1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_SIGNAL_H
3 #define _LINUX_SCHED_SIGNAL_H
4
5 #include <linux/rculist.h>
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/sched/jobctl.h>
9 #include <linux/sched/task.h>
10 #include <linux/cred.h>
11 #include <linux/refcount.h>
12 #include <linux/posix-timers.h>
13 #include <linux/android_kabi.h>
14
15 /*
16 * Types defining task->signal and task->sighand and APIs using them:
17 */
18
19 struct sighand_struct {
20 spinlock_t siglock;
21 refcount_t count;
22 wait_queue_head_t signalfd_wqh;
23 struct k_sigaction action[_NSIG];
24 };
25
26 /*
27 * Per-process accounting stats:
28 */
29 struct pacct_struct {
30 int ac_flag;
31 long ac_exitcode;
32 unsigned long ac_mem;
33 u64 ac_utime, ac_stime;
34 unsigned long ac_minflt, ac_majflt;
35 };
36
37 struct cpu_itimer {
38 u64 expires;
39 u64 incr;
40 };
41
42 /*
43 * This is the atomic variant of task_cputime, which can be used for
44 * storing and updating task_cputime statistics without locking.
45 */
46 struct task_cputime_atomic {
47 atomic64_t utime;
48 atomic64_t stime;
49 atomic64_t sum_exec_runtime;
50 };
51
52 #define INIT_CPUTIME_ATOMIC \
53 (struct task_cputime_atomic) { \
54 .utime = ATOMIC64_INIT(0), \
55 .stime = ATOMIC64_INIT(0), \
56 .sum_exec_runtime = ATOMIC64_INIT(0), \
57 }
58 /**
59 * struct thread_group_cputimer - thread group interval timer counts
60 * @cputime_atomic: atomic thread group interval timers.
61 *
62 * This structure contains the version of task_cputime, above, that is
63 * used for thread group CPU timer calculations.
64 */
65 struct thread_group_cputimer {
66 struct task_cputime_atomic cputime_atomic;
67 };
68
69 struct multiprocess_signals {
70 sigset_t signal;
71 struct hlist_node node;
72 };
73
74 /*
75 * NOTE! "signal_struct" does not have its own
76 * locking, because a shared signal_struct always
77 * implies a shared sighand_struct, so locking
78 * sighand_struct is always a proper superset of
79 * the locking of signal_struct.
80 */
81 struct signal_struct {
82 refcount_t sigcnt;
83 atomic_t live;
84 int nr_threads;
85 struct list_head thread_head;
86
87 wait_queue_head_t wait_chldexit; /* for wait4() */
88
89 /* current thread group signal load-balancing target: */
90 struct task_struct *curr_target;
91
92 /* shared signal handling: */
93 struct sigpending shared_pending;
94
95 /* For collecting multiprocess signals during fork */
96 struct hlist_head multiprocess;
97
98 /* thread group exit support */
99 int group_exit_code;
100 /* overloaded:
101 * - notify group_exit_task when ->count is equal to notify_count
102 * - everyone except group_exit_task is stopped during signal delivery
103 * of fatal signals, group_exit_task processes the signal.
104 */
105 int notify_count;
106 struct task_struct *group_exit_task;
107
108 /* thread group stop support, overloads group_exit_code too */
109 int group_stop_count;
110 unsigned int flags; /* see SIGNAL_* flags below */
111
112 /*
113 * PR_SET_CHILD_SUBREAPER marks a process, like a service
114 * manager, to re-parent orphan (double-forking) child processes
115 * to this process instead of 'init'. The service manager is
116 * able to receive SIGCHLD signals and is able to investigate
117 * the process until it calls wait(). All children of this
118 * process will inherit a flag if they should look for a
119 * child_subreaper process at exit.
120 */
121 unsigned int is_child_subreaper:1;
122 unsigned int has_child_subreaper:1;
123
124 #ifdef CONFIG_POSIX_TIMERS
125
126 /* POSIX.1b Interval Timers */
127 int posix_timer_id;
128 struct list_head posix_timers;
129
130 /* ITIMER_REAL timer for the process */
131 struct hrtimer real_timer;
132 ktime_t it_real_incr;
133
134 /*
135 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
136 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
137 * values are defined to 0 and 1 respectively
138 */
139 struct cpu_itimer it[2];
140
141 /*
142 * Thread group totals for process CPU timers.
143 * See thread_group_cputimer(), et al, for details.
144 */
145 struct thread_group_cputimer cputimer;
146
147 #endif
148 /* Empty if CONFIG_POSIX_TIMERS=n */
149 struct posix_cputimers posix_cputimers;
150
151 /* PID/PID hash table linkage. */
152 struct pid *pids[PIDTYPE_MAX];
153
154 #ifdef CONFIG_NO_HZ_FULL
155 atomic_t tick_dep_mask;
156 #endif
157
158 struct pid *tty_old_pgrp;
159
160 /* boolean value for session group leader */
161 int leader;
162
163 struct tty_struct *tty; /* NULL if no tty */
164
165 #ifdef CONFIG_SCHED_AUTOGROUP
166 struct autogroup *autogroup;
167 #endif
168 /*
169 * Cumulative resource counters for dead threads in the group,
170 * and for reaped dead child processes forked by this group.
171 * Live threads maintain their own counters and add to these
172 * in __exit_signal, except for the group leader.
173 */
174 seqlock_t stats_lock;
175 u64 utime, stime, cutime, cstime;
176 u64 gtime;
177 u64 cgtime;
178 struct prev_cputime prev_cputime;
179 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
180 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
181 unsigned long inblock, oublock, cinblock, coublock;
182 unsigned long maxrss, cmaxrss;
183 struct task_io_accounting ioac;
184
185 /*
186 * Cumulative ns of schedule CPU time fo dead threads in the
187 * group, not including a zombie group leader, (This only differs
188 * from jiffies_to_ns(utime + stime) if sched_clock uses something
189 * other than jiffies.)
190 */
191 unsigned long long sum_sched_runtime;
192
193 /*
194 * We don't bother to synchronize most readers of this at all,
195 * because there is no reader checking a limit that actually needs
196 * to get both rlim_cur and rlim_max atomically, and either one
197 * alone is a single word that can safely be read normally.
198 * getrlimit/setrlimit use task_lock(current->group_leader) to
199 * protect this instead of the siglock, because they really
200 * have no need to disable irqs.
201 */
202 struct rlimit rlim[RLIM_NLIMITS];
203
204 #ifdef CONFIG_BSD_PROCESS_ACCT
205 struct pacct_struct pacct; /* per-process accounting information */
206 #endif
207 #ifdef CONFIG_TASKSTATS
208 struct taskstats *stats;
209 #endif
210 #ifdef CONFIG_AUDIT
211 unsigned audit_tty;
212 struct tty_audit_buf *tty_audit_buf;
213 #endif
214
215 /*
216 * Thread is the potential origin of an oom condition; kill first on
217 * oom
218 */
219 bool oom_flag_origin;
220 short oom_score_adj; /* OOM kill score adjustment */
221 short oom_score_adj_min; /* OOM kill score adjustment min value.
222 * Only settable by CAP_SYS_RESOURCE. */
223 struct mm_struct *oom_mm; /* recorded mm when the thread group got
224 * killed by the oom killer */
225
226 struct mutex cred_guard_mutex; /* guard against foreign influences on
227 * credential calculations
228 * (notably. ptrace) */
229 ANDROID_KABI_RESERVE(1);
230 ANDROID_KABI_RESERVE(2);
231 ANDROID_KABI_RESERVE(3);
232 ANDROID_KABI_RESERVE(4);
233 } __randomize_layout;
234
235 /*
236 * Bits in flags field of signal_struct.
237 */
238 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
239 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
240 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
241 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
242 /*
243 * Pending notifications to parent.
244 */
245 #define SIGNAL_CLD_STOPPED 0x00000010
246 #define SIGNAL_CLD_CONTINUED 0x00000020
247 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
248
249 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
250
251 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
252 SIGNAL_STOP_CONTINUED)
253
signal_set_stop_flags(struct signal_struct * sig,unsigned int flags)254 static inline void signal_set_stop_flags(struct signal_struct *sig,
255 unsigned int flags)
256 {
257 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
258 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
259 }
260
261 /* If true, all threads except ->group_exit_task have pending SIGKILL */
signal_group_exit(const struct signal_struct * sig)262 static inline int signal_group_exit(const struct signal_struct *sig)
263 {
264 return (sig->flags & SIGNAL_GROUP_EXIT) ||
265 (sig->group_exit_task != NULL);
266 }
267
268 extern void flush_signals(struct task_struct *);
269 extern void ignore_signals(struct task_struct *);
270 extern void flush_signal_handlers(struct task_struct *, int force_default);
271 extern int dequeue_signal(struct task_struct *task,
272 sigset_t *mask, kernel_siginfo_t *info);
273
kernel_dequeue_signal(void)274 static inline int kernel_dequeue_signal(void)
275 {
276 struct task_struct *task = current;
277 kernel_siginfo_t __info;
278 int ret;
279
280 spin_lock_irq(&task->sighand->siglock);
281 ret = dequeue_signal(task, &task->blocked, &__info);
282 spin_unlock_irq(&task->sighand->siglock);
283
284 return ret;
285 }
286
kernel_signal_stop(void)287 static inline void kernel_signal_stop(void)
288 {
289 spin_lock_irq(¤t->sighand->siglock);
290 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
291 set_special_state(TASK_STOPPED);
292 spin_unlock_irq(¤t->sighand->siglock);
293
294 schedule();
295 }
296 #ifdef __ARCH_SI_TRAPNO
297 # define ___ARCH_SI_TRAPNO(_a1) , _a1
298 #else
299 # define ___ARCH_SI_TRAPNO(_a1)
300 #endif
301 #ifdef __ia64__
302 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
303 #else
304 # define ___ARCH_SI_IA64(_a1, _a2, _a3)
305 #endif
306
307 int force_sig_fault_to_task(int sig, int code, void __user *addr
308 ___ARCH_SI_TRAPNO(int trapno)
309 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
310 , struct task_struct *t);
311 int force_sig_fault(int sig, int code, void __user *addr
312 ___ARCH_SI_TRAPNO(int trapno)
313 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
314 int send_sig_fault(int sig, int code, void __user *addr
315 ___ARCH_SI_TRAPNO(int trapno)
316 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
317 , struct task_struct *t);
318
319 int force_sig_mceerr(int code, void __user *, short);
320 int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
321
322 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
323 int force_sig_pkuerr(void __user *addr, u32 pkey);
324
325 int force_sig_ptrace_errno_trap(int errno, void __user *addr);
326
327 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
328 extern void force_sigsegv(int sig);
329 extern int force_sig_info(struct kernel_siginfo *);
330 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
331 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
332 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
333 const struct cred *);
334 extern int kill_pgrp(struct pid *pid, int sig, int priv);
335 extern int kill_pid(struct pid *pid, int sig, int priv);
336 extern __must_check bool do_notify_parent(struct task_struct *, int);
337 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
338 extern void force_sig(int);
339 extern int send_sig(int, struct task_struct *, int);
340 extern int zap_other_threads(struct task_struct *p);
341 extern struct sigqueue *sigqueue_alloc(void);
342 extern void sigqueue_free(struct sigqueue *);
343 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
344 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
345
restart_syscall(void)346 static inline int restart_syscall(void)
347 {
348 set_tsk_thread_flag(current, TIF_SIGPENDING);
349 return -ERESTARTNOINTR;
350 }
351
signal_pending(struct task_struct * p)352 static inline int signal_pending(struct task_struct *p)
353 {
354 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
355 }
356
__fatal_signal_pending(struct task_struct * p)357 static inline int __fatal_signal_pending(struct task_struct *p)
358 {
359 return unlikely(sigismember(&p->pending.signal, SIGKILL));
360 }
361
fatal_signal_pending(struct task_struct * p)362 static inline int fatal_signal_pending(struct task_struct *p)
363 {
364 return signal_pending(p) && __fatal_signal_pending(p);
365 }
366
signal_pending_state(long state,struct task_struct * p)367 static inline int signal_pending_state(long state, struct task_struct *p)
368 {
369 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
370 return 0;
371 if (!signal_pending(p))
372 return 0;
373
374 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
375 }
376
377 /*
378 * Reevaluate whether the task has signals pending delivery.
379 * Wake the task if so.
380 * This is required every time the blocked sigset_t changes.
381 * callers must hold sighand->siglock.
382 */
383 extern void recalc_sigpending_and_wake(struct task_struct *t);
384 extern void recalc_sigpending(void);
385 extern void calculate_sigpending(void);
386
387 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
388
signal_wake_up(struct task_struct * t,bool resume)389 static inline void signal_wake_up(struct task_struct *t, bool resume)
390 {
391 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
392 }
ptrace_signal_wake_up(struct task_struct * t,bool resume)393 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
394 {
395 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
396 }
397
398 void task_join_group_stop(struct task_struct *task);
399
400 #ifdef TIF_RESTORE_SIGMASK
401 /*
402 * Legacy restore_sigmask accessors. These are inefficient on
403 * SMP architectures because they require atomic operations.
404 */
405
406 /**
407 * set_restore_sigmask() - make sure saved_sigmask processing gets done
408 *
409 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
410 * will run before returning to user mode, to process the flag. For
411 * all callers, TIF_SIGPENDING is already set or it's no harm to set
412 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
413 * arch code will notice on return to user mode, in case those bits
414 * are scarce. We set TIF_SIGPENDING here to ensure that the arch
415 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
416 */
set_restore_sigmask(void)417 static inline void set_restore_sigmask(void)
418 {
419 set_thread_flag(TIF_RESTORE_SIGMASK);
420 }
421
clear_tsk_restore_sigmask(struct task_struct * task)422 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
423 {
424 clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
425 }
426
clear_restore_sigmask(void)427 static inline void clear_restore_sigmask(void)
428 {
429 clear_thread_flag(TIF_RESTORE_SIGMASK);
430 }
test_tsk_restore_sigmask(struct task_struct * task)431 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
432 {
433 return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
434 }
test_restore_sigmask(void)435 static inline bool test_restore_sigmask(void)
436 {
437 return test_thread_flag(TIF_RESTORE_SIGMASK);
438 }
test_and_clear_restore_sigmask(void)439 static inline bool test_and_clear_restore_sigmask(void)
440 {
441 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
442 }
443
444 #else /* TIF_RESTORE_SIGMASK */
445
446 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
set_restore_sigmask(void)447 static inline void set_restore_sigmask(void)
448 {
449 current->restore_sigmask = true;
450 }
clear_tsk_restore_sigmask(struct task_struct * task)451 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
452 {
453 task->restore_sigmask = false;
454 }
clear_restore_sigmask(void)455 static inline void clear_restore_sigmask(void)
456 {
457 current->restore_sigmask = false;
458 }
test_restore_sigmask(void)459 static inline bool test_restore_sigmask(void)
460 {
461 return current->restore_sigmask;
462 }
test_tsk_restore_sigmask(struct task_struct * task)463 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
464 {
465 return task->restore_sigmask;
466 }
test_and_clear_restore_sigmask(void)467 static inline bool test_and_clear_restore_sigmask(void)
468 {
469 if (!current->restore_sigmask)
470 return false;
471 current->restore_sigmask = false;
472 return true;
473 }
474 #endif
475
restore_saved_sigmask(void)476 static inline void restore_saved_sigmask(void)
477 {
478 if (test_and_clear_restore_sigmask())
479 __set_current_blocked(¤t->saved_sigmask);
480 }
481
482 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
483
restore_saved_sigmask_unless(bool interrupted)484 static inline void restore_saved_sigmask_unless(bool interrupted)
485 {
486 if (interrupted)
487 WARN_ON(!test_thread_flag(TIF_SIGPENDING));
488 else
489 restore_saved_sigmask();
490 }
491
sigmask_to_save(void)492 static inline sigset_t *sigmask_to_save(void)
493 {
494 sigset_t *res = ¤t->blocked;
495 if (unlikely(test_restore_sigmask()))
496 res = ¤t->saved_sigmask;
497 return res;
498 }
499
kill_cad_pid(int sig,int priv)500 static inline int kill_cad_pid(int sig, int priv)
501 {
502 return kill_pid(cad_pid, sig, priv);
503 }
504
505 /* These can be the second arg to send_sig_info/send_group_sig_info. */
506 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
507 #define SEND_SIG_PRIV ((struct kernel_siginfo *) 1)
508
__on_sig_stack(unsigned long sp)509 static inline int __on_sig_stack(unsigned long sp)
510 {
511 #ifdef CONFIG_STACK_GROWSUP
512 return sp >= current->sas_ss_sp &&
513 sp - current->sas_ss_sp < current->sas_ss_size;
514 #else
515 return sp > current->sas_ss_sp &&
516 sp - current->sas_ss_sp <= current->sas_ss_size;
517 #endif
518 }
519
520 /*
521 * True if we are on the alternate signal stack.
522 */
on_sig_stack(unsigned long sp)523 static inline int on_sig_stack(unsigned long sp)
524 {
525 /*
526 * If the signal stack is SS_AUTODISARM then, by construction, we
527 * can't be on the signal stack unless user code deliberately set
528 * SS_AUTODISARM when we were already on it.
529 *
530 * This improves reliability: if user state gets corrupted such that
531 * the stack pointer points very close to the end of the signal stack,
532 * then this check will enable the signal to be handled anyway.
533 */
534 if (current->sas_ss_flags & SS_AUTODISARM)
535 return 0;
536
537 return __on_sig_stack(sp);
538 }
539
sas_ss_flags(unsigned long sp)540 static inline int sas_ss_flags(unsigned long sp)
541 {
542 if (!current->sas_ss_size)
543 return SS_DISABLE;
544
545 return on_sig_stack(sp) ? SS_ONSTACK : 0;
546 }
547
sas_ss_reset(struct task_struct * p)548 static inline void sas_ss_reset(struct task_struct *p)
549 {
550 p->sas_ss_sp = 0;
551 p->sas_ss_size = 0;
552 p->sas_ss_flags = SS_DISABLE;
553 }
554
sigsp(unsigned long sp,struct ksignal * ksig)555 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
556 {
557 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
558 #ifdef CONFIG_STACK_GROWSUP
559 return current->sas_ss_sp;
560 #else
561 return current->sas_ss_sp + current->sas_ss_size;
562 #endif
563 return sp;
564 }
565
566 extern void __cleanup_sighand(struct sighand_struct *);
567 extern void flush_itimer_signals(void);
568
569 #define tasklist_empty() \
570 list_empty(&init_task.tasks)
571
572 #define next_task(p) \
573 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
574
575 #define for_each_process(p) \
576 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
577
578 extern bool current_is_single_threaded(void);
579
580 /*
581 * Careful: do_each_thread/while_each_thread is a double loop so
582 * 'break' will not work as expected - use goto instead.
583 */
584 #define do_each_thread(g, t) \
585 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
586
587 #define while_each_thread(g, t) \
588 while ((t = next_thread(t)) != g)
589
590 #define __for_each_thread(signal, t) \
591 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
592
593 #define for_each_thread(p, t) \
594 __for_each_thread((p)->signal, t)
595
596 /* Careful: this is a double loop, 'break' won't work as expected. */
597 #define for_each_process_thread(p, t) \
598 for_each_process(p) for_each_thread(p, t)
599
600 typedef int (*proc_visitor)(struct task_struct *p, void *data);
601 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
602
603 static inline
task_pid_type(struct task_struct * task,enum pid_type type)604 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
605 {
606 struct pid *pid;
607 if (type == PIDTYPE_PID)
608 pid = task_pid(task);
609 else
610 pid = task->signal->pids[type];
611 return pid;
612 }
613
task_tgid(struct task_struct * task)614 static inline struct pid *task_tgid(struct task_struct *task)
615 {
616 return task->signal->pids[PIDTYPE_TGID];
617 }
618
619 /*
620 * Without tasklist or RCU lock it is not safe to dereference
621 * the result of task_pgrp/task_session even if task == current,
622 * we can race with another thread doing sys_setsid/sys_setpgid.
623 */
task_pgrp(struct task_struct * task)624 static inline struct pid *task_pgrp(struct task_struct *task)
625 {
626 return task->signal->pids[PIDTYPE_PGID];
627 }
628
task_session(struct task_struct * task)629 static inline struct pid *task_session(struct task_struct *task)
630 {
631 return task->signal->pids[PIDTYPE_SID];
632 }
633
get_nr_threads(struct task_struct * task)634 static inline int get_nr_threads(struct task_struct *task)
635 {
636 return task->signal->nr_threads;
637 }
638
thread_group_leader(struct task_struct * p)639 static inline bool thread_group_leader(struct task_struct *p)
640 {
641 return p->exit_signal >= 0;
642 }
643
644 /* Do to the insanities of de_thread it is possible for a process
645 * to have the pid of the thread group leader without actually being
646 * the thread group leader. For iteration through the pids in proc
647 * all we care about is that we have a task with the appropriate
648 * pid, we don't actually care if we have the right task.
649 */
has_group_leader_pid(struct task_struct * p)650 static inline bool has_group_leader_pid(struct task_struct *p)
651 {
652 return task_pid(p) == task_tgid(p);
653 }
654
655 static inline
same_thread_group(struct task_struct * p1,struct task_struct * p2)656 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
657 {
658 return p1->signal == p2->signal;
659 }
660
next_thread(const struct task_struct * p)661 static inline struct task_struct *next_thread(const struct task_struct *p)
662 {
663 return list_entry_rcu(p->thread_group.next,
664 struct task_struct, thread_group);
665 }
666
thread_group_empty(struct task_struct * p)667 static inline int thread_group_empty(struct task_struct *p)
668 {
669 return list_empty(&p->thread_group);
670 }
671
672 #define delay_group_leader(p) \
673 (thread_group_leader(p) && !thread_group_empty(p))
674
675 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
676 unsigned long *flags);
677
lock_task_sighand(struct task_struct * task,unsigned long * flags)678 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
679 unsigned long *flags)
680 {
681 struct sighand_struct *ret;
682
683 ret = __lock_task_sighand(task, flags);
684 (void)__cond_lock(&task->sighand->siglock, ret);
685 return ret;
686 }
687
unlock_task_sighand(struct task_struct * task,unsigned long * flags)688 static inline void unlock_task_sighand(struct task_struct *task,
689 unsigned long *flags)
690 {
691 spin_unlock_irqrestore(&task->sighand->siglock, *flags);
692 }
693
task_rlimit(const struct task_struct * task,unsigned int limit)694 static inline unsigned long task_rlimit(const struct task_struct *task,
695 unsigned int limit)
696 {
697 return READ_ONCE(task->signal->rlim[limit].rlim_cur);
698 }
699
task_rlimit_max(const struct task_struct * task,unsigned int limit)700 static inline unsigned long task_rlimit_max(const struct task_struct *task,
701 unsigned int limit)
702 {
703 return READ_ONCE(task->signal->rlim[limit].rlim_max);
704 }
705
rlimit(unsigned int limit)706 static inline unsigned long rlimit(unsigned int limit)
707 {
708 return task_rlimit(current, limit);
709 }
710
rlimit_max(unsigned int limit)711 static inline unsigned long rlimit_max(unsigned int limit)
712 {
713 return task_rlimit_max(current, limit);
714 }
715
716 #endif /* _LINUX_SCHED_SIGNAL_H */
717