1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Symmetric key ciphers.
4 *
5 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7
8 #ifndef _CRYPTO_SKCIPHER_H
9 #define _CRYPTO_SKCIPHER_H
10
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14
15 /**
16 * struct skcipher_request - Symmetric key cipher request
17 * @cryptlen: Number of bytes to encrypt or decrypt
18 * @iv: Initialisation Vector
19 * @src: Source SG list
20 * @dst: Destination SG list
21 * @base: Underlying async request request
22 * @__ctx: Start of private context data
23 */
24 struct skcipher_request {
25 unsigned int cryptlen;
26
27 u8 *iv;
28
29 struct scatterlist *src;
30 struct scatterlist *dst;
31
32 struct crypto_async_request base;
33
34 void *__ctx[] CRYPTO_MINALIGN_ATTR;
35 };
36
37 struct crypto_skcipher {
38 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
39 unsigned int keylen);
40 int (*encrypt)(struct skcipher_request *req);
41 int (*decrypt)(struct skcipher_request *req);
42
43 unsigned int ivsize;
44 unsigned int reqsize;
45 unsigned int keysize;
46
47 struct crypto_tfm base;
48 };
49
50 struct crypto_sync_skcipher {
51 struct crypto_skcipher base;
52 };
53
54 /**
55 * struct skcipher_alg - symmetric key cipher definition
56 * @min_keysize: Minimum key size supported by the transformation. This is the
57 * smallest key length supported by this transformation algorithm.
58 * This must be set to one of the pre-defined values as this is
59 * not hardware specific. Possible values for this field can be
60 * found via git grep "_MIN_KEY_SIZE" include/crypto/
61 * @max_keysize: Maximum key size supported by the transformation. This is the
62 * largest key length supported by this transformation algorithm.
63 * This must be set to one of the pre-defined values as this is
64 * not hardware specific. Possible values for this field can be
65 * found via git grep "_MAX_KEY_SIZE" include/crypto/
66 * @setkey: Set key for the transformation. This function is used to either
67 * program a supplied key into the hardware or store the key in the
68 * transformation context for programming it later. Note that this
69 * function does modify the transformation context. This function can
70 * be called multiple times during the existence of the transformation
71 * object, so one must make sure the key is properly reprogrammed into
72 * the hardware. This function is also responsible for checking the key
73 * length for validity. In case a software fallback was put in place in
74 * the @cra_init call, this function might need to use the fallback if
75 * the algorithm doesn't support all of the key sizes.
76 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
77 * the supplied scatterlist containing the blocks of data. The crypto
78 * API consumer is responsible for aligning the entries of the
79 * scatterlist properly and making sure the chunks are correctly
80 * sized. In case a software fallback was put in place in the
81 * @cra_init call, this function might need to use the fallback if
82 * the algorithm doesn't support all of the key sizes. In case the
83 * key was stored in transformation context, the key might need to be
84 * re-programmed into the hardware in this function. This function
85 * shall not modify the transformation context, as this function may
86 * be called in parallel with the same transformation object.
87 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
88 * and the conditions are exactly the same.
89 * @init: Initialize the cryptographic transformation object. This function
90 * is used to initialize the cryptographic transformation object.
91 * This function is called only once at the instantiation time, right
92 * after the transformation context was allocated. In case the
93 * cryptographic hardware has some special requirements which need to
94 * be handled by software, this function shall check for the precise
95 * requirement of the transformation and put any software fallbacks
96 * in place.
97 * @exit: Deinitialize the cryptographic transformation object. This is a
98 * counterpart to @init, used to remove various changes set in
99 * @init.
100 * @ivsize: IV size applicable for transformation. The consumer must provide an
101 * IV of exactly that size to perform the encrypt or decrypt operation.
102 * @chunksize: Equal to the block size except for stream ciphers such as
103 * CTR where it is set to the underlying block size.
104 * @walksize: Equal to the chunk size except in cases where the algorithm is
105 * considerably more efficient if it can operate on multiple chunks
106 * in parallel. Should be a multiple of chunksize.
107 * @base: Definition of a generic crypto algorithm.
108 *
109 * All fields except @ivsize are mandatory and must be filled.
110 */
111 struct skcipher_alg {
112 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
113 unsigned int keylen);
114 int (*encrypt)(struct skcipher_request *req);
115 int (*decrypt)(struct skcipher_request *req);
116 int (*init)(struct crypto_skcipher *tfm);
117 void (*exit)(struct crypto_skcipher *tfm);
118
119 unsigned int min_keysize;
120 unsigned int max_keysize;
121 unsigned int ivsize;
122 unsigned int chunksize;
123 unsigned int walksize;
124
125 struct crypto_alg base;
126 };
127
128 #define MAX_SYNC_SKCIPHER_REQSIZE 384
129 /*
130 * This performs a type-check against the "tfm" argument to make sure
131 * all users have the correct skcipher tfm for doing on-stack requests.
132 */
133 #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
134 char __##name##_desc[sizeof(struct skcipher_request) + \
135 MAX_SYNC_SKCIPHER_REQSIZE + \
136 (!(sizeof((struct crypto_sync_skcipher *)1 == \
137 (typeof(tfm))1))) \
138 ] CRYPTO_MINALIGN_ATTR; \
139 struct skcipher_request *name = (void *)__##name##_desc
140
141 /**
142 * DOC: Symmetric Key Cipher API
143 *
144 * Symmetric key cipher API is used with the ciphers of type
145 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
146 *
147 * Asynchronous cipher operations imply that the function invocation for a
148 * cipher request returns immediately before the completion of the operation.
149 * The cipher request is scheduled as a separate kernel thread and therefore
150 * load-balanced on the different CPUs via the process scheduler. To allow
151 * the kernel crypto API to inform the caller about the completion of a cipher
152 * request, the caller must provide a callback function. That function is
153 * invoked with the cipher handle when the request completes.
154 *
155 * To support the asynchronous operation, additional information than just the
156 * cipher handle must be supplied to the kernel crypto API. That additional
157 * information is given by filling in the skcipher_request data structure.
158 *
159 * For the symmetric key cipher API, the state is maintained with the tfm
160 * cipher handle. A single tfm can be used across multiple calls and in
161 * parallel. For asynchronous block cipher calls, context data supplied and
162 * only used by the caller can be referenced the request data structure in
163 * addition to the IV used for the cipher request. The maintenance of such
164 * state information would be important for a crypto driver implementer to
165 * have, because when calling the callback function upon completion of the
166 * cipher operation, that callback function may need some information about
167 * which operation just finished if it invoked multiple in parallel. This
168 * state information is unused by the kernel crypto API.
169 */
170
__crypto_skcipher_cast(struct crypto_tfm * tfm)171 static inline struct crypto_skcipher *__crypto_skcipher_cast(
172 struct crypto_tfm *tfm)
173 {
174 return container_of(tfm, struct crypto_skcipher, base);
175 }
176
177 /**
178 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
179 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
180 * skcipher cipher
181 * @type: specifies the type of the cipher
182 * @mask: specifies the mask for the cipher
183 *
184 * Allocate a cipher handle for an skcipher. The returned struct
185 * crypto_skcipher is the cipher handle that is required for any subsequent
186 * API invocation for that skcipher.
187 *
188 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
189 * of an error, PTR_ERR() returns the error code.
190 */
191 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
192 u32 type, u32 mask);
193
194 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
195 u32 type, u32 mask);
196
crypto_skcipher_tfm(struct crypto_skcipher * tfm)197 static inline struct crypto_tfm *crypto_skcipher_tfm(
198 struct crypto_skcipher *tfm)
199 {
200 return &tfm->base;
201 }
202
203 /**
204 * crypto_free_skcipher() - zeroize and free cipher handle
205 * @tfm: cipher handle to be freed
206 *
207 * If @tfm is a NULL or error pointer, this function does nothing.
208 */
crypto_free_skcipher(struct crypto_skcipher * tfm)209 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
210 {
211 crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
212 }
213
crypto_free_sync_skcipher(struct crypto_sync_skcipher * tfm)214 static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
215 {
216 crypto_free_skcipher(&tfm->base);
217 }
218
219 /**
220 * crypto_has_skcipher() - Search for the availability of an skcipher.
221 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
222 * skcipher
223 * @type: specifies the type of the cipher
224 * @mask: specifies the mask for the cipher
225 *
226 * Return: true when the skcipher is known to the kernel crypto API; false
227 * otherwise
228 */
crypto_has_skcipher(const char * alg_name,u32 type,u32 mask)229 static inline int crypto_has_skcipher(const char *alg_name, u32 type,
230 u32 mask)
231 {
232 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
233 crypto_skcipher_mask(mask));
234 }
235
236 /**
237 * crypto_has_skcipher2() - Search for the availability of an skcipher.
238 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
239 * skcipher
240 * @type: specifies the type of the skcipher
241 * @mask: specifies the mask for the skcipher
242 *
243 * Return: true when the skcipher is known to the kernel crypto API; false
244 * otherwise
245 */
246 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
247
crypto_skcipher_driver_name(struct crypto_skcipher * tfm)248 static inline const char *crypto_skcipher_driver_name(
249 struct crypto_skcipher *tfm)
250 {
251 return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
252 }
253
crypto_skcipher_alg(struct crypto_skcipher * tfm)254 static inline struct skcipher_alg *crypto_skcipher_alg(
255 struct crypto_skcipher *tfm)
256 {
257 return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
258 struct skcipher_alg, base);
259 }
260
crypto_skcipher_alg_ivsize(struct skcipher_alg * alg)261 static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
262 {
263 if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
264 CRYPTO_ALG_TYPE_BLKCIPHER)
265 return alg->base.cra_blkcipher.ivsize;
266
267 if (alg->base.cra_ablkcipher.encrypt)
268 return alg->base.cra_ablkcipher.ivsize;
269
270 return alg->ivsize;
271 }
272
273 /**
274 * crypto_skcipher_ivsize() - obtain IV size
275 * @tfm: cipher handle
276 *
277 * The size of the IV for the skcipher referenced by the cipher handle is
278 * returned. This IV size may be zero if the cipher does not need an IV.
279 *
280 * Return: IV size in bytes
281 */
crypto_skcipher_ivsize(struct crypto_skcipher * tfm)282 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
283 {
284 return tfm->ivsize;
285 }
286
crypto_sync_skcipher_ivsize(struct crypto_sync_skcipher * tfm)287 static inline unsigned int crypto_sync_skcipher_ivsize(
288 struct crypto_sync_skcipher *tfm)
289 {
290 return crypto_skcipher_ivsize(&tfm->base);
291 }
292
293 /**
294 * crypto_skcipher_blocksize() - obtain block size of cipher
295 * @tfm: cipher handle
296 *
297 * The block size for the skcipher referenced with the cipher handle is
298 * returned. The caller may use that information to allocate appropriate
299 * memory for the data returned by the encryption or decryption operation
300 *
301 * Return: block size of cipher
302 */
crypto_skcipher_blocksize(struct crypto_skcipher * tfm)303 static inline unsigned int crypto_skcipher_blocksize(
304 struct crypto_skcipher *tfm)
305 {
306 return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
307 }
308
crypto_skcipher_alg_chunksize(struct skcipher_alg * alg)309 static inline unsigned int crypto_skcipher_alg_chunksize(
310 struct skcipher_alg *alg)
311 {
312 if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
313 CRYPTO_ALG_TYPE_BLKCIPHER)
314 return alg->base.cra_blocksize;
315
316 if (alg->base.cra_ablkcipher.encrypt)
317 return alg->base.cra_blocksize;
318
319 return alg->chunksize;
320 }
321
322 /**
323 * crypto_skcipher_chunksize() - obtain chunk size
324 * @tfm: cipher handle
325 *
326 * The block size is set to one for ciphers such as CTR. However,
327 * you still need to provide incremental updates in multiples of
328 * the underlying block size as the IV does not have sub-block
329 * granularity. This is known in this API as the chunk size.
330 *
331 * Return: chunk size in bytes
332 */
crypto_skcipher_chunksize(struct crypto_skcipher * tfm)333 static inline unsigned int crypto_skcipher_chunksize(
334 struct crypto_skcipher *tfm)
335 {
336 return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
337 }
338
crypto_sync_skcipher_blocksize(struct crypto_sync_skcipher * tfm)339 static inline unsigned int crypto_sync_skcipher_blocksize(
340 struct crypto_sync_skcipher *tfm)
341 {
342 return crypto_skcipher_blocksize(&tfm->base);
343 }
344
crypto_skcipher_alignmask(struct crypto_skcipher * tfm)345 static inline unsigned int crypto_skcipher_alignmask(
346 struct crypto_skcipher *tfm)
347 {
348 return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
349 }
350
crypto_skcipher_get_flags(struct crypto_skcipher * tfm)351 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
352 {
353 return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
354 }
355
crypto_skcipher_set_flags(struct crypto_skcipher * tfm,u32 flags)356 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
357 u32 flags)
358 {
359 crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
360 }
361
crypto_skcipher_clear_flags(struct crypto_skcipher * tfm,u32 flags)362 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
363 u32 flags)
364 {
365 crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
366 }
367
crypto_sync_skcipher_get_flags(struct crypto_sync_skcipher * tfm)368 static inline u32 crypto_sync_skcipher_get_flags(
369 struct crypto_sync_skcipher *tfm)
370 {
371 return crypto_skcipher_get_flags(&tfm->base);
372 }
373
crypto_sync_skcipher_set_flags(struct crypto_sync_skcipher * tfm,u32 flags)374 static inline void crypto_sync_skcipher_set_flags(
375 struct crypto_sync_skcipher *tfm, u32 flags)
376 {
377 crypto_skcipher_set_flags(&tfm->base, flags);
378 }
379
crypto_sync_skcipher_clear_flags(struct crypto_sync_skcipher * tfm,u32 flags)380 static inline void crypto_sync_skcipher_clear_flags(
381 struct crypto_sync_skcipher *tfm, u32 flags)
382 {
383 crypto_skcipher_clear_flags(&tfm->base, flags);
384 }
385
386 /**
387 * crypto_skcipher_setkey() - set key for cipher
388 * @tfm: cipher handle
389 * @key: buffer holding the key
390 * @keylen: length of the key in bytes
391 *
392 * The caller provided key is set for the skcipher referenced by the cipher
393 * handle.
394 *
395 * Note, the key length determines the cipher type. Many block ciphers implement
396 * different cipher modes depending on the key size, such as AES-128 vs AES-192
397 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
398 * is performed.
399 *
400 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
401 */
crypto_skcipher_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)402 static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
403 const u8 *key, unsigned int keylen)
404 {
405 return tfm->setkey(tfm, key, keylen);
406 }
407
crypto_sync_skcipher_setkey(struct crypto_sync_skcipher * tfm,const u8 * key,unsigned int keylen)408 static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
409 const u8 *key, unsigned int keylen)
410 {
411 return crypto_skcipher_setkey(&tfm->base, key, keylen);
412 }
413
crypto_skcipher_default_keysize(struct crypto_skcipher * tfm)414 static inline unsigned int crypto_skcipher_default_keysize(
415 struct crypto_skcipher *tfm)
416 {
417 return tfm->keysize;
418 }
419
420 /**
421 * crypto_skcipher_reqtfm() - obtain cipher handle from request
422 * @req: skcipher_request out of which the cipher handle is to be obtained
423 *
424 * Return the crypto_skcipher handle when furnishing an skcipher_request
425 * data structure.
426 *
427 * Return: crypto_skcipher handle
428 */
crypto_skcipher_reqtfm(struct skcipher_request * req)429 static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
430 struct skcipher_request *req)
431 {
432 return __crypto_skcipher_cast(req->base.tfm);
433 }
434
crypto_sync_skcipher_reqtfm(struct skcipher_request * req)435 static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
436 struct skcipher_request *req)
437 {
438 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
439
440 return container_of(tfm, struct crypto_sync_skcipher, base);
441 }
442
443 /**
444 * crypto_skcipher_encrypt() - encrypt plaintext
445 * @req: reference to the skcipher_request handle that holds all information
446 * needed to perform the cipher operation
447 *
448 * Encrypt plaintext data using the skcipher_request handle. That data
449 * structure and how it is filled with data is discussed with the
450 * skcipher_request_* functions.
451 *
452 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
453 */
454 int crypto_skcipher_encrypt(struct skcipher_request *req);
455
456 /**
457 * crypto_skcipher_decrypt() - decrypt ciphertext
458 * @req: reference to the skcipher_request handle that holds all information
459 * needed to perform the cipher operation
460 *
461 * Decrypt ciphertext data using the skcipher_request handle. That data
462 * structure and how it is filled with data is discussed with the
463 * skcipher_request_* functions.
464 *
465 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
466 */
467 int crypto_skcipher_decrypt(struct skcipher_request *req);
468
469 /**
470 * DOC: Symmetric Key Cipher Request Handle
471 *
472 * The skcipher_request data structure contains all pointers to data
473 * required for the symmetric key cipher operation. This includes the cipher
474 * handle (which can be used by multiple skcipher_request instances), pointer
475 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
476 * as a handle to the skcipher_request_* API calls in a similar way as
477 * skcipher handle to the crypto_skcipher_* API calls.
478 */
479
480 /**
481 * crypto_skcipher_reqsize() - obtain size of the request data structure
482 * @tfm: cipher handle
483 *
484 * Return: number of bytes
485 */
crypto_skcipher_reqsize(struct crypto_skcipher * tfm)486 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
487 {
488 return tfm->reqsize;
489 }
490
491 /**
492 * skcipher_request_set_tfm() - update cipher handle reference in request
493 * @req: request handle to be modified
494 * @tfm: cipher handle that shall be added to the request handle
495 *
496 * Allow the caller to replace the existing skcipher handle in the request
497 * data structure with a different one.
498 */
skcipher_request_set_tfm(struct skcipher_request * req,struct crypto_skcipher * tfm)499 static inline void skcipher_request_set_tfm(struct skcipher_request *req,
500 struct crypto_skcipher *tfm)
501 {
502 req->base.tfm = crypto_skcipher_tfm(tfm);
503 }
504
skcipher_request_set_sync_tfm(struct skcipher_request * req,struct crypto_sync_skcipher * tfm)505 static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
506 struct crypto_sync_skcipher *tfm)
507 {
508 skcipher_request_set_tfm(req, &tfm->base);
509 }
510
skcipher_request_cast(struct crypto_async_request * req)511 static inline struct skcipher_request *skcipher_request_cast(
512 struct crypto_async_request *req)
513 {
514 return container_of(req, struct skcipher_request, base);
515 }
516
517 /**
518 * skcipher_request_alloc() - allocate request data structure
519 * @tfm: cipher handle to be registered with the request
520 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
521 *
522 * Allocate the request data structure that must be used with the skcipher
523 * encrypt and decrypt API calls. During the allocation, the provided skcipher
524 * handle is registered in the request data structure.
525 *
526 * Return: allocated request handle in case of success, or NULL if out of memory
527 */
skcipher_request_alloc(struct crypto_skcipher * tfm,gfp_t gfp)528 static inline struct skcipher_request *skcipher_request_alloc(
529 struct crypto_skcipher *tfm, gfp_t gfp)
530 {
531 struct skcipher_request *req;
532
533 req = kmalloc(sizeof(struct skcipher_request) +
534 crypto_skcipher_reqsize(tfm), gfp);
535
536 if (likely(req))
537 skcipher_request_set_tfm(req, tfm);
538
539 return req;
540 }
541
542 /**
543 * skcipher_request_free() - zeroize and free request data structure
544 * @req: request data structure cipher handle to be freed
545 */
skcipher_request_free(struct skcipher_request * req)546 static inline void skcipher_request_free(struct skcipher_request *req)
547 {
548 kzfree(req);
549 }
550
skcipher_request_zero(struct skcipher_request * req)551 static inline void skcipher_request_zero(struct skcipher_request *req)
552 {
553 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
554
555 memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
556 }
557
558 /**
559 * skcipher_request_set_callback() - set asynchronous callback function
560 * @req: request handle
561 * @flags: specify zero or an ORing of the flags
562 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
563 * increase the wait queue beyond the initial maximum size;
564 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
565 * @compl: callback function pointer to be registered with the request handle
566 * @data: The data pointer refers to memory that is not used by the kernel
567 * crypto API, but provided to the callback function for it to use. Here,
568 * the caller can provide a reference to memory the callback function can
569 * operate on. As the callback function is invoked asynchronously to the
570 * related functionality, it may need to access data structures of the
571 * related functionality which can be referenced using this pointer. The
572 * callback function can access the memory via the "data" field in the
573 * crypto_async_request data structure provided to the callback function.
574 *
575 * This function allows setting the callback function that is triggered once the
576 * cipher operation completes.
577 *
578 * The callback function is registered with the skcipher_request handle and
579 * must comply with the following template::
580 *
581 * void callback_function(struct crypto_async_request *req, int error)
582 */
skcipher_request_set_callback(struct skcipher_request * req,u32 flags,crypto_completion_t compl,void * data)583 static inline void skcipher_request_set_callback(struct skcipher_request *req,
584 u32 flags,
585 crypto_completion_t compl,
586 void *data)
587 {
588 req->base.complete = compl;
589 req->base.data = data;
590 req->base.flags = flags;
591 }
592
593 /**
594 * skcipher_request_set_crypt() - set data buffers
595 * @req: request handle
596 * @src: source scatter / gather list
597 * @dst: destination scatter / gather list
598 * @cryptlen: number of bytes to process from @src
599 * @iv: IV for the cipher operation which must comply with the IV size defined
600 * by crypto_skcipher_ivsize
601 *
602 * This function allows setting of the source data and destination data
603 * scatter / gather lists.
604 *
605 * For encryption, the source is treated as the plaintext and the
606 * destination is the ciphertext. For a decryption operation, the use is
607 * reversed - the source is the ciphertext and the destination is the plaintext.
608 */
skcipher_request_set_crypt(struct skcipher_request * req,struct scatterlist * src,struct scatterlist * dst,unsigned int cryptlen,void * iv)609 static inline void skcipher_request_set_crypt(
610 struct skcipher_request *req,
611 struct scatterlist *src, struct scatterlist *dst,
612 unsigned int cryptlen, void *iv)
613 {
614 req->src = src;
615 req->dst = dst;
616 req->cryptlen = cryptlen;
617 req->iv = iv;
618 }
619
620 #endif /* _CRYPTO_SKCIPHER_H */
621
622