1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Linux Socket Filter Data Structures 4 */ 5 #ifndef __LINUX_FILTER_H__ 6 #define __LINUX_FILTER_H__ 7 8 #include <stdarg.h> 9 10 #include <linux/atomic.h> 11 #include <linux/refcount.h> 12 #include <linux/compat.h> 13 #include <linux/skbuff.h> 14 #include <linux/linkage.h> 15 #include <linux/printk.h> 16 #include <linux/workqueue.h> 17 #include <linux/sched.h> 18 #include <linux/capability.h> 19 #include <linux/cryptohash.h> 20 #include <linux/set_memory.h> 21 #include <linux/kallsyms.h> 22 #include <linux/if_vlan.h> 23 #include <linux/vmalloc.h> 24 25 #include <net/sch_generic.h> 26 27 #include <asm/byteorder.h> 28 #include <uapi/linux/filter.h> 29 #include <uapi/linux/bpf.h> 30 31 struct sk_buff; 32 struct sock; 33 struct seccomp_data; 34 struct bpf_prog_aux; 35 struct xdp_rxq_info; 36 struct xdp_buff; 37 struct sock_reuseport; 38 struct ctl_table; 39 struct ctl_table_header; 40 41 /* ArgX, context and stack frame pointer register positions. Note, 42 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 43 * calls in BPF_CALL instruction. 44 */ 45 #define BPF_REG_ARG1 BPF_REG_1 46 #define BPF_REG_ARG2 BPF_REG_2 47 #define BPF_REG_ARG3 BPF_REG_3 48 #define BPF_REG_ARG4 BPF_REG_4 49 #define BPF_REG_ARG5 BPF_REG_5 50 #define BPF_REG_CTX BPF_REG_6 51 #define BPF_REG_FP BPF_REG_10 52 53 /* Additional register mappings for converted user programs. */ 54 #define BPF_REG_A BPF_REG_0 55 #define BPF_REG_X BPF_REG_7 56 #define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 57 #define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 58 #define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 59 60 /* Kernel hidden auxiliary/helper register. */ 61 #define BPF_REG_AX MAX_BPF_REG 62 #define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 63 #define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 64 65 /* unused opcode to mark special call to bpf_tail_call() helper */ 66 #define BPF_TAIL_CALL 0xf0 67 68 /* unused opcode to mark call to interpreter with arguments */ 69 #define BPF_CALL_ARGS 0xe0 70 71 /* unused opcode to mark speculation barrier for mitigating 72 * Speculative Store Bypass 73 */ 74 #define BPF_NOSPEC 0xc0 75 76 /* As per nm, we expose JITed images as text (code) section for 77 * kallsyms. That way, tools like perf can find it to match 78 * addresses. 79 */ 80 #define BPF_SYM_ELF_TYPE 't' 81 82 /* BPF program can access up to 512 bytes of stack space. */ 83 #define MAX_BPF_STACK 512 84 85 /* Helper macros for filter block array initializers. */ 86 87 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 88 89 #define BPF_ALU64_REG(OP, DST, SRC) \ 90 ((struct bpf_insn) { \ 91 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 92 .dst_reg = DST, \ 93 .src_reg = SRC, \ 94 .off = 0, \ 95 .imm = 0 }) 96 97 #define BPF_ALU32_REG(OP, DST, SRC) \ 98 ((struct bpf_insn) { \ 99 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 100 .dst_reg = DST, \ 101 .src_reg = SRC, \ 102 .off = 0, \ 103 .imm = 0 }) 104 105 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 106 107 #define BPF_ALU64_IMM(OP, DST, IMM) \ 108 ((struct bpf_insn) { \ 109 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 110 .dst_reg = DST, \ 111 .src_reg = 0, \ 112 .off = 0, \ 113 .imm = IMM }) 114 115 #define BPF_ALU32_IMM(OP, DST, IMM) \ 116 ((struct bpf_insn) { \ 117 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 118 .dst_reg = DST, \ 119 .src_reg = 0, \ 120 .off = 0, \ 121 .imm = IMM }) 122 123 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 124 125 #define BPF_ENDIAN(TYPE, DST, LEN) \ 126 ((struct bpf_insn) { \ 127 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 128 .dst_reg = DST, \ 129 .src_reg = 0, \ 130 .off = 0, \ 131 .imm = LEN }) 132 133 /* Short form of mov, dst_reg = src_reg */ 134 135 #define BPF_MOV64_REG(DST, SRC) \ 136 ((struct bpf_insn) { \ 137 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 138 .dst_reg = DST, \ 139 .src_reg = SRC, \ 140 .off = 0, \ 141 .imm = 0 }) 142 143 #define BPF_MOV32_REG(DST, SRC) \ 144 ((struct bpf_insn) { \ 145 .code = BPF_ALU | BPF_MOV | BPF_X, \ 146 .dst_reg = DST, \ 147 .src_reg = SRC, \ 148 .off = 0, \ 149 .imm = 0 }) 150 151 /* Short form of mov, dst_reg = imm32 */ 152 153 #define BPF_MOV64_IMM(DST, IMM) \ 154 ((struct bpf_insn) { \ 155 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 156 .dst_reg = DST, \ 157 .src_reg = 0, \ 158 .off = 0, \ 159 .imm = IMM }) 160 161 #define BPF_MOV32_IMM(DST, IMM) \ 162 ((struct bpf_insn) { \ 163 .code = BPF_ALU | BPF_MOV | BPF_K, \ 164 .dst_reg = DST, \ 165 .src_reg = 0, \ 166 .off = 0, \ 167 .imm = IMM }) 168 169 /* Special form of mov32, used for doing explicit zero extension on dst. */ 170 #define BPF_ZEXT_REG(DST) \ 171 ((struct bpf_insn) { \ 172 .code = BPF_ALU | BPF_MOV | BPF_X, \ 173 .dst_reg = DST, \ 174 .src_reg = DST, \ 175 .off = 0, \ 176 .imm = 1 }) 177 insn_is_zext(const struct bpf_insn * insn)178 static inline bool insn_is_zext(const struct bpf_insn *insn) 179 { 180 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 181 } 182 183 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 184 #define BPF_LD_IMM64(DST, IMM) \ 185 BPF_LD_IMM64_RAW(DST, 0, IMM) 186 187 #define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 188 ((struct bpf_insn) { \ 189 .code = BPF_LD | BPF_DW | BPF_IMM, \ 190 .dst_reg = DST, \ 191 .src_reg = SRC, \ 192 .off = 0, \ 193 .imm = (__u32) (IMM) }), \ 194 ((struct bpf_insn) { \ 195 .code = 0, /* zero is reserved opcode */ \ 196 .dst_reg = 0, \ 197 .src_reg = 0, \ 198 .off = 0, \ 199 .imm = ((__u64) (IMM)) >> 32 }) 200 201 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 202 #define BPF_LD_MAP_FD(DST, MAP_FD) \ 203 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 204 205 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 206 207 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 208 ((struct bpf_insn) { \ 209 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 210 .dst_reg = DST, \ 211 .src_reg = SRC, \ 212 .off = 0, \ 213 .imm = IMM }) 214 215 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 216 ((struct bpf_insn) { \ 217 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 218 .dst_reg = DST, \ 219 .src_reg = SRC, \ 220 .off = 0, \ 221 .imm = IMM }) 222 223 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 224 225 #define BPF_LD_ABS(SIZE, IMM) \ 226 ((struct bpf_insn) { \ 227 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 228 .dst_reg = 0, \ 229 .src_reg = 0, \ 230 .off = 0, \ 231 .imm = IMM }) 232 233 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 234 235 #define BPF_LD_IND(SIZE, SRC, IMM) \ 236 ((struct bpf_insn) { \ 237 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 238 .dst_reg = 0, \ 239 .src_reg = SRC, \ 240 .off = 0, \ 241 .imm = IMM }) 242 243 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 244 245 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 246 ((struct bpf_insn) { \ 247 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 248 .dst_reg = DST, \ 249 .src_reg = SRC, \ 250 .off = OFF, \ 251 .imm = 0 }) 252 253 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 254 255 #define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 256 ((struct bpf_insn) { \ 257 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 258 .dst_reg = DST, \ 259 .src_reg = SRC, \ 260 .off = OFF, \ 261 .imm = 0 }) 262 263 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */ 264 265 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) \ 266 ((struct bpf_insn) { \ 267 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \ 268 .dst_reg = DST, \ 269 .src_reg = SRC, \ 270 .off = OFF, \ 271 .imm = 0 }) 272 273 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 274 275 #define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 276 ((struct bpf_insn) { \ 277 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 278 .dst_reg = DST, \ 279 .src_reg = 0, \ 280 .off = OFF, \ 281 .imm = IMM }) 282 283 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 284 285 #define BPF_JMP_REG(OP, DST, SRC, OFF) \ 286 ((struct bpf_insn) { \ 287 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 288 .dst_reg = DST, \ 289 .src_reg = SRC, \ 290 .off = OFF, \ 291 .imm = 0 }) 292 293 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 294 295 #define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 296 ((struct bpf_insn) { \ 297 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 298 .dst_reg = DST, \ 299 .src_reg = 0, \ 300 .off = OFF, \ 301 .imm = IMM }) 302 303 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 304 305 #define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 306 ((struct bpf_insn) { \ 307 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 308 .dst_reg = DST, \ 309 .src_reg = SRC, \ 310 .off = OFF, \ 311 .imm = 0 }) 312 313 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 314 315 #define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 316 ((struct bpf_insn) { \ 317 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 318 .dst_reg = DST, \ 319 .src_reg = 0, \ 320 .off = OFF, \ 321 .imm = IMM }) 322 323 /* Unconditional jumps, goto pc + off16 */ 324 325 #define BPF_JMP_A(OFF) \ 326 ((struct bpf_insn) { \ 327 .code = BPF_JMP | BPF_JA, \ 328 .dst_reg = 0, \ 329 .src_reg = 0, \ 330 .off = OFF, \ 331 .imm = 0 }) 332 333 /* Relative call */ 334 335 #define BPF_CALL_REL(TGT) \ 336 ((struct bpf_insn) { \ 337 .code = BPF_JMP | BPF_CALL, \ 338 .dst_reg = 0, \ 339 .src_reg = BPF_PSEUDO_CALL, \ 340 .off = 0, \ 341 .imm = TGT }) 342 343 /* Function call */ 344 345 #define BPF_CAST_CALL(x) \ 346 ((u64 (*)(u64, u64, u64, u64, u64))(x)) 347 348 #define BPF_EMIT_CALL(FUNC) \ 349 ((struct bpf_insn) { \ 350 .code = BPF_JMP | BPF_CALL, \ 351 .dst_reg = 0, \ 352 .src_reg = 0, \ 353 .off = 0, \ 354 .imm = ((FUNC) - __bpf_call_base) }) 355 356 /* Raw code statement block */ 357 358 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 359 ((struct bpf_insn) { \ 360 .code = CODE, \ 361 .dst_reg = DST, \ 362 .src_reg = SRC, \ 363 .off = OFF, \ 364 .imm = IMM }) 365 366 /* Program exit */ 367 368 #define BPF_EXIT_INSN() \ 369 ((struct bpf_insn) { \ 370 .code = BPF_JMP | BPF_EXIT, \ 371 .dst_reg = 0, \ 372 .src_reg = 0, \ 373 .off = 0, \ 374 .imm = 0 }) 375 376 /* Speculation barrier */ 377 378 #define BPF_ST_NOSPEC() \ 379 ((struct bpf_insn) { \ 380 .code = BPF_ST | BPF_NOSPEC, \ 381 .dst_reg = 0, \ 382 .src_reg = 0, \ 383 .off = 0, \ 384 .imm = 0 }) 385 386 /* Internal classic blocks for direct assignment */ 387 388 #define __BPF_STMT(CODE, K) \ 389 ((struct sock_filter) BPF_STMT(CODE, K)) 390 391 #define __BPF_JUMP(CODE, K, JT, JF) \ 392 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 393 394 #define bytes_to_bpf_size(bytes) \ 395 ({ \ 396 int bpf_size = -EINVAL; \ 397 \ 398 if (bytes == sizeof(u8)) \ 399 bpf_size = BPF_B; \ 400 else if (bytes == sizeof(u16)) \ 401 bpf_size = BPF_H; \ 402 else if (bytes == sizeof(u32)) \ 403 bpf_size = BPF_W; \ 404 else if (bytes == sizeof(u64)) \ 405 bpf_size = BPF_DW; \ 406 \ 407 bpf_size; \ 408 }) 409 410 #define bpf_size_to_bytes(bpf_size) \ 411 ({ \ 412 int bytes = -EINVAL; \ 413 \ 414 if (bpf_size == BPF_B) \ 415 bytes = sizeof(u8); \ 416 else if (bpf_size == BPF_H) \ 417 bytes = sizeof(u16); \ 418 else if (bpf_size == BPF_W) \ 419 bytes = sizeof(u32); \ 420 else if (bpf_size == BPF_DW) \ 421 bytes = sizeof(u64); \ 422 \ 423 bytes; \ 424 }) 425 426 #define BPF_SIZEOF(type) \ 427 ({ \ 428 const int __size = bytes_to_bpf_size(sizeof(type)); \ 429 BUILD_BUG_ON(__size < 0); \ 430 __size; \ 431 }) 432 433 #define BPF_FIELD_SIZEOF(type, field) \ 434 ({ \ 435 const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \ 436 BUILD_BUG_ON(__size < 0); \ 437 __size; \ 438 }) 439 440 #define BPF_LDST_BYTES(insn) \ 441 ({ \ 442 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 443 WARN_ON(__size < 0); \ 444 __size; \ 445 }) 446 447 #define __BPF_MAP_0(m, v, ...) v 448 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 449 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 450 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 451 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 452 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 453 454 #define __BPF_REG_0(...) __BPF_PAD(5) 455 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 456 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 457 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 458 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 459 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 460 461 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 462 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 463 464 #define __BPF_CAST(t, a) \ 465 (__force t) \ 466 (__force \ 467 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 468 (unsigned long)0, (t)0))) a 469 #define __BPF_V void 470 #define __BPF_N 471 472 #define __BPF_DECL_ARGS(t, a) t a 473 #define __BPF_DECL_REGS(t, a) u64 a 474 475 #define __BPF_PAD(n) \ 476 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 477 u64, __ur_3, u64, __ur_4, u64, __ur_5) 478 479 #define BPF_CALL_x(x, attr, name, ...) \ 480 static __always_inline \ 481 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 482 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 483 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 484 attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 485 { \ 486 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 487 } \ 488 static __always_inline \ 489 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 490 491 #define __NOATTR 492 #define BPF_CALL_0(name, ...) BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__) 493 #define BPF_CALL_1(name, ...) BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__) 494 #define BPF_CALL_2(name, ...) BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__) 495 #define BPF_CALL_3(name, ...) BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__) 496 #define BPF_CALL_4(name, ...) BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__) 497 #define BPF_CALL_5(name, ...) BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__) 498 499 #define NOTRACE_BPF_CALL_1(name, ...) BPF_CALL_x(1, notrace, name, __VA_ARGS__) 500 501 #define bpf_ctx_range(TYPE, MEMBER) \ 502 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 503 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 504 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 505 #if BITS_PER_LONG == 64 506 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 507 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 508 #else 509 # define bpf_ctx_range_ptr(TYPE, MEMBER) \ 510 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 511 #endif /* BITS_PER_LONG == 64 */ 512 513 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 514 ({ \ 515 BUILD_BUG_ON(FIELD_SIZEOF(TYPE, MEMBER) != (SIZE)); \ 516 *(PTR_SIZE) = (SIZE); \ 517 offsetof(TYPE, MEMBER); \ 518 }) 519 520 #ifdef CONFIG_COMPAT 521 /* A struct sock_filter is architecture independent. */ 522 struct compat_sock_fprog { 523 u16 len; 524 compat_uptr_t filter; /* struct sock_filter * */ 525 }; 526 #endif 527 528 struct sock_fprog_kern { 529 u16 len; 530 struct sock_filter *filter; 531 }; 532 533 #define BPF_BINARY_HEADER_MAGIC 0x05de0e82 534 535 struct bpf_binary_header { 536 #ifdef CONFIG_CFI_CLANG 537 u32 magic; 538 #endif 539 u32 pages; 540 /* Some arches need word alignment for their instructions */ 541 u8 image[] __aligned(4); 542 }; 543 544 struct bpf_prog { 545 u16 pages; /* Number of allocated pages */ 546 u16 jited:1, /* Is our filter JIT'ed? */ 547 jit_requested:1,/* archs need to JIT the prog */ 548 gpl_compatible:1, /* Is filter GPL compatible? */ 549 cb_access:1, /* Is control block accessed? */ 550 dst_needed:1, /* Do we need dst entry? */ 551 blinded:1, /* Was blinded */ 552 is_func:1, /* program is a bpf function */ 553 kprobe_override:1, /* Do we override a kprobe? */ 554 has_callchain_buf:1, /* callchain buffer allocated? */ 555 enforce_expected_attach_type:1; /* Enforce expected_attach_type checking at attach time */ 556 enum bpf_prog_type type; /* Type of BPF program */ 557 enum bpf_attach_type expected_attach_type; /* For some prog types */ 558 u32 len; /* Number of filter blocks */ 559 u32 jited_len; /* Size of jited insns in bytes */ 560 u8 tag[BPF_TAG_SIZE]; 561 struct bpf_prog_aux *aux; /* Auxiliary fields */ 562 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 563 unsigned int (*bpf_func)(const void *ctx, 564 const struct bpf_insn *insn); 565 /* Instructions for interpreter */ 566 union { 567 struct sock_filter insns[0]; 568 struct bpf_insn insnsi[0]; 569 }; 570 }; 571 572 struct sk_filter { 573 refcount_t refcnt; 574 struct rcu_head rcu; 575 struct bpf_prog *prog; 576 }; 577 578 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 579 580 #if IS_ENABLED(CONFIG_BPF_JIT) && IS_ENABLED(CONFIG_CFI_CLANG) 581 /* 582 * With JIT, the kernel makes an indirect call to dynamically generated 583 * code. Use bpf_call_func to perform additional validation of the call 584 * target to narrow down attack surface. Architectures implementing BPF 585 * JIT can override arch_bpf_jit_check_func for arch-specific checking. 586 */ 587 extern bool arch_bpf_jit_check_func(const struct bpf_prog *prog); 588 __bpf_call_func(const struct bpf_prog * prog,const void * ctx)589 static inline unsigned int __bpf_call_func(const struct bpf_prog *prog, 590 const void *ctx) 591 { 592 /* Call interpreter with CFI checking. */ 593 return prog->bpf_func(ctx, prog->insnsi); 594 } 595 596 static inline struct bpf_binary_header * 597 bpf_jit_binary_hdr(const struct bpf_prog *fp); 598 bpf_call_func(const struct bpf_prog * prog,const void * ctx)599 static inline unsigned int __nocfi bpf_call_func(const struct bpf_prog *prog, 600 const void *ctx) 601 { 602 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog); 603 604 if (!IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) && !prog->jited) 605 return __bpf_call_func(prog, ctx); 606 607 /* 608 * We are about to call dynamically generated code. Check that the 609 * page has bpf_binary_header with a valid magic to limit possible 610 * call targets. 611 */ 612 BUG_ON(hdr->magic != BPF_BINARY_HEADER_MAGIC || 613 !arch_bpf_jit_check_func(prog)); 614 615 /* Call jited function without CFI checking. */ 616 return prog->bpf_func(ctx, prog->insnsi); 617 } 618 bpf_jit_set_header_magic(struct bpf_binary_header * hdr)619 static inline void bpf_jit_set_header_magic(struct bpf_binary_header *hdr) 620 { 621 hdr->magic = BPF_BINARY_HEADER_MAGIC; 622 } 623 #else bpf_call_func(const struct bpf_prog * prog,const void * ctx)624 static inline unsigned int bpf_call_func(const struct bpf_prog *prog, 625 const void *ctx) 626 { 627 return prog->bpf_func(ctx, prog->insnsi); 628 } 629 bpf_jit_set_header_magic(struct bpf_binary_header * hdr)630 static inline void bpf_jit_set_header_magic(struct bpf_binary_header *hdr) 631 { 632 } 633 #endif 634 635 #define BPF_PROG_RUN(prog, ctx) ({ \ 636 u32 ret; \ 637 cant_sleep(); \ 638 if (static_branch_unlikely(&bpf_stats_enabled_key)) { \ 639 struct bpf_prog_stats *stats; \ 640 u64 start = sched_clock(); \ 641 ret = bpf_call_func(prog, ctx); \ 642 stats = this_cpu_ptr(prog->aux->stats); \ 643 u64_stats_update_begin(&stats->syncp); \ 644 stats->cnt++; \ 645 stats->nsecs += sched_clock() - start; \ 646 u64_stats_update_end(&stats->syncp); \ 647 } else { \ 648 ret = bpf_call_func(prog, ctx); \ 649 } \ 650 ret; }) 651 652 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 653 654 struct bpf_skb_data_end { 655 struct qdisc_skb_cb qdisc_cb; 656 void *data_meta; 657 void *data_end; 658 }; 659 660 struct bpf_redirect_info { 661 u32 flags; 662 u32 tgt_index; 663 void *tgt_value; 664 struct bpf_map *map; 665 struct bpf_map *map_to_flush; 666 u32 kern_flags; 667 }; 668 669 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 670 671 /* flags for bpf_redirect_info kern_flags */ 672 #define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 673 674 /* Compute the linear packet data range [data, data_end) which 675 * will be accessed by various program types (cls_bpf, act_bpf, 676 * lwt, ...). Subsystems allowing direct data access must (!) 677 * ensure that cb[] area can be written to when BPF program is 678 * invoked (otherwise cb[] save/restore is necessary). 679 */ bpf_compute_data_pointers(struct sk_buff * skb)680 static inline void bpf_compute_data_pointers(struct sk_buff *skb) 681 { 682 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 683 684 BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb)); 685 cb->data_meta = skb->data - skb_metadata_len(skb); 686 cb->data_end = skb->data + skb_headlen(skb); 687 } 688 689 /* Similar to bpf_compute_data_pointers(), except that save orginal 690 * data in cb->data and cb->meta_data for restore. 691 */ bpf_compute_and_save_data_end(struct sk_buff * skb,void ** saved_data_end)692 static inline void bpf_compute_and_save_data_end( 693 struct sk_buff *skb, void **saved_data_end) 694 { 695 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 696 697 *saved_data_end = cb->data_end; 698 cb->data_end = skb->data + skb_headlen(skb); 699 } 700 701 /* Restore data saved by bpf_compute_data_pointers(). */ bpf_restore_data_end(struct sk_buff * skb,void * saved_data_end)702 static inline void bpf_restore_data_end( 703 struct sk_buff *skb, void *saved_data_end) 704 { 705 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 706 707 cb->data_end = saved_data_end; 708 } 709 bpf_skb_cb(struct sk_buff * skb)710 static inline u8 *bpf_skb_cb(struct sk_buff *skb) 711 { 712 /* eBPF programs may read/write skb->cb[] area to transfer meta 713 * data between tail calls. Since this also needs to work with 714 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 715 * 716 * In some socket filter cases, the cb unfortunately needs to be 717 * saved/restored so that protocol specific skb->cb[] data won't 718 * be lost. In any case, due to unpriviledged eBPF programs 719 * attached to sockets, we need to clear the bpf_skb_cb() area 720 * to not leak previous contents to user space. 721 */ 722 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 723 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != 724 FIELD_SIZEOF(struct qdisc_skb_cb, data)); 725 726 return qdisc_skb_cb(skb)->data; 727 } 728 __bpf_prog_run_save_cb(const struct bpf_prog * prog,struct sk_buff * skb)729 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 730 struct sk_buff *skb) 731 { 732 u8 *cb_data = bpf_skb_cb(skb); 733 u8 cb_saved[BPF_SKB_CB_LEN]; 734 u32 res; 735 736 if (unlikely(prog->cb_access)) { 737 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 738 memset(cb_data, 0, sizeof(cb_saved)); 739 } 740 741 res = BPF_PROG_RUN(prog, skb); 742 743 if (unlikely(prog->cb_access)) 744 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 745 746 return res; 747 } 748 bpf_prog_run_save_cb(const struct bpf_prog * prog,struct sk_buff * skb)749 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 750 struct sk_buff *skb) 751 { 752 u32 res; 753 754 preempt_disable(); 755 res = __bpf_prog_run_save_cb(prog, skb); 756 preempt_enable(); 757 return res; 758 } 759 bpf_prog_run_clear_cb(const struct bpf_prog * prog,struct sk_buff * skb)760 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 761 struct sk_buff *skb) 762 { 763 u8 *cb_data = bpf_skb_cb(skb); 764 u32 res; 765 766 if (unlikely(prog->cb_access)) 767 memset(cb_data, 0, BPF_SKB_CB_LEN); 768 769 preempt_disable(); 770 res = BPF_PROG_RUN(prog, skb); 771 preempt_enable(); 772 return res; 773 } 774 bpf_prog_run_xdp(const struct bpf_prog * prog,struct xdp_buff * xdp)775 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, 776 struct xdp_buff *xdp) 777 { 778 /* Caller needs to hold rcu_read_lock() (!), otherwise program 779 * can be released while still running, or map elements could be 780 * freed early while still having concurrent users. XDP fastpath 781 * already takes rcu_read_lock() when fetching the program, so 782 * it's not necessary here anymore. 783 */ 784 return BPF_PROG_RUN(prog, xdp); 785 } 786 bpf_prog_insn_size(const struct bpf_prog * prog)787 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 788 { 789 return prog->len * sizeof(struct bpf_insn); 790 } 791 bpf_prog_tag_scratch_size(const struct bpf_prog * prog)792 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 793 { 794 return round_up(bpf_prog_insn_size(prog) + 795 sizeof(__be64) + 1, SHA_MESSAGE_BYTES); 796 } 797 bpf_prog_size(unsigned int proglen)798 static inline unsigned int bpf_prog_size(unsigned int proglen) 799 { 800 return max(sizeof(struct bpf_prog), 801 offsetof(struct bpf_prog, insns[proglen])); 802 } 803 bpf_prog_was_classic(const struct bpf_prog * prog)804 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 805 { 806 /* When classic BPF programs have been loaded and the arch 807 * does not have a classic BPF JIT (anymore), they have been 808 * converted via bpf_migrate_filter() to eBPF and thus always 809 * have an unspec program type. 810 */ 811 return prog->type == BPF_PROG_TYPE_UNSPEC; 812 } 813 bpf_ctx_off_adjust_machine(u32 size)814 static inline u32 bpf_ctx_off_adjust_machine(u32 size) 815 { 816 const u32 size_machine = sizeof(unsigned long); 817 818 if (size > size_machine && size % size_machine == 0) 819 size = size_machine; 820 821 return size; 822 } 823 824 static inline bool bpf_ctx_narrow_access_ok(u32 off,u32 size,u32 size_default)825 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 826 { 827 return size <= size_default && (size & (size - 1)) == 0; 828 } 829 830 static inline u8 bpf_ctx_narrow_access_offset(u32 off,u32 size,u32 size_default)831 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 832 { 833 u8 access_off = off & (size_default - 1); 834 835 #ifdef __LITTLE_ENDIAN 836 return access_off; 837 #else 838 return size_default - (access_off + size); 839 #endif 840 } 841 842 #define bpf_ctx_wide_access_ok(off, size, type, field) \ 843 (size == sizeof(__u64) && \ 844 off >= offsetof(type, field) && \ 845 off + sizeof(__u64) <= offsetofend(type, field) && \ 846 off % sizeof(__u64) == 0) 847 848 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 849 bpf_prog_lock_ro(struct bpf_prog * fp)850 static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 851 { 852 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 853 if (!fp->jited) { 854 set_vm_flush_reset_perms(fp); 855 set_memory_ro((unsigned long)fp, fp->pages); 856 } 857 #endif 858 } 859 bpf_jit_binary_lock_ro(struct bpf_binary_header * hdr)860 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 861 { 862 set_vm_flush_reset_perms(hdr); 863 set_memory_ro((unsigned long)hdr, hdr->pages); 864 set_memory_x((unsigned long)hdr, hdr->pages); 865 } 866 867 static inline struct bpf_binary_header * bpf_jit_binary_hdr(const struct bpf_prog * fp)868 bpf_jit_binary_hdr(const struct bpf_prog *fp) 869 { 870 unsigned long real_start = (unsigned long)fp->bpf_func; 871 unsigned long addr = real_start & PAGE_MASK; 872 873 return (void *)addr; 874 } 875 876 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); sk_filter(struct sock * sk,struct sk_buff * skb)877 static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 878 { 879 return sk_filter_trim_cap(sk, skb, 1); 880 } 881 882 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 883 void bpf_prog_free(struct bpf_prog *fp); 884 885 bool bpf_opcode_in_insntable(u8 code); 886 887 void bpf_prog_free_linfo(struct bpf_prog *prog); 888 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 889 const u32 *insn_to_jit_off); 890 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 891 void bpf_prog_free_jited_linfo(struct bpf_prog *prog); 892 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog); 893 894 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 895 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 896 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 897 gfp_t gfp_extra_flags); 898 void __bpf_prog_free(struct bpf_prog *fp); 899 bpf_prog_unlock_free(struct bpf_prog * fp)900 static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 901 { 902 __bpf_prog_free(fp); 903 } 904 905 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 906 unsigned int flen); 907 908 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 909 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 910 bpf_aux_classic_check_t trans, bool save_orig); 911 void bpf_prog_destroy(struct bpf_prog *fp); 912 913 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 914 int sk_attach_bpf(u32 ufd, struct sock *sk); 915 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 916 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 917 void sk_reuseport_prog_free(struct bpf_prog *prog); 918 int sk_detach_filter(struct sock *sk); 919 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, 920 unsigned int len); 921 922 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 923 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 924 925 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 926 #define __bpf_call_base_args \ 927 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 928 (void *)__bpf_call_base) 929 930 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 931 void bpf_jit_compile(struct bpf_prog *prog); 932 bool bpf_jit_needs_zext(void); 933 bool bpf_helper_changes_pkt_data(void *func); 934 bpf_dump_raw_ok(const struct cred * cred)935 static inline bool bpf_dump_raw_ok(const struct cred *cred) 936 { 937 /* Reconstruction of call-sites is dependent on kallsyms, 938 * thus make dump the same restriction. 939 */ 940 return kallsyms_show_value(cred); 941 } 942 943 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 944 const struct bpf_insn *patch, u32 len); 945 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 946 947 void bpf_clear_redirect_map(struct bpf_map *map); 948 xdp_return_frame_no_direct(void)949 static inline bool xdp_return_frame_no_direct(void) 950 { 951 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 952 953 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 954 } 955 xdp_set_return_frame_no_direct(void)956 static inline void xdp_set_return_frame_no_direct(void) 957 { 958 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 959 960 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 961 } 962 xdp_clear_return_frame_no_direct(void)963 static inline void xdp_clear_return_frame_no_direct(void) 964 { 965 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 966 967 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 968 } 969 xdp_ok_fwd_dev(const struct net_device * fwd,unsigned int pktlen)970 static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 971 unsigned int pktlen) 972 { 973 unsigned int len; 974 975 if (unlikely(!(fwd->flags & IFF_UP))) 976 return -ENETDOWN; 977 978 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 979 if (pktlen > len) 980 return -EMSGSIZE; 981 982 return 0; 983 } 984 985 /* The pair of xdp_do_redirect and xdp_do_flush_map MUST be called in the 986 * same cpu context. Further for best results no more than a single map 987 * for the do_redirect/do_flush pair should be used. This limitation is 988 * because we only track one map and force a flush when the map changes. 989 * This does not appear to be a real limitation for existing software. 990 */ 991 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 992 struct xdp_buff *xdp, struct bpf_prog *prog); 993 int xdp_do_redirect(struct net_device *dev, 994 struct xdp_buff *xdp, 995 struct bpf_prog *prog); 996 void xdp_do_flush_map(void); 997 998 void bpf_warn_invalid_xdp_action(u32 act); 999 1000 #ifdef CONFIG_INET 1001 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1002 struct bpf_prog *prog, struct sk_buff *skb, 1003 u32 hash); 1004 #else 1005 static inline struct sock * bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,u32 hash)1006 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1007 struct bpf_prog *prog, struct sk_buff *skb, 1008 u32 hash) 1009 { 1010 return NULL; 1011 } 1012 #endif 1013 1014 #ifdef CONFIG_BPF_JIT 1015 extern int bpf_jit_enable; 1016 extern int bpf_jit_harden; 1017 extern int bpf_jit_kallsyms; 1018 extern long bpf_jit_limit; 1019 extern long bpf_jit_limit_max; 1020 1021 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 1022 1023 struct bpf_binary_header * 1024 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1025 unsigned int alignment, 1026 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1027 void bpf_jit_binary_free(struct bpf_binary_header *hdr); 1028 u64 bpf_jit_alloc_exec_limit(void); 1029 void *bpf_jit_alloc_exec(unsigned long size); 1030 void bpf_jit_free_exec(void *addr); 1031 void bpf_jit_free(struct bpf_prog *fp); 1032 1033 int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1034 const struct bpf_insn *insn, bool extra_pass, 1035 u64 *func_addr, bool *func_addr_fixed); 1036 1037 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1038 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1039 bpf_jit_dump(unsigned int flen,unsigned int proglen,u32 pass,void * image)1040 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1041 u32 pass, void *image) 1042 { 1043 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 1044 proglen, pass, image, current->comm, task_pid_nr(current)); 1045 1046 if (image) 1047 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1048 16, 1, image, proglen, false); 1049 } 1050 bpf_jit_is_ebpf(void)1051 static inline bool bpf_jit_is_ebpf(void) 1052 { 1053 # ifdef CONFIG_HAVE_EBPF_JIT 1054 return true; 1055 # else 1056 return false; 1057 # endif 1058 } 1059 ebpf_jit_enabled(void)1060 static inline bool ebpf_jit_enabled(void) 1061 { 1062 return bpf_jit_enable && bpf_jit_is_ebpf(); 1063 } 1064 bpf_prog_ebpf_jited(const struct bpf_prog * fp)1065 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1066 { 1067 return fp->jited && bpf_jit_is_ebpf(); 1068 } 1069 bpf_jit_blinding_enabled(struct bpf_prog * prog)1070 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1071 { 1072 /* These are the prerequisites, should someone ever have the 1073 * idea to call blinding outside of them, we make sure to 1074 * bail out. 1075 */ 1076 if (!bpf_jit_is_ebpf()) 1077 return false; 1078 if (!prog->jit_requested) 1079 return false; 1080 if (!bpf_jit_harden) 1081 return false; 1082 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) 1083 return false; 1084 1085 return true; 1086 } 1087 bpf_jit_kallsyms_enabled(void)1088 static inline bool bpf_jit_kallsyms_enabled(void) 1089 { 1090 /* There are a couple of corner cases where kallsyms should 1091 * not be enabled f.e. on hardening. 1092 */ 1093 if (bpf_jit_harden) 1094 return false; 1095 if (!bpf_jit_kallsyms) 1096 return false; 1097 if (bpf_jit_kallsyms == 1) 1098 return true; 1099 1100 return false; 1101 } 1102 1103 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 1104 unsigned long *off, char *sym); 1105 bool is_bpf_text_address(unsigned long addr); 1106 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1107 char *sym); 1108 1109 static inline const char * bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1110 bpf_address_lookup(unsigned long addr, unsigned long *size, 1111 unsigned long *off, char **modname, char *sym) 1112 { 1113 const char *ret = __bpf_address_lookup(addr, size, off, sym); 1114 1115 if (ret && modname) 1116 *modname = NULL; 1117 return ret; 1118 } 1119 1120 void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1121 void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1122 void bpf_get_prog_name(const struct bpf_prog *prog, char *sym); 1123 1124 #else /* CONFIG_BPF_JIT */ 1125 ebpf_jit_enabled(void)1126 static inline bool ebpf_jit_enabled(void) 1127 { 1128 return false; 1129 } 1130 bpf_prog_ebpf_jited(const struct bpf_prog * fp)1131 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1132 { 1133 return false; 1134 } 1135 bpf_jit_free(struct bpf_prog * fp)1136 static inline void bpf_jit_free(struct bpf_prog *fp) 1137 { 1138 bpf_prog_unlock_free(fp); 1139 } 1140 bpf_jit_kallsyms_enabled(void)1141 static inline bool bpf_jit_kallsyms_enabled(void) 1142 { 1143 return false; 1144 } 1145 1146 static inline const char * __bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)1147 __bpf_address_lookup(unsigned long addr, unsigned long *size, 1148 unsigned long *off, char *sym) 1149 { 1150 return NULL; 1151 } 1152 is_bpf_text_address(unsigned long addr)1153 static inline bool is_bpf_text_address(unsigned long addr) 1154 { 1155 return false; 1156 } 1157 bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)1158 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1159 char *type, char *sym) 1160 { 1161 return -ERANGE; 1162 } 1163 1164 static inline const char * bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char ** modname,char * sym)1165 bpf_address_lookup(unsigned long addr, unsigned long *size, 1166 unsigned long *off, char **modname, char *sym) 1167 { 1168 return NULL; 1169 } 1170 bpf_prog_kallsyms_add(struct bpf_prog * fp)1171 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1172 { 1173 } 1174 bpf_prog_kallsyms_del(struct bpf_prog * fp)1175 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1176 { 1177 } 1178 bpf_get_prog_name(const struct bpf_prog * prog,char * sym)1179 static inline void bpf_get_prog_name(const struct bpf_prog *prog, char *sym) 1180 { 1181 sym[0] = '\0'; 1182 } 1183 1184 #endif /* CONFIG_BPF_JIT */ 1185 1186 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1187 1188 #define BPF_ANC BIT(15) 1189 bpf_needs_clear_a(const struct sock_filter * first)1190 static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1191 { 1192 switch (first->code) { 1193 case BPF_RET | BPF_K: 1194 case BPF_LD | BPF_W | BPF_LEN: 1195 return false; 1196 1197 case BPF_LD | BPF_W | BPF_ABS: 1198 case BPF_LD | BPF_H | BPF_ABS: 1199 case BPF_LD | BPF_B | BPF_ABS: 1200 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1201 return true; 1202 return false; 1203 1204 default: 1205 return true; 1206 } 1207 } 1208 bpf_anc_helper(const struct sock_filter * ftest)1209 static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1210 { 1211 BUG_ON(ftest->code & BPF_ANC); 1212 1213 switch (ftest->code) { 1214 case BPF_LD | BPF_W | BPF_ABS: 1215 case BPF_LD | BPF_H | BPF_ABS: 1216 case BPF_LD | BPF_B | BPF_ABS: 1217 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1218 return BPF_ANC | SKF_AD_##CODE 1219 switch (ftest->k) { 1220 BPF_ANCILLARY(PROTOCOL); 1221 BPF_ANCILLARY(PKTTYPE); 1222 BPF_ANCILLARY(IFINDEX); 1223 BPF_ANCILLARY(NLATTR); 1224 BPF_ANCILLARY(NLATTR_NEST); 1225 BPF_ANCILLARY(MARK); 1226 BPF_ANCILLARY(QUEUE); 1227 BPF_ANCILLARY(HATYPE); 1228 BPF_ANCILLARY(RXHASH); 1229 BPF_ANCILLARY(CPU); 1230 BPF_ANCILLARY(ALU_XOR_X); 1231 BPF_ANCILLARY(VLAN_TAG); 1232 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1233 BPF_ANCILLARY(PAY_OFFSET); 1234 BPF_ANCILLARY(RANDOM); 1235 BPF_ANCILLARY(VLAN_TPID); 1236 } 1237 /* Fallthrough. */ 1238 default: 1239 return ftest->code; 1240 } 1241 } 1242 1243 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1244 int k, unsigned int size); 1245 bpf_load_pointer(const struct sk_buff * skb,int k,unsigned int size,void * buffer)1246 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k, 1247 unsigned int size, void *buffer) 1248 { 1249 if (k >= 0) 1250 return skb_header_pointer(skb, k, size, buffer); 1251 1252 return bpf_internal_load_pointer_neg_helper(skb, k, size); 1253 } 1254 bpf_tell_extensions(void)1255 static inline int bpf_tell_extensions(void) 1256 { 1257 return SKF_AD_MAX; 1258 } 1259 1260 struct bpf_sock_addr_kern { 1261 struct sock *sk; 1262 struct sockaddr *uaddr; 1263 /* Temporary "register" to make indirect stores to nested structures 1264 * defined above. We need three registers to make such a store, but 1265 * only two (src and dst) are available at convert_ctx_access time 1266 */ 1267 u64 tmp_reg; 1268 void *t_ctx; /* Attach type specific context. */ 1269 }; 1270 1271 struct bpf_sock_ops_kern { 1272 struct sock *sk; 1273 u32 op; 1274 union { 1275 u32 args[4]; 1276 u32 reply; 1277 u32 replylong[4]; 1278 }; 1279 u32 is_fullsock; 1280 u64 temp; /* temp and everything after is not 1281 * initialized to 0 before calling 1282 * the BPF program. New fields that 1283 * should be initialized to 0 should 1284 * be inserted before temp. 1285 * temp is scratch storage used by 1286 * sock_ops_convert_ctx_access 1287 * as temporary storage of a register. 1288 */ 1289 }; 1290 1291 struct bpf_sysctl_kern { 1292 struct ctl_table_header *head; 1293 struct ctl_table *table; 1294 void *cur_val; 1295 size_t cur_len; 1296 void *new_val; 1297 size_t new_len; 1298 int new_updated; 1299 int write; 1300 loff_t *ppos; 1301 /* Temporary "register" for indirect stores to ppos. */ 1302 u64 tmp_reg; 1303 }; 1304 1305 struct bpf_sockopt_kern { 1306 struct sock *sk; 1307 u8 *optval; 1308 u8 *optval_end; 1309 s32 level; 1310 s32 optname; 1311 s32 optlen; 1312 s32 retval; 1313 }; 1314 1315 #endif /* __LINUX_FILTER_H__ */ 1316