) {
1621 		int		bcount, endcount;
1622 
1623 		bcount = min(bufblks, end_block - start_block);
1624 		endcount = bcount - j;
1625 
1626 		/* We may need to do a read at the end to fill in part of
1627 		 * the buffer in the final sector not covered by the write.
1628 		 * If this is the same sector as the above read, skip it.
1629 		 */
1630 		ealign = round_down(end_block, sectbb);
1631 		if (j == 0 && (start_block + endcount > ealign)) {
1632 			error = xlog_bread_noalign(log, ealign, sectbb,
1633 					buffer + BBTOB(ealign - start_block));
1634 			if (error)
1635 				break;
1636 
1637 		}
1638 
1639 		offset = buffer + xlog_align(log, start_block);
1640 		for (; j < endcount; j++) {
1641 			xlog_add_record(log, offset, cycle, i+j,
1642 					tail_cycle, tail_block);
1643 			offset += BBSIZE;
1644 		}
1645 		error = xlog_bwrite(log, start_block, endcount, buffer);
1646 		if (error)
1647 			break;
1648 		start_block += endcount;
1649 		j = 0;
1650 	}
1651 
1652 out_free_buffer:
1653 	kmem_free(buffer);
1654 	return error;
1655 }
1656 
1657 /*
1658  * This routine is called to blow away any incomplete log writes out
1659  * in front of the log head.  We do this so that we won't become confused
1660  * if we come up, write only a little bit more, and then crash again.
1661  * If we leave the partial log records out there, this situation could
1662  * cause us to think those partial writes are valid blocks since they
1663  * have the current cycle number.  We get rid of them by overwriting them
1664  * with empty log records with the old cycle number rather than the
1665  * current one.
1666  *
1667  * The tail lsn is passed in rather than taken from
1668  * the log so that we will not write over the unmount record after a
1669  * clean unmount in a 512 block log.  Doing so would leave the log without
1670  * any valid log records in it until a new one was written.  If we crashed
1671  * during that time we would not be able to recover.
1672  */
1673 STATIC int
xlog_clear_stale_blocks(struct xlog * log,xfs_lsn_t tail_lsn)1674 xlog_clear_stale_blocks(
1675 	struct xlog	*log,
1676 	xfs_lsn_t	tail_lsn)
1677 {
1678 	int		tail_cycle, head_cycle;
1679 	int		tail_block, head_block;
1680 	int		tail_distance, max_distance;
1681 	int		distance;
1682 	int		error;
1683 
1684 	tail_cycle = CYCLE_LSN(tail_lsn);
1685 	tail_block = BLOCK_LSN(tail_lsn);
1686 	head_cycle = log->l_curr_cycle;
1687 	head_block = log->l_curr_block;
1688 
1689 	/*
1690 	 * Figure out the distance between the new head of the log
1691 	 * and the tail.  We want to write over any blocks beyond the
1692 	 * head that we may have written just before the crash, but
1693 	 * we don't want to overwrite the tail of the log.
1694 	 */
1695 	if (head_cycle == tail_cycle) {
1696 		/*
1697 		 * The tail is behind the head in the physical log,
1698 		 * so the distance from the head to the tail is the
1699 		 * distance from the head to the end of the log plus
1700 		 * the distance from the beginning of the log to the
1701 		 * tail.
1702 		 */
1703 		if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1704 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1705 					 XFS_ERRLEVEL_LOW, log->l_mp);
1706 			return -EFSCORRUPTED;
1707 		}
1708 		tail_distance = tail_block + (log->l_logBBsize - head_block);
1709 	} else {
1710 		/*
1711 		 * The head is behind the tail in the physical log,
1712 		 * so the distance from the head to the tail is just
1713 		 * the tail block minus the head block.
1714 		 */
1715 		if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1716 			XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1717 					 XFS_ERRLEVEL_LOW, log->l_mp);
1718 			return -EFSCORRUPTED;
1719 		}
1720 		tail_distance = tail_block - head_block;
1721 	}
1722 
1723 	/*
1724 	 * If the head is right up against the tail, we can't clear
1725 	 * anything.
1726 	 */
1727 	if (tail_distance <= 0) {
1728 		ASSERT(tail_distance == 0);
1729 		return 0;
1730 	}
1731 
1732 	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1733 	/*
1734 	 * Take the smaller of the maximum amount of outstanding I/O
1735 	 * we could have and the distance to the tail to clear out.
1736 	 * We take the smaller so that we don't overwrite the tail and
1737 	 * we don't waste all day writing from the head to the tail
1738 	 * for no reason.
1739 	 */
1740 	max_distance = min(max_distance, tail_distance);
1741 
1742 	if ((head_block + max_distance) <= log->l_logBBsize) {
1743 		/*
1744 		 * We can stomp all the blocks we need to without
1745 		 * wrapping around the end of the log.  Just do it
1746 		 * in a single write.  Use the cycle number of the
1747 		 * current cycle minus one so that the log will look like:
1748 		 *     n ... | n - 1 ...
1749 		 */
1750 		error = xlog_write_log_records(log, (head_cycle - 1),
1751 				head_block, max_distance, tail_cycle,
1752 				tail_block);
1753 		if (error)
1754 			return error;
1755 	} else {
1756 		/*
1757 		 * We need to wrap around the end of the physical log in
1758 		 * order to clear all the blocks.  Do it in two separate
1759 		 * I/Os.  The first write should be from the head to the
1760 		 * end of the physical log, and it should use the current
1761 		 * cycle number minus one just like above.
1762 		 */
1763 		distance = log->l_logBBsize - head_block;
1764 		error = xlog_write_log_records(log, (head_cycle - 1),
1765 				head_block, distance, tail_cycle,
1766 				tail_block);
1767 
1768 		if (error)
1769 			return error;
1770 
1771 		/*
1772 		 * Now write the blocks at the start of the physical log.
1773 		 * This writes the remainder of the blocks we want to clear.
1774 		 * It uses the current cycle number since we're now on the
1775 		 * same cycle as the head so that we get:
1776 		 *    n ... n ... | n - 1 ...
1777 		 *    ^^^^^ blocks we're writing
1778 		 */
1779 		distance = max_distance - (log->l_logBBsize - head_block);
1780 		error = xlog_write_log_records(log, head_cycle, 0, distance,
1781 				tail_cycle, tail_block);
1782 		if (error)
1783 			return error;
1784 	}
1785 
1786 	return 0;
1787 }
1788 
1789 /******************************************************************************
1790  *
1791  *		Log recover routines
1792  *
1793  ******************************************************************************
1794  */
1795 
1796 /*
1797  * Sort the log items in the transaction.
1798  *
1799  * The ordering constraints are defined by the inode allocation and unlink
1800  * behaviour. The rules are:
1801  *
1802  *	1. Every item is only logged once in a given transaction. Hence it
1803  *	   represents the last logged state of the item. Hence ordering is
1804  *	   dependent on the order in which operations need to be performed so
1805  *	   required initial conditions are always met.
1806  *
1807  *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1808  *	   there's nothing to replay from them so we can simply cull them
1809  *	   from the transaction. However, we can't do that until after we've
1810  *	   replayed all the other items because they may be dependent on the
1811  *	   cancelled buffer and replaying the cancelled buffer can remove it
1812  *	   form the cancelled buffer table. Hence they have tobe done last.
1813  *
1814  *	3. Inode allocation buffers must be replayed before inode items that
1815  *	   read the buffer and replay changes into it. For filesystems using the
1816  *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1817  *	   treated the same as inode allocation buffers as they create and
1818  *	   initialise the buffers directly.
1819  *
1820  *	4. Inode unlink buffers must be replayed after inode items are replayed.
1821  *	   This ensures that inodes are completely flushed to the inode buffer
1822  *	   in a "free" state before we remove the unlinked inode list pointer.
1823  *
1824  * Hence the ordering needs to be inode allocation buffers first, inode items
1825  * second, inode unlink buffers third and cancelled buffers last.
1826  *
1827  * But there's a problem with that - we can't tell an inode allocation buffer
1828  * apart from a regular buffer, so we can't separate them. We can, however,
1829  * tell an inode unlink buffer from the others, and so we can separate them out
1830  * from all the other buffers and move them to last.
1831  *
1832  * Hence, 4 lists, in order from head to tail:
1833  *	- buffer_list for all buffers except cancelled/inode unlink buffers
1834  *	- item_list for all non-buffer items
1835  *	- inode_buffer_list for inode unlink buffers
1836  *	- cancel_list for the cancelled buffers
1837  *
1838  * Note that we add objects to the tail of the lists so that first-to-last
1839  * ordering is preserved within the lists. Adding objects to the head of the
1840  * list means when we traverse from the head we walk them in last-to-first
1841  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1842  * but for all other items there may be specific ordering that we need to
1843  * preserve.
1844  */
1845 STATIC int
xlog_recover_reorder_trans(struct xlog * log,struct xlog_recover * trans,int pass)1846 xlog_recover_reorder_trans(
1847 	struct xlog		*log,
1848 	struct xlog_recover	*trans,
1849 	int			pass)
1850 {
1851 	xlog_recover_item_t	*item, *n;
1852 	int			error = 0;
1853 	LIST_HEAD(sort_list);
1854 	LIST_HEAD(cancel_list);
1855 	LIST_HEAD(buffer_list);
1856 	LIST_HEAD(inode_buffer_list);
1857 	LIST_HEAD(inode_list);
1858 
1859 	list_splice_init(&trans->r_itemq, &sort_list);
1860 	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1861 		xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1862 
1863 		switch (ITEM_TYPE(item)) {
1864 		case XFS_LI_ICREATE:
1865 			list_move_tail(&item->ri_list, &buffer_list);
1866 			break;
1867 		case XFS_LI_BUF:
1868 			if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1869 				trace_xfs_log_recover_item_reorder_head(log,
1870 							trans, item, pass);
1871 				list_move(&item->ri_list, &cancel_list);
1872 				break;
1873 			}
1874 			if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1875 				list_move(&item->ri_list, &inode_buffer_list);
1876 				break;
1877 			}
1878 			list_move_tail(&item->ri_list, &buffer_list);
1879 			break;
1880 		case XFS_LI_INODE:
1881 		case XFS_LI_DQUOT:
1882 		case XFS_LI_QUOTAOFF:
1883 		case XFS_LI_EFD:
1884 		case XFS_LI_EFI:
1885 		case XFS_LI_RUI:
1886 		case XFS_LI_RUD:
1887 		case XFS_LI_CUI:
1888 		case XFS_LI_CUD:
1889 		case XFS_LI_BUI:
1890 		case XFS_LI_BUD:
1891 			trace_xfs_log_recover_item_reorder_tail(log,
1892 							trans, item, pass);
1893 			list_move_tail(&item->ri_list, &inode_list);
1894 			break;
1895 		default:
1896 			xfs_warn(log->l_mp,
1897 				"%s: unrecognized type of log operation",
1898 				__func__);
1899 			ASSERT(0);
1900 			/*
1901 			 * return the remaining items back to the transaction
1902 			 * item list so they can be freed in caller.
1903 			 */
1904 			if (!list_empty(&sort_list))
1905 				list_splice_init(&sort_list, &trans->r_itemq);
1906 			error = -EIO;
1907 			goto out;
1908 		}
1909 	}
1910 out:
1911 	ASSERT(list_empty(&sort_list));
1912 	if (!list_empty(&buffer_list))
1913 		list_splice(&buffer_list, &trans->r_itemq);
1914 	if (!list_empty(&inode_list))
1915 		list_splice_tail(&inode_list, &trans->r_itemq);
1916 	if (!list_empty(&inode_buffer_list))
1917 		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1918 	if (!list_empty(&cancel_list))
1919 		list_splice_tail(&cancel_list, &trans->r_itemq);
1920 	return error;
1921 }
1922 
1923 /*
1924  * Build up the table of buf cancel records so that we don't replay
1925  * cancelled data in the second pass.  For buffer records that are
1926  * not cancel records, there is nothing to do here so we just return.
1927  *
1928  * If we get a cancel record which is already in the table, this indicates
1929  * that the buffer was cancelled multiple times.  In order to ensure
1930  * that during pass 2 we keep the record in the table until we reach its
1931  * last occurrence in the log, we keep a reference count in the cancel
1932  * record in the table to tell us how many times we expect to see this
1933  * record during the second pass.
1934  */
1935 STATIC int
xlog_recover_buffer_pass1(struct xlog * log,struct xlog_recover_item * item)1936 xlog_recover_buffer_pass1(
1937 	struct xlog			*log,
1938 	struct xlog_recover_item	*item)
1939 {
1940 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
1941 	struct list_head	*bucket;
1942 	struct xfs_buf_cancel	*bcp;
1943 
1944 	/*
1945 	 * If this isn't a cancel buffer item, then just return.
1946 	 */
1947 	if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1948 		trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1949 		return 0;
1950 	}
1951 
1952 	/*
1953 	 * Insert an xfs_buf_cancel record into the hash table of them.
1954 	 * If there is already an identical record, bump its reference count.
1955 	 */
1956 	bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1957 	list_for_each_entry(bcp, bucket, bc_list) {
1958 		if (bcp->bc_blkno == buf_f->blf_blkno &&
1959 		    bcp->bc_len == buf_f->blf_len) {
1960 			bcp->bc_refcount++;
1961 			trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1962 			return 0;
1963 		}
1964 	}
1965 
1966 	bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0);
1967 	bcp->bc_blkno = buf_f->blf_blkno;
1968 	bcp->bc_len = buf_f->blf_len;
1969 	bcp->bc_refcount = 1;
1970 	list_add_tail(&bcp->bc_list, bucket);
1971 
1972 	trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1973 	return 0;
1974 }
1975 
1976 /*
1977  * Check to see whether the buffer being recovered has a corresponding
1978  * entry in the buffer cancel record table. If it is, return the cancel
1979  * buffer structure to the caller.
1980  */
1981 STATIC struct xfs_buf_cancel *
xlog_peek_buffer_cancelled(struct xlog * log,xfs_daddr_t blkno,uint len,unsigned short flags)1982 xlog_peek_buffer_cancelled(
1983 	struct xlog		*log,
1984 	xfs_daddr_t		blkno,
1985 	uint			len,
1986 	unsigned short			flags)
1987 {
1988 	struct list_head	*bucket;
1989 	struct xfs_buf_cancel	*bcp;
1990 
1991 	if (!log->l_buf_cancel_table) {
1992 		/* empty table means no cancelled buffers in the log */
1993 		ASSERT(!(flags & XFS_BLF_CANCEL));
1994 		return NULL;
1995 	}
1996 
1997 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1998 	list_for_each_entry(bcp, bucket, bc_list) {
1999 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2000 			return bcp;
2001 	}
2002 
2003 	/*
2004 	 * We didn't find a corresponding entry in the table, so return 0 so
2005 	 * that the buffer is NOT cancelled.
2006 	 */
2007 	ASSERT(!(flags & XFS_BLF_CANCEL));
2008 	return NULL;
2009 }
2010 
2011 /*
2012  * If the buffer is being cancelled then return 1 so that it will be cancelled,
2013  * otherwise return 0.  If the buffer is actually a buffer cancel item
2014  * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2015  * table and remove it from the table if this is the last reference.
2016  *
2017  * We remove the cancel record from the table when we encounter its last
2018  * occurrence in the log so that if the same buffer is re-used again after its
2019  * last cancellation we actually replay the changes made at that point.
2020  */
2021 STATIC int
xlog_check_buffer_cancelled(struct xlog * log,xfs_daddr_t blkno,uint len,unsigned short flags)2022 xlog_check_buffer_cancelled(
2023 	struct xlog		*log,
2024 	xfs_daddr_t		blkno,
2025 	uint			len,
2026 	unsigned short			flags)
2027 {
2028 	struct xfs_buf_cancel	*bcp;
2029 
2030 	bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2031 	if (!bcp)
2032 		return 0;
2033 
2034 	/*
2035 	 * We've go a match, so return 1 so that the recovery of this buffer
2036 	 * is cancelled.  If this buffer is actually a buffer cancel log
2037 	 * item, then decrement the refcount on the one in the table and
2038 	 * remove it if this is the last reference.
2039 	 */
2040 	if (flags & XFS_BLF_CANCEL) {
2041 		if (--bcp->bc_refcount == 0) {
2042 			list_del(&bcp->bc_list);
2043 			kmem_free(bcp);
2044 		}
2045 	}
2046 	return 1;
2047 }
2048 
2049 /*
2050  * Perform recovery for a buffer full of inodes.  In these buffers, the only
2051  * data which should be recovered is that which corresponds to the
2052  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
2053  * data for the inodes is always logged through the inodes themselves rather
2054  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2055  *
2056  * The only time when buffers full of inodes are fully recovered is when the
2057  * buffer is full of newly allocated inodes.  In this case the buffer will
2058  * not be marked as an inode buffer and so will be sent to
2059  * xlog_recover_do_reg_buffer() below during recovery.
2060  */
2061 STATIC int
xlog_recover_do_inode_buffer(struct xfs_mount * mp,xlog_recover_item_t * item,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f)2062 xlog_recover_do_inode_buffer(
2063 	struct xfs_mount	*mp,
2064 	xlog_recover_item_t	*item,
2065 	struct xfs_buf		*bp,
2066 	xfs_buf_log_format_t	*buf_f)
2067 {
2068 	int			i;
2069 	int			item_index = 0;
2070 	int			bit = 0;
2071 	int			nbits = 0;
2072 	int			reg_buf_offset = 0;
2073 	int			reg_buf_bytes = 0;
2074 	int			next_unlinked_offset;
2075 	int			inodes_per_buf;
2076 	xfs_agino_t		*logged_nextp;
2077 	xfs_agino_t		*buffer_nextp;
2078 
2079 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2080 
2081 	/*
2082 	 * Post recovery validation only works properly on CRC enabled
2083 	 * filesystems.
2084 	 */
2085 	if (xfs_sb_version_hascrc(&mp->m_sb))
2086 		bp->b_ops = &xfs_inode_buf_ops;
2087 
2088 	inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
2089 	for (i = 0; i < inodes_per_buf; i++) {
2090 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2091 			offsetof(xfs_dinode_t, di_next_unlinked);
2092 
2093 		while (next_unlinked_offset >=
2094 		       (reg_buf_offset + reg_buf_bytes)) {
2095 			/*
2096 			 * The next di_next_unlinked field is beyond
2097 			 * the current logged region.  Find the next
2098 			 * logged region that contains or is beyond
2099 			 * the current di_next_unlinked field.
2100 			 */
2101 			bit += nbits;
2102 			bit = xfs_next_bit(buf_f->blf_data_map,
2103 					   buf_f->blf_map_size, bit);
2104 
2105 			/*
2106 			 * If there are no more logged regions in the
2107 			 * buffer, then we're done.
2108 			 */
2109 			if (bit == -1)
2110 				return 0;
2111 
2112 			nbits = xfs_contig_bits(buf_f->blf_data_map,
2113 						buf_f->blf_map_size, bit);
2114 			ASSERT(nbits > 0);
2115 			reg_buf_offset = bit << XFS_BLF_SHIFT;
2116 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2117 			item_index++;
2118 		}
2119 
2120 		/*
2121 		 * If the current logged region starts after the current
2122 		 * di_next_unlinked field, then move on to the next
2123 		 * di_next_unlinked field.
2124 		 */
2125 		if (next_unlinked_offset < reg_buf_offset)
2126 			continue;
2127 
2128 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
2129 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2130 		ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
2131 
2132 		/*
2133 		 * The current logged region contains a copy of the
2134 		 * current di_next_unlinked field.  Extract its value
2135 		 * and copy it to the buffer copy.
2136 		 */
2137 		logged_nextp = item->ri_buf[item_index].i_addr +
2138 				next_unlinked_offset - reg_buf_offset;
2139 		if (unlikely(*logged_nextp == 0)) {
2140 			xfs_alert(mp,
2141 		"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
2142 		"Trying to replay bad (0) inode di_next_unlinked field.",
2143 				item, bp);
2144 			XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2145 					 XFS_ERRLEVEL_LOW, mp);
2146 			return -EFSCORRUPTED;
2147 		}
2148 
2149 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2150 		*buffer_nextp = *logged_nextp;
2151 
2152 		/*
2153 		 * If necessary, recalculate the CRC in the on-disk inode. We
2154 		 * have to leave the inode in a consistent state for whoever
2155 		 * reads it next....
2156 		 */
2157 		xfs_dinode_calc_crc(mp,
2158 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2159 
2160 	}
2161 
2162 	return 0;
2163 }
2164 
2165 /*
2166  * V5 filesystems know the age of the buffer on disk being recovered. We can
2167  * have newer objects on disk than we are replaying, and so for these cases we
2168  * don't want to replay the current change as that will make the buffer contents
2169  * temporarily invalid on disk.
2170  *
2171  * The magic number might not match the buffer type we are going to recover
2172  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
2173  * extract the LSN of the existing object in the buffer based on it's current
2174  * magic number.  If we don't recognise the magic number in the buffer, then
2175  * return a LSN of -1 so that the caller knows it was an unrecognised block and
2176  * so can recover the buffer.
2177  *
2178  * Note: we cannot rely solely on magic number matches to determine that the
2179  * buffer has a valid LSN - we also need to verify that it belongs to this
2180  * filesystem, so we need to extract the object's LSN and compare it to that
2181  * which we read from the superblock. If the UUIDs don't match, then we've got a
2182  * stale metadata block from an old filesystem instance that we need to recover
2183  * over the top of.
2184  */
2185 static xfs_lsn_t
xlog_recover_get_buf_lsn(struct xfs_mount * mp,struct xfs_buf * bp)2186 xlog_recover_get_buf_lsn(
2187 	struct xfs_mount	*mp,
2188 	struct xfs_buf		*bp)
2189 {
2190 	uint32_t		magic32;
2191 	uint16_t		magic16;
2192 	uint16_t		magicda;
2193 	void			*blk = bp->b_addr;
2194 	uuid_t			*uuid;
2195 	xfs_lsn_t		lsn = -1;
2196 
2197 	/* v4 filesystems always recover immediately */
2198 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2199 		goto recover_immediately;
2200 
2201 	magic32 = be32_to_cpu(*(__be32 *)blk);
2202 	switch (magic32) {
2203 	case XFS_ABTB_CRC_MAGIC:
2204 	case XFS_ABTC_CRC_MAGIC:
2205 	case XFS_ABTB_MAGIC:
2206 	case XFS_ABTC_MAGIC:
2207 	case XFS_RMAP_CRC_MAGIC:
2208 	case XFS_REFC_CRC_MAGIC:
2209 	case XFS_FIBT_CRC_MAGIC:
2210 	case XFS_FIBT_MAGIC:
2211 	case XFS_IBT_CRC_MAGIC:
2212 	case XFS_IBT_MAGIC: {
2213 		struct xfs_btree_block *btb = blk;
2214 
2215 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2216 		uuid = &btb->bb_u.s.bb_uuid;
2217 		break;
2218 	}
2219 	case XFS_BMAP_CRC_MAGIC:
2220 	case XFS_BMAP_MAGIC: {
2221 		struct xfs_btree_block *btb = blk;
2222 
2223 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2224 		uuid = &btb->bb_u.l.bb_uuid;
2225 		break;
2226 	}
2227 	case XFS_AGF_MAGIC:
2228 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2229 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
2230 		break;
2231 	case XFS_AGFL_MAGIC:
2232 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2233 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2234 		break;
2235 	case XFS_AGI_MAGIC:
2236 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2237 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
2238 		break;
2239 	case XFS_SYMLINK_MAGIC:
2240 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2241 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2242 		break;
2243 	case XFS_DIR3_BLOCK_MAGIC:
2244 	case XFS_DIR3_DATA_MAGIC:
2245 	case XFS_DIR3_FREE_MAGIC:
2246 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2247 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2248 		break;
2249 	case XFS_ATTR3_RMT_MAGIC:
2250 		/*
2251 		 * Remote attr blocks are written synchronously, rather than
2252 		 * being logged. That means they do not contain a valid LSN
2253 		 * (i.e. transactionally ordered) in them, and hence any time we
2254 		 * see a buffer to replay over the top of a remote attribute
2255 		 * block we should simply do so.
2256 		 */
2257 		goto recover_immediately;
2258 	case XFS_SB_MAGIC:
2259 		/*
2260 		 * superblock uuids are magic. We may or may not have a
2261 		 * sb_meta_uuid on disk, but it will be set in the in-core
2262 		 * superblock. We set the uuid pointer for verification
2263 		 * according to the superblock feature mask to ensure we check
2264 		 * the relevant UUID in the superblock.
2265 		 */
2266 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2267 		if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2268 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2269 		else
2270 			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2271 		break;
2272 	default:
2273 		break;
2274 	}
2275 
2276 	if (lsn != (xfs_lsn_t)-1) {
2277 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2278 			goto recover_immediately;
2279 		return lsn;
2280 	}
2281 
2282 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2283 	switch (magicda) {
2284 	case XFS_DIR3_LEAF1_MAGIC:
2285 	case XFS_DIR3_LEAFN_MAGIC:
2286 	case XFS_DA3_NODE_MAGIC:
2287 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2288 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2289 		break;
2290 	default:
2291 		break;
2292 	}
2293 
2294 	if (lsn != (xfs_lsn_t)-1) {
2295 		if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2296 			goto recover_immediately;
2297 		return lsn;
2298 	}
2299 
2300 	/*
2301 	 * We do individual object checks on dquot and inode buffers as they
2302 	 * have their own individual LSN records. Also, we could have a stale
2303 	 * buffer here, so we have to at least recognise these buffer types.
2304 	 *
2305 	 * A notd complexity here is inode unlinked list processing - it logs
2306 	 * the inode directly in the buffer, but we don't know which inodes have
2307 	 * been modified, and there is no global buffer LSN. Hence we need to
2308 	 * recover all inode buffer types immediately. This problem will be
2309 	 * fixed by logical logging of the unlinked list modifications.
2310 	 */
2311 	magic16 = be16_to_cpu(*(__be16 *)blk);
2312 	switch (magic16) {
2313 	case XFS_DQUOT_MAGIC:
2314 	case XFS_DINODE_MAGIC:
2315 		goto recover_immediately;
2316 	default:
2317 		break;
2318 	}
2319 
2320 	/* unknown buffer contents, recover immediately */
2321 
2322 recover_immediately:
2323 	return (xfs_lsn_t)-1;
2324 
2325 }
2326 
2327 /*
2328  * Validate the recovered buffer is of the correct type and attach the
2329  * appropriate buffer operations to them for writeback. Magic numbers are in a
2330  * few places:
2331  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
2332  *	the first 32 bits of the buffer (most blocks),
2333  *	inside a struct xfs_da_blkinfo at the start of the buffer.
2334  */
2335 static void
xlog_recover_validate_buf_type(struct xfs_mount * mp,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f,xfs_lsn_t current_lsn)2336 xlog_recover_validate_buf_type(
2337 	struct xfs_mount	*mp,
2338 	struct xfs_buf		*bp,
2339 	xfs_buf_log_format_t	*buf_f,
2340 	xfs_lsn_t		current_lsn)
2341 {
2342 	struct xfs_da_blkinfo	*info = bp->b_addr;
2343 	uint32_t		magic32;
2344 	uint16_t		magic16;
2345 	uint16_t		magicda;
2346 	char			*warnmsg = NULL;
2347 
2348 	/*
2349 	 * We can only do post recovery validation on items on CRC enabled
2350 	 * fielsystems as we need to know when the buffer was written to be able
2351 	 * to determine if we should have replayed the item. If we replay old
2352 	 * metadata over a newer buffer, then it will enter a temporarily
2353 	 * inconsistent state resulting in verification failures. Hence for now
2354 	 * just avoid the verification stage for non-crc filesystems
2355 	 */
2356 	if (!xfs_sb_version_hascrc(&mp->m_sb))
2357 		return;
2358 
2359 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2360 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2361 	magicda = be16_to_cpu(info->magic);
2362 	switch (xfs_blft_from_flags(buf_f)) {
2363 	case XFS_BLFT_BTREE_BUF:
2364 		switch (magic32) {
2365 		case XFS_ABTB_CRC_MAGIC:
2366 		case XFS_ABTB_MAGIC:
2367 			bp->b_ops = &xfs_bnobt_buf_ops;
2368 			break;
2369 		case XFS_ABTC_CRC_MAGIC:
2370 		case XFS_ABTC_MAGIC:
2371 			bp->b_ops = &xfs_cntbt_buf_ops;
2372 			break;
2373 		case XFS_IBT_CRC_MAGIC:
2374 		case XFS_IBT_MAGIC:
2375 			bp->b_ops = &xfs_inobt_buf_ops;
2376 			break;
2377 		case XFS_FIBT_CRC_MAGIC:
2378 		case XFS_FIBT_MAGIC:
2379 			bp->b_ops = &xfs_finobt_buf_ops;
2380 			break;
2381 		case XFS_BMAP_CRC_MAGIC:
2382 		case XFS_BMAP_MAGIC:
2383 			bp->b_ops = &xfs_bmbt_buf_ops;
2384 			break;
2385 		case XFS_RMAP_CRC_MAGIC:
2386 			bp->b_ops = &xfs_rmapbt_buf_ops;
2387 			break;
2388 		case XFS_REFC_CRC_MAGIC:
2389 			bp->b_ops = &xfs_refcountbt_buf_ops;
2390 			break;
2391 		default:
2392 			warnmsg = "Bad btree block magic!";
2393 			break;
2394 		}
2395 		break;
2396 	case XFS_BLFT_AGF_BUF:
2397 		if (magic32 != XFS_AGF_MAGIC) {
2398 			warnmsg = "Bad AGF block magic!";
2399 			break;
2400 		}
2401 		bp->b_ops = &xfs_agf_buf_ops;
2402 		break;
2403 	case XFS_BLFT_AGFL_BUF:
2404 		if (magic32 != XFS_AGFL_MAGIC) {
2405 			warnmsg = "Bad AGFL block magic!";
2406 			break;
2407 		}
2408 		bp->b_ops = &xfs_agfl_buf_ops;
2409 		break;
2410 	case XFS_BLFT_AGI_BUF:
2411 		if (magic32 != XFS_AGI_MAGIC) {
2412 			warnmsg = "Bad AGI block magic!";
2413 			break;
2414 		}
2415 		bp->b_ops = &xfs_agi_buf_ops;
2416 		break;
2417 	case XFS_BLFT_UDQUOT_BUF:
2418 	case XFS_BLFT_PDQUOT_BUF:
2419 	case XFS_BLFT_GDQUOT_BUF:
2420 #ifdef CONFIG_XFS_QUOTA
2421 		if (magic16 != XFS_DQUOT_MAGIC) {
2422 			warnmsg = "Bad DQUOT block magic!";
2423 			break;
2424 		}
2425 		bp->b_ops = &xfs_dquot_buf_ops;
2426 #else
2427 		xfs_alert(mp,
2428 	"Trying to recover dquots without QUOTA support built in!");
2429 		ASSERT(0);
2430 #endif
2431 		break;
2432 	case XFS_BLFT_DINO_BUF:
2433 		if (magic16 != XFS_DINODE_MAGIC) {
2434 			warnmsg = "Bad INODE block magic!";
2435 			break;
2436 		}
2437 		bp->b_ops = &xfs_inode_buf_ops;
2438 		break;
2439 	case XFS_BLFT_SYMLINK_BUF:
2440 		if (magic32 != XFS_SYMLINK_MAGIC) {
2441 			warnmsg = "Bad symlink block magic!";
2442 			break;
2443 		}
2444 		bp->b_ops = &xfs_symlink_buf_ops;
2445 		break;
2446 	case XFS_BLFT_DIR_BLOCK_BUF:
2447 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2448 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
2449 			warnmsg = "Bad dir block magic!";
2450 			break;
2451 		}
2452 		bp->b_ops = &xfs_dir3_block_buf_ops;
2453 		break;
2454 	case XFS_BLFT_DIR_DATA_BUF:
2455 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
2456 		    magic32 != XFS_DIR3_DATA_MAGIC) {
2457 			warnmsg = "Bad dir data magic!";
2458 			break;
2459 		}
2460 		bp->b_ops = &xfs_dir3_data_buf_ops;
2461 		break;
2462 	case XFS_BLFT_DIR_FREE_BUF:
2463 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
2464 		    magic32 != XFS_DIR3_FREE_MAGIC) {
2465 			warnmsg = "Bad dir3 free magic!";
2466 			break;
2467 		}
2468 		bp->b_ops = &xfs_dir3_free_buf_ops;
2469 		break;
2470 	case XFS_BLFT_DIR_LEAF1_BUF:
2471 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2472 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
2473 			warnmsg = "Bad dir leaf1 magic!";
2474 			break;
2475 		}
2476 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2477 		break;
2478 	case XFS_BLFT_DIR_LEAFN_BUF:
2479 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2480 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
2481 			warnmsg = "Bad dir leafn magic!";
2482 			break;
2483 		}
2484 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
2485 		break;
2486 	case XFS_BLFT_DA_NODE_BUF:
2487 		if (magicda != XFS_DA_NODE_MAGIC &&
2488 		    magicda != XFS_DA3_NODE_MAGIC) {
2489 			warnmsg = "Bad da node magic!";
2490 			break;
2491 		}
2492 		bp->b_ops = &xfs_da3_node_buf_ops;
2493 		break;
2494 	case XFS_BLFT_ATTR_LEAF_BUF:
2495 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
2496 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
2497 			warnmsg = "Bad attr leaf magic!";
2498 			break;
2499 		}
2500 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
2501 		break;
2502 	case XFS_BLFT_ATTR_RMT_BUF:
2503 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2504 			warnmsg = "Bad attr remote magic!";
2505 			break;
2506 		}
2507 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
2508 		break;
2509 	case XFS_BLFT_SB_BUF:
2510 		if (magic32 != XFS_SB_MAGIC) {
2511 			warnmsg = "Bad SB block magic!";
2512 			break;
2513 		}
2514 		bp->b_ops = &xfs_sb_buf_ops;
2515 		break;
2516 #ifdef CONFIG_XFS_RT
2517 	case XFS_BLFT_RTBITMAP_BUF:
2518 	case XFS_BLFT_RTSUMMARY_BUF:
2519 		/* no magic numbers for verification of RT buffers */
2520 		bp->b_ops = &xfs_rtbuf_ops;
2521 		break;
2522 #endif /* CONFIG_XFS_RT */
2523 	default:
2524 		xfs_warn(mp, "Unknown buffer type %d!",
2525 			 xfs_blft_from_flags(buf_f));
2526 		break;
2527 	}
2528 
2529 	/*
2530 	 * Nothing else to do in the case of a NULL current LSN as this means
2531 	 * the buffer is more recent than the change in the log and will be
2532 	 * skipped.
2533 	 */
2534 	if (current_lsn == NULLCOMMITLSN)
2535 		return;
2536 
2537 	if (warnmsg) {
2538 		xfs_warn(mp, warnmsg);
2539 		ASSERT(0);
2540 	}
2541 
2542 	/*
2543 	 * We must update the metadata LSN of the buffer as it is written out to
2544 	 * ensure that older transactions never replay over this one and corrupt
2545 	 * the buffer. This can occur if log recovery is interrupted at some
2546 	 * point after the current transaction completes, at which point a
2547 	 * subsequent mount starts recovery from the beginning.
2548 	 *
2549 	 * Write verifiers update the metadata LSN from log items attached to
2550 	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2551 	 * the verifier. We'll clean it up in our ->iodone() callback.
2552 	 */
2553 	if (bp->b_ops) {
2554 		struct xfs_buf_log_item	*bip;
2555 
2556 		ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2557 		bp->b_iodone = xlog_recover_iodone;
2558 		xfs_buf_item_init(bp, mp);
2559 		bip = bp->b_log_item;
2560 		bip->bli_item.li_lsn = current_lsn;
2561 	}
2562 }
2563 
2564 /*
2565  * Perform a 'normal' buffer recovery.  Each logged region of the
2566  * buffer should be copied over the corresponding region in the
2567  * given buffer.  The bitmap in the buf log format structure indicates
2568  * where to place the logged data.
2569  */
2570 STATIC void
xlog_recover_do_reg_buffer(struct xfs_mount * mp,xlog_recover_item_t * item,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f,xfs_lsn_t current_lsn)2571 xlog_recover_do_reg_buffer(
2572 	struct xfs_mount	*mp,
2573 	xlog_recover_item_t	*item,
2574 	struct xfs_buf		*bp,
2575 	xfs_buf_log_format_t	*buf_f,
2576 	xfs_lsn_t		current_lsn)
2577 {
2578 	int			i;
2579 	int			bit;
2580 	int			nbits;
2581 	xfs_failaddr_t		fa;
2582 	const size_t		size_disk_dquot = sizeof(struct xfs_disk_dquot);
2583 
2584 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2585 
2586 	bit = 0;
2587 	i = 1;  /* 0 is the buf format structure */
2588 	while (1) {
2589 		bit = xfs_next_bit(buf_f->blf_data_map,
2590 				   buf_f->blf_map_size, bit);
2591 		if (bit == -1)
2592 			break;
2593 		nbits = xfs_contig_bits(buf_f->blf_data_map,
2594 					buf_f->blf_map_size, bit);
2595 		ASSERT(nbits > 0);
2596 		ASSERT(item->ri_buf[i].i_addr != NULL);
2597 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2598 		ASSERT(BBTOB(bp->b_length) >=
2599 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2600 
2601 		/*
2602 		 * The dirty regions logged in the buffer, even though
2603 		 * contiguous, may span multiple chunks. This is because the
2604 		 * dirty region may span a physical page boundary in a buffer
2605 		 * and hence be split into two separate vectors for writing into
2606 		 * the log. Hence we need to trim nbits back to the length of
2607 		 * the current region being copied out of the log.
2608 		 */
2609 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2610 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2611 
2612 		/*
2613 		 * Do a sanity check if this is a dquot buffer. Just checking
2614 		 * the first dquot in the buffer should do. XXXThis is
2615 		 * probably a good thing to do for other buf types also.
2616 		 */
2617 		fa = NULL;
2618 		if (buf_f->blf_flags &
2619 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2620 			if (item->ri_buf[i].i_addr == NULL) {
2621 				xfs_alert(mp,
2622 					"XFS: NULL dquot in %s.", __func__);
2623 				goto next;
2624 			}
2625 			if (item->ri_buf[i].i_len < size_disk_dquot) {
2626 				xfs_alert(mp,
2627 					"XFS: dquot too small (%d) in %s.",
2628 					item->ri_buf[i].i_len, __func__);
2629 				goto next;
2630 			}
2631 			fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
2632 					       -1, 0);
2633 			if (fa) {
2634 				xfs_alert(mp,
2635 	"dquot corrupt at %pS trying to replay into block 0x%llx",
2636 					fa, bp->b_bn);
2637 				goto next;
2638 			}
2639 		}
2640 
2641 		memcpy(xfs_buf_offset(bp,
2642 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
2643 			item->ri_buf[i].i_addr,		/* source */
2644 			nbits<<XFS_BLF_SHIFT);		/* length */
2645  next:
2646 		i++;
2647 		bit += nbits;
2648 	}
2649 
2650 	/* Shouldn't be any more regions */
2651 	ASSERT(i == item->ri_total);
2652 
2653 	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2654 }
2655 
2656 /*
2657  * Perform a dquot buffer recovery.
2658  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2659  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2660  * Else, treat it as a regular buffer and do recovery.
2661  *
2662  * Return false if the buffer was tossed and true if we recovered the buffer to
2663  * indicate to the caller if the buffer needs writing.
2664  */
2665 STATIC bool
xlog_recover_do_dquot_buffer(struct xfs_mount * mp,struct xlog * log,struct xlog_recover_item * item,struct xfs_buf * bp,struct xfs_buf_log_format * buf_f)2666 xlog_recover_do_dquot_buffer(
2667 	struct xfs_mount		*mp,
2668 	struct xlog			*log,
2669 	struct xlog_recover_item	*item,
2670 	struct xfs_buf			*bp,
2671 	struct xfs_buf_log_format	*buf_f)
2672 {
2673 	uint			type;
2674 
2675 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2676 
2677 	/*
2678 	 * Filesystems are required to send in quota flags at mount time.
2679 	 */
2680 	if (!mp->m_qflags)
2681 		return false;
2682 
2683 	type = 0;
2684 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2685 		type |= XFS_DQ_USER;
2686 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2687 		type |= XFS_DQ_PROJ;
2688 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2689 		type |= XFS_DQ_GROUP;
2690 	/*
2691 	 * This type of quotas was turned off, so ignore this buffer
2692 	 */
2693 	if (log->l_quotaoffs_flag & type)
2694 		return false;
2695 
2696 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2697 	return true;
2698 }
2699 
2700 /*
2701  * This routine replays a modification made to a buffer at runtime.
2702  * There are actually two types of buffer, regular and inode, which
2703  * are handled differently.  Inode buffers are handled differently
2704  * in that we only recover a specific set of data from them, namely
2705  * the inode di_next_unlinked fields.  This is because all other inode
2706  * data is actually logged via inode records and any data we replay
2707  * here which overlaps that may be stale.
2708  *
2709  * When meta-data buffers are freed at run time we log a buffer item
2710  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2711  * of the buffer in the log should not be replayed at recovery time.
2712  * This is so that if the blocks covered by the buffer are reused for
2713  * file data before we crash we don't end up replaying old, freed
2714  * meta-data into a user's file.
2715  *
2716  * To handle the cancellation of buffer log items, we make two passes
2717  * over the log during recovery.  During the first we build a table of
2718  * those buffers which have been cancelled, and during the second we
2719  * only replay those buffers which do not have corresponding cancel
2720  * records in the table.  See xlog_recover_buffer_pass[1,2] above
2721  * for more details on the implementation of the table of cancel records.
2722  */
2723 STATIC int
xlog_recover_buffer_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t current_lsn)2724 xlog_recover_buffer_pass2(
2725 	struct xlog			*log,
2726 	struct list_head		*buffer_list,
2727 	struct xlog_recover_item	*item,
2728 	xfs_lsn_t			current_lsn)
2729 {
2730 	xfs_buf_log_format_t	*buf_f = item->ri_buf[0].i_addr;
2731 	xfs_mount_t		*mp = log->l_mp;
2732 	xfs_buf_t		*bp;
2733 	int			error;
2734 	uint			buf_flags;
2735 	xfs_lsn_t		lsn;
2736 
2737 	/*
2738 	 * In this pass we only want to recover all the buffers which have
2739 	 * not been cancelled and are not cancellation buffers themselves.
2740 	 */
2741 	if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2742 			buf_f->blf_len, buf_f->blf_flags)) {
2743 		trace_xfs_log_recover_buf_cancel(log, buf_f);
2744 		return 0;
2745 	}
2746 
2747 	trace_xfs_log_recover_buf_recover(log, buf_f);
2748 
2749 	buf_flags = 0;
2750 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2751 		buf_flags |= XBF_UNMAPPED;
2752 
2753 	bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2754 			  buf_flags, NULL);
2755 	if (!bp)
2756 		return -ENOMEM;
2757 	error = bp->b_error;
2758 	if (error) {
2759 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2760 		goto out_release;
2761 	}
2762 
2763 	/*
2764 	 * Recover the buffer only if we get an LSN from it and it's less than
2765 	 * the lsn of the transaction we are replaying.
2766 	 *
2767 	 * Note that we have to be extremely careful of readahead here.
2768 	 * Readahead does not attach verfiers to the buffers so if we don't
2769 	 * actually do any replay after readahead because of the LSN we found
2770 	 * in the buffer if more recent than that current transaction then we
2771 	 * need to attach the verifier directly. Failure to do so can lead to
2772 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
2773 	 * operate on the buffers and they won't get the verifier attached. This
2774 	 * can lead to blocks on disk having the correct content but a stale
2775 	 * CRC.
2776 	 *
2777 	 * It is safe to assume these clean buffers are currently up to date.
2778 	 * If the buffer is dirtied by a later transaction being replayed, then
2779 	 * the verifier will be reset to match whatever recover turns that
2780 	 * buffer into.
2781 	 */
2782 	lsn = xlog_recover_get_buf_lsn(mp, bp);
2783 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2784 		trace_xfs_log_recover_buf_skip(log, buf_f);
2785 		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2786 
2787 		/*
2788 		 * We're skipping replay of this buffer log item due to the log
2789 		 * item LSN being behind the ondisk buffer.  Verify the buffer
2790 		 * contents since we aren't going to run the write verifier.
2791 		 */
2792 		if (bp->b_ops) {
2793 			bp->b_ops->verify_read(bp);
2794 			error = bp->b_error;
2795 		}
2796 		goto out_release;
2797 	}
2798 
2799 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2800 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2801 		if (error)
2802 			goto out_release;
2803 	} else if (buf_f->blf_flags &
2804 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2805 		bool	dirty;
2806 
2807 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2808 		if (!dirty)
2809 			goto out_release;
2810 	} else {
2811 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2812 	}
2813 
2814 	/*
2815 	 * Perform delayed write on the buffer.  Asynchronous writes will be
2816 	 * slower when taking into account all the buffers to be flushed.
2817 	 *
2818 	 * Also make sure that only inode buffers with good sizes stay in
2819 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
2820 	 * or inode_cluster_size bytes, whichever is bigger.  The inode
2821 	 * buffers in the log can be a different size if the log was generated
2822 	 * by an older kernel using unclustered inode buffers or a newer kernel
2823 	 * running with a different inode cluster size.  Regardless, if the
2824 	 * the inode buffer size isn't max(blocksize, inode_cluster_size)
2825 	 * for *our* value of inode_cluster_size, then we need to keep
2826 	 * the buffer out of the buffer cache so that the buffer won't
2827 	 * overlap with future reads of those inodes.
2828 	 */
2829 	if (XFS_DINODE_MAGIC ==
2830 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2831 	    (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
2832 		xfs_buf_stale(bp);
2833 		error = xfs_bwrite(bp);
2834 	} else {
2835 		ASSERT(bp->b_mount == mp);
2836 		bp->b_iodone = xlog_recover_iodone;
2837 		xfs_buf_delwri_queue(bp, buffer_list);
2838 	}
2839 
2840 out_release:
2841 	xfs_buf_relse(bp);
2842 	return error;
2843 }
2844 
2845 /*
2846  * Inode fork owner changes
2847  *
2848  * If we have been told that we have to reparent the inode fork, it's because an
2849  * extent swap operation on a CRC enabled filesystem has been done and we are
2850  * replaying it. We need to walk the BMBT of the appropriate fork and change the
2851  * owners of it.
2852  *
2853  * The complexity here is that we don't have an inode context to work with, so
2854  * after we've replayed the inode we need to instantiate one.  This is where the
2855  * fun begins.
2856  *
2857  * We are in the middle of log recovery, so we can't run transactions. That
2858  * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2859  * that will result in the corresponding iput() running the inode through
2860  * xfs_inactive(). If we've just replayed an inode core that changes the link
2861  * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2862  * transactions (bad!).
2863  *
2864  * So, to avoid this, we instantiate an inode directly from the inode core we've
2865  * just recovered. We have the buffer still locked, and all we really need to
2866  * instantiate is the inode core and the forks being modified. We can do this
2867  * manually, then run the inode btree owner change, and then tear down the
2868  * xfs_inode without having to run any transactions at all.
2869  *
2870  * Also, because we don't have a transaction context available here but need to
2871  * gather all the buffers we modify for writeback so we pass the buffer_list
2872  * instead for the operation to use.
2873  */
2874 
2875 STATIC int
xfs_recover_inode_owner_change(struct xfs_mount * mp,struct xfs_dinode * dip,struct xfs_inode_log_format * in_f,struct list_head * buffer_list)2876 xfs_recover_inode_owner_change(
2877 	struct xfs_mount	*mp,
2878 	struct xfs_dinode	*dip,
2879 	struct xfs_inode_log_format *in_f,
2880 	struct list_head	*buffer_list)
2881 {
2882 	struct xfs_inode	*ip;
2883 	int			error;
2884 
2885 	ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2886 
2887 	ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2888 	if (!ip)
2889 		return -ENOMEM;
2890 
2891 	/* instantiate the inode */
2892 	ASSERT(dip->di_version >= 3);
2893 	xfs_inode_from_disk(ip, dip);
2894 
2895 	error = xfs_iformat_fork(ip, dip);
2896 	if (error)
2897 		goto out_free_ip;
2898 
2899 	if (!xfs_inode_verify_forks(ip)) {
2900 		error = -EFSCORRUPTED;
2901 		goto out_free_ip;
2902 	}
2903 
2904 	if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2905 		ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2906 		error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2907 					      ip->i_ino, buffer_list);
2908 		if (error)
2909 			goto out_free_ip;
2910 	}
2911 
2912 	if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2913 		ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2914 		error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2915 					      ip->i_ino, buffer_list);
2916 		if (error)
2917 			goto out_free_ip;
2918 	}
2919 
2920 out_free_ip:
2921 	xfs_inode_free(ip);
2922 	return error;
2923 }
2924 
2925 STATIC int
xlog_recover_inode_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t current_lsn)2926 xlog_recover_inode_pass2(
2927 	struct xlog			*log,
2928 	struct list_head		*buffer_list,
2929 	struct xlog_recover_item	*item,
2930 	xfs_lsn_t			current_lsn)
2931 {
2932 	struct xfs_inode_log_format	*in_f;
2933 	xfs_mount_t		*mp = log->l_mp;
2934 	xfs_buf_t		*bp;
2935 	xfs_dinode_t		*dip;
2936 	int			len;
2937 	char			*src;
2938 	char			*dest;
2939 	int			error;
2940 	int			attr_index;
2941 	uint			fields;
2942 	struct xfs_log_dinode	*ldip;
2943 	uint			isize;
2944 	int			need_free = 0;
2945 
2946 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
2947 		in_f = item->ri_buf[0].i_addr;
2948 	} else {
2949 		in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), 0);
2950 		need_free = 1;
2951 		error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2952 		if (error)
2953 			goto error;
2954 	}
2955 
2956 	/*
2957 	 * Inode buffers can be freed, look out for it,
2958 	 * and do not replay the inode.
2959 	 */
2960 	if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2961 					in_f->ilf_len, 0)) {
2962 		error = 0;
2963 		trace_xfs_log_recover_inode_cancel(log, in_f);
2964 		goto error;
2965 	}
2966 	trace_xfs_log_recover_inode_recover(log, in_f);
2967 
2968 	bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2969 			  &xfs_inode_buf_ops);
2970 	if (!bp) {
2971 		error = -ENOMEM;
2972 		goto error;
2973 	}
2974 	error = bp->b_error;
2975 	if (error) {
2976 		xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2977 		goto out_release;
2978 	}
2979 	ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2980 	dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2981 
2982 	/*
2983 	 * Make sure the place we're flushing out to really looks
2984 	 * like an inode!
2985 	 */
2986 	if (unlikely(!xfs_verify_magic16(bp, dip->di_magic))) {
2987 		xfs_alert(mp,
2988 	"%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
2989 			__func__, dip, bp, in_f->ilf_ino);
2990 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2991 				 XFS_ERRLEVEL_LOW, mp);
2992 		error = -EFSCORRUPTED;
2993 		goto out_release;
2994 	}
2995 	ldip = item->ri_buf[1].i_addr;
2996 	if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
2997 		xfs_alert(mp,
2998 			"%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
2999 			__func__, item, in_f->ilf_ino);
3000 		XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3001 				 XFS_ERRLEVEL_LOW, mp);
3002 		error = -EFSCORRUPTED;
3003 		goto out_release;
3004 	}
3005 
3006 	/*
3007 	 * If the inode has an LSN in it, recover the inode only if it's less
3008 	 * than the lsn of the transaction we are replaying. Note: we still
3009 	 * need to replay an owner change even though the inode is more recent
3010 	 * than the transaction as there is no guarantee that all the btree
3011 	 * blocks are more recent than this transaction, too.
3012 	 */
3013 	if (dip->di_version >= 3) {
3014 		xfs_lsn_t	lsn = be64_to_cpu(dip->di_lsn);
3015 
3016 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3017 			trace_xfs_log_recover_inode_skip(log, in_f);
3018 			error = 0;
3019 			goto out_owner_change;
3020 		}
3021 	}
3022 
3023 	/*
3024 	 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3025 	 * are transactional and if ordering is necessary we can determine that
3026 	 * more accurately by the LSN field in the V3 inode core. Don't trust
3027 	 * the inode versions we might be changing them here - use the
3028 	 * superblock flag to determine whether we need to look at di_flushiter
3029 	 * to skip replay when the on disk inode is newer than the log one
3030 	 */
3031 	if (!xfs_sb_version_has_v3inode(&mp->m_sb) &&
3032 	    ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3033 		/*
3034 		 * Deal with the wrap case, DI_MAX_FLUSH is less
3035 		 * than smaller numbers
3036 		 */
3037 		if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3038 		    ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3039 			/* do nothing */
3040 		} else {
3041 			trace_xfs_log_recover_inode_skip(log, in_f);
3042 			error = 0;
3043 			goto out_release;
3044 		}
3045 	}
3046 
3047 	/* Take the opportunity to reset the flush iteration count */
3048 	ldip->di_flushiter = 0;
3049 
3050 	if (unlikely(S_ISREG(ldip->di_mode))) {
3051 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3052 		    (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3053 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3054 					 XFS_ERRLEVEL_LOW, mp, ldip,
3055 					 sizeof(*ldip));
3056 			xfs_alert(mp,
3057 		"%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3058 		"ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3059 				__func__, item, dip, bp, in_f->ilf_ino);
3060 			error = -EFSCORRUPTED;
3061 			goto out_release;
3062 		}
3063 	} else if (unlikely(S_ISDIR(ldip->di_mode))) {
3064 		if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3065 		    (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3066 		    (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3067 			XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3068 					     XFS_ERRLEVEL_LOW, mp, ldip,
3069 					     sizeof(*ldip));
3070 			xfs_alert(mp,
3071 		"%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3072 		"ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3073 				__func__, item, dip, bp, in_f->ilf_ino);
3074 			error = -EFSCORRUPTED;
3075 			goto out_release;
3076 		}
3077 	}
3078 	if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3079 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3080 				     XFS_ERRLEVEL_LOW, mp, ldip,
3081 				     sizeof(*ldip));
3082 		xfs_alert(mp,
3083 	"%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3084 	"dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
3085 			__func__, item, dip, bp, in_f->ilf_ino,
3086 			ldip->di_nextents + ldip->di_anextents,
3087 			ldip->di_nblocks);
3088 		error = -EFSCORRUPTED;
3089 		goto out_release;
3090 	}
3091 	if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3092 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3093 				     XFS_ERRLEVEL_LOW, mp, ldip,
3094 				     sizeof(*ldip));
3095 		xfs_alert(mp,
3096 	"%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3097 	"dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
3098 			item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3099 		error = -EFSCORRUPTED;
3100 		goto out_release;
3101 	}
3102 	isize = xfs_log_dinode_size(mp);
3103 	if (unlikely(item->ri_buf[1].i_len > isize)) {
3104 		XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3105 				     XFS_ERRLEVEL_LOW, mp, ldip,
3106 				     sizeof(*ldip));
3107 		xfs_alert(mp,
3108 			"%s: Bad inode log record length %d, rec ptr "PTR_FMT,
3109 			__func__, item->ri_buf[1].i_len, item);
3110 		error = -EFSCORRUPTED;
3111 		goto out_release;
3112 	}
3113 
3114 	/* recover the log dinode inode into the on disk inode */
3115 	xfs_log_dinode_to_disk(ldip, dip);
3116 
3117 	fields = in_f->ilf_fields;
3118 	if (fields & XFS_ILOG_DEV)
3119 		xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3120 
3121 	if (in_f->ilf_size == 2)
3122 		goto out_owner_change;
3123 	len = item->ri_buf[2].i_len;
3124 	src = item->ri_buf[2].i_addr;
3125 	ASSERT(in_f->ilf_size <= 4);
3126 	ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3127 	ASSERT(!(fields & XFS_ILOG_DFORK) ||
3128 	       (len == in_f->ilf_dsize));
3129 
3130 	switch (fields & XFS_ILOG_DFORK) {
3131 	case XFS_ILOG_DDATA:
3132 	case XFS_ILOG_DEXT:
3133 		memcpy(XFS_DFORK_DPTR(dip), src, len);
3134 		break;
3135 
3136 	case XFS_ILOG_DBROOT:
3137 		xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3138 				 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3139 				 XFS_DFORK_DSIZE(dip, mp));
3140 		break;
3141 
3142 	default:
3143 		/*
3144 		 * There are no data fork flags set.
3145 		 */
3146 		ASSERT((fields & XFS_ILOG_DFORK) == 0);
3147 		break;
3148 	}
3149 
3150 	/*
3151 	 * If we logged any attribute data, recover it.  There may or
3152 	 * may not have been any other non-core data logged in this
3153 	 * transaction.
3154 	 */
3155 	if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3156 		if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3157 			attr_index = 3;
3158 		} else {
3159 			attr_index = 2;
3160 		}
3161 		len = item->ri_buf[attr_index].i_len;
3162 		src = item->ri_buf[attr_index].i_addr;
3163 		ASSERT(len == in_f->ilf_asize);
3164 
3165 		switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3166 		case XFS_ILOG_ADATA:
3167 		case XFS_ILOG_AEXT:
3168 			dest = XFS_DFORK_APTR(dip);
3169 			ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3170 			memcpy(dest, src, len);
3171 			break;
3172 
3173 		case XFS_ILOG_ABROOT:
3174 			dest = XFS_DFORK_APTR(dip);
3175 			xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3176 					 len, (xfs_bmdr_block_t*)dest,
3177 					 XFS_DFORK_ASIZE(dip, mp));
3178 			break;
3179 
3180 		default:
3181 			xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3182 			ASSERT(0);
3183 			error = -EFSCORRUPTED;
3184 			goto out_release;
3185 		}
3186 	}
3187 
3188 out_owner_change:
3189 	/* Recover the swapext owner change unless inode has been deleted */
3190 	if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
3191 	    (dip->di_mode != 0))
3192 		error = xfs_recover_inode_owner_change(mp, dip, in_f,
3193 						       buffer_list);
3194 	/* re-generate the checksum. */
3195 	xfs_dinode_calc_crc(log->l_mp, dip);
3196 
3197 	ASSERT(bp->b_mount == mp);
3198 	bp->b_iodone = xlog_recover_iodone;
3199 	xfs_buf_delwri_queue(bp, buffer_list);
3200 
3201 out_release:
3202 	xfs_buf_relse(bp);
3203 error:
3204 	if (need_free)
3205 		kmem_free(in_f);
3206 	return error;
3207 }
3208 
3209 /*
3210  * Recover QUOTAOFF records. We simply make a note of it in the xlog
3211  * structure, so that we know not to do any dquot item or dquot buffer recovery,
3212  * of that type.
3213  */
3214 STATIC int
xlog_recover_quotaoff_pass1(struct xlog * log,struct xlog_recover_item * item)3215 xlog_recover_quotaoff_pass1(
3216 	struct xlog			*log,
3217 	struct xlog_recover_item	*item)
3218 {
3219 	xfs_qoff_logformat_t	*qoff_f = item->ri_buf[0].i_addr;
3220 	ASSERT(qoff_f);
3221 
3222 	/*
3223 	 * The logitem format's flag tells us if this was user quotaoff,
3224 	 * group/project quotaoff or both.
3225 	 */
3226 	if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3227 		log->l_quotaoffs_flag |= XFS_DQ_USER;
3228 	if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3229 		log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3230 	if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3231 		log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3232 
3233 	return 0;
3234 }
3235 
3236 /*
3237  * Recover a dquot record
3238  */
3239 STATIC int
xlog_recover_dquot_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t current_lsn)3240 xlog_recover_dquot_pass2(
3241 	struct xlog			*log,
3242 	struct list_head		*buffer_list,
3243 	struct xlog_recover_item	*item,
3244 	xfs_lsn_t			current_lsn)
3245 {
3246 	xfs_mount_t		*mp = log->l_mp;
3247 	xfs_buf_t		*bp;
3248 	struct xfs_disk_dquot	*ddq, *recddq;
3249 	xfs_failaddr_t		fa;
3250 	int			error;
3251 	xfs_dq_logformat_t	*dq_f;
3252 	uint			type;
3253 
3254 
3255 	/*
3256 	 * Filesystems are required to send in quota flags at mount time.
3257 	 */
3258 	if (mp->m_qflags == 0)
3259 		return 0;
3260 
3261 	recddq = item->ri_buf[1].i_addr;
3262 	if (recddq == NULL) {
3263 		xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3264 		return -EFSCORRUPTED;
3265 	}
3266 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) {
3267 		xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3268 			item->ri_buf[1].i_len, __func__);
3269 		return -EFSCORRUPTED;
3270 	}
3271 
3272 	/*
3273 	 * This type of quotas was turned off, so ignore this record.
3274 	 */
3275 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3276 	ASSERT(type);
3277 	if (log->l_quotaoffs_flag & type)
3278 		return 0;
3279 
3280 	/*
3281 	 * At this point we know that quota was _not_ turned off.
3282 	 * Since the mount flags are not indicating to us otherwise, this
3283 	 * must mean that quota is on, and the dquot needs to be replayed.
3284 	 * Remember that we may not have fully recovered the superblock yet,
3285 	 * so we can't do the usual trick of looking at the SB quota bits.
3286 	 *
3287 	 * The other possibility, of course, is that the quota subsystem was
3288 	 * removed since the last mount - ENOSYS.
3289 	 */
3290 	dq_f = item->ri_buf[0].i_addr;
3291 	ASSERT(dq_f);
3292 	fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0);
3293 	if (fa) {
3294 		xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3295 				dq_f->qlf_id, fa);
3296 		return -EFSCORRUPTED;
3297 	}
3298 	ASSERT(dq_f->qlf_len == 1);
3299 
3300 	/*
3301 	 * At this point we are assuming that the dquots have been allocated
3302 	 * and hence the buffer has valid dquots stamped in it. It should,
3303 	 * therefore, pass verifier validation. If the dquot is bad, then the
3304 	 * we'll return an error here, so we don't need to specifically check
3305 	 * the dquot in the buffer after the verifier has run.
3306 	 */
3307 	error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3308 				   XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3309 				   &xfs_dquot_buf_ops);
3310 	if (error)
3311 		return error;
3312 
3313 	ASSERT(bp);
3314 	ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3315 
3316 	/*
3317 	 * If the dquot has an LSN in it, recover the dquot only if it's less
3318 	 * than the lsn of the transaction we are replaying.
3319 	 */
3320 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3321 		struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3322 		xfs_lsn_t	lsn = be64_to_cpu(dqb->dd_lsn);
3323 
3324 		if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3325 			goto out_release;
3326 		}
3327 	}
3328 
3329 	memcpy(ddq, recddq, item->ri_buf[1].i_len);
3330 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
3331 		xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3332 				 XFS_DQUOT_CRC_OFF);
3333 	}
3334 
3335 	ASSERT(dq_f->qlf_size == 2);
3336 	ASSERT(bp->b_mount == mp);
3337 	bp->b_iodone = xlog_recover_iodone;
3338 	xfs_buf_delwri_queue(bp, buffer_list);
3339 
3340 out_release:
3341 	xfs_buf_relse(bp);
3342 	return 0;
3343 }
3344 
3345 /*
3346  * This routine is called to create an in-core extent free intent
3347  * item from the efi format structure which was logged on disk.
3348  * It allocates an in-core efi, copies the extents from the format
3349  * structure into it, and adds the efi to the AIL with the given
3350  * LSN.
3351  */
3352 STATIC int
xlog_recover_efi_pass2(struct xlog * log,struct xlog_recover_item * item,xfs_lsn_t lsn)3353 xlog_recover_efi_pass2(
3354 	struct xlog			*log,
3355 	struct xlog_recover_item	*item,
3356 	xfs_lsn_t			lsn)
3357 {
3358 	int				error;
3359 	struct xfs_mount		*mp = log->l_mp;
3360 	struct xfs_efi_log_item		*efip;
3361 	struct xfs_efi_log_format	*efi_formatp;
3362 
3363 	efi_formatp = item->ri_buf[0].i_addr;
3364 
3365 	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3366 	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3367 	if (error) {
3368 		xfs_efi_item_free(efip);
3369 		return error;
3370 	}
3371 	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3372 
3373 	spin_lock(&log->l_ailp->ail_lock);
3374 	/*
3375 	 * The EFI has two references. One for the EFD and one for EFI to ensure
3376 	 * it makes it into the AIL. Insert the EFI into the AIL directly and
3377 	 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3378 	 * AIL lock.
3379 	 */
3380 	xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3381 	xfs_efi_release(efip);
3382 	return 0;
3383 }
3384 
3385 
3386 /*
3387  * This routine is called when an EFD format structure is found in a committed
3388  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3389  * was still in the log. To do this it searches the AIL for the EFI with an id
3390  * equal to that in the EFD format structure. If we find it we drop the EFD
3391  * reference, which removes the EFI from the AIL and frees it.
3392  */
3393 STATIC int
xlog_recover_efd_pass2(struct xlog * log,struct xlog_recover_item * item)3394 xlog_recover_efd_pass2(
3395 	struct xlog			*log,
3396 	struct xlog_recover_item	*item)
3397 {
3398 	xfs_efd_log_format_t	*efd_formatp;
3399 	struct xfs_efi_log_item	*efip = NULL;
3400 	struct xfs_log_item	*lip;
3401 	uint64_t		efi_id;
3402 	struct xfs_ail_cursor	cur;
3403 	struct xfs_ail		*ailp = log->l_ailp;
3404 
3405 	efd_formatp = item->ri_buf[0].i_addr;
3406 	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3407 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3408 	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3409 		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3410 	efi_id = efd_formatp->efd_efi_id;
3411 
3412 	/*
3413 	 * Search for the EFI with the id in the EFD format structure in the
3414 	 * AIL.
3415 	 */
3416 	spin_lock(&ailp->ail_lock);
3417 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3418 	while (lip != NULL) {
3419 		if (lip->li_type == XFS_LI_EFI) {
3420 			efip = (struct xfs_efi_log_item *)lip;
3421 			if (efip->efi_format.efi_id == efi_id) {
3422 				/*
3423 				 * Drop the EFD reference to the EFI. This
3424 				 * removes the EFI from the AIL and frees it.
3425 				 */
3426 				spin_unlock(&ailp->ail_lock);
3427 				xfs_efi_release(efip);
3428 				spin_lock(&ailp->ail_lock);
3429 				break;
3430 			}
3431 		}
3432 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3433 	}
3434 
3435 	xfs_trans_ail_cursor_done(&cur);
3436 	spin_unlock(&ailp->ail_lock);
3437 
3438 	return 0;
3439 }
3440 
3441 /*
3442  * This routine is called to create an in-core extent rmap update
3443  * item from the rui format structure which was logged on disk.
3444  * It allocates an in-core rui, copies the extents from the format
3445  * structure into it, and adds the rui to the AIL with the given
3446  * LSN.
3447  */
3448 STATIC int
xlog_recover_rui_pass2(struct xlog * log,struct xlog_recover_item * item,xfs_lsn_t lsn)3449 xlog_recover_rui_pass2(
3450 	struct xlog			*log,
3451 	struct xlog_recover_item	*item,
3452 	xfs_lsn_t			lsn)
3453 {
3454 	int				error;
3455 	struct xfs_mount		*mp = log->l_mp;
3456 	struct xfs_rui_log_item		*ruip;
3457 	struct xfs_rui_log_format	*rui_formatp;
3458 
3459 	rui_formatp = item->ri_buf[0].i_addr;
3460 
3461 	ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3462 	error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3463 	if (error) {
3464 		xfs_rui_item_free(ruip);
3465 		return error;
3466 	}
3467 	atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3468 
3469 	spin_lock(&log->l_ailp->ail_lock);
3470 	/*
3471 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3472 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3473 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3474 	 * AIL lock.
3475 	 */
3476 	xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3477 	xfs_rui_release(ruip);
3478 	return 0;
3479 }
3480 
3481 
3482 /*
3483  * This routine is called when an RUD format structure is found in a committed
3484  * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3485  * was still in the log. To do this it searches the AIL for the RUI with an id
3486  * equal to that in the RUD format structure. If we find it we drop the RUD
3487  * reference, which removes the RUI from the AIL and frees it.
3488  */
3489 STATIC int
xlog_recover_rud_pass2(struct xlog * log,struct xlog_recover_item * item)3490 xlog_recover_rud_pass2(
3491 	struct xlog			*log,
3492 	struct xlog_recover_item	*item)
3493 {
3494 	struct xfs_rud_log_format	*rud_formatp;
3495 	struct xfs_rui_log_item		*ruip = NULL;
3496 	struct xfs_log_item		*lip;
3497 	uint64_t			rui_id;
3498 	struct xfs_ail_cursor		cur;
3499 	struct xfs_ail			*ailp = log->l_ailp;
3500 
3501 	rud_formatp = item->ri_buf[0].i_addr;
3502 	ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3503 	rui_id = rud_formatp->rud_rui_id;
3504 
3505 	/*
3506 	 * Search for the RUI with the id in the RUD format structure in the
3507 	 * AIL.
3508 	 */
3509 	spin_lock(&ailp->ail_lock);
3510 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3511 	while (lip != NULL) {
3512 		if (lip->li_type == XFS_LI_RUI) {
3513 			ruip = (struct xfs_rui_log_item *)lip;
3514 			if (ruip->rui_format.rui_id == rui_id) {
3515 				/*
3516 				 * Drop the RUD reference to the RUI. This
3517 				 * removes the RUI from the AIL and frees it.
3518 				 */
3519 				spin_unlock(&ailp->ail_lock);
3520 				xfs_rui_release(ruip);
3521 				spin_lock(&ailp->ail_lock);
3522 				break;
3523 			}
3524 		}
3525 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3526 	}
3527 
3528 	xfs_trans_ail_cursor_done(&cur);
3529 	spin_unlock(&ailp->ail_lock);
3530 
3531 	return 0;
3532 }
3533 
3534 /*
3535  * Copy an CUI format buffer from the given buf, and into the destination
3536  * CUI format structure.  The CUI/CUD items were designed not to need any
3537  * special alignment handling.
3538  */
3539 static int
xfs_cui_copy_format(struct xfs_log_iovec * buf,struct xfs_cui_log_format * dst_cui_fmt)3540 xfs_cui_copy_format(
3541 	struct xfs_log_iovec		*buf,
3542 	struct xfs_cui_log_format	*dst_cui_fmt)
3543 {
3544 	struct xfs_cui_log_format	*src_cui_fmt;
3545 	uint				len;
3546 
3547 	src_cui_fmt = buf->i_addr;
3548 	len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3549 
3550 	if (buf->i_len == len) {
3551 		memcpy(dst_cui_fmt, src_cui_fmt, len);
3552 		return 0;
3553 	}
3554 	XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
3555 	return -EFSCORRUPTED;
3556 }
3557 
3558 /*
3559  * This routine is called to create an in-core extent refcount update
3560  * item from the cui format structure which was logged on disk.
3561  * It allocates an in-core cui, copies the extents from the format
3562  * structure into it, and adds the cui to the AIL with the given
3563  * LSN.
3564  */
3565 STATIC int
xlog_recover_cui_pass2(struct xlog * log,struct xlog_recover_item * item,xfs_lsn_t lsn)3566 xlog_recover_cui_pass2(
3567 	struct xlog			*log,
3568 	struct xlog_recover_item	*item,
3569 	xfs_lsn_t			lsn)
3570 {
3571 	int				error;
3572 	struct xfs_mount		*mp = log->l_mp;
3573 	struct xfs_cui_log_item		*cuip;
3574 	struct xfs_cui_log_format	*cui_formatp;
3575 
3576 	cui_formatp = item->ri_buf[0].i_addr;
3577 
3578 	cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3579 	error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3580 	if (error) {
3581 		xfs_cui_item_free(cuip);
3582 		return error;
3583 	}
3584 	atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3585 
3586 	spin_lock(&log->l_ailp->ail_lock);
3587 	/*
3588 	 * The CUI has two references. One for the CUD and one for CUI to ensure
3589 	 * it makes it into the AIL. Insert the CUI into the AIL directly and
3590 	 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3591 	 * AIL lock.
3592 	 */
3593 	xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3594 	xfs_cui_release(cuip);
3595 	return 0;
3596 }
3597 
3598 
3599 /*
3600  * This routine is called when an CUD format structure is found in a committed
3601  * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3602  * was still in the log. To do this it searches the AIL for the CUI with an id
3603  * equal to that in the CUD format structure. If we find it we drop the CUD
3604  * reference, which removes the CUI from the AIL and frees it.
3605  */
3606 STATIC int
xlog_recover_cud_pass2(struct xlog * log,struct xlog_recover_item * item)3607 xlog_recover_cud_pass2(
3608 	struct xlog			*log,
3609 	struct xlog_recover_item	*item)
3610 {
3611 	struct xfs_cud_log_format	*cud_formatp;
3612 	struct xfs_cui_log_item		*cuip = NULL;
3613 	struct xfs_log_item		*lip;
3614 	uint64_t			cui_id;
3615 	struct xfs_ail_cursor		cur;
3616 	struct xfs_ail			*ailp = log->l_ailp;
3617 
3618 	cud_formatp = item->ri_buf[0].i_addr;
3619 	if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) {
3620 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
3621 		return -EFSCORRUPTED;
3622 	}
3623 	cui_id = cud_formatp->cud_cui_id;
3624 
3625 	/*
3626 	 * Search for the CUI with the id in the CUD format structure in the
3627 	 * AIL.
3628 	 */
3629 	spin_lock(&ailp->ail_lock);
3630 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3631 	while (lip != NULL) {
3632 		if (lip->li_type == XFS_LI_CUI) {
3633 			cuip = (struct xfs_cui_log_item *)lip;
3634 			if (cuip->cui_format.cui_id == cui_id) {
3635 				/*
3636 				 * Drop the CUD reference to the CUI. This
3637 				 * removes the CUI from the AIL and frees it.
3638 				 */
3639 				spin_unlock(&ailp->ail_lock);
3640 				xfs_cui_release(cuip);
3641 				spin_lock(&ailp->ail_lock);
3642 				break;
3643 			}
3644 		}
3645 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3646 	}
3647 
3648 	xfs_trans_ail_cursor_done(&cur);
3649 	spin_unlock(&ailp->ail_lock);
3650 
3651 	return 0;
3652 }
3653 
3654 /*
3655  * Copy an BUI format buffer from the given buf, and into the destination
3656  * BUI format structure.  The BUI/BUD items were designed not to need any
3657  * special alignment handling.
3658  */
3659 static int
xfs_bui_copy_format(struct xfs_log_iovec * buf,struct xfs_bui_log_format * dst_bui_fmt)3660 xfs_bui_copy_format(
3661 	struct xfs_log_iovec		*buf,
3662 	struct xfs_bui_log_format	*dst_bui_fmt)
3663 {
3664 	struct xfs_bui_log_format	*src_bui_fmt;
3665 	uint				len;
3666 
3667 	src_bui_fmt = buf->i_addr;
3668 	len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3669 
3670 	if (buf->i_len == len) {
3671 		memcpy(dst_bui_fmt, src_bui_fmt, len);
3672 		return 0;
3673 	}
3674 	XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
3675 	return -EFSCORRUPTED;
3676 }
3677 
3678 /*
3679  * This routine is called to create an in-core extent bmap update
3680  * item from the bui format structure which was logged on disk.
3681  * It allocates an in-core bui, copies the extents from the format
3682  * structure into it, and adds the bui to the AIL with the given
3683  * LSN.
3684  */
3685 STATIC int
xlog_recover_bui_pass2(struct xlog * log,struct xlog_recover_item * item,xfs_lsn_t lsn)3686 xlog_recover_bui_pass2(
3687 	struct xlog			*log,
3688 	struct xlog_recover_item	*item,
3689 	xfs_lsn_t			lsn)
3690 {
3691 	int				error;
3692 	struct xfs_mount		*mp = log->l_mp;
3693 	struct xfs_bui_log_item		*buip;
3694 	struct xfs_bui_log_format	*bui_formatp;
3695 
3696 	bui_formatp = item->ri_buf[0].i_addr;
3697 
3698 	if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) {
3699 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
3700 		return -EFSCORRUPTED;
3701 	}
3702 	buip = xfs_bui_init(mp);
3703 	error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3704 	if (error) {
3705 		xfs_bui_item_free(buip);
3706 		return error;
3707 	}
3708 	atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3709 
3710 	spin_lock(&log->l_ailp->ail_lock);
3711 	/*
3712 	 * The RUI has two references. One for the RUD and one for RUI to ensure
3713 	 * it makes it into the AIL. Insert the RUI into the AIL directly and
3714 	 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3715 	 * AIL lock.
3716 	 */
3717 	xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3718 	xfs_bui_release(buip);
3719 	return 0;
3720 }
3721 
3722 
3723 /*
3724  * This routine is called when an BUD format structure is found in a committed
3725  * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3726  * was still in the log. To do this it searches the AIL for the BUI with an id
3727  * equal to that in the BUD format structure. If we find it we drop the BUD
3728  * reference, which removes the BUI from the AIL and frees it.
3729  */
3730 STATIC int
xlog_recover_bud_pass2(struct xlog * log,struct xlog_recover_item * item)3731 xlog_recover_bud_pass2(
3732 	struct xlog			*log,
3733 	struct xlog_recover_item	*item)
3734 {
3735 	struct xfs_bud_log_format	*bud_formatp;
3736 	struct xfs_bui_log_item		*buip = NULL;
3737 	struct xfs_log_item		*lip;
3738 	uint64_t			bui_id;
3739 	struct xfs_ail_cursor		cur;
3740 	struct xfs_ail			*ailp = log->l_ailp;
3741 
3742 	bud_formatp = item->ri_buf[0].i_addr;
3743 	if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format)) {
3744 		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
3745 		return -EFSCORRUPTED;
3746 	}
3747 	bui_id = bud_formatp->bud_bui_id;
3748 
3749 	/*
3750 	 * Search for the BUI with the id in the BUD format structure in the
3751 	 * AIL.
3752 	 */
3753 	spin_lock(&ailp->ail_lock);
3754 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3755 	while (lip != NULL) {
3756 		if (lip->li_type == XFS_LI_BUI) {
3757 			buip = (struct xfs_bui_log_item *)lip;
3758 			if (buip->bui_format.bui_id == bui_id) {
3759 				/*
3760 				 * Drop the BUD reference to the BUI. This
3761 				 * removes the BUI from the AIL and frees it.
3762 				 */
3763 				spin_unlock(&ailp->ail_lock);
3764 				xfs_bui_release(buip);
3765 				spin_lock(&ailp->ail_lock);
3766 				break;
3767 			}
3768 		}
3769 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
3770 	}
3771 
3772 	xfs_trans_ail_cursor_done(&cur);
3773 	spin_unlock(&ailp->ail_lock);
3774 
3775 	return 0;
3776 }
3777 
3778 /*
3779  * This routine is called when an inode create format structure is found in a
3780  * committed transaction in the log.  It's purpose is to initialise the inodes
3781  * being allocated on disk. This requires us to get inode cluster buffers that
3782  * match the range to be initialised, stamped with inode templates and written
3783  * by delayed write so that subsequent modifications will hit the cached buffer
3784  * and only need writing out at the end of recovery.
3785  */
3786 STATIC int
xlog_recover_do_icreate_pass2(struct xlog * log,struct list_head * buffer_list,xlog_recover_item_t * item)3787 xlog_recover_do_icreate_pass2(
3788 	struct xlog		*log,
3789 	struct list_head	*buffer_list,
3790 	xlog_recover_item_t	*item)
3791 {
3792 	struct xfs_mount	*mp = log->l_mp;
3793 	struct xfs_icreate_log	*icl;
3794 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
3795 	xfs_agnumber_t		agno;
3796 	xfs_agblock_t		agbno;
3797 	unsigned int		count;
3798 	unsigned int		isize;
3799 	xfs_agblock_t		length;
3800 	int			bb_per_cluster;
3801 	int			cancel_count;
3802 	int			nbufs;
3803 	int			i;
3804 
3805 	icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3806 	if (icl->icl_type != XFS_LI_ICREATE) {
3807 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3808 		return -EINVAL;
3809 	}
3810 
3811 	if (icl->icl_size != 1) {
3812 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3813 		return -EINVAL;
3814 	}
3815 
3816 	agno = be32_to_cpu(icl->icl_ag);
3817 	if (agno >= mp->m_sb.sb_agcount) {
3818 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3819 		return -EINVAL;
3820 	}
3821 	agbno = be32_to_cpu(icl->icl_agbno);
3822 	if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3823 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3824 		return -EINVAL;
3825 	}
3826 	isize = be32_to_cpu(icl->icl_isize);
3827 	if (isize != mp->m_sb.sb_inodesize) {
3828 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3829 		return -EINVAL;
3830 	}
3831 	count = be32_to_cpu(icl->icl_count);
3832 	if (!count) {
3833 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3834 		return -EINVAL;
3835 	}
3836 	length = be32_to_cpu(icl->icl_length);
3837 	if (!length || length >= mp->m_sb.sb_agblocks) {
3838 		xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3839 		return -EINVAL;
3840 	}
3841 
3842 	/*
3843 	 * The inode chunk is either full or sparse and we only support
3844 	 * m_ino_geo.ialloc_min_blks sized sparse allocations at this time.
3845 	 */
3846 	if (length != igeo->ialloc_blks &&
3847 	    length != igeo->ialloc_min_blks) {
3848 		xfs_warn(log->l_mp,
3849 			 "%s: unsupported chunk length", __FUNCTION__);
3850 		return -EINVAL;
3851 	}
3852 
3853 	/* verify inode count is consistent with extent length */
3854 	if ((count >> mp->m_sb.sb_inopblog) != length) {
3855 		xfs_warn(log->l_mp,
3856 			 "%s: inconsistent inode count and chunk length",
3857 			 __FUNCTION__);
3858 		return -EINVAL;
3859 	}
3860 
3861 	/*
3862 	 * The icreate transaction can cover multiple cluster buffers and these
3863 	 * buffers could have been freed and reused. Check the individual
3864 	 * buffers for cancellation so we don't overwrite anything written after
3865 	 * a cancellation.
3866 	 */
3867 	bb_per_cluster = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster);
3868 	nbufs = length / igeo->blocks_per_cluster;
3869 	for (i = 0, cancel_count = 0; i < nbufs; i++) {
3870 		xfs_daddr_t	daddr;
3871 
3872 		daddr = XFS_AGB_TO_DADDR(mp, agno,
3873 				agbno + i * igeo->blocks_per_cluster);
3874 		if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3875 			cancel_count++;
3876 	}
3877 
3878 	/*
3879 	 * We currently only use icreate for a single allocation at a time. This
3880 	 * means we should expect either all or none of the buffers to be
3881 	 * cancelled. Be conservative and skip replay if at least one buffer is
3882 	 * cancelled, but warn the user that something is awry if the buffers
3883 	 * are not consistent.
3884 	 *
3885 	 * XXX: This must be refined to only skip cancelled clusters once we use
3886 	 * icreate for multiple chunk allocations.
3887 	 */
3888 	ASSERT(!cancel_count || cancel_count == nbufs);
3889 	if (cancel_count) {
3890 		if (cancel_count != nbufs)
3891 			xfs_warn(mp,
3892 	"WARNING: partial inode chunk cancellation, skipped icreate.");
3893 		trace_xfs_log_recover_icreate_cancel(log, icl);
3894 		return 0;
3895 	}
3896 
3897 	trace_xfs_log_recover_icreate_recover(log, icl);
3898 	return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3899 				     length, be32_to_cpu(icl->icl_gen));
3900 }
3901 
3902 STATIC void
xlog_recover_buffer_ra_pass2(struct xlog * log,struct xlog_recover_item * item)3903 xlog_recover_buffer_ra_pass2(
3904 	struct xlog                     *log,
3905 	struct xlog_recover_item        *item)
3906 {
3907 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
3908 	struct xfs_mount		*mp = log->l_mp;
3909 
3910 	if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3911 			buf_f->blf_len, buf_f->blf_flags)) {
3912 		return;
3913 	}
3914 
3915 	xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3916 				buf_f->blf_len, NULL);
3917 }
3918 
3919 STATIC void
xlog_recover_inode_ra_pass2(struct xlog * log,struct xlog_recover_item * item)3920 xlog_recover_inode_ra_pass2(
3921 	struct xlog                     *log,
3922 	struct xlog_recover_item        *item)
3923 {
3924 	struct xfs_inode_log_format	ilf_buf;
3925 	struct xfs_inode_log_format	*ilfp;
3926 	struct xfs_mount		*mp = log->l_mp;
3927 	int			error;
3928 
3929 	if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3930 		ilfp = item->ri_buf[0].i_addr;
3931 	} else {
3932 		ilfp = &ilf_buf;
3933 		memset(ilfp, 0, sizeof(*ilfp));
3934 		error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3935 		if (error)
3936 			return;
3937 	}
3938 
3939 	if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3940 		return;
3941 
3942 	xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3943 				ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3944 }
3945 
3946 STATIC void
xlog_recover_dquot_ra_pass2(struct xlog * log,struct xlog_recover_item * item)3947 xlog_recover_dquot_ra_pass2(
3948 	struct xlog			*log,
3949 	struct xlog_recover_item	*item)
3950 {
3951 	struct xfs_mount	*mp = log->l_mp;
3952 	struct xfs_disk_dquot	*recddq;
3953 	struct xfs_dq_logformat	*dq_f;
3954 	uint			type;
3955 	int			len;
3956 
3957 
3958 	if (mp->m_qflags == 0)
3959 		return;
3960 
3961 	recddq = item->ri_buf[1].i_addr;
3962 	if (recddq == NULL)
3963 		return;
3964 	if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3965 		return;
3966 
3967 	type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3968 	ASSERT(type);
3969 	if (log->l_quotaoffs_flag & type)
3970 		return;
3971 
3972 	dq_f = item->ri_buf[0].i_addr;
3973 	ASSERT(dq_f);
3974 	ASSERT(dq_f->qlf_len == 1);
3975 
3976 	len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3977 	if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3978 		return;
3979 
3980 	xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3981 			  &xfs_dquot_buf_ra_ops);
3982 }
3983 
3984 STATIC void
xlog_recover_ra_pass2(struct xlog * log,struct xlog_recover_item * item)3985 xlog_recover_ra_pass2(
3986 	struct xlog			*log,
3987 	struct xlog_recover_item	*item)
3988 {
3989 	switch (ITEM_TYPE(item)) {
3990 	case XFS_LI_BUF:
3991 		xlog_recover_buffer_ra_pass2(log, item);
3992 		break;
3993 	case XFS_LI_INODE:
3994 		xlog_recover_inode_ra_pass2(log, item);
3995 		break;
3996 	case XFS_LI_DQUOT:
3997 		xlog_recover_dquot_ra_pass2(log, item);
3998 		break;
3999 	case XFS_LI_EFI:
4000 	case XFS_LI_EFD:
4001 	case XFS_LI_QUOTAOFF:
4002 	case XFS_LI_RUI:
4003 	case XFS_LI_RUD:
4004 	case XFS_LI_CUI:
4005 	case XFS_LI_CUD:
4006 	case XFS_LI_BUI:
4007 	case XFS_LI_BUD:
4008 	default:
4009 		break;
4010 	}
4011 }
4012 
4013 STATIC int
xlog_recover_commit_pass1(struct xlog * log,struct xlog_recover * trans,struct xlog_recover_item * item)4014 xlog_recover_commit_pass1(
4015 	struct xlog			*log,
4016 	struct xlog_recover		*trans,
4017 	struct xlog_recover_item	*item)
4018 {
4019 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
4020 
4021 	switch (ITEM_TYPE(item)) {
4022 	case XFS_LI_BUF:
4023 		return xlog_recover_buffer_pass1(log, item);
4024 	case XFS_LI_QUOTAOFF:
4025 		return xlog_recover_quotaoff_pass1(log, item);
4026 	case XFS_LI_INODE:
4027 	case XFS_LI_EFI:
4028 	case XFS_LI_EFD:
4029 	case XFS_LI_DQUOT:
4030 	case XFS_LI_ICREATE:
4031 	case XFS_LI_RUI:
4032 	case XFS_LI_RUD:
4033 	case XFS_LI_CUI:
4034 	case XFS_LI_CUD:
4035 	case XFS_LI_BUI:
4036 	case XFS_LI_BUD:
4037 		/* nothing to do in pass 1 */
4038 		return 0;
4039 	default:
4040 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4041 			__func__, ITEM_TYPE(item));
4042 		ASSERT(0);
4043 		return -EFSCORRUPTED;
4044 	}
4045 }
4046 
4047 STATIC int
xlog_recover_commit_pass2(struct xlog * log,struct xlog_recover * trans,struct list_head * buffer_list,struct xlog_recover_item * item)4048 xlog_recover_commit_pass2(
4049 	struct xlog			*log,
4050 	struct xlog_recover		*trans,
4051 	struct list_head		*buffer_list,
4052 	struct xlog_recover_item	*item)
4053 {
4054 	trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4055 
4056 	switch (ITEM_TYPE(item)) {
4057 	case XFS_LI_BUF:
4058 		return xlog_recover_buffer_pass2(log, buffer_list, item,
4059 						 trans->r_lsn);
4060 	case XFS_LI_INODE:
4061 		return xlog_recover_inode_pass2(log, buffer_list, item,
4062 						 trans->r_lsn);
4063 	case XFS_LI_EFI:
4064 		return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4065 	case XFS_LI_EFD:
4066 		return xlog_recover_efd_pass2(log, item);
4067 	case XFS_LI_RUI:
4068 		return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4069 	case XFS_LI_RUD:
4070 		return xlog_recover_rud_pass2(log, item);
4071 	case XFS_LI_CUI:
4072 		return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4073 	case XFS_LI_CUD:
4074 		return xlog_recover_cud_pass2(log, item);
4075 	case XFS_LI_BUI:
4076 		return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4077 	case XFS_LI_BUD:
4078 		return xlog_recover_bud_pass2(log, item);
4079 	case XFS_LI_DQUOT:
4080 		return xlog_recover_dquot_pass2(log, buffer_list, item,
4081 						trans->r_lsn);
4082 	case XFS_LI_ICREATE:
4083 		return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4084 	case XFS_LI_QUOTAOFF:
4085 		/* nothing to do in pass2 */
4086 		return 0;
4087 	default:
4088 		xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4089 			__func__, ITEM_TYPE(item));
4090 		ASSERT(0);
4091 		return -EFSCORRUPTED;
4092 	}
4093 }
4094 
4095 STATIC int
xlog_recover_items_pass2(struct xlog * log,struct xlog_recover * trans,struct list_head * buffer_list,struct list_head * item_list)4096 xlog_recover_items_pass2(
4097 	struct xlog                     *log,
4098 	struct xlog_recover             *trans,
4099 	struct list_head                *buffer_list,
4100 	struct list_head                *item_list)
4101 {
4102 	struct xlog_recover_item	*item;
4103 	int				error = 0;
4104 
4105 	list_for_each_entry(item, item_list, ri_list) {
4106 		error = xlog_recover_commit_pass2(log, trans,
4107 					  buffer_list, item);
4108 		if (error)
4109 			return error;
4110 	}
4111 
4112 	return error;
4113 }
4114 
4115 /*
4116  * Perform the transaction.
4117  *
4118  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
4119  * EFIs and EFDs get queued up by adding entries into the AIL for them.
4120  */
4121 STATIC int
xlog_recover_commit_trans(struct xlog * log,struct xlog_recover * trans,int pass,struct list_head * buffer_list)4122 xlog_recover_commit_trans(
4123 	struct xlog		*log,
4124 	struct xlog_recover	*trans,
4125 	int			pass,
4126 	struct list_head	*buffer_list)
4127 {
4128 	int				error = 0;
4129 	int				items_queued = 0;
4130 	struct xlog_recover_item	*item;
4131 	struct xlog_recover_item	*next;
4132 	LIST_HEAD			(ra_list);
4133 	LIST_HEAD			(done_list);
4134 
4135 	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4136 
4137 	hlist_del_init(&trans->r_list);
4138 
4139 	error = xlog_recover_reorder_trans(log, trans, pass);
4140 	if (error)
4141 		return error;
4142 
4143 	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4144 		switch (pass) {
4145 		case XLOG_RECOVER_PASS1:
4146 			error = xlog_recover_commit_pass1(log, trans, item);
4147 			break;
4148 		case XLOG_RECOVER_PASS2:
4149 			xlog_recover_ra_pass2(log, item);
4150 			list_move_tail(&item->ri_list, &ra_list);
4151 			items_queued++;
4152 			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4153 				error = xlog_recover_items_pass2(log, trans,
4154 						buffer_list, &ra_list);
4155 				list_splice_tail_init(&ra_list, &done_list);
4156 				items_queued = 0;
4157 			}
4158 
4159 			break;
4160 		default:
4161 			ASSERT(0);
4162 		}
4163 
4164 		if (error)
4165 			goto out;
4166 	}
4167 
4168 out:
4169 	if (!list_empty(&ra_list)) {
4170 		if (!error)
4171 			error = xlog_recover_items_pass2(log, trans,
4172 					buffer_list, &ra_list);
4173 		list_splice_tail_init(&ra_list, &done_list);
4174 	}
4175 
4176 	if (!list_empty(&done_list))
4177 		list_splice_init(&done_list, &trans->r_itemq);
4178 
4179 	return error;
4180 }
4181 
4182 STATIC void
xlog_recover_add_item(struct list_head * head)4183 xlog_recover_add_item(
4184 	struct list_head	*head)
4185 {
4186 	xlog_recover_item_t	*item;
4187 
4188 	item = kmem_zalloc(sizeof(xlog_recover_item_t), 0);
4189 	INIT_LIST_HEAD(&item->ri_list);
4190 	list_add_tail(&item->ri_list, head);
4191 }
4192 
4193 STATIC int
xlog_recover_add_to_cont_trans(struct xlog * log,struct xlog_recover * trans,char * dp,int len)4194 xlog_recover_add_to_cont_trans(
4195 	struct xlog		*log,
4196 	struct xlog_recover	*trans,
4197 	char			*dp,
4198 	int			len)
4199 {
4200 	xlog_recover_item_t	*item;
4201 	char			*ptr, *old_ptr;
4202 	int			old_len;
4203 
4204 	/*
4205 	 * If the transaction is empty, the header was split across this and the
4206 	 * previous record. Copy the rest of the header.
4207 	 */
4208 	if (list_empty(&trans->r_itemq)) {
4209 		ASSERT(len <= sizeof(struct xfs_trans_header));
4210 		if (len > sizeof(struct xfs_trans_header)) {
4211 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4212 			return -EFSCORRUPTED;
4213 		}
4214 
4215 		xlog_recover_add_item(&trans->r_itemq);
4216 		ptr = (char *)&trans->r_theader +
4217 				sizeof(struct xfs_trans_header) - len;
4218 		memcpy(ptr, dp, len);
4219 		return 0;
4220 	}
4221 
4222 	/* take the tail entry */
4223 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4224 
4225 	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4226 	old_len = item->ri_buf[item->ri_cnt-1].i_len;
4227 
4228 	ptr = kmem_realloc(old_ptr, len + old_len, 0);
4229 	memcpy(&ptr[old_len], dp, len);
4230 	item->ri_buf[item->ri_cnt-1].i_len += len;
4231 	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4232 	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4233 	return 0;
4234 }
4235 
4236 /*
4237  * The next region to add is the start of a new region.  It could be
4238  * a whole region or it could be the first part of a new region.  Because
4239  * of this, the assumption here is that the type and size fields of all
4240  * format structures fit into the first 32 bits of the structure.
4241  *
4242  * This works because all regions must be 32 bit aligned.  Therefore, we
4243  * either have both fields or we have neither field.  In the case we have
4244  * neither field, the data part of the region is zero length.  We only have
4245  * a log_op_header and can throw away the header since a new one will appear
4246  * later.  If we have at least 4 bytes, then we can determine how many regions
4247  * will appear in the current log item.
4248  */
4249 STATIC int
xlog_recover_add_to_trans(struct xlog * log,struct xlog_recover * trans,char * dp,int len)4250 xlog_recover_add_to_trans(
4251 	struct xlog		*log,
4252 	struct xlog_recover	*trans,
4253 	char			*dp,
4254 	int			len)
4255 {
4256 	struct xfs_inode_log_format	*in_f;			/* any will do */
4257 	xlog_recover_item_t	*item;
4258 	char			*ptr;
4259 
4260 	if (!len)
4261 		return 0;
4262 	if (list_empty(&trans->r_itemq)) {
4263 		/* we need to catch log corruptions here */
4264 		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4265 			xfs_warn(log->l_mp, "%s: bad header magic number",
4266 				__func__);
4267 			ASSERT(0);
4268 			return -EFSCORRUPTED;
4269 		}
4270 
4271 		if (len > sizeof(struct xfs_trans_header)) {
4272 			xfs_warn(log->l_mp, "%s: bad header length", __func__);
4273 			ASSERT(0);
4274 			return -EFSCORRUPTED;
4275 		}
4276 
4277 		/*
4278 		 * The transaction header can be arbitrarily split across op
4279 		 * records. If we don't have the whole thing here, copy what we
4280 		 * do have and handle the rest in the next record.
4281 		 */
4282 		if (len == sizeof(struct xfs_trans_header))
4283 			xlog_recover_add_item(&trans->r_itemq);
4284 		memcpy(&trans->r_theader, dp, len);
4285 		return 0;
4286 	}
4287 
4288 	ptr = kmem_alloc(len, 0);
4289 	memcpy(ptr, dp, len);
4290 	in_f = (struct xfs_inode_log_format *)ptr;
4291 
4292 	/* take the tail entry */
4293 	item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4294 	if (item->ri_total != 0 &&
4295 	     item->ri_total == item->ri_cnt) {
4296 		/* tail item is in use, get a new one */
4297 		xlog_recover_add_item(&trans->r_itemq);
4298 		item = list_entry(trans->r_itemq.prev,
4299 					xlog_recover_item_t, ri_list);
4300 	}
4301 
4302 	if (item->ri_total == 0) {		/* first region to be added */
4303 		if (in_f->ilf_size == 0 ||
4304 		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4305 			xfs_warn(log->l_mp,
4306 		"bad number of regions (%d) in inode log format",
4307 				  in_f->ilf_size);
4308 			ASSERT(0);
4309 			kmem_free(ptr);
4310 			return -EFSCORRUPTED;
4311 		}
4312 
4313 		item->ri_total = in_f->ilf_size;
4314 		item->ri_buf =
4315 			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4316 				    0);
4317 	}
4318 
4319 	if (item->ri_total <= item->ri_cnt) {
4320 		xfs_warn(log->l_mp,
4321 	"log item region count (%d) overflowed size (%d)",
4322 				item->ri_cnt, item->ri_total);
4323 		ASSERT(0);
4324 		kmem_free(ptr);
4325 		return -EFSCORRUPTED;
4326 	}
4327 
4328 	/* Description region is ri_buf[0] */
4329 	item->ri_buf[item->ri_cnt].i_addr = ptr;
4330 	item->ri_buf[item->ri_cnt].i_len  = len;
4331 	item->ri_cnt++;
4332 	trace_xfs_log_recover_item_add(log, trans, item, 0);
4333 	return 0;
4334 }
4335 
4336 /*
4337  * Free up any resources allocated by the transaction
4338  *
4339  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4340  */
4341 STATIC void
xlog_recover_free_trans(struct xlog_recover * trans)4342 xlog_recover_free_trans(
4343 	struct xlog_recover	*trans)
4344 {
4345 	xlog_recover_item_t	*item, *n;
4346 	int			i;
4347 
4348 	hlist_del_init(&trans->r_list);
4349 
4350 	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4351 		/* Free the regions in the item. */
4352 		list_del(&item->ri_list);
4353 		for (i = 0; i < item->ri_cnt; i++)
4354 			kmem_free(item->ri_buf[i].i_addr);
4355 		/* Free the item itself */
4356 		kmem_free(item->ri_buf);
4357 		kmem_free(item);
4358 	}
4359 	/* Free the transaction recover structure */
4360 	kmem_free(trans);
4361 }
4362 
4363 /*
4364  * On error or completion, trans is freed.
4365  */
4366 STATIC int
xlog_recovery_process_trans(struct xlog * log,struct xlog_recover * trans,char * dp,unsigned int len,unsigned int flags,int pass,struct list_head * buffer_list)4367 xlog_recovery_process_trans(
4368 	struct xlog		*log,
4369 	struct xlog_recover	*trans,
4370 	char			*dp,
4371 	unsigned int		len,
4372 	unsigned int		flags,
4373 	int			pass,
4374 	struct list_head	*buffer_list)
4375 {
4376 	int			error = 0;
4377 	bool			freeit = false;
4378 
4379 	/* mask off ophdr transaction container flags */
4380 	flags &= ~XLOG_END_TRANS;
4381 	if (flags & XLOG_WAS_CONT_TRANS)
4382 		flags &= ~XLOG_CONTINUE_TRANS;
4383 
4384 	/*
4385 	 * Callees must not free the trans structure. We'll decide if we need to
4386 	 * free it or not based on the operation being done and it's result.
4387 	 */
4388 	switch (flags) {
4389 	/* expected flag values */
4390 	case 0:
4391 	case XLOG_CONTINUE_TRANS:
4392 		error = xlog_recover_add_to_trans(log, trans, dp, len);
4393 		break;
4394 	case XLOG_WAS_CONT_TRANS:
4395 		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4396 		break;
4397 	case XLOG_COMMIT_TRANS:
4398 		error = xlog_recover_commit_trans(log, trans, pass,
4399 						  buffer_list);
4400 		/* success or fail, we are now done with this transaction. */
4401 		freeit = true;
4402 		break;
4403 
4404 	/* unexpected flag values */
4405 	case XLOG_UNMOUNT_TRANS:
4406 		/* just skip trans */
4407 		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4408 		freeit = true;
4409 		break;
4410 	case XLOG_START_TRANS:
4411 	default:
4412 		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4413 		ASSERT(0);
4414 		error = -EFSCORRUPTED;
4415 		break;
4416 	}
4417 	if (error || freeit)
4418 		xlog_recover_free_trans(trans);
4419 	return error;
4420 }
4421 
4422 /*
4423  * Lookup the transaction recovery structure associated with the ID in the
4424  * current ophdr. If the transaction doesn't exist and the start flag is set in
4425  * the ophdr, then allocate a new transaction for future ID matches to find.
4426  * Either way, return what we found during the lookup - an existing transaction
4427  * or nothing.
4428  */
4429 STATIC struct xlog_recover *
xlog_recover_ophdr_to_trans(struct hlist_head rhash[],struct xlog_rec_header * rhead,struct xlog_op_header * ohead)4430 xlog_recover_ophdr_to_trans(
4431 	struct hlist_head	rhash[],
4432 	struct xlog_rec_header	*rhead,
4433 	struct xlog_op_header	*ohead)
4434 {
4435 	struct xlog_recover	*trans;
4436 	xlog_tid_t		tid;
4437 	struct hlist_head	*rhp;
4438 
4439 	tid = be32_to_cpu(ohead->oh_tid);
4440 	rhp = &rhash[XLOG_RHASH(tid)];
4441 	hlist_for_each_entry(trans, rhp, r_list) {
4442 		if (trans->r_log_tid == tid)
4443 			return trans;
4444 	}
4445 
4446 	/*
4447 	 * skip over non-start transaction headers - we could be
4448 	 * processing slack space before the next transaction starts
4449 	 */
4450 	if (!(ohead->oh_flags & XLOG_START_TRANS))
4451 		return NULL;
4452 
4453 	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4454 
4455 	/*
4456 	 * This is a new transaction so allocate a new recovery container to
4457 	 * hold the recovery ops that will follow.
4458 	 */
4459 	trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
4460 	trans->r_log_tid = tid;
4461 	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4462 	INIT_LIST_HEAD(&trans->r_itemq);
4463 	INIT_HLIST_NODE(&trans->r_list);
4464 	hlist_add_head(&trans->r_list, rhp);
4465 
4466 	/*
4467 	 * Nothing more to do for this ophdr. Items to be added to this new
4468 	 * transaction will be in subsequent ophdr containers.
4469 	 */
4470 	return NULL;
4471 }
4472 
4473 STATIC int
xlog_recover_process_ophdr(struct xlog * log,struct hlist_head rhash[],struct xlog_rec_header * rhead,struct xlog_op_header * ohead,char * dp,char * end,int pass,struct list_head * buffer_list)4474 xlog_recover_process_ophdr(
4475 	struct xlog		*log,
4476 	struct hlist_head	rhash[],
4477 	struct xlog_rec_header	*rhead,
4478 	struct xlog_op_header	*ohead,
4479 	char			*dp,
4480 	char			*end,
4481 	int			pass,
4482 	struct list_head	*buffer_list)
4483 {
4484 	struct xlog_recover	*trans;
4485 	unsigned int		len;
4486 	int			error;
4487 
4488 	/* Do we understand who wrote this op? */
4489 	if (ohead->oh_clientid != XFS_TRANSACTION &&
4490 	    ohead->oh_clientid != XFS_LOG) {
4491 		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4492 			__func__, ohead->oh_clientid);
4493 		ASSERT(0);
4494 		return -EFSCORRUPTED;
4495 	}
4496 
4497 	/*
4498 	 * Check the ophdr contains all the data it is supposed to contain.
4499 	 */
4500 	len = be32_to_cpu(ohead->oh_len);
4501 	if (dp + len > end) {
4502 		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4503 		WARN_ON(1);
4504 		return -EFSCORRUPTED;
4505 	}
4506 
4507 	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4508 	if (!trans) {
4509 		/* nothing to do, so skip over this ophdr */
4510 		return 0;
4511 	}
4512 
4513 	/*
4514 	 * The recovered buffer queue is drained only once we know that all
4515 	 * recovery items for the current LSN have been processed. This is
4516 	 * required because:
4517 	 *
4518 	 * - Buffer write submission updates the metadata LSN of the buffer.
4519 	 * - Log recovery skips items with a metadata LSN >= the current LSN of
4520 	 *   the recovery item.
4521 	 * - Separate recovery items against the same metadata buffer can share
4522 	 *   a current LSN. I.e., consider that the LSN of a recovery item is
4523 	 *   defined as the starting LSN of the first record in which its
4524 	 *   transaction appears, that a record can hold multiple transactions,
4525 	 *   and/or that a transaction can span multiple records.
4526 	 *
4527 	 * In other words, we are allowed to submit a buffer from log recovery
4528 	 * once per current LSN. Otherwise, we may incorrectly skip recovery
4529 	 * items and cause corruption.
4530 	 *
4531 	 * We don't know up front whether buffers are updated multiple times per
4532 	 * LSN. Therefore, track the current LSN of each commit log record as it
4533 	 * is processed and drain the queue when it changes. Use commit records
4534 	 * because they are ordered correctly by the logging code.
4535 	 */
4536 	if (log->l_recovery_lsn != trans->r_lsn &&
4537 	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
4538 		error = xfs_buf_delwri_submit(buffer_list);
4539 		if (error)
4540 			return error;
4541 		log->l_recovery_lsn = trans->r_lsn;
4542 	}
4543 
4544 	return xlog_recovery_process_trans(log, trans, dp, len,
4545 					   ohead->oh_flags, pass, buffer_list);
4546 }
4547 
4548 /*
4549  * There are two valid states of the r_state field.  0 indicates that the
4550  * transaction structure is in a normal state.  We have either seen the
4551  * start of the transaction or the last operation we added was not a partial
4552  * operation.  If the last operation we added to the transaction was a
4553  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4554  *
4555  * NOTE: skip LRs with 0 data length.
4556  */
4557 STATIC int
xlog_recover_process_data(struct xlog * log,struct hlist_head rhash[],struct xlog_rec_header * rhead,char * dp,int pass,struct list_head * buffer_list)4558 xlog_recover_process_data(
4559 	struct xlog		*log,
4560 	struct hlist_head	rhash[],
4561 	struct xlog_rec_header	*rhead,
4562 	char			*dp,
4563 	int			pass,
4564 	struct list_head	*buffer_list)
4565 {
4566 	struct xlog_op_header	*ohead;
4567 	char			*end;
4568 	int			num_logops;
4569 	int			error;
4570 
4571 	end = dp + be32_to_cpu(rhead->h_len);
4572 	num_logops = be32_to_cpu(rhead->h_num_logops);
4573 
4574 	/* check the log format matches our own - else we can't recover */
4575 	if (xlog_header_check_recover(log->l_mp, rhead))
4576 		return -EIO;
4577 
4578 	trace_xfs_log_recover_record(log, rhead, pass);
4579 	while ((dp < end) && num_logops) {
4580 
4581 		ohead = (struct xlog_op_header *)dp;
4582 		dp += sizeof(*ohead);
4583 		ASSERT(dp <= end);
4584 
4585 		/* errors will abort recovery */
4586 		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4587 						   dp, end, pass, buffer_list);
4588 		if (error)
4589 			return error;
4590 
4591 		dp += be32_to_cpu(ohead->oh_len);
4592 		num_logops--;
4593 	}
4594 	return 0;
4595 }
4596 
4597 /* Recover the EFI if necessary. */
4598 STATIC int
xlog_recover_process_efi(struct xfs_ail * ailp,struct xfs_log_item * lip,struct list_head * capture_list)4599 xlog_recover_process_efi(
4600 	struct xfs_ail			*ailp,
4601 	struct xfs_log_item		*lip,
4602 	struct list_head		*capture_list)
4603 {
4604 	struct xfs_efi_log_item		*efip;
4605 	int				error;
4606 
4607 	/*
4608 	 * Skip EFIs that we've already processed.
4609 	 */
4610 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4611 	if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4612 		return 0;
4613 
4614 	spin_unlock(&ailp->ail_lock);
4615 	error = xfs_efi_recover(efip, capture_list);
4616 	spin_lock(&ailp->ail_lock);
4617 
4618 	return error;
4619 }
4620 
4621 /* Release the EFI since we're cancelling everything. */
4622 STATIC void
xlog_recover_cancel_efi(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4623 xlog_recover_cancel_efi(
4624 	struct xfs_mount		*mp,
4625 	struct xfs_ail			*ailp,
4626 	struct xfs_log_item		*lip)
4627 {
4628 	struct xfs_efi_log_item		*efip;
4629 
4630 	efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4631 
4632 	spin_unlock(&ailp->ail_lock);
4633 	xfs_efi_release(efip);
4634 	spin_lock(&ailp->ail_lock);
4635 }
4636 
4637 /* Recover the RUI if necessary. */
4638 STATIC int
xlog_recover_process_rui(struct xfs_ail * ailp,struct xfs_log_item * lip,struct list_head * capture_list)4639 xlog_recover_process_rui(
4640 	struct xfs_ail			*ailp,
4641 	struct xfs_log_item		*lip,
4642 	struct list_head		*capture_list)
4643 {
4644 	struct xfs_rui_log_item		*ruip;
4645 	int				error;
4646 
4647 	/*
4648 	 * Skip RUIs that we've already processed.
4649 	 */
4650 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4651 	if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4652 		return 0;
4653 
4654 	spin_unlock(&ailp->ail_lock);
4655 	error = xfs_rui_recover(ruip, capture_list);
4656 	spin_lock(&ailp->ail_lock);
4657 
4658 	return error;
4659 }
4660 
4661 /* Release the RUI since we're cancelling everything. */
4662 STATIC void
xlog_recover_cancel_rui(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4663 xlog_recover_cancel_rui(
4664 	struct xfs_mount		*mp,
4665 	struct xfs_ail			*ailp,
4666 	struct xfs_log_item		*lip)
4667 {
4668 	struct xfs_rui_log_item		*ruip;
4669 
4670 	ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4671 
4672 	spin_unlock(&ailp->ail_lock);
4673 	xfs_rui_release(ruip);
4674 	spin_lock(&ailp->ail_lock);
4675 }
4676 
4677 /* Recover the CUI if necessary. */
4678 STATIC int
xlog_recover_process_cui(struct xfs_ail * ailp,struct xfs_log_item * lip,struct list_head * capture_list)4679 xlog_recover_process_cui(
4680 	struct xfs_ail			*ailp,
4681 	struct xfs_log_item		*lip,
4682 	struct list_head		*capture_list)
4683 {
4684 	struct xfs_cui_log_item		*cuip;
4685 	int				error;
4686 
4687 	/*
4688 	 * Skip CUIs that we've already processed.
4689 	 */
4690 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4691 	if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4692 		return 0;
4693 
4694 	spin_unlock(&ailp->ail_lock);
4695 	error = xfs_cui_recover(cuip, capture_list);
4696 	spin_lock(&ailp->ail_lock);
4697 
4698 	return error;
4699 }
4700 
4701 /* Release the CUI since we're cancelling everything. */
4702 STATIC void
xlog_recover_cancel_cui(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4703 xlog_recover_cancel_cui(
4704 	struct xfs_mount		*mp,
4705 	struct xfs_ail			*ailp,
4706 	struct xfs_log_item		*lip)
4707 {
4708 	struct xfs_cui_log_item		*cuip;
4709 
4710 	cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4711 
4712 	spin_unlock(&ailp->ail_lock);
4713 	xfs_cui_release(cuip);
4714 	spin_lock(&ailp->ail_lock);
4715 }
4716 
4717 /* Recover the BUI if necessary. */
4718 STATIC int
xlog_recover_process_bui(struct xfs_ail * ailp,struct xfs_log_item * lip,struct list_head * capture_list)4719 xlog_recover_process_bui(
4720 	struct xfs_ail			*ailp,
4721 	struct xfs_log_item		*lip,
4722 	struct list_head		*capture_list)
4723 {
4724 	struct xfs_bui_log_item		*buip;
4725 	int				error;
4726 
4727 	/*
4728 	 * Skip BUIs that we've already processed.
4729 	 */
4730 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4731 	if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4732 		return 0;
4733 
4734 	spin_unlock(&ailp->ail_lock);
4735 	error = xfs_bui_recover(buip, capture_list);
4736 	spin_lock(&ailp->ail_lock);
4737 
4738 	return error;
4739 }
4740 
4741 /* Release the BUI since we're cancelling everything. */
4742 STATIC void
xlog_recover_cancel_bui(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4743 xlog_recover_cancel_bui(
4744 	struct xfs_mount		*mp,
4745 	struct xfs_ail			*ailp,
4746 	struct xfs_log_item		*lip)
4747 {
4748 	struct xfs_bui_log_item		*buip;
4749 
4750 	buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4751 
4752 	spin_unlock(&ailp->ail_lock);
4753 	xfs_bui_release(buip);
4754 	spin_lock(&ailp->ail_lock);
4755 }
4756 
4757 /* Is this log item a deferred action intent? */
xlog_item_is_intent(struct xfs_log_item * lip)4758 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4759 {
4760 	switch (lip->li_type) {
4761 	case XFS_LI_EFI:
4762 	case XFS_LI_RUI:
4763 	case XFS_LI_CUI:
4764 	case XFS_LI_BUI:
4765 		return true;
4766 	default:
4767 		return false;
4768 	}
4769 }
4770 
4771 /* Take all the collected deferred ops and finish them in order. */
4772 static int
xlog_finish_defer_ops(struct xfs_mount * mp,struct list_head * capture_list)4773 xlog_finish_defer_ops(
4774 	struct xfs_mount	*mp,
4775 	struct list_head	*capture_list)
4776 {
4777 	struct xfs_defer_capture *dfc, *next;
4778 	struct xfs_trans	*tp;
4779 	struct xfs_inode	*ip;
4780 	int			error = 0;
4781 
4782 	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
4783 		struct xfs_trans_res	resv;
4784 
4785 		/*
4786 		 * Create a new transaction reservation from the captured
4787 		 * information.  Set logcount to 1 to force the new transaction
4788 		 * to regrant every roll so that we can make forward progress
4789 		 * in recovery no matter how full the log might be.
4790 		 */
4791 		resv.tr_logres = dfc->dfc_logres;
4792 		resv.tr_logcount = 1;
4793 		resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
4794 
4795 		error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
4796 				dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
4797 		if (error)
4798 			return error;
4799 
4800 		/*
4801 		 * Transfer to this new transaction all the dfops we captured
4802 		 * from recovering a single intent item.
4803 		 */
4804 		list_del_init(&dfc->dfc_list);
4805 		xfs_defer_ops_continue(dfc, tp, &ip);
4806 
4807 		error = xfs_trans_commit(tp);
4808 		if (ip) {
4809 			xfs_iunlock(ip, XFS_ILOCK_EXCL);
4810 			xfs_irele(ip);
4811 		}
4812 		if (error)
4813 			return error;
4814 	}
4815 
4816 	ASSERT(list_empty(capture_list));
4817 	return 0;
4818 }
4819 
4820 /* Release all the captured defer ops and capture structures in this list. */
4821 static void
xlog_abort_defer_ops(struct xfs_mount * mp,struct list_head * capture_list)4822 xlog_abort_defer_ops(
4823 	struct xfs_mount		*mp,
4824 	struct list_head		*capture_list)
4825 {
4826 	struct xfs_defer_capture	*dfc;
4827 	struct xfs_defer_capture	*next;
4828 
4829 	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
4830 		list_del_init(&dfc->dfc_list);
4831 		xfs_defer_ops_release(mp, dfc);
4832 	}
4833 }
4834 /*
4835  * When this is called, all of the log intent items which did not have
4836  * corresponding log done items should be in the AIL.  What we do now
4837  * is update the data structures associated with each one.
4838  *
4839  * Since we process the log intent items in normal transactions, they
4840  * will be removed at some point after the commit.  This prevents us
4841  * from just walking down the list processing each one.  We'll use a
4842  * flag in the intent item to skip those that we've already processed
4843  * and use the AIL iteration mechanism's generation count to try to
4844  * speed this up at least a bit.
4845  *
4846  * When we start, we know that the intents are the only things in the
4847  * AIL.  As we process them, however, other items are added to the
4848  * AIL.
4849  */
4850 STATIC int
xlog_recover_process_intents(struct xlog * log)4851 xlog_recover_process_intents(
4852 	struct xlog		*log)
4853 {
4854 	LIST_HEAD(capture_list);
4855 	struct xfs_ail_cursor	cur;
4856 	struct xfs_log_item	*lip;
4857 	struct xfs_ail		*ailp;
4858 	int			error = 0;
4859 #if defined(DEBUG) || defined(XFS_WARN)
4860 	xfs_lsn_t		last_lsn;
4861 #endif
4862 
4863 	ailp = log->l_ailp;
4864 	spin_lock(&ailp->ail_lock);
4865 #if defined(DEBUG) || defined(XFS_WARN)
4866 	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4867 #endif
4868 	for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4869 	     lip != NULL;
4870 	     lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
4871 		/*
4872 		 * We're done when we see something other than an intent.
4873 		 * There should be no intents left in the AIL now.
4874 		 */
4875 		if (!xlog_item_is_intent(lip)) {
4876 #ifdef DEBUG
4877 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4878 				ASSERT(!xlog_item_is_intent(lip));
4879 #endif
4880 			break;
4881 		}
4882 
4883 		/*
4884 		 * We should never see a redo item with a LSN higher than
4885 		 * the last transaction we found in the log at the start
4886 		 * of recovery.
4887 		 */
4888 		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4889 
4890 		/*
4891 		 * NOTE: If your intent processing routine can create more
4892 		 * deferred ops, you /must/ attach them to the capture list in
4893 		 * the recover routine or else those subsequent intents will be
4894 		 * replayed in the wrong order!
4895 		 */
4896 		switch (lip->li_type) {
4897 		case XFS_LI_EFI:
4898 			error = xlog_recover_process_efi(ailp, lip, &capture_list);
4899 			break;
4900 		case XFS_LI_RUI:
4901 			error = xlog_recover_process_rui(ailp, lip, &capture_list);
4902 			break;
4903 		case XFS_LI_CUI:
4904 			error = xlog_recover_process_cui(ailp, lip, &capture_list);
4905 			break;
4906 		case XFS_LI_BUI:
4907 			error = xlog_recover_process_bui(ailp, lip, &capture_list);
4908 			break;
4909 		}
4910 		if (error)
4911 			break;
4912 	}
4913 
4914 	xfs_trans_ail_cursor_done(&cur);
4915 	spin_unlock(&ailp->ail_lock);
4916 	if (error)
4917 		goto err;
4918 
4919 	error = xlog_finish_defer_ops(log->l_mp, &capture_list);
4920 	if (error)
4921 		goto err;
4922 
4923 	return 0;
4924 err:
4925 	xlog_abort_defer_ops(log->l_mp, &capture_list);
4926 	return error;
4927 }
4928 
4929 /*
4930  * A cancel occurs when the mount has failed and we're bailing out.
4931  * Release all pending log intent items so they don't pin the AIL.
4932  */
4933 STATIC void
xlog_recover_cancel_intents(struct xlog * log)4934 xlog_recover_cancel_intents(
4935 	struct xlog		*log)
4936 {
4937 	struct xfs_log_item	*lip;
4938 	struct xfs_ail_cursor	cur;
4939 	struct xfs_ail		*ailp;
4940 
4941 	ailp = log->l_ailp;
4942 	spin_lock(&ailp->ail_lock);
4943 	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4944 	while (lip != NULL) {
4945 		/*
4946 		 * We're done when we see something other than an intent.
4947 		 * There should be no intents left in the AIL now.
4948 		 */
4949 		if (!xlog_item_is_intent(lip)) {
4950 #ifdef DEBUG
4951 			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4952 				ASSERT(!xlog_item_is_intent(lip));
4953 #endif
4954 			break;
4955 		}
4956 
4957 		switch (lip->li_type) {
4958 		case XFS_LI_EFI:
4959 			xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4960 			break;
4961 		case XFS_LI_RUI:
4962 			xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4963 			break;
4964 		case XFS_LI_CUI:
4965 			xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4966 			break;
4967 		case XFS_LI_BUI:
4968 			xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4969 			break;
4970 		}
4971 
4972 		lip = xfs_trans_ail_cursor_next(ailp, &cur);
4973 	}
4974 
4975 	xfs_trans_ail_cursor_done(&cur);
4976 	spin_unlock(&ailp->ail_lock);
4977 }
4978 
4979 /*
4980  * This routine performs a transaction to null out a bad inode pointer
4981  * in an agi unlinked inode hash bucket.
4982  */
4983 STATIC void
xlog_recover_clear_agi_bucket(xfs_mount_t * mp,xfs_agnumber_t agno,int bucket)4984 xlog_recover_clear_agi_bucket(
4985 	xfs_mount_t	*mp,
4986 	xfs_agnumber_t	agno,
4987 	int		bucket)
4988 {
4989 	xfs_trans_t	*tp;
4990 	xfs_agi_t	*agi;
4991 	xfs_buf_t	*agibp;
4992 	int		offset;
4993 	int		error;
4994 
4995 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4996 	if (error)
4997 		goto out_error;
4998 
4999 	error = xfs_read_agi(mp, tp, agno, &agibp);
5000 	if (error)
5001 		goto out_abort;
5002 
5003 	agi = XFS_BUF_TO_AGI(agibp);
5004 	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
5005 	offset = offsetof(xfs_agi_t, agi_unlinked) +
5006 		 (sizeof(xfs_agino_t) * bucket);
5007 	xfs_trans_log_buf(tp, agibp, offset,
5008 			  (offset + sizeof(xfs_agino_t) - 1));
5009 
5010 	error = xfs_trans_commit(tp);
5011 	if (error)
5012 		goto out_error;
5013 	return;
5014 
5015 out_abort:
5016 	xfs_trans_cancel(tp);
5017 out_error:
5018 	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
5019 	return;
5020 }
5021 
5022 STATIC xfs_agino_t
xlog_recover_process_one_iunlink(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agino_t agino,int bucket)5023 xlog_recover_process_one_iunlink(
5024 	struct xfs_mount		*mp,
5025 	xfs_agnumber_t			agno,
5026 	xfs_agino_t			agino,
5027 	int				bucket)
5028 {
5029 	struct xfs_buf			*ibp;
5030 	struct xfs_dinode		*dip;
5031 	struct xfs_inode		*ip;
5032 	xfs_ino_t			ino;
5033 	int				error;
5034 
5035 	ino = XFS_AGINO_TO_INO(mp, agno, agino);
5036 	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
5037 	if (error)
5038 		goto fail;
5039 
5040 	/*
5041 	 * Get the on disk inode to find the next inode in the bucket.
5042 	 */
5043 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
5044 	if (error)
5045 		goto fail_iput;
5046 
5047 	xfs_iflags_clear(ip, XFS_IRECOVERY);
5048 	ASSERT(VFS_I(ip)->i_nlink == 0);
5049 	ASSERT(VFS_I(ip)->i_mode != 0);
5050 
5051 	/* setup for the next pass */
5052 	agino = be32_to_cpu(dip->di_next_unlinked);
5053 	xfs_buf_relse(ibp);
5054 
5055 	/*
5056 	 * Prevent any DMAPI event from being sent when the reference on
5057 	 * the inode is dropped.
5058 	 */
5059 	ip->i_d.di_dmevmask = 0;
5060 
5061 	xfs_irele(ip);
5062 	return agino;
5063 
5064  fail_iput:
5065 	xfs_irele(ip);
5066  fail:
5067 	/*
5068 	 * We can't read in the inode this bucket points to, or this inode
5069 	 * is messed up.  Just ditch this bucket of inodes.  We will lose
5070 	 * some inodes and space, but at least we won't hang.
5071 	 *
5072 	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5073 	 * clear the inode pointer in the bucket.
5074 	 */
5075 	xlog_recover_clear_agi_bucket(mp, agno, bucket);
5076 	return NULLAGINO;
5077 }
5078 
5079 /*
5080  * Recover AGI unlinked lists
5081  *
5082  * This is called during recovery to process any inodes which we unlinked but
5083  * not freed when the system crashed.  These inodes will be on the lists in the
5084  * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
5085  * any inodes found on the lists. Each inode is removed from the lists when it
5086  * has been fully truncated and is freed. The freeing of the inode and its
5087  * removal from the list must be atomic.
5088  *
5089  * If everything we touch in the agi processing loop is already in memory, this
5090  * loop can hold the cpu for a long time. It runs without lock contention,
5091  * memory allocation contention, the need wait for IO, etc, and so will run
5092  * until we either run out of inodes to process, run low on memory or we run out
5093  * of log space.
5094  *
5095  * This behaviour is bad for latency on single CPU and non-preemptible kernels,
5096  * and can prevent other filesytem work (such as CIL pushes) from running. This
5097  * can lead to deadlocks if the recovery process runs out of log reservation
5098  * space. Hence we need to yield the CPU when there is other kernel work
5099  * scheduled on this CPU to ensure other scheduled work can run without undue
5100  * latency.
5101  */
5102 STATIC void
xlog_recover_process_iunlinks(struct xlog * log)5103 xlog_recover_process_iunlinks(
5104 	struct xlog	*log)
5105 {
5106 	xfs_mount_t	*mp;
5107 	xfs_agnumber_t	agno;
5108 	xfs_agi_t	*agi;
5109 	xfs_buf_t	*agibp;
5110 	xfs_agino_t	agino;
5111 	int		bucket;
5112 	int		error;
5113 
5114 	mp = log->l_mp;
5115 
5116 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5117 		/*
5118 		 * Find the agi for this ag.
5119 		 */
5120 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5121 		if (error) {
5122 			/*
5123 			 * AGI is b0rked. Don't process it.
5124 			 *
5125 			 * We should probably mark the filesystem as corrupt
5126 			 * after we've recovered all the ag's we can....
5127 			 */
5128 			continue;
5129 		}
5130 		/*
5131 		 * Unlock the buffer so that it can be acquired in the normal
5132 		 * course of the transaction to truncate and free each inode.
5133 		 * Because we are not racing with anyone else here for the AGI
5134 		 * buffer, we don't even need to hold it locked to read the
5135 		 * initial unlinked bucket entries out of the buffer. We keep
5136 		 * buffer reference though, so that it stays pinned in memory
5137 		 * while we need the buffer.
5138 		 */
5139 		agi = XFS_BUF_TO_AGI(agibp);
5140 		xfs_buf_unlock(agibp);
5141 
5142 		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5143 			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5144 			while (agino != NULLAGINO) {
5145 				agino = xlog_recover_process_one_iunlink(mp,
5146 							agno, agino, bucket);
5147 				cond_resched();
5148 			}
5149 		}
5150 		xfs_buf_rele(agibp);
5151 	}
5152 }
5153 
5154 STATIC void
xlog_unpack_data(struct xlog_rec_header * rhead,char * dp,struct xlog * log)5155 xlog_unpack_data(
5156 	struct xlog_rec_header	*rhead,
5157 	char			*dp,
5158 	struct xlog		*log)
5159 {
5160 	int			i, j, k;
5161 
5162 	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5163 		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5164 		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5165 		dp += BBSIZE;
5166 	}
5167 
5168 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5169 		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5170 		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5171 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5172 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5173 			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5174 			dp += BBSIZE;
5175 		}
5176 	}
5177 }
5178 
5179 /*
5180  * CRC check, unpack and process a log record.
5181  */
5182 STATIC int
xlog_recover_process(struct xlog * log,struct hlist_head rhash[],struct xlog_rec_header * rhead,char * dp,int pass,struct list_head * buffer_list)5183 xlog_recover_process(
5184 	struct xlog		*log,
5185 	struct hlist_head	rhash[],
5186 	struct xlog_rec_header	*rhead,
5187 	char			*dp,
5188 	int			pass,
5189 	struct list_head	*buffer_list)
5190 {
5191 	__le32			old_crc = rhead->h_crc;
5192 	__le32			crc;
5193 
5194 	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5195 
5196 	/*
5197 	 * Nothing else to do if this is a CRC verification pass. Just return
5198 	 * if this a record with a non-zero crc. Unfortunately, mkfs always
5199 	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5200 	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5201 	 * know precisely what failed.
5202 	 */
5203 	if (pass == XLOG_RECOVER_CRCPASS) {
5204 		if (old_crc && crc != old_crc)
5205 			return -EFSBADCRC;
5206 		return 0;
5207 	}
5208 
5209 	/*
5210 	 * We're in the normal recovery path. Issue a warning if and only if the
5211 	 * CRC in the header is non-zero. This is an advisory warning and the
5212 	 * zero CRC check prevents warnings from being emitted when upgrading
5213 	 * the kernel from one that does not add CRCs by default.
5214 	 */
5215 	if (crc != old_crc) {
5216 		if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5217 			xfs_alert(log->l_mp,
5218 		"log record CRC mismatch: found 0x%x, expected 0x%x.",
5219 					le32_to_cpu(old_crc),
5220 					le32_to_cpu(crc));
5221 			xfs_hex_dump(dp, 32);
5222 		}
5223 
5224 		/*
5225 		 * If the filesystem is CRC enabled, this mismatch becomes a
5226 		 * fatal log corruption failure.
5227 		 */
5228 		if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5229 			XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
5230 			return -EFSCORRUPTED;
5231 		}
5232 	}
5233 
5234 	xlog_unpack_data(rhead, dp, log);
5235 
5236 	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5237 					 buffer_list);
5238 }
5239 
5240 STATIC int
xlog_valid_rec_header(struct xlog * log,struct xlog_rec_header * rhead,xfs_daddr_t blkno)5241 xlog_valid_rec_header(
5242 	struct xlog		*log,
5243 	struct xlog_rec_header	*rhead,
5244 	xfs_daddr_t		blkno)
5245 {
5246 	int			hlen;
5247 
5248 	if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5249 		XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5250 				XFS_ERRLEVEL_LOW, log->l_mp);
5251 		return -EFSCORRUPTED;
5252 	}
5253 	if (unlikely(
5254 	    (!rhead->h_version ||
5255 	    (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5256 		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5257 			__func__, be32_to_cpu(rhead->h_version));
5258 		return -EFSCORRUPTED;
5259 	}
5260 
5261 	/* LR body must have data or it wouldn't have been written */
5262 	hlen = be32_to_cpu(rhead->h_len);
5263 	if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5264 		XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5265 				XFS_ERRLEVEL_LOW, log->l_mp);
5266 		return -EFSCORRUPTED;
5267 	}
5268 	if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5269 		XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5270 				XFS_ERRLEVEL_LOW, log->l_mp);
5271 		return -EFSCORRUPTED;
5272 	}
5273 	return 0;
5274 }
5275 
5276 /*
5277  * Read the log from tail to head and process the log records found.
5278  * Handle the two cases where the tail and head are in the same cycle
5279  * and where the active portion of the log wraps around the end of
5280  * the physical log separately.  The pass parameter is passed through
5281  * to the routines called to process the data and is not looked at
5282  * here.
5283  */
5284 STATIC int
xlog_do_recovery_pass(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk,int pass,xfs_daddr_t * first_bad)5285 xlog_do_recovery_pass(
5286 	struct xlog		*log,
5287 	xfs_daddr_t		head_blk,
5288 	xfs_daddr_t		tail_blk,
5289 	int			pass,
5290 	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
5291 {
5292 	xlog_rec_header_t	*rhead;
5293 	xfs_daddr_t		blk_no, rblk_no;
5294 	xfs_daddr_t		rhead_blk;
5295 	char			*offset;
5296 	char			*hbp, *dbp;
5297 	int			error = 0, h_size, h_len;
5298 	int			error2 = 0;
5299 	int			bblks, split_bblks;
5300 	int			hblks, split_hblks, wrapped_hblks;
5301 	int			i;
5302 	struct hlist_head	rhash[XLOG_RHASH_SIZE];
5303 	LIST_HEAD		(buffer_list);
5304 
5305 	ASSERT(head_blk != tail_blk);
5306 	blk_no = rhead_blk = tail_blk;
5307 
5308 	for (i = 0; i < XLOG_RHASH_SIZE; i++)
5309 		INIT_HLIST_HEAD(&rhash[i]);
5310 
5311 	/*
5312 	 * Read the header of the tail block and get the iclog buffer size from
5313 	 * h_size.  Use this to tell how many sectors make up the log header.
5314 	 */
5315 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5316 		/*
5317 		 * When using variable length iclogs, read first sector of
5318 		 * iclog header and extract the header size from it.  Get a
5319 		 * new hbp that is the correct size.
5320 		 */
5321 		hbp = xlog_alloc_buffer(log, 1);
5322 		if (!hbp)
5323 			return -ENOMEM;
5324 
5325 		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5326 		if (error)
5327 			goto bread_err1;
5328 
5329 		rhead = (xlog_rec_header_t *)offset;
5330 		error = xlog_valid_rec_header(log, rhead, tail_blk);
5331 		if (error)
5332 			goto bread_err1;
5333 
5334 		/*
5335 		 * xfsprogs has a bug where record length is based on lsunit but
5336 		 * h_size (iclog size) is hardcoded to 32k. Now that we
5337 		 * unconditionally CRC verify the unmount record, this means the
5338 		 * log buffer can be too small for the record and cause an
5339 		 * overrun.
5340 		 *
5341 		 * Detect this condition here. Use lsunit for the buffer size as
5342 		 * long as this looks like the mkfs case. Otherwise, return an
5343 		 * error to avoid a buffer overrun.
5344 		 */
5345 		h_size = be32_to_cpu(rhead->h_size);
5346 		h_len = be32_to_cpu(rhead->h_len);
5347 		if (h_len > h_size) {
5348 			if (h_len <= log->l_mp->m_logbsize &&
5349 			    be32_to_cpu(rhead->h_num_logops) == 1) {
5350 				xfs_warn(log->l_mp,
5351 		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
5352 					 h_size, log->l_mp->m_logbsize);
5353 				h_size = log->l_mp->m_logbsize;
5354 			} else {
5355 				XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW,
5356 						log->l_mp);
5357 				error = -EFSCORRUPTED;
5358 				goto bread_err1;
5359 			}
5360 		}
5361 
5362 		if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5363 		    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5364 			hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5365 			if (h_size % XLOG_HEADER_CYCLE_SIZE)
5366 				hblks++;
5367 			kmem_free(hbp);
5368 			hbp = xlog_alloc_buffer(log, hblks);
5369 		} else {
5370 			hblks = 1;
5371 		}
5372 	} else {
5373 		ASSERT(log->l_sectBBsize == 1);
5374 		hblks = 1;
5375 		hbp = xlog_alloc_buffer(log, 1);
5376 		h_size = XLOG_BIG_RECORD_BSIZE;
5377 	}
5378 
5379 	if (!hbp)
5380 		return -ENOMEM;
5381 	dbp = xlog_alloc_buffer(log, BTOBB(h_size));
5382 	if (!dbp) {
5383 		kmem_free(hbp);
5384 		return -ENOMEM;
5385 	}
5386 
5387 	memset(rhash, 0, sizeof(rhash));
5388 	if (tail_blk > head_blk) {
5389 		/*
5390 		 * Perform recovery around the end of the physical log.
5391 		 * When the head is not on the same cycle number as the tail,
5392 		 * we can't do a sequential recovery.
5393 		 */
5394 		while (blk_no < log->l_logBBsize) {
5395 			/*
5396 			 * Check for header wrapping around physical end-of-log
5397 			 */
5398 			offset = hbp;
5399 			split_hblks = 0;
5400 			wrapped_hblks = 0;
5401 			if (blk_no + hblks <= log->l_logBBsize) {
5402 				/* Read header in one read */
5403 				error = xlog_bread(log, blk_no, hblks, hbp,
5404 						   &offset);
5405 				if (error)
5406 					goto bread_err2;
5407 			} else {
5408 				/* This LR is split across physical log end */
5409 				if (blk_no != log->l_logBBsize) {
5410 					/* some data before physical log end */
5411 					ASSERT(blk_no <= INT_MAX);
5412 					split_hblks = log->l_logBBsize - (int)blk_no;
5413 					ASSERT(split_hblks > 0);
5414 					error = xlog_bread(log, blk_no,
5415 							   split_hblks, hbp,
5416 							   &offset);
5417 					if (error)
5418 						goto bread_err2;
5419 				}
5420 
5421 				/*
5422 				 * Note: this black magic still works with
5423 				 * large sector sizes (non-512) only because:
5424 				 * - we increased the buffer size originally
5425 				 *   by 1 sector giving us enough extra space
5426 				 *   for the second read;
5427 				 * - the log start is guaranteed to be sector
5428 				 *   aligned;
5429 				 * - we read the log end (LR header start)
5430 				 *   _first_, then the log start (LR header end)
5431 				 *   - order is important.
5432 				 */
5433 				wrapped_hblks = hblks - split_hblks;
5434 				error = xlog_bread_noalign(log, 0,
5435 						wrapped_hblks,
5436 						offset + BBTOB(split_hblks));
5437 				if (error)
5438 					goto bread_err2;
5439 			}
5440 			rhead = (xlog_rec_header_t *)offset;
5441 			error = xlog_valid_rec_header(log, rhead,
5442 						split_hblks ? blk_no : 0);
5443 			if (error)
5444 				goto bread_err2;
5445 
5446 			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5447 			blk_no += hblks;
5448 
5449 			/*
5450 			 * Read the log record data in multiple reads if it
5451 			 * wraps around the end of the log. Note that if the
5452 			 * header already wrapped, blk_no could point past the
5453 			 * end of the log. The record data is contiguous in
5454 			 * that case.
5455 			 */
5456 			if (blk_no + bblks <= log->l_logBBsize ||
5457 			    blk_no >= log->l_logBBsize) {
5458 				rblk_no = xlog_wrap_logbno(log, blk_no);
5459 				error = xlog_bread(log, rblk_no, bblks, dbp,
5460 						   &offset);
5461 				if (error)
5462 					goto bread_err2;
5463 			} else {
5464 				/* This log record is split across the
5465 				 * physical end of log */
5466 				offset = dbp;
5467 				split_bblks = 0;
5468 				if (blk_no != log->l_logBBsize) {
5469 					/* some data is before the physical
5470 					 * end of log */
5471 					ASSERT(!wrapped_hblks);
5472 					ASSERT(blk_no <= INT_MAX);
5473 					split_bblks =
5474 						log->l_logBBsize - (int)blk_no;
5475 					ASSERT(split_bblks > 0);
5476 					error = xlog_bread(log, blk_no,
5477 							split_bblks, dbp,
5478 							&offset);
5479 					if (error)
5480 						goto bread_err2;
5481 				}
5482 
5483 				/*
5484 				 * Note: this black magic still works with
5485 				 * large sector sizes (non-512) only because:
5486 				 * - we increased the buffer size originally
5487 				 *   by 1 sector giving us enough extra space
5488 				 *   for the second read;
5489 				 * - the log start is guaranteed to be sector
5490 				 *   aligned;
5491 				 * - we read the log end (LR header start)
5492 				 *   _first_, then the log start (LR header end)
5493 				 *   - order is important.
5494 				 */
5495 				error = xlog_bread_noalign(log, 0,
5496 						bblks - split_bblks,
5497 						offset + BBTOB(split_bblks));
5498 				if (error)
5499 					goto bread_err2;
5500 			}
5501 
5502 			error = xlog_recover_process(log, rhash, rhead, offset,
5503 						     pass, &buffer_list);
5504 			if (error)
5505 				goto bread_err2;
5506 
5507 			blk_no += bblks;
5508 			rhead_blk = blk_no;
5509 		}
5510 
5511 		ASSERT(blk_no >= log->l_logBBsize);
5512 		blk_no -= log->l_logBBsize;
5513 		rhead_blk = blk_no;
5514 	}
5515 
5516 	/* read first part of physical log */
5517 	while (blk_no < head_blk) {
5518 		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5519 		if (error)
5520 			goto bread_err2;
5521 
5522 		rhead = (xlog_rec_header_t *)offset;
5523 		error = xlog_valid_rec_header(log, rhead, blk_no);
5524 		if (error)
5525 			goto bread_err2;
5526 
5527 		/* blocks in data section */
5528 		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5529 		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5530 				   &offset);
5531 		if (error)
5532 			goto bread_err2;
5533 
5534 		error = xlog_recover_process(log, rhash, rhead, offset, pass,
5535 					     &buffer_list);
5536 		if (error)
5537 			goto bread_err2;
5538 
5539 		blk_no += bblks + hblks;
5540 		rhead_blk = blk_no;
5541 	}
5542 
5543  bread_err2:
5544 	kmem_free(dbp);
5545  bread_err1:
5546 	kmem_free(hbp);
5547 
5548 	/*
5549 	 * Submit buffers that have been added from the last record processed,
5550 	 * regardless of error status.
5551 	 */
5552 	if (!list_empty(&buffer_list))
5553 		error2 = xfs_buf_delwri_submit(&buffer_list);
5554 
5555 	if (error && first_bad)
5556 		*first_bad = rhead_blk;
5557 
5558 	/*
5559 	 * Transactions are freed at commit time but transactions without commit
5560 	 * records on disk are never committed. Free any that may be left in the
5561 	 * hash table.
5562 	 */
5563 	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5564 		struct hlist_node	*tmp;
5565 		struct xlog_recover	*trans;
5566 
5567 		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5568 			xlog_recover_free_trans(trans);
5569 	}
5570 
5571 	return error ? error : error2;
5572 }
5573 
5574 /*
5575  * Do the recovery of the log.  We actually do this in two phases.
5576  * The two passes are necessary in order to implement the function
5577  * of cancelling a record written into the log.  The first pass
5578  * determines those things which have been cancelled, and the
5579  * second pass replays log items normally except for those which
5580  * have been cancelled.  The handling of the replay and cancellations
5581  * takes place in the log item type specific routines.
5582  *
5583  * The table of items which have cancel records in the log is allocated
5584  * and freed at this level, since only here do we know when all of
5585  * the log recovery has been completed.
5586  */
5587 STATIC int
xlog_do_log_recovery(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)5588 xlog_do_log_recovery(
5589 	struct xlog	*log,
5590 	xfs_daddr_t	head_blk,
5591 	xfs_daddr_t	tail_blk)
5592 {
5593 	int		error, i;
5594 
5595 	ASSERT(head_blk != tail_blk);
5596 
5597 	/*
5598 	 * First do a pass to find all of the cancelled buf log items.
5599 	 * Store them in the buf_cancel_table for use in the second pass.
5600 	 */
5601 	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5602 						 sizeof(struct list_head),
5603 						 0);
5604 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5605 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5606 
5607 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5608 				      XLOG_RECOVER_PASS1, NULL);
5609 	if (error != 0) {
5610 		kmem_free(log->l_buf_cancel_table);
5611 		log->l_buf_cancel_table = NULL;
5612 		return error;
5613 	}
5614 	/*
5615 	 * Then do a second pass to actually recover the items in the log.
5616 	 * When it is complete free the table of buf cancel items.
5617 	 */
5618 	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5619 				      XLOG_RECOVER_PASS2, NULL);
5620 #ifdef DEBUG
5621 	if (!error) {
5622 		int	i;
5623 
5624 		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5625 			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5626 	}
5627 #endif	/* DEBUG */
5628 
5629 	kmem_free(log->l_buf_cancel_table);
5630 	log->l_buf_cancel_table = NULL;
5631 
5632 	return error;
5633 }
5634 
5635 /*
5636  * Do the actual recovery
5637  */
5638 STATIC int
xlog_do_recover(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)5639 xlog_do_recover(
5640 	struct xlog	*log,
5641 	xfs_daddr_t	head_blk,
5642 	xfs_daddr_t	tail_blk)
5643 {
5644 	struct xfs_mount *mp = log->l_mp;
5645 	int		error;
5646 	xfs_buf_t	*bp;
5647 	xfs_sb_t	*sbp;
5648 
5649 	trace_xfs_log_recover(log, head_blk, tail_blk);
5650 
5651 	/*
5652 	 * First replay the images in the log.
5653 	 */
5654 	error = xlog_do_log_recovery(log, head_blk, tail_blk);
5655 	if (error)
5656 		return error;
5657 
5658 	/*
5659 	 * If IO errors happened during recovery, bail out.
5660 	 */
5661 	if (XFS_FORCED_SHUTDOWN(mp)) {
5662 		return -EIO;
5663 	}
5664 
5665 	/*
5666 	 * We now update the tail_lsn since much of the recovery has completed
5667 	 * and there may be space available to use.  If there were no extent
5668 	 * or iunlinks, we can free up the entire log and set the tail_lsn to
5669 	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
5670 	 * lsn of the last known good LR on disk.  If there are extent frees
5671 	 * or iunlinks they will have some entries in the AIL; so we look at
5672 	 * the AIL to determine how to set the tail_lsn.
5673 	 */
5674 	xlog_assign_tail_lsn(mp);
5675 
5676 	/*
5677 	 * Now that we've finished replaying all buffer and inode
5678 	 * updates, re-read in the superblock and reverify it.
5679 	 */
5680 	bp = xfs_getsb(mp);
5681 	bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5682 	ASSERT(!(bp->b_flags & XBF_WRITE));
5683 	bp->b_flags |= XBF_READ;
5684 	bp->b_ops = &xfs_sb_buf_ops;
5685 
5686 	error = xfs_buf_submit(bp);
5687 	if (error) {
5688 		if (!XFS_FORCED_SHUTDOWN(mp)) {
5689 			xfs_buf_ioerror_alert(bp, __func__);
5690 			ASSERT(0);
5691 		}
5692 		xfs_buf_relse(bp);
5693 		return error;
5694 	}
5695 
5696 	/* Convert superblock from on-disk format */
5697 	sbp = &mp->m_sb;
5698 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5699 	xfs_buf_relse(bp);
5700 
5701 	/* re-initialise in-core superblock and geometry structures */
5702 	xfs_reinit_percpu_counters(mp);
5703 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5704 	if (error) {
5705 		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5706 		return error;
5707 	}
5708 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5709 
5710 	xlog_recover_check_summary(log);
5711 
5712 	/* Normal transactions can now occur */
5713 	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5714 	return 0;
5715 }
5716 
5717 /*
5718  * Perform recovery and re-initialize some log variables in xlog_find_tail.
5719  *
5720  * Return error or zero.
5721  */
5722 int
xlog_recover(struct xlog * log)5723 xlog_recover(
5724 	struct xlog	*log)
5725 {
5726 	xfs_daddr_t	head_blk, tail_blk;
5727 	int		error;
5728 
5729 	/* find the tail of the log */
5730 	error = xlog_find_tail(log, &head_blk, &tail_blk);
5731 	if (error)
5732 		return error;
5733 
5734 	/*
5735 	 * The superblock was read before the log was available and thus the LSN
5736 	 * could not be verified. Check the superblock LSN against the current
5737 	 * LSN now that it's known.
5738 	 */
5739 	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5740 	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5741 		return -EINVAL;
5742 
5743 	if (tail_blk != head_blk) {
5744 		/* There used to be a comment here:
5745 		 *
5746 		 * disallow recovery on read-only mounts.  note -- mount
5747 		 * checks for ENOSPC and turns it into an intelligent
5748 		 * error message.
5749 		 * ...but this is no longer true.  Now, unless you specify
5750 		 * NORECOVERY (in which case this function would never be
5751 		 * called), we just go ahead and recover.  We do this all
5752 		 * under the vfs layer, so we can get away with it unless
5753 		 * the device itself is read-only, in which case we fail.
5754 		 */
5755 		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5756 			return error;
5757 		}
5758 
5759 		/*
5760 		 * Version 5 superblock log feature mask validation. We know the
5761 		 * log is dirty so check if there are any unknown log features
5762 		 * in what we need to recover. If there are unknown features
5763 		 * (e.g. unsupported transactions, then simply reject the
5764 		 * attempt at recovery before touching anything.
5765 		 */
5766 		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5767 		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5768 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5769 			xfs_warn(log->l_mp,
5770 "Superblock has unknown incompatible log features (0x%x) enabled.",
5771 				(log->l_mp->m_sb.sb_features_log_incompat &
5772 					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5773 			xfs_warn(log->l_mp,
5774 "The log can not be fully and/or safely recovered by this kernel.");
5775 			xfs_warn(log->l_mp,
5776 "Please recover the log on a kernel that supports the unknown features.");
5777 			return -EINVAL;
5778 		}
5779 
5780 		/*
5781 		 * Delay log recovery if the debug hook is set. This is debug
5782 		 * instrumention to coordinate simulation of I/O failures with
5783 		 * log recovery.
5784 		 */
5785 		if (xfs_globals.log_recovery_delay) {
5786 			xfs_notice(log->l_mp,
5787 				"Delaying log recovery for %d seconds.",
5788 				xfs_globals.log_recovery_delay);
5789 			msleep(xfs_globals.log_recovery_delay * 1000);
5790 		}
5791 
5792 		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5793 				log->l_mp->m_logname ? log->l_mp->m_logname
5794 						     : "internal");
5795 
5796 		error = xlog_do_recover(log, head_blk, tail_blk);
5797 		log->l_flags |= XLOG_RECOVERY_NEEDED;
5798 	}
5799 	return error;
5800 }
5801 
5802 /*
5803  * In the first part of recovery we replay inodes and buffers and build
5804  * up the list of extent free items which need to be processed.  Here
5805  * we process the extent free items and clean up the on disk unlinked
5806  * inode lists.  This is separated from the first part of recovery so
5807  * that the root and real-time bitmap inodes can be read in from disk in
5808  * between the two stages.  This is necessary so that we can free space
5809  * in the real-time portion of the file system.
5810  */
5811 int
xlog_recover_finish(struct xlog * log)5812 xlog_recover_finish(
5813 	struct xlog	*log)
5814 {
5815 	/*
5816 	 * Now we're ready to do the transactions needed for the
5817 	 * rest of recovery.  Start with completing all the extent
5818 	 * free intent records and then process the unlinked inode
5819 	 * lists.  At this point, we essentially run in normal mode
5820 	 * except that we're still performing recovery actions
5821 	 * rather than accepting new requests.
5822 	 */
5823 	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5824 		int	error;
5825 		error = xlog_recover_process_intents(log);
5826 		if (error) {
5827 			xfs_alert(log->l_mp, "Failed to recover intents");
5828 			return error;
5829 		}
5830 
5831 		/*
5832 		 * Sync the log to get all the intents out of the AIL.
5833 		 * This isn't absolutely necessary, but it helps in
5834 		 * case the unlink transactions would have problems
5835 		 * pushing the intents out of the way.
5836 		 */
5837 		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5838 
5839 		xlog_recover_process_iunlinks(log);
5840 
5841 		xlog_recover_check_summary(log);
5842 
5843 		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5844 				log->l_mp->m_logname ? log->l_mp->m_logname
5845 						     : "internal");
5846 		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5847 	} else {
5848 		xfs_info(log->l_mp, "Ending clean mount");
5849 	}
5850 	return 0;
5851 }
5852 
5853 void
xlog_recover_cancel(struct xlog * log)5854 xlog_recover_cancel(
5855 	struct xlog	*log)
5856 {
5857 	if (log->l_flags & XLOG_RECOVERY_NEEDED)
5858 		xlog_recover_cancel_intents(log);
5859 }
5860 
5861 #if defined(DEBUG)
5862 /*
5863  * Read all of the agf and agi counters and check that they
5864  * are consistent with the superblock counters.
5865  */
5866 STATIC void
xlog_recover_check_summary(struct xlog * log)5867 xlog_recover_check_summary(
5868 	struct xlog	*log)
5869 {
5870 	xfs_mount_t	*mp;
5871 	xfs_agf_t	*agfp;
5872 	xfs_buf_t	*agfbp;
5873 	xfs_buf_t	*agibp;
5874 	xfs_agnumber_t	agno;
5875 	uint64_t	freeblks;
5876 	uint64_t	itotal;
5877 	uint64_t	ifree;
5878 	int		error;
5879 
5880 	mp = log->l_mp;
5881 
5882 	freeblks = 0LL;
5883 	itotal = 0LL;
5884 	ifree = 0LL;
5885 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5886 		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5887 		if (error) {
5888 			xfs_alert(mp, "%s agf read failed agno %d error %d",
5889 						__func__, agno, error);
5890 		} else {
5891 			agfp = XFS_BUF_TO_AGF(agfbp);
5892 			freeblks += be32_to_cpu(agfp->agf_freeblks) +
5893 				    be32_to_cpu(agfp->agf_flcount);
5894 			xfs_buf_relse(agfbp);
5895 		}
5896 
5897 		error = xfs_read_agi(mp, NULL, agno, &agibp);
5898 		if (error) {
5899 			xfs_alert(mp, "%s agi read failed agno %d error %d",
5900 						__func__, agno, error);
5901 		} else {
5902 			struct xfs_agi	*agi = XFS_BUF_TO_AGI(agibp);
5903 
5904 			itotal += be32_to_cpu(agi->agi_count);
5905 			ifree += be32_to_cpu(agi->agi_freecount);
5906 			xfs_buf_relse(agibp);
5907 		}
5908 	}
5909 }
5910 #endif /* DEBUG */
5911