1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <linux/mm.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/preempt.h>
17 #include <linux/msi.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/rcupdate.h>
21 #include <linux/ratelimit.h>
22 #include <linux/err.h>
23 #include <linux/irqflags.h>
24 #include <linux/context_tracking.h>
25 #include <linux/irqbypass.h>
26 #include <linux/swait.h>
27 #include <linux/refcount.h>
28 #include <linux/nospec.h>
29 #include <asm/signal.h>
30
31 #include <linux/kvm.h>
32 #include <linux/kvm_para.h>
33
34 #include <linux/kvm_types.h>
35
36 #include <asm/kvm_host.h>
37
38 #ifndef KVM_MAX_VCPU_ID
39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40 #endif
41
42 /*
43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44 * in kvm, other bits are visible for userspace which are defined in
45 * include/linux/kvm_h.
46 */
47 #define KVM_MEMSLOT_INVALID (1UL << 16)
48
49 /*
50 * Bit 63 of the memslot generation number is an "update in-progress flag",
51 * e.g. is temporarily set for the duration of install_new_memslots().
52 * This flag effectively creates a unique generation number that is used to
53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54 * i.e. may (or may not) have come from the previous memslots generation.
55 *
56 * This is necessary because the actual memslots update is not atomic with
57 * respect to the generation number update. Updating the generation number
58 * first would allow a vCPU to cache a spte from the old memslots using the
59 * new generation number, and updating the generation number after switching
60 * to the new memslots would allow cache hits using the old generation number
61 * to reference the defunct memslots.
62 *
63 * This mechanism is used to prevent getting hits in KVM's caches while a
64 * memslot update is in-progress, and to prevent cache hits *after* updating
65 * the actual generation number against accesses that were inserted into the
66 * cache *before* the memslots were updated.
67 */
68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
69
70 /* Two fragments for cross MMIO pages. */
71 #define KVM_MAX_MMIO_FRAGMENTS 2
72
73 #ifndef KVM_ADDRESS_SPACE_NUM
74 #define KVM_ADDRESS_SPACE_NUM 1
75 #endif
76
77 /*
78 * For the normal pfn, the highest 12 bits should be zero,
79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
80 * mask bit 63 to indicate the noslot pfn.
81 */
82 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
83 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
84 #define KVM_PFN_NOSLOT (0x1ULL << 63)
85
86 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
87 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
88 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
89
90 /*
91 * error pfns indicate that the gfn is in slot but faild to
92 * translate it to pfn on host.
93 */
is_error_pfn(kvm_pfn_t pfn)94 static inline bool is_error_pfn(kvm_pfn_t pfn)
95 {
96 return !!(pfn & KVM_PFN_ERR_MASK);
97 }
98
99 /*
100 * error_noslot pfns indicate that the gfn can not be
101 * translated to pfn - it is not in slot or failed to
102 * translate it to pfn.
103 */
is_error_noslot_pfn(kvm_pfn_t pfn)104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105 {
106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107 }
108
109 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)110 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111 {
112 return pfn == KVM_PFN_NOSLOT;
113 }
114
115 /*
116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117 * provide own defines and kvm_is_error_hva
118 */
119 #ifndef KVM_HVA_ERR_BAD
120
121 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
122 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
123
kvm_is_error_hva(unsigned long addr)124 static inline bool kvm_is_error_hva(unsigned long addr)
125 {
126 return addr >= PAGE_OFFSET;
127 }
128
129 #endif
130
131 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
132
is_error_page(struct page * page)133 static inline bool is_error_page(struct page *page)
134 {
135 return IS_ERR(page);
136 }
137
138 #define KVM_REQUEST_MASK GENMASK(7,0)
139 #define KVM_REQUEST_NO_WAKEUP BIT(8)
140 #define KVM_REQUEST_WAIT BIT(9)
141 /*
142 * Architecture-independent vcpu->requests bit members
143 * Bits 4-7 are reserved for more arch-independent bits.
144 */
145 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147 #define KVM_REQ_PENDING_TIMER 2
148 #define KVM_REQ_UNHALT 3
149 #define KVM_REQ_VM_BUGGED (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
150 #define KVM_REQUEST_ARCH_BASE 8
151
152 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
153 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
154 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
155 })
156 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
157
158 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
159 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
160
161 extern struct kmem_cache *kvm_vcpu_cache;
162
163 extern struct mutex kvm_lock;
164 extern struct list_head vm_list;
165
166 struct kvm_io_range {
167 gpa_t addr;
168 int len;
169 struct kvm_io_device *dev;
170 };
171
172 #define NR_IOBUS_DEVS 1000
173
174 struct kvm_io_bus {
175 int dev_count;
176 int ioeventfd_count;
177 struct kvm_io_range range[];
178 };
179
180 enum kvm_bus {
181 KVM_MMIO_BUS,
182 KVM_PIO_BUS,
183 KVM_VIRTIO_CCW_NOTIFY_BUS,
184 KVM_FAST_MMIO_BUS,
185 KVM_NR_BUSES
186 };
187
188 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
189 int len, const void *val);
190 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
191 gpa_t addr, int len, const void *val, long cookie);
192 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
193 int len, void *val);
194 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
195 int len, struct kvm_io_device *dev);
196 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
197 struct kvm_io_device *dev);
198 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
199 gpa_t addr);
200
201 #ifdef CONFIG_KVM_ASYNC_PF
202 struct kvm_async_pf {
203 struct work_struct work;
204 struct list_head link;
205 struct list_head queue;
206 struct kvm_vcpu *vcpu;
207 struct mm_struct *mm;
208 gpa_t cr2_or_gpa;
209 unsigned long addr;
210 struct kvm_arch_async_pf arch;
211 bool wakeup_all;
212 };
213
214 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
215 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
216 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
217 unsigned long hva, struct kvm_arch_async_pf *arch);
218 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
219 #endif
220
221 enum {
222 OUTSIDE_GUEST_MODE,
223 IN_GUEST_MODE,
224 EXITING_GUEST_MODE,
225 READING_SHADOW_PAGE_TABLES,
226 };
227
228 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
229
230 struct kvm_host_map {
231 /*
232 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
233 * a 'struct page' for it. When using mem= kernel parameter some memory
234 * can be used as guest memory but they are not managed by host
235 * kernel).
236 * If 'pfn' is not managed by the host kernel, this field is
237 * initialized to KVM_UNMAPPED_PAGE.
238 */
239 struct page *page;
240 void *hva;
241 kvm_pfn_t pfn;
242 kvm_pfn_t gfn;
243 };
244
245 /*
246 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
247 * directly to check for that.
248 */
kvm_vcpu_mapped(struct kvm_host_map * map)249 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
250 {
251 return !!map->hva;
252 }
253
254 /*
255 * Sometimes a large or cross-page mmio needs to be broken up into separate
256 * exits for userspace servicing.
257 */
258 struct kvm_mmio_fragment {
259 gpa_t gpa;
260 void *data;
261 unsigned len;
262 };
263
264 struct kvm_vcpu {
265 struct kvm *kvm;
266 #ifdef CONFIG_PREEMPT_NOTIFIERS
267 struct preempt_notifier preempt_notifier;
268 #endif
269 int cpu;
270 int vcpu_id; /* id given by userspace at creation */
271 int vcpu_idx; /* index in kvm->vcpus array */
272 int srcu_idx;
273 int mode;
274 u64 requests;
275 unsigned long guest_debug;
276
277 int pre_pcpu;
278 struct list_head blocked_vcpu_list;
279
280 struct mutex mutex;
281 struct kvm_run *run;
282
283 int guest_xcr0_loaded;
284 struct swait_queue_head wq;
285 struct pid __rcu *pid;
286 int sigset_active;
287 sigset_t sigset;
288 struct kvm_vcpu_stat stat;
289 unsigned int halt_poll_ns;
290 bool valid_wakeup;
291
292 #ifdef CONFIG_HAS_IOMEM
293 int mmio_needed;
294 int mmio_read_completed;
295 int mmio_is_write;
296 int mmio_cur_fragment;
297 int mmio_nr_fragments;
298 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
299 #endif
300
301 #ifdef CONFIG_KVM_ASYNC_PF
302 struct {
303 u32 queued;
304 struct list_head queue;
305 struct list_head done;
306 spinlock_t lock;
307 } async_pf;
308 #endif
309
310 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
311 /*
312 * Cpu relax intercept or pause loop exit optimization
313 * in_spin_loop: set when a vcpu does a pause loop exit
314 * or cpu relax intercepted.
315 * dy_eligible: indicates whether vcpu is eligible for directed yield.
316 */
317 struct {
318 bool in_spin_loop;
319 bool dy_eligible;
320 } spin_loop;
321 #endif
322 bool preempted;
323 bool ready;
324 struct kvm_vcpu_arch arch;
325 struct dentry *debugfs_dentry;
326 };
327
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)328 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
329 {
330 /*
331 * The memory barrier ensures a previous write to vcpu->requests cannot
332 * be reordered with the read of vcpu->mode. It pairs with the general
333 * memory barrier following the write of vcpu->mode in VCPU RUN.
334 */
335 smp_mb__before_atomic();
336 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
337 }
338
339 /*
340 * Some of the bitops functions do not support too long bitmaps.
341 * This number must be determined not to exceed such limits.
342 */
343 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
344
345 struct kvm_memory_slot {
346 gfn_t base_gfn;
347 unsigned long npages;
348 unsigned long *dirty_bitmap;
349 struct kvm_arch_memory_slot arch;
350 unsigned long userspace_addr;
351 u32 flags;
352 short id;
353 };
354
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)355 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
356 {
357 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
358 }
359
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)360 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
361 {
362 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
363
364 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
365 }
366
367 struct kvm_s390_adapter_int {
368 u64 ind_addr;
369 u64 summary_addr;
370 u64 ind_offset;
371 u32 summary_offset;
372 u32 adapter_id;
373 };
374
375 struct kvm_hv_sint {
376 u32 vcpu;
377 u32 sint;
378 };
379
380 struct kvm_kernel_irq_routing_entry {
381 u32 gsi;
382 u32 type;
383 int (*set)(struct kvm_kernel_irq_routing_entry *e,
384 struct kvm *kvm, int irq_source_id, int level,
385 bool line_status);
386 union {
387 struct {
388 unsigned irqchip;
389 unsigned pin;
390 } irqchip;
391 struct {
392 u32 address_lo;
393 u32 address_hi;
394 u32 data;
395 u32 flags;
396 u32 devid;
397 } msi;
398 struct kvm_s390_adapter_int adapter;
399 struct kvm_hv_sint hv_sint;
400 };
401 struct hlist_node link;
402 };
403
404 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
405 struct kvm_irq_routing_table {
406 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
407 u32 nr_rt_entries;
408 /*
409 * Array indexed by gsi. Each entry contains list of irq chips
410 * the gsi is connected to.
411 */
412 struct hlist_head map[0];
413 };
414 #endif
415
416 #ifndef KVM_PRIVATE_MEM_SLOTS
417 #define KVM_PRIVATE_MEM_SLOTS 0
418 #endif
419
420 #ifndef KVM_MEM_SLOTS_NUM
421 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
422 #endif
423
424 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)425 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
426 {
427 return 0;
428 }
429 #endif
430
431 /*
432 * Note:
433 * memslots are not sorted by id anymore, please use id_to_memslot()
434 * to get the memslot by its id.
435 */
436 struct kvm_memslots {
437 u64 generation;
438 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
439 /* The mapping table from slot id to the index in memslots[]. */
440 short id_to_index[KVM_MEM_SLOTS_NUM];
441 atomic_t lru_slot;
442 int used_slots;
443 };
444
445 struct kvm {
446 spinlock_t mmu_lock;
447 struct mutex slots_lock;
448 struct mm_struct *mm; /* userspace tied to this vm */
449 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
450 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
451
452 /*
453 * created_vcpus is protected by kvm->lock, and is incremented
454 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
455 * incremented after storing the kvm_vcpu pointer in vcpus,
456 * and is accessed atomically.
457 */
458 atomic_t online_vcpus;
459 int created_vcpus;
460 int last_boosted_vcpu;
461 struct list_head vm_list;
462 struct mutex lock;
463 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
464 #ifdef CONFIG_HAVE_KVM_EVENTFD
465 struct {
466 spinlock_t lock;
467 struct list_head items;
468 struct list_head resampler_list;
469 struct mutex resampler_lock;
470 } irqfds;
471 struct list_head ioeventfds;
472 #endif
473 struct kvm_vm_stat stat;
474 struct kvm_arch arch;
475 refcount_t users_count;
476 #ifdef CONFIG_KVM_MMIO
477 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
478 spinlock_t ring_lock;
479 struct list_head coalesced_zones;
480 #endif
481
482 struct mutex irq_lock;
483 #ifdef CONFIG_HAVE_KVM_IRQCHIP
484 /*
485 * Update side is protected by irq_lock.
486 */
487 struct kvm_irq_routing_table __rcu *irq_routing;
488 #endif
489 #ifdef CONFIG_HAVE_KVM_IRQFD
490 struct hlist_head irq_ack_notifier_list;
491 #endif
492
493 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
494 struct mmu_notifier mmu_notifier;
495 unsigned long mmu_notifier_seq;
496 long mmu_notifier_count;
497 #endif
498 long tlbs_dirty;
499 struct list_head devices;
500 bool manual_dirty_log_protect;
501 struct dentry *debugfs_dentry;
502 struct kvm_stat_data **debugfs_stat_data;
503 struct srcu_struct srcu;
504 struct srcu_struct irq_srcu;
505 pid_t userspace_pid;
506 bool vm_bugged;
507 };
508
509 #define kvm_err(fmt, ...) \
510 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
511 #define kvm_info(fmt, ...) \
512 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
513 #define kvm_debug(fmt, ...) \
514 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
515 #define kvm_debug_ratelimited(fmt, ...) \
516 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
517 ## __VA_ARGS__)
518 #define kvm_pr_unimpl(fmt, ...) \
519 pr_err_ratelimited("kvm [%i]: " fmt, \
520 task_tgid_nr(current), ## __VA_ARGS__)
521
522 /* The guest did something we don't support. */
523 #define vcpu_unimpl(vcpu, fmt, ...) \
524 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
525 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
526
527 #define vcpu_debug(vcpu, fmt, ...) \
528 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
529 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
530 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
531 ## __VA_ARGS__)
532 #define vcpu_err(vcpu, fmt, ...) \
533 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
534
535 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
kvm_vm_bugged(struct kvm * kvm)536 static inline void kvm_vm_bugged(struct kvm *kvm)
537 {
538 kvm->vm_bugged = true;
539 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_BUGGED);
540 }
541
542 #define KVM_BUG(cond, kvm, fmt...) \
543 ({ \
544 int __ret = (cond); \
545 \
546 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
547 kvm_vm_bugged(kvm); \
548 unlikely(__ret); \
549 })
550
551 #define KVM_BUG_ON(cond, kvm) \
552 ({ \
553 int __ret = (cond); \
554 \
555 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
556 kvm_vm_bugged(kvm); \
557 unlikely(__ret); \
558 })
559
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)560 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
561 {
562 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
563 lockdep_is_held(&kvm->slots_lock) ||
564 !refcount_read(&kvm->users_count));
565 }
566
kvm_get_vcpu(struct kvm * kvm,int i)567 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
568 {
569 int num_vcpus = atomic_read(&kvm->online_vcpus);
570 i = array_index_nospec(i, num_vcpus);
571
572 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
573 smp_rmb();
574 return kvm->vcpus[i];
575 }
576
577 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
578 for (idx = 0; \
579 idx < atomic_read(&kvm->online_vcpus) && \
580 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
581 idx++)
582
kvm_get_vcpu_by_id(struct kvm * kvm,int id)583 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
584 {
585 struct kvm_vcpu *vcpu = NULL;
586 int i;
587
588 if (id < 0)
589 return NULL;
590 if (id < KVM_MAX_VCPUS)
591 vcpu = kvm_get_vcpu(kvm, id);
592 if (vcpu && vcpu->vcpu_id == id)
593 return vcpu;
594 kvm_for_each_vcpu(i, vcpu, kvm)
595 if (vcpu->vcpu_id == id)
596 return vcpu;
597 return NULL;
598 }
599
kvm_vcpu_get_idx(struct kvm_vcpu * vcpu)600 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
601 {
602 return vcpu->vcpu_idx;
603 }
604
605 #define kvm_for_each_memslot(memslot, slots) \
606 for (memslot = &slots->memslots[0]; \
607 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
608 memslot++)
609
610 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
611 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
612
613 void vcpu_load(struct kvm_vcpu *vcpu);
614 void vcpu_put(struct kvm_vcpu *vcpu);
615
616 #ifdef __KVM_HAVE_IOAPIC
617 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
618 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
619 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)620 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
621 {
622 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)623 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
624 {
625 }
626 #endif
627
628 #ifdef CONFIG_HAVE_KVM_IRQFD
629 int kvm_irqfd_init(void);
630 void kvm_irqfd_exit(void);
631 #else
kvm_irqfd_init(void)632 static inline int kvm_irqfd_init(void)
633 {
634 return 0;
635 }
636
kvm_irqfd_exit(void)637 static inline void kvm_irqfd_exit(void)
638 {
639 }
640 #endif
641 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
642 struct module *module);
643 void kvm_exit(void);
644
645 void kvm_get_kvm(struct kvm *kvm);
646 void kvm_put_kvm(struct kvm *kvm);
647
__kvm_memslots(struct kvm * kvm,int as_id)648 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
649 {
650 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
651 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
652 lockdep_is_held(&kvm->slots_lock) ||
653 !refcount_read(&kvm->users_count));
654 }
655
kvm_memslots(struct kvm * kvm)656 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
657 {
658 return __kvm_memslots(kvm, 0);
659 }
660
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)661 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
662 {
663 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
664
665 return __kvm_memslots(vcpu->kvm, as_id);
666 }
667
668 static inline struct kvm_memory_slot *
id_to_memslot(struct kvm_memslots * slots,int id)669 id_to_memslot(struct kvm_memslots *slots, int id)
670 {
671 int index = slots->id_to_index[id];
672 struct kvm_memory_slot *slot;
673
674 slot = &slots->memslots[index];
675
676 WARN_ON(slot->id != id);
677 return slot;
678 }
679
680 /*
681 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
682 * - create a new memory slot
683 * - delete an existing memory slot
684 * - modify an existing memory slot
685 * -- move it in the guest physical memory space
686 * -- just change its flags
687 *
688 * Since flags can be changed by some of these operations, the following
689 * differentiation is the best we can do for __kvm_set_memory_region():
690 */
691 enum kvm_mr_change {
692 KVM_MR_CREATE,
693 KVM_MR_DELETE,
694 KVM_MR_MOVE,
695 KVM_MR_FLAGS_ONLY,
696 };
697
698 int kvm_set_memory_region(struct kvm *kvm,
699 const struct kvm_userspace_memory_region *mem);
700 int __kvm_set_memory_region(struct kvm *kvm,
701 const struct kvm_userspace_memory_region *mem);
702 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
703 struct kvm_memory_slot *dont);
704 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
705 unsigned long npages);
706 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
707 int kvm_arch_prepare_memory_region(struct kvm *kvm,
708 struct kvm_memory_slot *memslot,
709 const struct kvm_userspace_memory_region *mem,
710 enum kvm_mr_change change);
711 void kvm_arch_commit_memory_region(struct kvm *kvm,
712 const struct kvm_userspace_memory_region *mem,
713 const struct kvm_memory_slot *old,
714 const struct kvm_memory_slot *new,
715 enum kvm_mr_change change);
716 bool kvm_largepages_enabled(void);
717 void kvm_disable_largepages(void);
718 /* flush all memory translations */
719 void kvm_arch_flush_shadow_all(struct kvm *kvm);
720 /* flush memory translations pointing to 'slot' */
721 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
722 struct kvm_memory_slot *slot);
723
724 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
725 struct page **pages, int nr_pages);
726
727 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
728 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
729 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
730 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
731 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
732 bool *writable);
733 void kvm_release_page_clean(struct page *page);
734 void kvm_release_page_dirty(struct page *page);
735 void kvm_set_page_accessed(struct page *page);
736
737 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
738 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
739 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
740 bool *writable);
741 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
742 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
743 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
744 bool atomic, bool *async, bool write_fault,
745 bool *writable);
746
747 void kvm_release_pfn_clean(kvm_pfn_t pfn);
748 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
749 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
750 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
751 void kvm_get_pfn(kvm_pfn_t pfn);
752
753 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
754 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
755 int len);
756 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
757 unsigned long len);
758 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
759 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
760 void *data, unsigned long len);
761 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
762 int offset, int len);
763 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
764 unsigned long len);
765 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
766 void *data, unsigned long len);
767 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
768 void *data, unsigned int offset,
769 unsigned long len);
770 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
771 gpa_t gpa, unsigned long len);
772 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
773 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
774 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
775 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
776 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
777 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
778
779 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
780 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
781 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
782 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
783 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
784 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
785 struct gfn_to_pfn_cache *cache, bool atomic);
786 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
787 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
788 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
789 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
790 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
791 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
792 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
793 int len);
794 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
795 unsigned long len);
796 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
797 unsigned long len);
798 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
799 int offset, int len);
800 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
801 unsigned long len);
802 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
803
804 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
805 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
806
807 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
808 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
809 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
810 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
811 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
812 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
813 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
814
815 void kvm_flush_remote_tlbs(struct kvm *kvm);
816 void kvm_reload_remote_mmus(struct kvm *kvm);
817
818 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
819 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
820
821 long kvm_arch_dev_ioctl(struct file *filp,
822 unsigned int ioctl, unsigned long arg);
823 long kvm_arch_vcpu_ioctl(struct file *filp,
824 unsigned int ioctl, unsigned long arg);
825 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
826
827 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
828
829 int kvm_get_dirty_log(struct kvm *kvm,
830 struct kvm_dirty_log *log, int *is_dirty);
831
832 int kvm_get_dirty_log_protect(struct kvm *kvm,
833 struct kvm_dirty_log *log, bool *flush);
834 int kvm_clear_dirty_log_protect(struct kvm *kvm,
835 struct kvm_clear_dirty_log *log, bool *flush);
836
837 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
838 struct kvm_memory_slot *slot,
839 gfn_t gfn_offset,
840 unsigned long mask);
841
842 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
843 struct kvm_dirty_log *log);
844 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
845 struct kvm_clear_dirty_log *log);
846
847 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
848 bool line_status);
849 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
850 struct kvm_enable_cap *cap);
851 long kvm_arch_vm_ioctl(struct file *filp,
852 unsigned int ioctl, unsigned long arg);
853
854 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
855 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
856
857 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
858 struct kvm_translation *tr);
859
860 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
861 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
862 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
863 struct kvm_sregs *sregs);
864 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
865 struct kvm_sregs *sregs);
866 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
867 struct kvm_mp_state *mp_state);
868 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
869 struct kvm_mp_state *mp_state);
870 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
871 struct kvm_guest_debug *dbg);
872 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
873
874 int kvm_arch_init(void *opaque);
875 void kvm_arch_exit(void);
876
877 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
878 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
879
880 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
881
882 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
883 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
884 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
885 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
886 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
887 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
888 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
889
890 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
891 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
892 #endif
893
894 int kvm_arch_hardware_enable(void);
895 void kvm_arch_hardware_disable(void);
896 int kvm_arch_hardware_setup(void);
897 void kvm_arch_hardware_unsetup(void);
898 int kvm_arch_check_processor_compat(void);
899 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
900 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
901 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
902 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
903
904 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
905 /*
906 * All architectures that want to use vzalloc currently also
907 * need their own kvm_arch_alloc_vm implementation.
908 */
kvm_arch_alloc_vm(void)909 static inline struct kvm *kvm_arch_alloc_vm(void)
910 {
911 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
912 }
913
kvm_arch_free_vm(struct kvm * kvm)914 static inline void kvm_arch_free_vm(struct kvm *kvm)
915 {
916 kfree(kvm);
917 }
918 #endif
919
920 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)921 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
922 {
923 return -ENOTSUPP;
924 }
925 #endif
926
927 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
928 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
929 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
930 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
931 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)932 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
933 {
934 }
935
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)936 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
937 {
938 }
939
kvm_arch_has_noncoherent_dma(struct kvm * kvm)940 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
941 {
942 return false;
943 }
944 #endif
945 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
946 void kvm_arch_start_assignment(struct kvm *kvm);
947 void kvm_arch_end_assignment(struct kvm *kvm);
948 bool kvm_arch_has_assigned_device(struct kvm *kvm);
949 #else
kvm_arch_start_assignment(struct kvm * kvm)950 static inline void kvm_arch_start_assignment(struct kvm *kvm)
951 {
952 }
953
kvm_arch_end_assignment(struct kvm * kvm)954 static inline void kvm_arch_end_assignment(struct kvm *kvm)
955 {
956 }
957
kvm_arch_has_assigned_device(struct kvm * kvm)958 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
959 {
960 return false;
961 }
962 #endif
963
kvm_arch_vcpu_wq(struct kvm_vcpu * vcpu)964 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
965 {
966 #ifdef __KVM_HAVE_ARCH_WQP
967 return vcpu->arch.wqp;
968 #else
969 return &vcpu->wq;
970 #endif
971 }
972
973 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
974 /*
975 * returns true if the virtual interrupt controller is initialized and
976 * ready to accept virtual IRQ. On some architectures the virtual interrupt
977 * controller is dynamically instantiated and this is not always true.
978 */
979 bool kvm_arch_intc_initialized(struct kvm *kvm);
980 #else
kvm_arch_intc_initialized(struct kvm * kvm)981 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
982 {
983 return true;
984 }
985 #endif
986
987 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
988 void kvm_arch_destroy_vm(struct kvm *kvm);
989 void kvm_arch_sync_events(struct kvm *kvm);
990
991 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
992 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
993
994 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
995 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
996
997 struct kvm_irq_ack_notifier {
998 struct hlist_node link;
999 unsigned gsi;
1000 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1001 };
1002
1003 int kvm_irq_map_gsi(struct kvm *kvm,
1004 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1005 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1006
1007 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1008 bool line_status);
1009 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1010 int irq_source_id, int level, bool line_status);
1011 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1012 struct kvm *kvm, int irq_source_id,
1013 int level, bool line_status);
1014 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1015 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1016 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1017 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1018 struct kvm_irq_ack_notifier *kian);
1019 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1020 struct kvm_irq_ack_notifier *kian);
1021 int kvm_request_irq_source_id(struct kvm *kvm);
1022 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1023 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1024
1025 /*
1026 * search_memslots() and __gfn_to_memslot() are here because they are
1027 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1028 * gfn_to_memslot() itself isn't here as an inline because that would
1029 * bloat other code too much.
1030 */
1031 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn)1032 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1033 {
1034 int start = 0, end = slots->used_slots;
1035 int slot = atomic_read(&slots->lru_slot);
1036 struct kvm_memory_slot *memslots = slots->memslots;
1037
1038 if (gfn >= memslots[slot].base_gfn &&
1039 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1040 return &memslots[slot];
1041
1042 while (start < end) {
1043 slot = start + (end - start) / 2;
1044
1045 if (gfn >= memslots[slot].base_gfn)
1046 end = slot;
1047 else
1048 start = slot + 1;
1049 }
1050
1051 if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1052 gfn < memslots[start].base_gfn + memslots[start].npages) {
1053 atomic_set(&slots->lru_slot, start);
1054 return &memslots[start];
1055 }
1056
1057 return NULL;
1058 }
1059
1060 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1061 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1062 {
1063 return search_memslots(slots, gfn);
1064 }
1065
1066 static inline unsigned long
__gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1067 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1068 {
1069 /*
1070 * The index was checked originally in search_memslots. To avoid
1071 * that a malicious guest builds a Spectre gadget out of e.g. page
1072 * table walks, do not let the processor speculate loads outside
1073 * the guest's registered memslots.
1074 */
1075 unsigned long offset = gfn - slot->base_gfn;
1076 offset = array_index_nospec(offset, slot->npages);
1077 return slot->userspace_addr + offset * PAGE_SIZE;
1078 }
1079
memslot_id(struct kvm * kvm,gfn_t gfn)1080 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1081 {
1082 return gfn_to_memslot(kvm, gfn)->id;
1083 }
1084
1085 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1086 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1087 {
1088 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1089
1090 return slot->base_gfn + gfn_offset;
1091 }
1092
gfn_to_gpa(gfn_t gfn)1093 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1094 {
1095 return (gpa_t)gfn << PAGE_SHIFT;
1096 }
1097
gpa_to_gfn(gpa_t gpa)1098 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1099 {
1100 return (gfn_t)(gpa >> PAGE_SHIFT);
1101 }
1102
pfn_to_hpa(kvm_pfn_t pfn)1103 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1104 {
1105 return (hpa_t)pfn << PAGE_SHIFT;
1106 }
1107
kvm_vcpu_gpa_to_page(struct kvm_vcpu * vcpu,gpa_t gpa)1108 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1109 gpa_t gpa)
1110 {
1111 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1112 }
1113
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1114 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1115 {
1116 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1117
1118 return kvm_is_error_hva(hva);
1119 }
1120
1121 enum kvm_stat_kind {
1122 KVM_STAT_VM,
1123 KVM_STAT_VCPU,
1124 };
1125
1126 struct kvm_stat_data {
1127 int offset;
1128 int mode;
1129 struct kvm *kvm;
1130 };
1131
1132 struct kvm_stats_debugfs_item {
1133 const char *name;
1134 int offset;
1135 enum kvm_stat_kind kind;
1136 int mode;
1137 };
1138 extern struct kvm_stats_debugfs_item debugfs_entries[];
1139 extern struct dentry *kvm_debugfs_dir;
1140
1141 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_retry(struct kvm * kvm,unsigned long mmu_seq)1142 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1143 {
1144 if (unlikely(kvm->mmu_notifier_count))
1145 return 1;
1146 /*
1147 * Ensure the read of mmu_notifier_count happens before the read
1148 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1149 * mmu_notifier_invalidate_range_end to make sure that the caller
1150 * either sees the old (non-zero) value of mmu_notifier_count or
1151 * the new (incremented) value of mmu_notifier_seq.
1152 * PowerPC Book3s HV KVM calls this under a per-page lock
1153 * rather than under kvm->mmu_lock, for scalability, so
1154 * can't rely on kvm->mmu_lock to keep things ordered.
1155 */
1156 smp_rmb();
1157 if (kvm->mmu_notifier_seq != mmu_seq)
1158 return 1;
1159 return 0;
1160 }
1161 #endif
1162
1163 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1164
1165 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1166
1167 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1168 int kvm_set_irq_routing(struct kvm *kvm,
1169 const struct kvm_irq_routing_entry *entries,
1170 unsigned nr,
1171 unsigned flags);
1172 int kvm_set_routing_entry(struct kvm *kvm,
1173 struct kvm_kernel_irq_routing_entry *e,
1174 const struct kvm_irq_routing_entry *ue);
1175 void kvm_free_irq_routing(struct kvm *kvm);
1176
1177 #else
1178
kvm_free_irq_routing(struct kvm * kvm)1179 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1180
1181 #endif
1182
1183 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1184
1185 #ifdef CONFIG_HAVE_KVM_EVENTFD
1186
1187 void kvm_eventfd_init(struct kvm *kvm);
1188 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1189
1190 #ifdef CONFIG_HAVE_KVM_IRQFD
1191 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1192 void kvm_irqfd_release(struct kvm *kvm);
1193 void kvm_irq_routing_update(struct kvm *);
1194 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1195 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1196 {
1197 return -EINVAL;
1198 }
1199
kvm_irqfd_release(struct kvm * kvm)1200 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1201 #endif
1202
1203 #else
1204
kvm_eventfd_init(struct kvm * kvm)1205 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1206
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1207 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1208 {
1209 return -EINVAL;
1210 }
1211
kvm_irqfd_release(struct kvm * kvm)1212 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1213
1214 #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)1215 static inline void kvm_irq_routing_update(struct kvm *kvm)
1216 {
1217 }
1218 #endif
1219
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)1220 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1221 {
1222 return -ENOSYS;
1223 }
1224
1225 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1226
1227 void kvm_arch_irq_routing_update(struct kvm *kvm);
1228
kvm_make_request(int req,struct kvm_vcpu * vcpu)1229 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1230 {
1231 /*
1232 * Ensure the rest of the request is published to kvm_check_request's
1233 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1234 */
1235 smp_wmb();
1236 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1237 }
1238
kvm_request_pending(struct kvm_vcpu * vcpu)1239 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1240 {
1241 return READ_ONCE(vcpu->requests);
1242 }
1243
kvm_test_request(int req,struct kvm_vcpu * vcpu)1244 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1245 {
1246 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1247 }
1248
kvm_clear_request(int req,struct kvm_vcpu * vcpu)1249 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1250 {
1251 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1252 }
1253
kvm_check_request(int req,struct kvm_vcpu * vcpu)1254 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1255 {
1256 if (kvm_test_request(req, vcpu)) {
1257 kvm_clear_request(req, vcpu);
1258
1259 /*
1260 * Ensure the rest of the request is visible to kvm_check_request's
1261 * caller. Paired with the smp_wmb in kvm_make_request.
1262 */
1263 smp_mb__after_atomic();
1264 return true;
1265 } else {
1266 return false;
1267 }
1268 }
1269
1270 extern bool kvm_rebooting;
1271
1272 extern unsigned int halt_poll_ns;
1273 extern unsigned int halt_poll_ns_grow;
1274 extern unsigned int halt_poll_ns_grow_start;
1275 extern unsigned int halt_poll_ns_shrink;
1276
1277 struct kvm_device {
1278 struct kvm_device_ops *ops;
1279 struct kvm *kvm;
1280 void *private;
1281 struct list_head vm_node;
1282 };
1283
1284 /* create, destroy, and name are mandatory */
1285 struct kvm_device_ops {
1286 const char *name;
1287
1288 /*
1289 * create is called holding kvm->lock and any operations not suitable
1290 * to do while holding the lock should be deferred to init (see
1291 * below).
1292 */
1293 int (*create)(struct kvm_device *dev, u32 type);
1294
1295 /*
1296 * init is called after create if create is successful and is called
1297 * outside of holding kvm->lock.
1298 */
1299 void (*init)(struct kvm_device *dev);
1300
1301 /*
1302 * Destroy is responsible for freeing dev.
1303 *
1304 * Destroy may be called before or after destructors are called
1305 * on emulated I/O regions, depending on whether a reference is
1306 * held by a vcpu or other kvm component that gets destroyed
1307 * after the emulated I/O.
1308 */
1309 void (*destroy)(struct kvm_device *dev);
1310
1311 /*
1312 * Release is an alternative method to free the device. It is
1313 * called when the device file descriptor is closed. Once
1314 * release is called, the destroy method will not be called
1315 * anymore as the device is removed from the device list of
1316 * the VM. kvm->lock is held.
1317 */
1318 void (*release)(struct kvm_device *dev);
1319
1320 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1321 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1322 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1323 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1324 unsigned long arg);
1325 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1326 };
1327
1328 void kvm_device_get(struct kvm_device *dev);
1329 void kvm_device_put(struct kvm_device *dev);
1330 struct kvm_device *kvm_device_from_filp(struct file *filp);
1331 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type);
1332 void kvm_unregister_device_ops(u32 type);
1333
1334 extern struct kvm_device_ops kvm_mpic_ops;
1335 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1336 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1337
1338 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1339
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1340 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1341 {
1342 vcpu->spin_loop.in_spin_loop = val;
1343 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1344 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1345 {
1346 vcpu->spin_loop.dy_eligible = val;
1347 }
1348
1349 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1350
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1351 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1352 {
1353 }
1354
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1355 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1356 {
1357 }
1358 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1359
1360 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1361 bool kvm_arch_has_irq_bypass(void);
1362 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1363 struct irq_bypass_producer *);
1364 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1365 struct irq_bypass_producer *);
1366 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1367 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1368 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1369 uint32_t guest_irq, bool set);
1370 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1371
1372 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1373 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1374 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1375 {
1376 return vcpu->valid_wakeup;
1377 }
1378
1379 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1380 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1381 {
1382 return true;
1383 }
1384 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1385
1386 #ifdef CONFIG_HAVE_KVM_NO_POLL
1387 /* Callback that tells if we must not poll */
1388 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1389 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)1390 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1391 {
1392 return false;
1393 }
1394 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1395
1396 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1397 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1398 unsigned int ioctl, unsigned long arg);
1399 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1400 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1401 unsigned int ioctl,
1402 unsigned long arg)
1403 {
1404 return -ENOIOCTLCMD;
1405 }
1406 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1407
1408 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1409 unsigned long start, unsigned long end);
1410
1411 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1412 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1413 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)1414 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1415 {
1416 return 0;
1417 }
1418 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1419
1420 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1421
1422 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1423 uintptr_t data, const char *name,
1424 struct task_struct **thread_ptr);
1425
1426 #endif
1427