• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Hash: Hash algorithms under the crypto API
4  *
5  * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6  */
7 
8 #ifndef _CRYPTO_HASH_H
9 #define _CRYPTO_HASH_H
10 
11 #include <linux/crypto.h>
12 #include <linux/string.h>
13 
14 struct crypto_ahash;
15 
16 /**
17  * DOC: Message Digest Algorithm Definitions
18  *
19  * These data structures define modular message digest algorithm
20  * implementations, managed via crypto_register_ahash(),
21  * crypto_register_shash(), crypto_unregister_ahash() and
22  * crypto_unregister_shash().
23  */
24 
25 /**
26  * struct hash_alg_common - define properties of message digest
27  * @digestsize: Size of the result of the transformation. A buffer of this size
28  *	        must be available to the @final and @finup calls, so they can
29  *	        store the resulting hash into it. For various predefined sizes,
30  *	        search include/crypto/ using
31  *	        git grep _DIGEST_SIZE include/crypto.
32  * @statesize: Size of the block for partial state of the transformation. A
33  *	       buffer of this size must be passed to the @export function as it
34  *	       will save the partial state of the transformation into it. On the
35  *	       other side, the @import function will load the state from a
36  *	       buffer of this size as well.
37  * @base: Start of data structure of cipher algorithm. The common data
38  *	  structure of crypto_alg contains information common to all ciphers.
39  *	  The hash_alg_common data structure now adds the hash-specific
40  *	  information.
41  */
42 struct hash_alg_common {
43 	unsigned int digestsize;
44 	unsigned int statesize;
45 
46 	struct crypto_alg base;
47 };
48 
49 struct ahash_request {
50 	struct crypto_async_request base;
51 
52 	unsigned int nbytes;
53 	struct scatterlist *src;
54 	u8 *result;
55 
56 	/* This field may only be used by the ahash API code. */
57 	void *priv;
58 
59 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
60 };
61 
62 #define AHASH_REQUEST_ON_STACK(name, ahash) \
63 	char __##name##_desc[sizeof(struct ahash_request) + \
64 		crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
65 	struct ahash_request *name = (void *)__##name##_desc
66 
67 /**
68  * struct ahash_alg - asynchronous message digest definition
69  * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
70  *	  state of the HASH transformation at the beginning. This shall fill in
71  *	  the internal structures used during the entire duration of the whole
72  *	  transformation. No data processing happens at this point. Driver code
73  *	  implementation must not use req->result.
74  * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
75  *	   function actually pushes blocks of data from upper layers into the
76  *	   driver, which then passes those to the hardware as seen fit. This
77  *	   function must not finalize the HASH transformation by calculating the
78  *	   final message digest as this only adds more data into the
79  *	   transformation. This function shall not modify the transformation
80  *	   context, as this function may be called in parallel with the same
81  *	   transformation object. Data processing can happen synchronously
82  *	   [SHASH] or asynchronously [AHASH] at this point. Driver must not use
83  *	   req->result.
84  * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
85  *	   transformation and retrieves the resulting hash from the driver and
86  *	   pushes it back to upper layers. No data processing happens at this
87  *	   point unless hardware requires it to finish the transformation
88  *	   (then the data buffered by the device driver is processed).
89  * @finup: **[optional]** Combination of @update and @final. This function is effectively a
90  *	   combination of @update and @final calls issued in sequence. As some
91  *	   hardware cannot do @update and @final separately, this callback was
92  *	   added to allow such hardware to be used at least by IPsec. Data
93  *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
94  *	   at this point.
95  * @digest: Combination of @init and @update and @final. This function
96  *	    effectively behaves as the entire chain of operations, @init,
97  *	    @update and @final issued in sequence. Just like @finup, this was
98  *	    added for hardware which cannot do even the @finup, but can only do
99  *	    the whole transformation in one run. Data processing can happen
100  *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
101  * @setkey: Set optional key used by the hashing algorithm. Intended to push
102  *	    optional key used by the hashing algorithm from upper layers into
103  *	    the driver. This function can store the key in the transformation
104  *	    context or can outright program it into the hardware. In the former
105  *	    case, one must be careful to program the key into the hardware at
106  *	    appropriate time and one must be careful that .setkey() can be
107  *	    called multiple times during the existence of the transformation
108  *	    object. Not  all hashing algorithms do implement this function as it
109  *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
110  *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
111  *	    this function. This function must be called before any other of the
112  *	    @init, @update, @final, @finup, @digest is called. No data
113  *	    processing happens at this point.
114  * @export: Export partial state of the transformation. This function dumps the
115  *	    entire state of the ongoing transformation into a provided block of
116  *	    data so it can be @import 'ed back later on. This is useful in case
117  *	    you want to save partial result of the transformation after
118  *	    processing certain amount of data and reload this partial result
119  *	    multiple times later on for multiple re-use. No data processing
120  *	    happens at this point. Driver must not use req->result.
121  * @import: Import partial state of the transformation. This function loads the
122  *	    entire state of the ongoing transformation from a provided block of
123  *	    data so the transformation can continue from this point onward. No
124  *	    data processing happens at this point. Driver must not use
125  *	    req->result.
126  * @halg: see struct hash_alg_common
127  */
128 struct ahash_alg {
129 	int (*init)(struct ahash_request *req);
130 	int (*update)(struct ahash_request *req);
131 	int (*final)(struct ahash_request *req);
132 	int (*finup)(struct ahash_request *req);
133 	int (*digest)(struct ahash_request *req);
134 	int (*export)(struct ahash_request *req, void *out);
135 	int (*import)(struct ahash_request *req, const void *in);
136 	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
137 		      unsigned int keylen);
138 
139 	struct hash_alg_common halg;
140 };
141 
142 struct shash_desc {
143 	struct crypto_shash *tfm;
144 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
145 };
146 
147 #define HASH_MAX_DIGESTSIZE	 64
148 
149 /*
150  * Worst case is hmac(sha3-224-generic).  Its context is a nested 'shash_desc'
151  * containing a 'struct sha3_state'.
152  */
153 #define HASH_MAX_DESCSIZE	(sizeof(struct shash_desc) + 360)
154 
155 #define HASH_MAX_STATESIZE	512
156 
157 #define SHASH_DESC_ON_STACK(shash, ctx)				  \
158 	char __##shash##_desc[sizeof(struct shash_desc) +	  \
159 		HASH_MAX_DESCSIZE] CRYPTO_MINALIGN_ATTR; \
160 	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
161 
162 /**
163  * struct shash_alg - synchronous message digest definition
164  * @init: see struct ahash_alg
165  * @update: see struct ahash_alg
166  * @final: see struct ahash_alg
167  * @finup: see struct ahash_alg
168  * @digest: see struct ahash_alg
169  * @export: see struct ahash_alg
170  * @import: see struct ahash_alg
171  * @setkey: see struct ahash_alg
172  * @digestsize: see struct ahash_alg
173  * @statesize: see struct ahash_alg
174  * @descsize: Size of the operational state for the message digest. This state
175  * 	      size is the memory size that needs to be allocated for
176  *	      shash_desc.__ctx
177  * @base: internally used
178  */
179 struct shash_alg {
180 	int (*init)(struct shash_desc *desc);
181 	int (*update)(struct shash_desc *desc, const u8 *data,
182 		      unsigned int len);
183 	int (*final)(struct shash_desc *desc, u8 *out);
184 	int (*finup)(struct shash_desc *desc, const u8 *data,
185 		     unsigned int len, u8 *out);
186 	int (*digest)(struct shash_desc *desc, const u8 *data,
187 		      unsigned int len, u8 *out);
188 	int (*export)(struct shash_desc *desc, void *out);
189 	int (*import)(struct shash_desc *desc, const void *in);
190 	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
191 		      unsigned int keylen);
192 
193 	unsigned int descsize;
194 
195 	/* These fields must match hash_alg_common. */
196 	unsigned int digestsize
197 		__attribute__ ((aligned(__alignof__(struct hash_alg_common))));
198 	unsigned int statesize;
199 
200 	struct crypto_alg base;
201 };
202 
203 struct crypto_ahash {
204 	int (*init)(struct ahash_request *req);
205 	int (*update)(struct ahash_request *req);
206 	int (*final)(struct ahash_request *req);
207 	int (*finup)(struct ahash_request *req);
208 	int (*digest)(struct ahash_request *req);
209 	int (*export)(struct ahash_request *req, void *out);
210 	int (*import)(struct ahash_request *req, const void *in);
211 	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
212 		      unsigned int keylen);
213 
214 	unsigned int reqsize;
215 	struct crypto_tfm base;
216 };
217 
218 struct crypto_shash {
219 	unsigned int descsize;
220 	struct crypto_tfm base;
221 };
222 
223 /**
224  * DOC: Asynchronous Message Digest API
225  *
226  * The asynchronous message digest API is used with the ciphers of type
227  * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
228  *
229  * The asynchronous cipher operation discussion provided for the
230  * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
231  */
232 
__crypto_ahash_cast(struct crypto_tfm * tfm)233 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
234 {
235 	return container_of(tfm, struct crypto_ahash, base);
236 }
237 
238 /**
239  * crypto_alloc_ahash() - allocate ahash cipher handle
240  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
241  *	      ahash cipher
242  * @type: specifies the type of the cipher
243  * @mask: specifies the mask for the cipher
244  *
245  * Allocate a cipher handle for an ahash. The returned struct
246  * crypto_ahash is the cipher handle that is required for any subsequent
247  * API invocation for that ahash.
248  *
249  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
250  *	   of an error, PTR_ERR() returns the error code.
251  */
252 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
253 					u32 mask);
254 
crypto_ahash_tfm(struct crypto_ahash * tfm)255 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
256 {
257 	return &tfm->base;
258 }
259 
260 /**
261  * crypto_free_ahash() - zeroize and free the ahash handle
262  * @tfm: cipher handle to be freed
263  *
264  * If @tfm is a NULL or error pointer, this function does nothing.
265  */
crypto_free_ahash(struct crypto_ahash * tfm)266 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
267 {
268 	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
269 }
270 
271 /**
272  * crypto_has_ahash() - Search for the availability of an ahash.
273  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
274  *	      ahash
275  * @type: specifies the type of the ahash
276  * @mask: specifies the mask for the ahash
277  *
278  * Return: true when the ahash is known to the kernel crypto API; false
279  *	   otherwise
280  */
281 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
282 
crypto_ahash_alg_name(struct crypto_ahash * tfm)283 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
284 {
285 	return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
286 }
287 
crypto_ahash_driver_name(struct crypto_ahash * tfm)288 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
289 {
290 	return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
291 }
292 
crypto_ahash_alignmask(struct crypto_ahash * tfm)293 static inline unsigned int crypto_ahash_alignmask(
294 	struct crypto_ahash *tfm)
295 {
296 	return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
297 }
298 
299 /**
300  * crypto_ahash_blocksize() - obtain block size for cipher
301  * @tfm: cipher handle
302  *
303  * The block size for the message digest cipher referenced with the cipher
304  * handle is returned.
305  *
306  * Return: block size of cipher
307  */
crypto_ahash_blocksize(struct crypto_ahash * tfm)308 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
309 {
310 	return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
311 }
312 
__crypto_hash_alg_common(struct crypto_alg * alg)313 static inline struct hash_alg_common *__crypto_hash_alg_common(
314 	struct crypto_alg *alg)
315 {
316 	return container_of(alg, struct hash_alg_common, base);
317 }
318 
crypto_hash_alg_common(struct crypto_ahash * tfm)319 static inline struct hash_alg_common *crypto_hash_alg_common(
320 	struct crypto_ahash *tfm)
321 {
322 	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
323 }
324 
325 /**
326  * crypto_ahash_digestsize() - obtain message digest size
327  * @tfm: cipher handle
328  *
329  * The size for the message digest created by the message digest cipher
330  * referenced with the cipher handle is returned.
331  *
332  *
333  * Return: message digest size of cipher
334  */
crypto_ahash_digestsize(struct crypto_ahash * tfm)335 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
336 {
337 	return crypto_hash_alg_common(tfm)->digestsize;
338 }
339 
340 /**
341  * crypto_ahash_statesize() - obtain size of the ahash state
342  * @tfm: cipher handle
343  *
344  * Return the size of the ahash state. With the crypto_ahash_export()
345  * function, the caller can export the state into a buffer whose size is
346  * defined with this function.
347  *
348  * Return: size of the ahash state
349  */
crypto_ahash_statesize(struct crypto_ahash * tfm)350 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
351 {
352 	return crypto_hash_alg_common(tfm)->statesize;
353 }
354 
crypto_ahash_get_flags(struct crypto_ahash * tfm)355 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
356 {
357 	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
358 }
359 
crypto_ahash_set_flags(struct crypto_ahash * tfm,u32 flags)360 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
361 {
362 	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
363 }
364 
crypto_ahash_clear_flags(struct crypto_ahash * tfm,u32 flags)365 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
366 {
367 	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
368 }
369 
370 /**
371  * crypto_ahash_reqtfm() - obtain cipher handle from request
372  * @req: asynchronous request handle that contains the reference to the ahash
373  *	 cipher handle
374  *
375  * Return the ahash cipher handle that is registered with the asynchronous
376  * request handle ahash_request.
377  *
378  * Return: ahash cipher handle
379  */
crypto_ahash_reqtfm(struct ahash_request * req)380 static inline struct crypto_ahash *crypto_ahash_reqtfm(
381 	struct ahash_request *req)
382 {
383 	return __crypto_ahash_cast(req->base.tfm);
384 }
385 
386 /**
387  * crypto_ahash_reqsize() - obtain size of the request data structure
388  * @tfm: cipher handle
389  *
390  * Return: size of the request data
391  */
crypto_ahash_reqsize(struct crypto_ahash * tfm)392 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
393 {
394 	return tfm->reqsize;
395 }
396 
ahash_request_ctx(struct ahash_request * req)397 static inline void *ahash_request_ctx(struct ahash_request *req)
398 {
399 	return req->__ctx;
400 }
401 
402 /**
403  * crypto_ahash_setkey - set key for cipher handle
404  * @tfm: cipher handle
405  * @key: buffer holding the key
406  * @keylen: length of the key in bytes
407  *
408  * The caller provided key is set for the ahash cipher. The cipher
409  * handle must point to a keyed hash in order for this function to succeed.
410  *
411  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
412  */
413 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
414 			unsigned int keylen);
415 
416 /**
417  * crypto_ahash_finup() - update and finalize message digest
418  * @req: reference to the ahash_request handle that holds all information
419  *	 needed to perform the cipher operation
420  *
421  * This function is a "short-hand" for the function calls of
422  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
423  * meaning as discussed for those separate functions.
424  *
425  * Return: see crypto_ahash_final()
426  */
427 int crypto_ahash_finup(struct ahash_request *req);
428 
429 /**
430  * crypto_ahash_final() - calculate message digest
431  * @req: reference to the ahash_request handle that holds all information
432  *	 needed to perform the cipher operation
433  *
434  * Finalize the message digest operation and create the message digest
435  * based on all data added to the cipher handle. The message digest is placed
436  * into the output buffer registered with the ahash_request handle.
437  *
438  * Return:
439  * 0		if the message digest was successfully calculated;
440  * -EINPROGRESS	if data is feeded into hardware (DMA) or queued for later;
441  * -EBUSY	if queue is full and request should be resubmitted later;
442  * other < 0	if an error occurred
443  */
444 int crypto_ahash_final(struct ahash_request *req);
445 
446 /**
447  * crypto_ahash_digest() - calculate message digest for a buffer
448  * @req: reference to the ahash_request handle that holds all information
449  *	 needed to perform the cipher operation
450  *
451  * This function is a "short-hand" for the function calls of crypto_ahash_init,
452  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
453  * meaning as discussed for those separate three functions.
454  *
455  * Return: see crypto_ahash_final()
456  */
457 int crypto_ahash_digest(struct ahash_request *req);
458 
459 /**
460  * crypto_ahash_export() - extract current message digest state
461  * @req: reference to the ahash_request handle whose state is exported
462  * @out: output buffer of sufficient size that can hold the hash state
463  *
464  * This function exports the hash state of the ahash_request handle into the
465  * caller-allocated output buffer out which must have sufficient size (e.g. by
466  * calling crypto_ahash_statesize()).
467  *
468  * Return: 0 if the export was successful; < 0 if an error occurred
469  */
crypto_ahash_export(struct ahash_request * req,void * out)470 static inline int crypto_ahash_export(struct ahash_request *req, void *out)
471 {
472 	return crypto_ahash_reqtfm(req)->export(req, out);
473 }
474 
475 /**
476  * crypto_ahash_import() - import message digest state
477  * @req: reference to ahash_request handle the state is imported into
478  * @in: buffer holding the state
479  *
480  * This function imports the hash state into the ahash_request handle from the
481  * input buffer. That buffer should have been generated with the
482  * crypto_ahash_export function.
483  *
484  * Return: 0 if the import was successful; < 0 if an error occurred
485  */
crypto_ahash_import(struct ahash_request * req,const void * in)486 static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
487 {
488 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
489 
490 	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
491 		return -ENOKEY;
492 
493 	return tfm->import(req, in);
494 }
495 
496 /**
497  * crypto_ahash_init() - (re)initialize message digest handle
498  * @req: ahash_request handle that already is initialized with all necessary
499  *	 data using the ahash_request_* API functions
500  *
501  * The call (re-)initializes the message digest referenced by the ahash_request
502  * handle. Any potentially existing state created by previous operations is
503  * discarded.
504  *
505  * Return: see crypto_ahash_final()
506  */
crypto_ahash_init(struct ahash_request * req)507 static inline int crypto_ahash_init(struct ahash_request *req)
508 {
509 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
510 
511 	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
512 		return -ENOKEY;
513 
514 	return tfm->init(req);
515 }
516 
517 /**
518  * crypto_ahash_update() - add data to message digest for processing
519  * @req: ahash_request handle that was previously initialized with the
520  *	 crypto_ahash_init call.
521  *
522  * Updates the message digest state of the &ahash_request handle. The input data
523  * is pointed to by the scatter/gather list registered in the &ahash_request
524  * handle
525  *
526  * Return: see crypto_ahash_final()
527  */
crypto_ahash_update(struct ahash_request * req)528 static inline int crypto_ahash_update(struct ahash_request *req)
529 {
530 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
531 	struct crypto_alg *alg = tfm->base.__crt_alg;
532 	unsigned int nbytes = req->nbytes;
533 	int ret;
534 
535 	crypto_stats_get(alg);
536 	ret = crypto_ahash_reqtfm(req)->update(req);
537 	crypto_stats_ahash_update(nbytes, ret, alg);
538 	return ret;
539 }
540 
541 /**
542  * DOC: Asynchronous Hash Request Handle
543  *
544  * The &ahash_request data structure contains all pointers to data
545  * required for the asynchronous cipher operation. This includes the cipher
546  * handle (which can be used by multiple &ahash_request instances), pointer
547  * to plaintext and the message digest output buffer, asynchronous callback
548  * function, etc. It acts as a handle to the ahash_request_* API calls in a
549  * similar way as ahash handle to the crypto_ahash_* API calls.
550  */
551 
552 /**
553  * ahash_request_set_tfm() - update cipher handle reference in request
554  * @req: request handle to be modified
555  * @tfm: cipher handle that shall be added to the request handle
556  *
557  * Allow the caller to replace the existing ahash handle in the request
558  * data structure with a different one.
559  */
ahash_request_set_tfm(struct ahash_request * req,struct crypto_ahash * tfm)560 static inline void ahash_request_set_tfm(struct ahash_request *req,
561 					 struct crypto_ahash *tfm)
562 {
563 	req->base.tfm = crypto_ahash_tfm(tfm);
564 }
565 
566 /**
567  * ahash_request_alloc() - allocate request data structure
568  * @tfm: cipher handle to be registered with the request
569  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
570  *
571  * Allocate the request data structure that must be used with the ahash
572  * message digest API calls. During
573  * the allocation, the provided ahash handle
574  * is registered in the request data structure.
575  *
576  * Return: allocated request handle in case of success, or NULL if out of memory
577  */
ahash_request_alloc(struct crypto_ahash * tfm,gfp_t gfp)578 static inline struct ahash_request *ahash_request_alloc(
579 	struct crypto_ahash *tfm, gfp_t gfp)
580 {
581 	struct ahash_request *req;
582 
583 	req = kmalloc(sizeof(struct ahash_request) +
584 		      crypto_ahash_reqsize(tfm), gfp);
585 
586 	if (likely(req))
587 		ahash_request_set_tfm(req, tfm);
588 
589 	return req;
590 }
591 
592 /**
593  * ahash_request_free() - zeroize and free the request data structure
594  * @req: request data structure cipher handle to be freed
595  */
ahash_request_free(struct ahash_request * req)596 static inline void ahash_request_free(struct ahash_request *req)
597 {
598 	kzfree(req);
599 }
600 
ahash_request_zero(struct ahash_request * req)601 static inline void ahash_request_zero(struct ahash_request *req)
602 {
603 	memzero_explicit(req, sizeof(*req) +
604 			      crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
605 }
606 
ahash_request_cast(struct crypto_async_request * req)607 static inline struct ahash_request *ahash_request_cast(
608 	struct crypto_async_request *req)
609 {
610 	return container_of(req, struct ahash_request, base);
611 }
612 
613 /**
614  * ahash_request_set_callback() - set asynchronous callback function
615  * @req: request handle
616  * @flags: specify zero or an ORing of the flags
617  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
618  *	   increase the wait queue beyond the initial maximum size;
619  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
620  * @compl: callback function pointer to be registered with the request handle
621  * @data: The data pointer refers to memory that is not used by the kernel
622  *	  crypto API, but provided to the callback function for it to use. Here,
623  *	  the caller can provide a reference to memory the callback function can
624  *	  operate on. As the callback function is invoked asynchronously to the
625  *	  related functionality, it may need to access data structures of the
626  *	  related functionality which can be referenced using this pointer. The
627  *	  callback function can access the memory via the "data" field in the
628  *	  &crypto_async_request data structure provided to the callback function.
629  *
630  * This function allows setting the callback function that is triggered once
631  * the cipher operation completes.
632  *
633  * The callback function is registered with the &ahash_request handle and
634  * must comply with the following template::
635  *
636  *	void callback_function(struct crypto_async_request *req, int error)
637  */
ahash_request_set_callback(struct ahash_request * req,u32 flags,crypto_completion_t compl,void * data)638 static inline void ahash_request_set_callback(struct ahash_request *req,
639 					      u32 flags,
640 					      crypto_completion_t compl,
641 					      void *data)
642 {
643 	req->base.complete = compl;
644 	req->base.data = data;
645 	req->base.flags = flags;
646 }
647 
648 /**
649  * ahash_request_set_crypt() - set data buffers
650  * @req: ahash_request handle to be updated
651  * @src: source scatter/gather list
652  * @result: buffer that is filled with the message digest -- the caller must
653  *	    ensure that the buffer has sufficient space by, for example, calling
654  *	    crypto_ahash_digestsize()
655  * @nbytes: number of bytes to process from the source scatter/gather list
656  *
657  * By using this call, the caller references the source scatter/gather list.
658  * The source scatter/gather list points to the data the message digest is to
659  * be calculated for.
660  */
ahash_request_set_crypt(struct ahash_request * req,struct scatterlist * src,u8 * result,unsigned int nbytes)661 static inline void ahash_request_set_crypt(struct ahash_request *req,
662 					   struct scatterlist *src, u8 *result,
663 					   unsigned int nbytes)
664 {
665 	req->src = src;
666 	req->nbytes = nbytes;
667 	req->result = result;
668 }
669 
670 /**
671  * DOC: Synchronous Message Digest API
672  *
673  * The synchronous message digest API is used with the ciphers of type
674  * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
675  *
676  * The message digest API is able to maintain state information for the
677  * caller.
678  *
679  * The synchronous message digest API can store user-related context in in its
680  * shash_desc request data structure.
681  */
682 
683 /**
684  * crypto_alloc_shash() - allocate message digest handle
685  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
686  *	      message digest cipher
687  * @type: specifies the type of the cipher
688  * @mask: specifies the mask for the cipher
689  *
690  * Allocate a cipher handle for a message digest. The returned &struct
691  * crypto_shash is the cipher handle that is required for any subsequent
692  * API invocation for that message digest.
693  *
694  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
695  *	   of an error, PTR_ERR() returns the error code.
696  */
697 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
698 					u32 mask);
699 
crypto_shash_tfm(struct crypto_shash * tfm)700 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
701 {
702 	return &tfm->base;
703 }
704 
705 /**
706  * crypto_free_shash() - zeroize and free the message digest handle
707  * @tfm: cipher handle to be freed
708  *
709  * If @tfm is a NULL or error pointer, this function does nothing.
710  */
crypto_free_shash(struct crypto_shash * tfm)711 static inline void crypto_free_shash(struct crypto_shash *tfm)
712 {
713 	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
714 }
715 
crypto_shash_alg_name(struct crypto_shash * tfm)716 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
717 {
718 	return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
719 }
720 
crypto_shash_driver_name(struct crypto_shash * tfm)721 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
722 {
723 	return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
724 }
725 
crypto_shash_alignmask(struct crypto_shash * tfm)726 static inline unsigned int crypto_shash_alignmask(
727 	struct crypto_shash *tfm)
728 {
729 	return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
730 }
731 
732 /**
733  * crypto_shash_blocksize() - obtain block size for cipher
734  * @tfm: cipher handle
735  *
736  * The block size for the message digest cipher referenced with the cipher
737  * handle is returned.
738  *
739  * Return: block size of cipher
740  */
crypto_shash_blocksize(struct crypto_shash * tfm)741 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
742 {
743 	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
744 }
745 
__crypto_shash_alg(struct crypto_alg * alg)746 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
747 {
748 	return container_of(alg, struct shash_alg, base);
749 }
750 
crypto_shash_alg(struct crypto_shash * tfm)751 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
752 {
753 	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
754 }
755 
756 /**
757  * crypto_shash_digestsize() - obtain message digest size
758  * @tfm: cipher handle
759  *
760  * The size for the message digest created by the message digest cipher
761  * referenced with the cipher handle is returned.
762  *
763  * Return: digest size of cipher
764  */
crypto_shash_digestsize(struct crypto_shash * tfm)765 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
766 {
767 	return crypto_shash_alg(tfm)->digestsize;
768 }
769 
crypto_shash_statesize(struct crypto_shash * tfm)770 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
771 {
772 	return crypto_shash_alg(tfm)->statesize;
773 }
774 
crypto_shash_get_flags(struct crypto_shash * tfm)775 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
776 {
777 	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
778 }
779 
crypto_shash_set_flags(struct crypto_shash * tfm,u32 flags)780 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
781 {
782 	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
783 }
784 
crypto_shash_clear_flags(struct crypto_shash * tfm,u32 flags)785 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
786 {
787 	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
788 }
789 
790 /**
791  * crypto_shash_descsize() - obtain the operational state size
792  * @tfm: cipher handle
793  *
794  * The size of the operational state the cipher needs during operation is
795  * returned for the hash referenced with the cipher handle. This size is
796  * required to calculate the memory requirements to allow the caller allocating
797  * sufficient memory for operational state.
798  *
799  * The operational state is defined with struct shash_desc where the size of
800  * that data structure is to be calculated as
801  * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
802  *
803  * Return: size of the operational state
804  */
crypto_shash_descsize(struct crypto_shash * tfm)805 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
806 {
807 	return tfm->descsize;
808 }
809 
shash_desc_ctx(struct shash_desc * desc)810 static inline void *shash_desc_ctx(struct shash_desc *desc)
811 {
812 	return desc->__ctx;
813 }
814 
815 /**
816  * crypto_shash_setkey() - set key for message digest
817  * @tfm: cipher handle
818  * @key: buffer holding the key
819  * @keylen: length of the key in bytes
820  *
821  * The caller provided key is set for the keyed message digest cipher. The
822  * cipher handle must point to a keyed message digest cipher in order for this
823  * function to succeed.
824  *
825  * Context: Any context.
826  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
827  */
828 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
829 			unsigned int keylen);
830 
831 /**
832  * crypto_shash_digest() - calculate message digest for buffer
833  * @desc: see crypto_shash_final()
834  * @data: see crypto_shash_update()
835  * @len: see crypto_shash_update()
836  * @out: see crypto_shash_final()
837  *
838  * This function is a "short-hand" for the function calls of crypto_shash_init,
839  * crypto_shash_update and crypto_shash_final. The parameters have the same
840  * meaning as discussed for those separate three functions.
841  *
842  * Context: Any context.
843  * Return: 0 if the message digest creation was successful; < 0 if an error
844  *	   occurred
845  */
846 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
847 			unsigned int len, u8 *out);
848 
849 /**
850  * crypto_shash_export() - extract operational state for message digest
851  * @desc: reference to the operational state handle whose state is exported
852  * @out: output buffer of sufficient size that can hold the hash state
853  *
854  * This function exports the hash state of the operational state handle into the
855  * caller-allocated output buffer out which must have sufficient size (e.g. by
856  * calling crypto_shash_descsize).
857  *
858  * Context: Any context.
859  * Return: 0 if the export creation was successful; < 0 if an error occurred
860  */
crypto_shash_export(struct shash_desc * desc,void * out)861 static inline int crypto_shash_export(struct shash_desc *desc, void *out)
862 {
863 	return crypto_shash_alg(desc->tfm)->export(desc, out);
864 }
865 
866 /**
867  * crypto_shash_import() - import operational state
868  * @desc: reference to the operational state handle the state imported into
869  * @in: buffer holding the state
870  *
871  * This function imports the hash state into the operational state handle from
872  * the input buffer. That buffer should have been generated with the
873  * crypto_ahash_export function.
874  *
875  * Context: Any context.
876  * Return: 0 if the import was successful; < 0 if an error occurred
877  */
crypto_shash_import(struct shash_desc * desc,const void * in)878 static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
879 {
880 	struct crypto_shash *tfm = desc->tfm;
881 
882 	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
883 		return -ENOKEY;
884 
885 	return crypto_shash_alg(tfm)->import(desc, in);
886 }
887 
888 /**
889  * crypto_shash_init() - (re)initialize message digest
890  * @desc: operational state handle that is already filled
891  *
892  * The call (re-)initializes the message digest referenced by the
893  * operational state handle. Any potentially existing state created by
894  * previous operations is discarded.
895  *
896  * Context: Any context.
897  * Return: 0 if the message digest initialization was successful; < 0 if an
898  *	   error occurred
899  */
crypto_shash_init(struct shash_desc * desc)900 static inline int crypto_shash_init(struct shash_desc *desc)
901 {
902 	struct crypto_shash *tfm = desc->tfm;
903 
904 	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
905 		return -ENOKEY;
906 
907 	return crypto_shash_alg(tfm)->init(desc);
908 }
909 
910 /**
911  * crypto_shash_update() - add data to message digest for processing
912  * @desc: operational state handle that is already initialized
913  * @data: input data to be added to the message digest
914  * @len: length of the input data
915  *
916  * Updates the message digest state of the operational state handle.
917  *
918  * Context: Any context.
919  * Return: 0 if the message digest update was successful; < 0 if an error
920  *	   occurred
921  */
922 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
923 			unsigned int len);
924 
925 /**
926  * crypto_shash_final() - calculate message digest
927  * @desc: operational state handle that is already filled with data
928  * @out: output buffer filled with the message digest
929  *
930  * Finalize the message digest operation and create the message digest
931  * based on all data added to the cipher handle. The message digest is placed
932  * into the output buffer. The caller must ensure that the output buffer is
933  * large enough by using crypto_shash_digestsize.
934  *
935  * Context: Any context.
936  * Return: 0 if the message digest creation was successful; < 0 if an error
937  *	   occurred
938  */
939 int crypto_shash_final(struct shash_desc *desc, u8 *out);
940 
941 /**
942  * crypto_shash_finup() - calculate message digest of buffer
943  * @desc: see crypto_shash_final()
944  * @data: see crypto_shash_update()
945  * @len: see crypto_shash_update()
946  * @out: see crypto_shash_final()
947  *
948  * This function is a "short-hand" for the function calls of
949  * crypto_shash_update and crypto_shash_final. The parameters have the same
950  * meaning as discussed for those separate functions.
951  *
952  * Context: Any context.
953  * Return: 0 if the message digest creation was successful; < 0 if an error
954  *	   occurred
955  */
956 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
957 		       unsigned int len, u8 *out);
958 
shash_desc_zero(struct shash_desc * desc)959 static inline void shash_desc_zero(struct shash_desc *desc)
960 {
961 	memzero_explicit(desc,
962 			 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
963 }
964 
965 #endif	/* _CRYPTO_HASH_H */
966