• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3  * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4  * System-call specific features have moved to auditsc.c
5  *
6  * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7  * All Rights Reserved.
8  *
9  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10  *
11  * Goals: 1) Integrate fully with Security Modules.
12  *	  2) Minimal run-time overhead:
13  *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
14  *	     b) Small when syscall auditing is enabled and no audit record
15  *		is generated (defer as much work as possible to record
16  *		generation time):
17  *		i) context is allocated,
18  *		ii) names from getname are stored without a copy, and
19  *		iii) inode information stored from path_lookup.
20  *	  3) Ability to disable syscall auditing at boot time (audit=0).
21  *	  4) Usable by other parts of the kernel (if audit_log* is called,
22  *	     then a syscall record will be generated automatically for the
23  *	     current syscall).
24  *	  5) Netlink interface to user-space.
25  *	  6) Support low-overhead kernel-based filtering to minimize the
26  *	     information that must be passed to user-space.
27  *
28  * Audit userspace, documentation, tests, and bug/issue trackers:
29  * 	https://github.com/linux-audit
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
50 
51 #include <linux/audit.h>
52 
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #ifdef CONFIG_SECURITY
57 #include <linux/security.h>
58 #endif
59 #include <linux/freezer.h>
60 #include <linux/pid_namespace.h>
61 #include <net/netns/generic.h>
62 
63 #include "audit.h"
64 
65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
66  * (Initialization happens after skb_init is called.) */
67 #define AUDIT_DISABLED		-1
68 #define AUDIT_UNINITIALIZED	0
69 #define AUDIT_INITIALIZED	1
70 static int	audit_initialized;
71 
72 u32		audit_enabled = AUDIT_OFF;
73 bool		audit_ever_enabled = !!AUDIT_OFF;
74 
75 EXPORT_SYMBOL_GPL(audit_enabled);
76 
77 /* Default state when kernel boots without any parameters. */
78 static u32	audit_default = AUDIT_OFF;
79 
80 /* If auditing cannot proceed, audit_failure selects what happens. */
81 static u32	audit_failure = AUDIT_FAIL_PRINTK;
82 
83 /* private audit network namespace index */
84 static unsigned int audit_net_id;
85 
86 /**
87  * struct audit_net - audit private network namespace data
88  * @sk: communication socket
89  */
90 struct audit_net {
91 	struct sock *sk;
92 };
93 
94 /**
95  * struct auditd_connection - kernel/auditd connection state
96  * @pid: auditd PID
97  * @portid: netlink portid
98  * @net: the associated network namespace
99  * @rcu: RCU head
100  *
101  * Description:
102  * This struct is RCU protected; you must either hold the RCU lock for reading
103  * or the associated spinlock for writing.
104  */
105 static struct auditd_connection {
106 	struct pid *pid;
107 	u32 portid;
108 	struct net *net;
109 	struct rcu_head rcu;
110 } *auditd_conn = NULL;
111 static DEFINE_SPINLOCK(auditd_conn_lock);
112 
113 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
114  * to that number per second.  This prevents DoS attacks, but results in
115  * audit records being dropped. */
116 static u32	audit_rate_limit;
117 
118 /* Number of outstanding audit_buffers allowed.
119  * When set to zero, this means unlimited. */
120 static u32	audit_backlog_limit = 64;
121 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
122 static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
123 
124 /* The identity of the user shutting down the audit system. */
125 kuid_t		audit_sig_uid = INVALID_UID;
126 pid_t		audit_sig_pid = -1;
127 u32		audit_sig_sid = 0;
128 
129 /* Records can be lost in several ways:
130    0) [suppressed in audit_alloc]
131    1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
132    2) out of memory in audit_log_move [alloc_skb]
133    3) suppressed due to audit_rate_limit
134    4) suppressed due to audit_backlog_limit
135 */
136 static atomic_t	audit_lost = ATOMIC_INIT(0);
137 
138 /* Hash for inode-based rules */
139 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
140 
141 static struct kmem_cache *audit_buffer_cache;
142 
143 /* queue msgs to send via kauditd_task */
144 static struct sk_buff_head audit_queue;
145 /* queue msgs due to temporary unicast send problems */
146 static struct sk_buff_head audit_retry_queue;
147 /* queue msgs waiting for new auditd connection */
148 static struct sk_buff_head audit_hold_queue;
149 
150 /* queue servicing thread */
151 static struct task_struct *kauditd_task;
152 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
153 
154 /* waitqueue for callers who are blocked on the audit backlog */
155 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
156 
157 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
158 				   .mask = -1,
159 				   .features = 0,
160 				   .lock = 0,};
161 
162 static char *audit_feature_names[2] = {
163 	"only_unset_loginuid",
164 	"loginuid_immutable",
165 };
166 
167 /**
168  * struct audit_ctl_mutex - serialize requests from userspace
169  * @lock: the mutex used for locking
170  * @owner: the task which owns the lock
171  *
172  * Description:
173  * This is the lock struct used to ensure we only process userspace requests
174  * in an orderly fashion.  We can't simply use a mutex/lock here because we
175  * need to track lock ownership so we don't end up blocking the lock owner in
176  * audit_log_start() or similar.
177  */
178 static struct audit_ctl_mutex {
179 	struct mutex lock;
180 	void *owner;
181 } audit_cmd_mutex;
182 
183 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
184  * audit records.  Since printk uses a 1024 byte buffer, this buffer
185  * should be at least that large. */
186 #define AUDIT_BUFSIZ 1024
187 
188 /* The audit_buffer is used when formatting an audit record.  The caller
189  * locks briefly to get the record off the freelist or to allocate the
190  * buffer, and locks briefly to send the buffer to the netlink layer or
191  * to place it on a transmit queue.  Multiple audit_buffers can be in
192  * use simultaneously. */
193 struct audit_buffer {
194 	struct sk_buff       *skb;	/* formatted skb ready to send */
195 	struct audit_context *ctx;	/* NULL or associated context */
196 	gfp_t		     gfp_mask;
197 };
198 
199 struct audit_reply {
200 	__u32 portid;
201 	struct net *net;
202 	struct sk_buff *skb;
203 };
204 
205 /**
206  * auditd_test_task - Check to see if a given task is an audit daemon
207  * @task: the task to check
208  *
209  * Description:
210  * Return 1 if the task is a registered audit daemon, 0 otherwise.
211  */
auditd_test_task(struct task_struct * task)212 int auditd_test_task(struct task_struct *task)
213 {
214 	int rc;
215 	struct auditd_connection *ac;
216 
217 	rcu_read_lock();
218 	ac = rcu_dereference(auditd_conn);
219 	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
220 	rcu_read_unlock();
221 
222 	return rc;
223 }
224 
225 /**
226  * audit_ctl_lock - Take the audit control lock
227  */
audit_ctl_lock(void)228 void audit_ctl_lock(void)
229 {
230 	mutex_lock(&audit_cmd_mutex.lock);
231 	audit_cmd_mutex.owner = current;
232 }
233 
234 /**
235  * audit_ctl_unlock - Drop the audit control lock
236  */
audit_ctl_unlock(void)237 void audit_ctl_unlock(void)
238 {
239 	audit_cmd_mutex.owner = NULL;
240 	mutex_unlock(&audit_cmd_mutex.lock);
241 }
242 
243 /**
244  * audit_ctl_owner_current - Test to see if the current task owns the lock
245  *
246  * Description:
247  * Return true if the current task owns the audit control lock, false if it
248  * doesn't own the lock.
249  */
audit_ctl_owner_current(void)250 static bool audit_ctl_owner_current(void)
251 {
252 	return (current == audit_cmd_mutex.owner);
253 }
254 
255 /**
256  * auditd_pid_vnr - Return the auditd PID relative to the namespace
257  *
258  * Description:
259  * Returns the PID in relation to the namespace, 0 on failure.
260  */
auditd_pid_vnr(void)261 static pid_t auditd_pid_vnr(void)
262 {
263 	pid_t pid;
264 	const struct auditd_connection *ac;
265 
266 	rcu_read_lock();
267 	ac = rcu_dereference(auditd_conn);
268 	if (!ac || !ac->pid)
269 		pid = 0;
270 	else
271 		pid = pid_vnr(ac->pid);
272 	rcu_read_unlock();
273 
274 	return pid;
275 }
276 
277 /**
278  * audit_get_sk - Return the audit socket for the given network namespace
279  * @net: the destination network namespace
280  *
281  * Description:
282  * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
283  * that a reference is held for the network namespace while the sock is in use.
284  */
audit_get_sk(const struct net * net)285 static struct sock *audit_get_sk(const struct net *net)
286 {
287 	struct audit_net *aunet;
288 
289 	if (!net)
290 		return NULL;
291 
292 	aunet = net_generic(net, audit_net_id);
293 	return aunet->sk;
294 }
295 
audit_panic(const char * message)296 void audit_panic(const char *message)
297 {
298 	switch (audit_failure) {
299 	case AUDIT_FAIL_SILENT:
300 		break;
301 	case AUDIT_FAIL_PRINTK:
302 		if (printk_ratelimit())
303 			pr_err("%s\n", message);
304 		break;
305 	case AUDIT_FAIL_PANIC:
306 		panic("audit: %s\n", message);
307 		break;
308 	}
309 }
310 
audit_rate_check(void)311 static inline int audit_rate_check(void)
312 {
313 	static unsigned long	last_check = 0;
314 	static int		messages   = 0;
315 	static DEFINE_SPINLOCK(lock);
316 	unsigned long		flags;
317 	unsigned long		now;
318 	unsigned long		elapsed;
319 	int			retval	   = 0;
320 
321 	if (!audit_rate_limit) return 1;
322 
323 	spin_lock_irqsave(&lock, flags);
324 	if (++messages < audit_rate_limit) {
325 		retval = 1;
326 	} else {
327 		now     = jiffies;
328 		elapsed = now - last_check;
329 		if (elapsed > HZ) {
330 			last_check = now;
331 			messages   = 0;
332 			retval     = 1;
333 		}
334 	}
335 	spin_unlock_irqrestore(&lock, flags);
336 
337 	return retval;
338 }
339 
340 /**
341  * audit_log_lost - conditionally log lost audit message event
342  * @message: the message stating reason for lost audit message
343  *
344  * Emit at least 1 message per second, even if audit_rate_check is
345  * throttling.
346  * Always increment the lost messages counter.
347 */
audit_log_lost(const char * message)348 void audit_log_lost(const char *message)
349 {
350 	static unsigned long	last_msg = 0;
351 	static DEFINE_SPINLOCK(lock);
352 	unsigned long		flags;
353 	unsigned long		now;
354 	int			print;
355 
356 	atomic_inc(&audit_lost);
357 
358 	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
359 
360 	if (!print) {
361 		spin_lock_irqsave(&lock, flags);
362 		now = jiffies;
363 		if (now - last_msg > HZ) {
364 			print = 1;
365 			last_msg = now;
366 		}
367 		spin_unlock_irqrestore(&lock, flags);
368 	}
369 
370 	if (print) {
371 		if (printk_ratelimit())
372 			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
373 				atomic_read(&audit_lost),
374 				audit_rate_limit,
375 				audit_backlog_limit);
376 		audit_panic(message);
377 	}
378 }
379 
audit_log_config_change(char * function_name,u32 new,u32 old,int allow_changes)380 static int audit_log_config_change(char *function_name, u32 new, u32 old,
381 				   int allow_changes)
382 {
383 	struct audit_buffer *ab;
384 	int rc = 0;
385 
386 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
387 	if (unlikely(!ab))
388 		return rc;
389 	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
390 	audit_log_session_info(ab);
391 	rc = audit_log_task_context(ab);
392 	if (rc)
393 		allow_changes = 0; /* Something weird, deny request */
394 	audit_log_format(ab, " res=%d", allow_changes);
395 	audit_log_end(ab);
396 	return rc;
397 }
398 
audit_do_config_change(char * function_name,u32 * to_change,u32 new)399 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
400 {
401 	int allow_changes, rc = 0;
402 	u32 old = *to_change;
403 
404 	/* check if we are locked */
405 	if (audit_enabled == AUDIT_LOCKED)
406 		allow_changes = 0;
407 	else
408 		allow_changes = 1;
409 
410 	if (audit_enabled != AUDIT_OFF) {
411 		rc = audit_log_config_change(function_name, new, old, allow_changes);
412 		if (rc)
413 			allow_changes = 0;
414 	}
415 
416 	/* If we are allowed, make the change */
417 	if (allow_changes == 1)
418 		*to_change = new;
419 	/* Not allowed, update reason */
420 	else if (rc == 0)
421 		rc = -EPERM;
422 	return rc;
423 }
424 
audit_set_rate_limit(u32 limit)425 static int audit_set_rate_limit(u32 limit)
426 {
427 	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
428 }
429 
audit_set_backlog_limit(u32 limit)430 static int audit_set_backlog_limit(u32 limit)
431 {
432 	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
433 }
434 
audit_set_backlog_wait_time(u32 timeout)435 static int audit_set_backlog_wait_time(u32 timeout)
436 {
437 	return audit_do_config_change("audit_backlog_wait_time",
438 				      &audit_backlog_wait_time, timeout);
439 }
440 
audit_set_enabled(u32 state)441 static int audit_set_enabled(u32 state)
442 {
443 	int rc;
444 	if (state > AUDIT_LOCKED)
445 		return -EINVAL;
446 
447 	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
448 	if (!rc)
449 		audit_ever_enabled |= !!state;
450 
451 	return rc;
452 }
453 
audit_set_failure(u32 state)454 static int audit_set_failure(u32 state)
455 {
456 	if (state != AUDIT_FAIL_SILENT
457 	    && state != AUDIT_FAIL_PRINTK
458 	    && state != AUDIT_FAIL_PANIC)
459 		return -EINVAL;
460 
461 	return audit_do_config_change("audit_failure", &audit_failure, state);
462 }
463 
464 /**
465  * auditd_conn_free - RCU helper to release an auditd connection struct
466  * @rcu: RCU head
467  *
468  * Description:
469  * Drop any references inside the auditd connection tracking struct and free
470  * the memory.
471  */
auditd_conn_free(struct rcu_head * rcu)472 static void auditd_conn_free(struct rcu_head *rcu)
473 {
474 	struct auditd_connection *ac;
475 
476 	ac = container_of(rcu, struct auditd_connection, rcu);
477 	put_pid(ac->pid);
478 	put_net(ac->net);
479 	kfree(ac);
480 }
481 
482 /**
483  * auditd_set - Set/Reset the auditd connection state
484  * @pid: auditd PID
485  * @portid: auditd netlink portid
486  * @net: auditd network namespace pointer
487  * @skb: the netlink command from the audit daemon
488  * @ack: netlink ack flag, cleared if ack'd here
489  *
490  * Description:
491  * This function will obtain and drop network namespace references as
492  * necessary.  Returns zero on success, negative values on failure.
493  */
auditd_set(struct pid * pid,u32 portid,struct net * net,struct sk_buff * skb,bool * ack)494 static int auditd_set(struct pid *pid, u32 portid, struct net *net,
495 		      struct sk_buff *skb, bool *ack)
496 {
497 	unsigned long flags;
498 	struct auditd_connection *ac_old, *ac_new;
499 	struct nlmsghdr *nlh;
500 
501 	if (!pid || !net)
502 		return -EINVAL;
503 
504 	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
505 	if (!ac_new)
506 		return -ENOMEM;
507 	ac_new->pid = get_pid(pid);
508 	ac_new->portid = portid;
509 	ac_new->net = get_net(net);
510 
511 	/* send the ack now to avoid a race with the queue backlog */
512 	if (*ack) {
513 		nlh = nlmsg_hdr(skb);
514 		netlink_ack(skb, nlh, 0, NULL);
515 		*ack = false;
516 	}
517 
518 	spin_lock_irqsave(&auditd_conn_lock, flags);
519 	ac_old = rcu_dereference_protected(auditd_conn,
520 					   lockdep_is_held(&auditd_conn_lock));
521 	rcu_assign_pointer(auditd_conn, ac_new);
522 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
523 
524 	if (ac_old)
525 		call_rcu(&ac_old->rcu, auditd_conn_free);
526 
527 	return 0;
528 }
529 
530 /**
531  * kauditd_print_skb - Print the audit record to the ring buffer
532  * @skb: audit record
533  *
534  * Whatever the reason, this packet may not make it to the auditd connection
535  * so write it via printk so the information isn't completely lost.
536  */
kauditd_printk_skb(struct sk_buff * skb)537 static void kauditd_printk_skb(struct sk_buff *skb)
538 {
539 	struct nlmsghdr *nlh = nlmsg_hdr(skb);
540 	char *data = nlmsg_data(nlh);
541 
542 	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
543 		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
544 }
545 
546 /**
547  * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
548  * @skb: audit record
549  * @error: error code (unused)
550  *
551  * Description:
552  * This should only be used by the kauditd_thread when it fails to flush the
553  * hold queue.
554  */
kauditd_rehold_skb(struct sk_buff * skb,__always_unused int error)555 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
556 {
557 	/* put the record back in the queue */
558 	skb_queue_tail(&audit_hold_queue, skb);
559 }
560 
561 /**
562  * kauditd_hold_skb - Queue an audit record, waiting for auditd
563  * @skb: audit record
564  * @error: error code
565  *
566  * Description:
567  * Queue the audit record, waiting for an instance of auditd.  When this
568  * function is called we haven't given up yet on sending the record, but things
569  * are not looking good.  The first thing we want to do is try to write the
570  * record via printk and then see if we want to try and hold on to the record
571  * and queue it, if we have room.  If we want to hold on to the record, but we
572  * don't have room, record a record lost message.
573  */
kauditd_hold_skb(struct sk_buff * skb,int error)574 static void kauditd_hold_skb(struct sk_buff *skb, int error)
575 {
576 	/* at this point it is uncertain if we will ever send this to auditd so
577 	 * try to send the message via printk before we go any further */
578 	kauditd_printk_skb(skb);
579 
580 	/* can we just silently drop the message? */
581 	if (!audit_default)
582 		goto drop;
583 
584 	/* the hold queue is only for when the daemon goes away completely,
585 	 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
586 	 * record on the retry queue unless it's full, in which case drop it
587 	 */
588 	if (error == -EAGAIN) {
589 		if (!audit_backlog_limit ||
590 		    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
591 			skb_queue_tail(&audit_retry_queue, skb);
592 			return;
593 		}
594 		audit_log_lost("kauditd retry queue overflow");
595 		goto drop;
596 	}
597 
598 	/* if we have room in the hold queue, queue the message */
599 	if (!audit_backlog_limit ||
600 	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
601 		skb_queue_tail(&audit_hold_queue, skb);
602 		return;
603 	}
604 
605 	/* we have no other options - drop the message */
606 	audit_log_lost("kauditd hold queue overflow");
607 drop:
608 	kfree_skb(skb);
609 }
610 
611 /**
612  * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
613  * @skb: audit record
614  * @error: error code (unused)
615  *
616  * Description:
617  * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
618  * but for some reason we are having problems sending it audit records so
619  * queue the given record and attempt to resend.
620  */
kauditd_retry_skb(struct sk_buff * skb,__always_unused int error)621 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
622 {
623 	if (!audit_backlog_limit ||
624 	    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
625 		skb_queue_tail(&audit_retry_queue, skb);
626 		return;
627 	}
628 
629 	/* we have to drop the record, send it via printk as a last effort */
630 	kauditd_printk_skb(skb);
631 	audit_log_lost("kauditd retry queue overflow");
632 	kfree_skb(skb);
633 }
634 
635 /**
636  * auditd_reset - Disconnect the auditd connection
637  * @ac: auditd connection state
638  *
639  * Description:
640  * Break the auditd/kauditd connection and move all the queued records into the
641  * hold queue in case auditd reconnects.  It is important to note that the @ac
642  * pointer should never be dereferenced inside this function as it may be NULL
643  * or invalid, you can only compare the memory address!  If @ac is NULL then
644  * the connection will always be reset.
645  */
auditd_reset(const struct auditd_connection * ac)646 static void auditd_reset(const struct auditd_connection *ac)
647 {
648 	unsigned long flags;
649 	struct sk_buff *skb;
650 	struct auditd_connection *ac_old;
651 
652 	/* if it isn't already broken, break the connection */
653 	spin_lock_irqsave(&auditd_conn_lock, flags);
654 	ac_old = rcu_dereference_protected(auditd_conn,
655 					   lockdep_is_held(&auditd_conn_lock));
656 	if (ac && ac != ac_old) {
657 		/* someone already registered a new auditd connection */
658 		spin_unlock_irqrestore(&auditd_conn_lock, flags);
659 		return;
660 	}
661 	rcu_assign_pointer(auditd_conn, NULL);
662 	spin_unlock_irqrestore(&auditd_conn_lock, flags);
663 
664 	if (ac_old)
665 		call_rcu(&ac_old->rcu, auditd_conn_free);
666 
667 	/* flush the retry queue to the hold queue, but don't touch the main
668 	 * queue since we need to process that normally for multicast */
669 	while ((skb = skb_dequeue(&audit_retry_queue)))
670 		kauditd_hold_skb(skb, -ECONNREFUSED);
671 }
672 
673 /**
674  * auditd_send_unicast_skb - Send a record via unicast to auditd
675  * @skb: audit record
676  *
677  * Description:
678  * Send a skb to the audit daemon, returns positive/zero values on success and
679  * negative values on failure; in all cases the skb will be consumed by this
680  * function.  If the send results in -ECONNREFUSED the connection with auditd
681  * will be reset.  This function may sleep so callers should not hold any locks
682  * where this would cause a problem.
683  */
auditd_send_unicast_skb(struct sk_buff * skb)684 static int auditd_send_unicast_skb(struct sk_buff *skb)
685 {
686 	int rc;
687 	u32 portid;
688 	struct net *net;
689 	struct sock *sk;
690 	struct auditd_connection *ac;
691 
692 	/* NOTE: we can't call netlink_unicast while in the RCU section so
693 	 *       take a reference to the network namespace and grab local
694 	 *       copies of the namespace, the sock, and the portid; the
695 	 *       namespace and sock aren't going to go away while we hold a
696 	 *       reference and if the portid does become invalid after the RCU
697 	 *       section netlink_unicast() should safely return an error */
698 
699 	rcu_read_lock();
700 	ac = rcu_dereference(auditd_conn);
701 	if (!ac) {
702 		rcu_read_unlock();
703 		kfree_skb(skb);
704 		rc = -ECONNREFUSED;
705 		goto err;
706 	}
707 	net = get_net(ac->net);
708 	sk = audit_get_sk(net);
709 	portid = ac->portid;
710 	rcu_read_unlock();
711 
712 	rc = netlink_unicast(sk, skb, portid, 0);
713 	put_net(net);
714 	if (rc < 0)
715 		goto err;
716 
717 	return rc;
718 
719 err:
720 	if (ac && rc == -ECONNREFUSED)
721 		auditd_reset(ac);
722 	return rc;
723 }
724 
725 /**
726  * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
727  * @sk: the sending sock
728  * @portid: the netlink destination
729  * @queue: the skb queue to process
730  * @retry_limit: limit on number of netlink unicast failures
731  * @skb_hook: per-skb hook for additional processing
732  * @err_hook: hook called if the skb fails the netlink unicast send
733  *
734  * Description:
735  * Run through the given queue and attempt to send the audit records to auditd,
736  * returns zero on success, negative values on failure.  It is up to the caller
737  * to ensure that the @sk is valid for the duration of this function.
738  *
739  */
kauditd_send_queue(struct sock * sk,u32 portid,struct sk_buff_head * queue,unsigned int retry_limit,void (* skb_hook)(struct sk_buff * skb),void (* err_hook)(struct sk_buff * skb,int error))740 static int kauditd_send_queue(struct sock *sk, u32 portid,
741 			      struct sk_buff_head *queue,
742 			      unsigned int retry_limit,
743 			      void (*skb_hook)(struct sk_buff *skb),
744 			      void (*err_hook)(struct sk_buff *skb, int error))
745 {
746 	int rc = 0;
747 	struct sk_buff *skb = NULL;
748 	struct sk_buff *skb_tail;
749 	unsigned int failed = 0;
750 
751 	/* NOTE: kauditd_thread takes care of all our locking, we just use
752 	 *       the netlink info passed to us (e.g. sk and portid) */
753 
754 	skb_tail = skb_peek_tail(queue);
755 	while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
756 		/* call the skb_hook for each skb we touch */
757 		if (skb_hook)
758 			(*skb_hook)(skb);
759 
760 		/* can we send to anyone via unicast? */
761 		if (!sk) {
762 			if (err_hook)
763 				(*err_hook)(skb, -ECONNREFUSED);
764 			continue;
765 		}
766 
767 retry:
768 		/* grab an extra skb reference in case of error */
769 		skb_get(skb);
770 		rc = netlink_unicast(sk, skb, portid, 0);
771 		if (rc < 0) {
772 			/* send failed - try a few times unless fatal error */
773 			if (++failed >= retry_limit ||
774 			    rc == -ECONNREFUSED || rc == -EPERM) {
775 				sk = NULL;
776 				if (err_hook)
777 					(*err_hook)(skb, rc);
778 				if (rc == -EAGAIN)
779 					rc = 0;
780 				/* continue to drain the queue */
781 				continue;
782 			} else
783 				goto retry;
784 		} else {
785 			/* skb sent - drop the extra reference and continue */
786 			consume_skb(skb);
787 			failed = 0;
788 		}
789 	}
790 
791 	return (rc >= 0 ? 0 : rc);
792 }
793 
794 /*
795  * kauditd_send_multicast_skb - Send a record to any multicast listeners
796  * @skb: audit record
797  *
798  * Description:
799  * Write a multicast message to anyone listening in the initial network
800  * namespace.  This function doesn't consume an skb as might be expected since
801  * it has to copy it anyways.
802  */
kauditd_send_multicast_skb(struct sk_buff * skb)803 static void kauditd_send_multicast_skb(struct sk_buff *skb)
804 {
805 	struct sk_buff *copy;
806 	struct sock *sock = audit_get_sk(&init_net);
807 	struct nlmsghdr *nlh;
808 
809 	/* NOTE: we are not taking an additional reference for init_net since
810 	 *       we don't have to worry about it going away */
811 
812 	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
813 		return;
814 
815 	/*
816 	 * The seemingly wasteful skb_copy() rather than bumping the refcount
817 	 * using skb_get() is necessary because non-standard mods are made to
818 	 * the skb by the original kaudit unicast socket send routine.  The
819 	 * existing auditd daemon assumes this breakage.  Fixing this would
820 	 * require co-ordinating a change in the established protocol between
821 	 * the kaudit kernel subsystem and the auditd userspace code.  There is
822 	 * no reason for new multicast clients to continue with this
823 	 * non-compliance.
824 	 */
825 	copy = skb_copy(skb, GFP_KERNEL);
826 	if (!copy)
827 		return;
828 	nlh = nlmsg_hdr(copy);
829 	nlh->nlmsg_len = skb->len;
830 
831 	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
832 }
833 
834 /**
835  * kauditd_thread - Worker thread to send audit records to userspace
836  * @dummy: unused
837  */
kauditd_thread(void * dummy)838 static int kauditd_thread(void *dummy)
839 {
840 	int rc;
841 	u32 portid = 0;
842 	struct net *net = NULL;
843 	struct sock *sk = NULL;
844 	struct auditd_connection *ac;
845 
846 #define UNICAST_RETRIES 5
847 
848 	set_freezable();
849 	while (!kthread_should_stop()) {
850 		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
851 		rcu_read_lock();
852 		ac = rcu_dereference(auditd_conn);
853 		if (!ac) {
854 			rcu_read_unlock();
855 			goto main_queue;
856 		}
857 		net = get_net(ac->net);
858 		sk = audit_get_sk(net);
859 		portid = ac->portid;
860 		rcu_read_unlock();
861 
862 		/* attempt to flush the hold queue */
863 		rc = kauditd_send_queue(sk, portid,
864 					&audit_hold_queue, UNICAST_RETRIES,
865 					NULL, kauditd_rehold_skb);
866 		if (ac && rc < 0) {
867 			sk = NULL;
868 			auditd_reset(ac);
869 			goto main_queue;
870 		}
871 
872 		/* attempt to flush the retry queue */
873 		rc = kauditd_send_queue(sk, portid,
874 					&audit_retry_queue, UNICAST_RETRIES,
875 					NULL, kauditd_hold_skb);
876 		if (ac && rc < 0) {
877 			sk = NULL;
878 			auditd_reset(ac);
879 			goto main_queue;
880 		}
881 
882 main_queue:
883 		/* process the main queue - do the multicast send and attempt
884 		 * unicast, dump failed record sends to the retry queue; if
885 		 * sk == NULL due to previous failures we will just do the
886 		 * multicast send and move the record to the hold queue */
887 		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
888 					kauditd_send_multicast_skb,
889 					(sk ?
890 					 kauditd_retry_skb : kauditd_hold_skb));
891 		if (ac && rc < 0)
892 			auditd_reset(ac);
893 		sk = NULL;
894 
895 		/* drop our netns reference, no auditd sends past this line */
896 		if (net) {
897 			put_net(net);
898 			net = NULL;
899 		}
900 
901 		/* we have processed all the queues so wake everyone */
902 		wake_up(&audit_backlog_wait);
903 
904 		/* NOTE: we want to wake up if there is anything on the queue,
905 		 *       regardless of if an auditd is connected, as we need to
906 		 *       do the multicast send and rotate records from the
907 		 *       main queue to the retry/hold queues */
908 		wait_event_freezable(kauditd_wait,
909 				     (skb_queue_len(&audit_queue) ? 1 : 0));
910 	}
911 
912 	return 0;
913 }
914 
audit_send_list_thread(void * _dest)915 int audit_send_list_thread(void *_dest)
916 {
917 	struct audit_netlink_list *dest = _dest;
918 	struct sk_buff *skb;
919 	struct sock *sk = audit_get_sk(dest->net);
920 
921 	/* wait for parent to finish and send an ACK */
922 	audit_ctl_lock();
923 	audit_ctl_unlock();
924 
925 	while ((skb = __skb_dequeue(&dest->q)) != NULL)
926 		netlink_unicast(sk, skb, dest->portid, 0);
927 
928 	put_net(dest->net);
929 	kfree(dest);
930 
931 	return 0;
932 }
933 
audit_make_reply(int seq,int type,int done,int multi,const void * payload,int size)934 struct sk_buff *audit_make_reply(int seq, int type, int done,
935 				 int multi, const void *payload, int size)
936 {
937 	struct sk_buff	*skb;
938 	struct nlmsghdr	*nlh;
939 	void		*data;
940 	int		flags = multi ? NLM_F_MULTI : 0;
941 	int		t     = done  ? NLMSG_DONE  : type;
942 
943 	skb = nlmsg_new(size, GFP_KERNEL);
944 	if (!skb)
945 		return NULL;
946 
947 	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
948 	if (!nlh)
949 		goto out_kfree_skb;
950 	data = nlmsg_data(nlh);
951 	memcpy(data, payload, size);
952 	return skb;
953 
954 out_kfree_skb:
955 	kfree_skb(skb);
956 	return NULL;
957 }
958 
audit_free_reply(struct audit_reply * reply)959 static void audit_free_reply(struct audit_reply *reply)
960 {
961 	if (!reply)
962 		return;
963 
964 	if (reply->skb)
965 		kfree_skb(reply->skb);
966 	if (reply->net)
967 		put_net(reply->net);
968 	kfree(reply);
969 }
970 
audit_send_reply_thread(void * arg)971 static int audit_send_reply_thread(void *arg)
972 {
973 	struct audit_reply *reply = (struct audit_reply *)arg;
974 
975 	audit_ctl_lock();
976 	audit_ctl_unlock();
977 
978 	/* Ignore failure. It'll only happen if the sender goes away,
979 	   because our timeout is set to infinite. */
980 	netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
981 	reply->skb = NULL;
982 	audit_free_reply(reply);
983 	return 0;
984 }
985 
986 /**
987  * audit_send_reply - send an audit reply message via netlink
988  * @request_skb: skb of request we are replying to (used to target the reply)
989  * @seq: sequence number
990  * @type: audit message type
991  * @done: done (last) flag
992  * @multi: multi-part message flag
993  * @payload: payload data
994  * @size: payload size
995  *
996  * Allocates a skb, builds the netlink message, and sends it to the port id.
997  */
audit_send_reply(struct sk_buff * request_skb,int seq,int type,int done,int multi,const void * payload,int size)998 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
999 			     int multi, const void *payload, int size)
1000 {
1001 	struct task_struct *tsk;
1002 	struct audit_reply *reply;
1003 
1004 	reply = kzalloc(sizeof(*reply), GFP_KERNEL);
1005 	if (!reply)
1006 		return;
1007 
1008 	reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1009 	if (!reply->skb)
1010 		goto err;
1011 	reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1012 	reply->portid = NETLINK_CB(request_skb).portid;
1013 
1014 	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1015 	if (IS_ERR(tsk))
1016 		goto err;
1017 
1018 	return;
1019 
1020 err:
1021 	audit_free_reply(reply);
1022 }
1023 
1024 /*
1025  * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1026  * control messages.
1027  */
audit_netlink_ok(struct sk_buff * skb,u16 msg_type)1028 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1029 {
1030 	int err = 0;
1031 
1032 	/* Only support initial user namespace for now. */
1033 	/*
1034 	 * We return ECONNREFUSED because it tricks userspace into thinking
1035 	 * that audit was not configured into the kernel.  Lots of users
1036 	 * configure their PAM stack (because that's what the distro does)
1037 	 * to reject login if unable to send messages to audit.  If we return
1038 	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1039 	 * configured in and will let login proceed.  If we return EPERM
1040 	 * userspace will reject all logins.  This should be removed when we
1041 	 * support non init namespaces!!
1042 	 */
1043 	if (current_user_ns() != &init_user_ns)
1044 		return -ECONNREFUSED;
1045 
1046 	switch (msg_type) {
1047 	case AUDIT_LIST:
1048 	case AUDIT_ADD:
1049 	case AUDIT_DEL:
1050 		return -EOPNOTSUPP;
1051 	case AUDIT_GET:
1052 	case AUDIT_SET:
1053 	case AUDIT_GET_FEATURE:
1054 	case AUDIT_SET_FEATURE:
1055 	case AUDIT_LIST_RULES:
1056 	case AUDIT_ADD_RULE:
1057 	case AUDIT_DEL_RULE:
1058 	case AUDIT_SIGNAL_INFO:
1059 	case AUDIT_TTY_GET:
1060 	case AUDIT_TTY_SET:
1061 	case AUDIT_TRIM:
1062 	case AUDIT_MAKE_EQUIV:
1063 		/* Only support auditd and auditctl in initial pid namespace
1064 		 * for now. */
1065 		if (task_active_pid_ns(current) != &init_pid_ns)
1066 			return -EPERM;
1067 
1068 		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1069 			err = -EPERM;
1070 		break;
1071 	case AUDIT_USER:
1072 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1073 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1074 		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1075 			err = -EPERM;
1076 		break;
1077 	default:  /* bad msg */
1078 		err = -EINVAL;
1079 	}
1080 
1081 	return err;
1082 }
1083 
audit_log_common_recv_msg(struct audit_context * context,struct audit_buffer ** ab,u16 msg_type)1084 static void audit_log_common_recv_msg(struct audit_context *context,
1085 					struct audit_buffer **ab, u16 msg_type)
1086 {
1087 	uid_t uid = from_kuid(&init_user_ns, current_uid());
1088 	pid_t pid = task_tgid_nr(current);
1089 
1090 	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1091 		*ab = NULL;
1092 		return;
1093 	}
1094 
1095 	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1096 	if (unlikely(!*ab))
1097 		return;
1098 	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1099 	audit_log_session_info(*ab);
1100 	audit_log_task_context(*ab);
1101 }
1102 
audit_log_user_recv_msg(struct audit_buffer ** ab,u16 msg_type)1103 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1104 					   u16 msg_type)
1105 {
1106 	audit_log_common_recv_msg(NULL, ab, msg_type);
1107 }
1108 
is_audit_feature_set(int i)1109 int is_audit_feature_set(int i)
1110 {
1111 	return af.features & AUDIT_FEATURE_TO_MASK(i);
1112 }
1113 
1114 
audit_get_feature(struct sk_buff * skb)1115 static int audit_get_feature(struct sk_buff *skb)
1116 {
1117 	u32 seq;
1118 
1119 	seq = nlmsg_hdr(skb)->nlmsg_seq;
1120 
1121 	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1122 
1123 	return 0;
1124 }
1125 
audit_log_feature_change(int which,u32 old_feature,u32 new_feature,u32 old_lock,u32 new_lock,int res)1126 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1127 				     u32 old_lock, u32 new_lock, int res)
1128 {
1129 	struct audit_buffer *ab;
1130 
1131 	if (audit_enabled == AUDIT_OFF)
1132 		return;
1133 
1134 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1135 	if (!ab)
1136 		return;
1137 	audit_log_task_info(ab);
1138 	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1139 			 audit_feature_names[which], !!old_feature, !!new_feature,
1140 			 !!old_lock, !!new_lock, res);
1141 	audit_log_end(ab);
1142 }
1143 
audit_set_feature(struct audit_features * uaf)1144 static int audit_set_feature(struct audit_features *uaf)
1145 {
1146 	int i;
1147 
1148 	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1149 
1150 	/* if there is ever a version 2 we should handle that here */
1151 
1152 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1153 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1154 		u32 old_feature, new_feature, old_lock, new_lock;
1155 
1156 		/* if we are not changing this feature, move along */
1157 		if (!(feature & uaf->mask))
1158 			continue;
1159 
1160 		old_feature = af.features & feature;
1161 		new_feature = uaf->features & feature;
1162 		new_lock = (uaf->lock | af.lock) & feature;
1163 		old_lock = af.lock & feature;
1164 
1165 		/* are we changing a locked feature? */
1166 		if (old_lock && (new_feature != old_feature)) {
1167 			audit_log_feature_change(i, old_feature, new_feature,
1168 						 old_lock, new_lock, 0);
1169 			return -EPERM;
1170 		}
1171 	}
1172 	/* nothing invalid, do the changes */
1173 	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1174 		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1175 		u32 old_feature, new_feature, old_lock, new_lock;
1176 
1177 		/* if we are not changing this feature, move along */
1178 		if (!(feature & uaf->mask))
1179 			continue;
1180 
1181 		old_feature = af.features & feature;
1182 		new_feature = uaf->features & feature;
1183 		old_lock = af.lock & feature;
1184 		new_lock = (uaf->lock | af.lock) & feature;
1185 
1186 		if (new_feature != old_feature)
1187 			audit_log_feature_change(i, old_feature, new_feature,
1188 						 old_lock, new_lock, 1);
1189 
1190 		if (new_feature)
1191 			af.features |= feature;
1192 		else
1193 			af.features &= ~feature;
1194 		af.lock |= new_lock;
1195 	}
1196 
1197 	return 0;
1198 }
1199 
audit_replace(struct pid * pid)1200 static int audit_replace(struct pid *pid)
1201 {
1202 	pid_t pvnr;
1203 	struct sk_buff *skb;
1204 
1205 	pvnr = pid_vnr(pid);
1206 	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1207 	if (!skb)
1208 		return -ENOMEM;
1209 	return auditd_send_unicast_skb(skb);
1210 }
1211 
audit_receive_msg(struct sk_buff * skb,struct nlmsghdr * nlh,bool * ack)1212 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1213 			     bool *ack)
1214 {
1215 	u32			seq;
1216 	void			*data;
1217 	int			data_len;
1218 	int			err;
1219 	struct audit_buffer	*ab;
1220 	u16			msg_type = nlh->nlmsg_type;
1221 	struct audit_sig_info   *sig_data;
1222 	char			*ctx = NULL;
1223 	u32			len;
1224 
1225 	err = audit_netlink_ok(skb, msg_type);
1226 	if (err)
1227 		return err;
1228 
1229 	seq  = nlh->nlmsg_seq;
1230 	data = nlmsg_data(nlh);
1231 	data_len = nlmsg_len(nlh);
1232 
1233 	switch (msg_type) {
1234 	case AUDIT_GET: {
1235 		struct audit_status	s;
1236 		memset(&s, 0, sizeof(s));
1237 		s.enabled		= audit_enabled;
1238 		s.failure		= audit_failure;
1239 		/* NOTE: use pid_vnr() so the PID is relative to the current
1240 		 *       namespace */
1241 		s.pid			= auditd_pid_vnr();
1242 		s.rate_limit		= audit_rate_limit;
1243 		s.backlog_limit		= audit_backlog_limit;
1244 		s.lost			= atomic_read(&audit_lost);
1245 		s.backlog		= skb_queue_len(&audit_queue);
1246 		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
1247 		s.backlog_wait_time	= audit_backlog_wait_time;
1248 		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1249 		break;
1250 	}
1251 	case AUDIT_SET: {
1252 		struct audit_status	s;
1253 		memset(&s, 0, sizeof(s));
1254 		/* guard against past and future API changes */
1255 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1256 		if (s.mask & AUDIT_STATUS_ENABLED) {
1257 			err = audit_set_enabled(s.enabled);
1258 			if (err < 0)
1259 				return err;
1260 		}
1261 		if (s.mask & AUDIT_STATUS_FAILURE) {
1262 			err = audit_set_failure(s.failure);
1263 			if (err < 0)
1264 				return err;
1265 		}
1266 		if (s.mask & AUDIT_STATUS_PID) {
1267 			/* NOTE: we are using the vnr PID functions below
1268 			 *       because the s.pid value is relative to the
1269 			 *       namespace of the caller; at present this
1270 			 *       doesn't matter much since you can really only
1271 			 *       run auditd from the initial pid namespace, but
1272 			 *       something to keep in mind if this changes */
1273 			pid_t new_pid = s.pid;
1274 			pid_t auditd_pid;
1275 			struct pid *req_pid = task_tgid(current);
1276 
1277 			/* Sanity check - PID values must match. Setting
1278 			 * pid to 0 is how auditd ends auditing. */
1279 			if (new_pid && (new_pid != pid_vnr(req_pid)))
1280 				return -EINVAL;
1281 
1282 			/* test the auditd connection */
1283 			audit_replace(req_pid);
1284 
1285 			auditd_pid = auditd_pid_vnr();
1286 			if (auditd_pid) {
1287 				/* replacing a healthy auditd is not allowed */
1288 				if (new_pid) {
1289 					audit_log_config_change("audit_pid",
1290 							new_pid, auditd_pid, 0);
1291 					return -EEXIST;
1292 				}
1293 				/* only current auditd can unregister itself */
1294 				if (pid_vnr(req_pid) != auditd_pid) {
1295 					audit_log_config_change("audit_pid",
1296 							new_pid, auditd_pid, 0);
1297 					return -EACCES;
1298 				}
1299 			}
1300 
1301 			if (new_pid) {
1302 				/* register a new auditd connection */
1303 				err = auditd_set(req_pid,
1304 						 NETLINK_CB(skb).portid,
1305 						 sock_net(NETLINK_CB(skb).sk),
1306 						 skb, ack);
1307 				if (audit_enabled != AUDIT_OFF)
1308 					audit_log_config_change("audit_pid",
1309 								new_pid,
1310 								auditd_pid,
1311 								err ? 0 : 1);
1312 				if (err)
1313 					return err;
1314 
1315 				/* try to process any backlog */
1316 				wake_up_interruptible(&kauditd_wait);
1317 			} else {
1318 				if (audit_enabled != AUDIT_OFF)
1319 					audit_log_config_change("audit_pid",
1320 								new_pid,
1321 								auditd_pid, 1);
1322 
1323 				/* unregister the auditd connection */
1324 				auditd_reset(NULL);
1325 			}
1326 		}
1327 		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1328 			err = audit_set_rate_limit(s.rate_limit);
1329 			if (err < 0)
1330 				return err;
1331 		}
1332 		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1333 			err = audit_set_backlog_limit(s.backlog_limit);
1334 			if (err < 0)
1335 				return err;
1336 		}
1337 		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1338 			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1339 				return -EINVAL;
1340 			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1341 				return -EINVAL;
1342 			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1343 			if (err < 0)
1344 				return err;
1345 		}
1346 		if (s.mask == AUDIT_STATUS_LOST) {
1347 			u32 lost = atomic_xchg(&audit_lost, 0);
1348 
1349 			audit_log_config_change("lost", 0, lost, 1);
1350 			return lost;
1351 		}
1352 		break;
1353 	}
1354 	case AUDIT_GET_FEATURE:
1355 		err = audit_get_feature(skb);
1356 		if (err)
1357 			return err;
1358 		break;
1359 	case AUDIT_SET_FEATURE:
1360 		if (data_len < sizeof(struct audit_features))
1361 			return -EINVAL;
1362 		err = audit_set_feature(data);
1363 		if (err)
1364 			return err;
1365 		break;
1366 	case AUDIT_USER:
1367 	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1368 	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1369 		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1370 			return 0;
1371 		/* exit early if there isn't at least one character to print */
1372 		if (data_len < 2)
1373 			return -EINVAL;
1374 
1375 		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1376 		if (err == 1) { /* match or error */
1377 			char *str = data;
1378 
1379 			err = 0;
1380 			if (msg_type == AUDIT_USER_TTY) {
1381 				err = tty_audit_push();
1382 				if (err)
1383 					break;
1384 			}
1385 			audit_log_user_recv_msg(&ab, msg_type);
1386 			if (msg_type != AUDIT_USER_TTY) {
1387 				/* ensure NULL termination */
1388 				str[data_len - 1] = '\0';
1389 				audit_log_format(ab, " msg='%.*s'",
1390 						 AUDIT_MESSAGE_TEXT_MAX,
1391 						 str);
1392 			} else {
1393 				audit_log_format(ab, " data=");
1394 				if (data_len > 0 && str[data_len - 1] == '\0')
1395 					data_len--;
1396 				audit_log_n_untrustedstring(ab, str, data_len);
1397 			}
1398 			audit_log_end(ab);
1399 		}
1400 		break;
1401 	case AUDIT_ADD_RULE:
1402 	case AUDIT_DEL_RULE:
1403 		if (data_len < sizeof(struct audit_rule_data))
1404 			return -EINVAL;
1405 		if (audit_enabled == AUDIT_LOCKED) {
1406 			audit_log_common_recv_msg(audit_context(), &ab,
1407 						  AUDIT_CONFIG_CHANGE);
1408 			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1409 					 msg_type == AUDIT_ADD_RULE ?
1410 						"add_rule" : "remove_rule",
1411 					 audit_enabled);
1412 			audit_log_end(ab);
1413 			return -EPERM;
1414 		}
1415 		err = audit_rule_change(msg_type, seq, data, data_len);
1416 		break;
1417 	case AUDIT_LIST_RULES:
1418 		err = audit_list_rules_send(skb, seq);
1419 		break;
1420 	case AUDIT_TRIM:
1421 		audit_trim_trees();
1422 		audit_log_common_recv_msg(audit_context(), &ab,
1423 					  AUDIT_CONFIG_CHANGE);
1424 		audit_log_format(ab, " op=trim res=1");
1425 		audit_log_end(ab);
1426 		break;
1427 	case AUDIT_MAKE_EQUIV: {
1428 		void *bufp = data;
1429 		u32 sizes[2];
1430 		size_t msglen = data_len;
1431 		char *old, *new;
1432 
1433 		err = -EINVAL;
1434 		if (msglen < 2 * sizeof(u32))
1435 			break;
1436 		memcpy(sizes, bufp, 2 * sizeof(u32));
1437 		bufp += 2 * sizeof(u32);
1438 		msglen -= 2 * sizeof(u32);
1439 		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1440 		if (IS_ERR(old)) {
1441 			err = PTR_ERR(old);
1442 			break;
1443 		}
1444 		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1445 		if (IS_ERR(new)) {
1446 			err = PTR_ERR(new);
1447 			kfree(old);
1448 			break;
1449 		}
1450 		/* OK, here comes... */
1451 		err = audit_tag_tree(old, new);
1452 
1453 		audit_log_common_recv_msg(audit_context(), &ab,
1454 					  AUDIT_CONFIG_CHANGE);
1455 		audit_log_format(ab, " op=make_equiv old=");
1456 		audit_log_untrustedstring(ab, old);
1457 		audit_log_format(ab, " new=");
1458 		audit_log_untrustedstring(ab, new);
1459 		audit_log_format(ab, " res=%d", !err);
1460 		audit_log_end(ab);
1461 		kfree(old);
1462 		kfree(new);
1463 		break;
1464 	}
1465 	case AUDIT_SIGNAL_INFO:
1466 		len = 0;
1467 		if (audit_sig_sid) {
1468 			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1469 			if (err)
1470 				return err;
1471 		}
1472 		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1473 		if (!sig_data) {
1474 			if (audit_sig_sid)
1475 				security_release_secctx(ctx, len);
1476 			return -ENOMEM;
1477 		}
1478 		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1479 		sig_data->pid = audit_sig_pid;
1480 		if (audit_sig_sid) {
1481 			memcpy(sig_data->ctx, ctx, len);
1482 			security_release_secctx(ctx, len);
1483 		}
1484 		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1485 				 sig_data, sizeof(*sig_data) + len);
1486 		kfree(sig_data);
1487 		break;
1488 	case AUDIT_TTY_GET: {
1489 		struct audit_tty_status s;
1490 		unsigned int t;
1491 
1492 		t = READ_ONCE(current->signal->audit_tty);
1493 		s.enabled = t & AUDIT_TTY_ENABLE;
1494 		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1495 
1496 		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1497 		break;
1498 	}
1499 	case AUDIT_TTY_SET: {
1500 		struct audit_tty_status s, old;
1501 		struct audit_buffer	*ab;
1502 		unsigned int t;
1503 
1504 		memset(&s, 0, sizeof(s));
1505 		/* guard against past and future API changes */
1506 		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1507 		/* check if new data is valid */
1508 		if ((s.enabled != 0 && s.enabled != 1) ||
1509 		    (s.log_passwd != 0 && s.log_passwd != 1))
1510 			err = -EINVAL;
1511 
1512 		if (err)
1513 			t = READ_ONCE(current->signal->audit_tty);
1514 		else {
1515 			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1516 			t = xchg(&current->signal->audit_tty, t);
1517 		}
1518 		old.enabled = t & AUDIT_TTY_ENABLE;
1519 		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1520 
1521 		audit_log_common_recv_msg(audit_context(), &ab,
1522 					  AUDIT_CONFIG_CHANGE);
1523 		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1524 				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1525 				 old.enabled, s.enabled, old.log_passwd,
1526 				 s.log_passwd, !err);
1527 		audit_log_end(ab);
1528 		break;
1529 	}
1530 	default:
1531 		err = -EINVAL;
1532 		break;
1533 	}
1534 
1535 	return err < 0 ? err : 0;
1536 }
1537 
1538 /**
1539  * audit_receive - receive messages from a netlink control socket
1540  * @skb: the message buffer
1541  *
1542  * Parse the provided skb and deal with any messages that may be present,
1543  * malformed skbs are discarded.
1544  */
audit_receive(struct sk_buff * skb)1545 static void audit_receive(struct sk_buff *skb)
1546 {
1547 	struct nlmsghdr *nlh;
1548 	bool ack;
1549 	/*
1550 	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1551 	 * if the nlmsg_len was not aligned
1552 	 */
1553 	int len;
1554 	int err;
1555 
1556 	nlh = nlmsg_hdr(skb);
1557 	len = skb->len;
1558 
1559 	audit_ctl_lock();
1560 	while (nlmsg_ok(nlh, len)) {
1561 		ack = nlh->nlmsg_flags & NLM_F_ACK;
1562 		err = audit_receive_msg(skb, nlh, &ack);
1563 
1564 		/* send an ack if the user asked for one and audit_receive_msg
1565 		 * didn't already do it, or if there was an error. */
1566 		if (ack || err)
1567 			netlink_ack(skb, nlh, err, NULL);
1568 
1569 		nlh = nlmsg_next(nlh, &len);
1570 	}
1571 	audit_ctl_unlock();
1572 
1573 	/* can't block with the ctrl lock, so penalize the sender now */
1574 	if (audit_backlog_limit &&
1575 	    (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1576 		DECLARE_WAITQUEUE(wait, current);
1577 
1578 		/* wake kauditd to try and flush the queue */
1579 		wake_up_interruptible(&kauditd_wait);
1580 
1581 		add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1582 		set_current_state(TASK_UNINTERRUPTIBLE);
1583 		schedule_timeout(audit_backlog_wait_time);
1584 		remove_wait_queue(&audit_backlog_wait, &wait);
1585 	}
1586 }
1587 
1588 /* Run custom bind function on netlink socket group connect or bind requests. */
audit_bind(struct net * net,int group)1589 static int audit_bind(struct net *net, int group)
1590 {
1591 	if (!capable(CAP_AUDIT_READ))
1592 		return -EPERM;
1593 
1594 	return 0;
1595 }
1596 
audit_net_init(struct net * net)1597 static int __net_init audit_net_init(struct net *net)
1598 {
1599 	struct netlink_kernel_cfg cfg = {
1600 		.input	= audit_receive,
1601 		.bind	= audit_bind,
1602 		.flags	= NL_CFG_F_NONROOT_RECV,
1603 		.groups	= AUDIT_NLGRP_MAX,
1604 	};
1605 
1606 	struct audit_net *aunet = net_generic(net, audit_net_id);
1607 
1608 	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1609 	if (aunet->sk == NULL) {
1610 		audit_panic("cannot initialize netlink socket in namespace");
1611 		return -ENOMEM;
1612 	}
1613 	/* limit the timeout in case auditd is blocked/stopped */
1614 	aunet->sk->sk_sndtimeo = HZ / 10;
1615 
1616 	return 0;
1617 }
1618 
audit_net_exit(struct net * net)1619 static void __net_exit audit_net_exit(struct net *net)
1620 {
1621 	struct audit_net *aunet = net_generic(net, audit_net_id);
1622 
1623 	/* NOTE: you would think that we would want to check the auditd
1624 	 * connection and potentially reset it here if it lives in this
1625 	 * namespace, but since the auditd connection tracking struct holds a
1626 	 * reference to this namespace (see auditd_set()) we are only ever
1627 	 * going to get here after that connection has been released */
1628 
1629 	netlink_kernel_release(aunet->sk);
1630 }
1631 
1632 static struct pernet_operations audit_net_ops __net_initdata = {
1633 	.init = audit_net_init,
1634 	.exit = audit_net_exit,
1635 	.id = &audit_net_id,
1636 	.size = sizeof(struct audit_net),
1637 };
1638 
1639 /* Initialize audit support at boot time. */
audit_init(void)1640 static int __init audit_init(void)
1641 {
1642 	int i;
1643 
1644 	if (audit_initialized == AUDIT_DISABLED)
1645 		return 0;
1646 
1647 	audit_buffer_cache = kmem_cache_create("audit_buffer",
1648 					       sizeof(struct audit_buffer),
1649 					       0, SLAB_PANIC, NULL);
1650 
1651 	skb_queue_head_init(&audit_queue);
1652 	skb_queue_head_init(&audit_retry_queue);
1653 	skb_queue_head_init(&audit_hold_queue);
1654 
1655 	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1656 		INIT_LIST_HEAD(&audit_inode_hash[i]);
1657 
1658 	mutex_init(&audit_cmd_mutex.lock);
1659 	audit_cmd_mutex.owner = NULL;
1660 
1661 	pr_info("initializing netlink subsys (%s)\n",
1662 		audit_default ? "enabled" : "disabled");
1663 	register_pernet_subsys(&audit_net_ops);
1664 
1665 	audit_initialized = AUDIT_INITIALIZED;
1666 
1667 	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1668 	if (IS_ERR(kauditd_task)) {
1669 		int err = PTR_ERR(kauditd_task);
1670 		panic("audit: failed to start the kauditd thread (%d)\n", err);
1671 	}
1672 
1673 	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1674 		"state=initialized audit_enabled=%u res=1",
1675 		 audit_enabled);
1676 
1677 	return 0;
1678 }
1679 postcore_initcall(audit_init);
1680 
1681 /*
1682  * Process kernel command-line parameter at boot time.
1683  * audit={0|off} or audit={1|on}.
1684  */
audit_enable(char * str)1685 static int __init audit_enable(char *str)
1686 {
1687 	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1688 		audit_default = AUDIT_OFF;
1689 	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1690 		audit_default = AUDIT_ON;
1691 	else {
1692 		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1693 		audit_default = AUDIT_ON;
1694 	}
1695 
1696 	if (audit_default == AUDIT_OFF)
1697 		audit_initialized = AUDIT_DISABLED;
1698 	if (audit_set_enabled(audit_default))
1699 		pr_err("audit: error setting audit state (%d)\n",
1700 		       audit_default);
1701 
1702 	pr_info("%s\n", audit_default ?
1703 		"enabled (after initialization)" : "disabled (until reboot)");
1704 
1705 	return 1;
1706 }
1707 __setup("audit=", audit_enable);
1708 
1709 /* Process kernel command-line parameter at boot time.
1710  * audit_backlog_limit=<n> */
audit_backlog_limit_set(char * str)1711 static int __init audit_backlog_limit_set(char *str)
1712 {
1713 	u32 audit_backlog_limit_arg;
1714 
1715 	pr_info("audit_backlog_limit: ");
1716 	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1717 		pr_cont("using default of %u, unable to parse %s\n",
1718 			audit_backlog_limit, str);
1719 		return 1;
1720 	}
1721 
1722 	audit_backlog_limit = audit_backlog_limit_arg;
1723 	pr_cont("%d\n", audit_backlog_limit);
1724 
1725 	return 1;
1726 }
1727 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1728 
audit_buffer_free(struct audit_buffer * ab)1729 static void audit_buffer_free(struct audit_buffer *ab)
1730 {
1731 	if (!ab)
1732 		return;
1733 
1734 	kfree_skb(ab->skb);
1735 	kmem_cache_free(audit_buffer_cache, ab);
1736 }
1737 
audit_buffer_alloc(struct audit_context * ctx,gfp_t gfp_mask,int type)1738 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1739 					       gfp_t gfp_mask, int type)
1740 {
1741 	struct audit_buffer *ab;
1742 
1743 	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1744 	if (!ab)
1745 		return NULL;
1746 
1747 	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1748 	if (!ab->skb)
1749 		goto err;
1750 	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1751 		goto err;
1752 
1753 	ab->ctx = ctx;
1754 	ab->gfp_mask = gfp_mask;
1755 
1756 	return ab;
1757 
1758 err:
1759 	audit_buffer_free(ab);
1760 	return NULL;
1761 }
1762 
1763 /**
1764  * audit_serial - compute a serial number for the audit record
1765  *
1766  * Compute a serial number for the audit record.  Audit records are
1767  * written to user-space as soon as they are generated, so a complete
1768  * audit record may be written in several pieces.  The timestamp of the
1769  * record and this serial number are used by the user-space tools to
1770  * determine which pieces belong to the same audit record.  The
1771  * (timestamp,serial) tuple is unique for each syscall and is live from
1772  * syscall entry to syscall exit.
1773  *
1774  * NOTE: Another possibility is to store the formatted records off the
1775  * audit context (for those records that have a context), and emit them
1776  * all at syscall exit.  However, this could delay the reporting of
1777  * significant errors until syscall exit (or never, if the system
1778  * halts).
1779  */
audit_serial(void)1780 unsigned int audit_serial(void)
1781 {
1782 	static atomic_t serial = ATOMIC_INIT(0);
1783 
1784 	return atomic_add_return(1, &serial);
1785 }
1786 
audit_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)1787 static inline void audit_get_stamp(struct audit_context *ctx,
1788 				   struct timespec64 *t, unsigned int *serial)
1789 {
1790 	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1791 		ktime_get_coarse_real_ts64(t);
1792 		*serial = audit_serial();
1793 	}
1794 }
1795 
1796 /**
1797  * audit_log_start - obtain an audit buffer
1798  * @ctx: audit_context (may be NULL)
1799  * @gfp_mask: type of allocation
1800  * @type: audit message type
1801  *
1802  * Returns audit_buffer pointer on success or NULL on error.
1803  *
1804  * Obtain an audit buffer.  This routine does locking to obtain the
1805  * audit buffer, but then no locking is required for calls to
1806  * audit_log_*format.  If the task (ctx) is a task that is currently in a
1807  * syscall, then the syscall is marked as auditable and an audit record
1808  * will be written at syscall exit.  If there is no associated task, then
1809  * task context (ctx) should be NULL.
1810  */
audit_log_start(struct audit_context * ctx,gfp_t gfp_mask,int type)1811 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1812 				     int type)
1813 {
1814 	struct audit_buffer *ab;
1815 	struct timespec64 t;
1816 	unsigned int serial;
1817 
1818 	if (audit_initialized != AUDIT_INITIALIZED)
1819 		return NULL;
1820 
1821 	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1822 		return NULL;
1823 
1824 	/* NOTE: don't ever fail/sleep on these two conditions:
1825 	 * 1. auditd generated record - since we need auditd to drain the
1826 	 *    queue; also, when we are checking for auditd, compare PIDs using
1827 	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1828 	 *    using a PID anchored in the caller's namespace
1829 	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1830 	 *    while holding the mutex, although we do penalize the sender
1831 	 *    later in audit_receive() when it is safe to block
1832 	 */
1833 	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1834 		long stime = audit_backlog_wait_time;
1835 
1836 		while (audit_backlog_limit &&
1837 		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1838 			/* wake kauditd to try and flush the queue */
1839 			wake_up_interruptible(&kauditd_wait);
1840 
1841 			/* sleep if we are allowed and we haven't exhausted our
1842 			 * backlog wait limit */
1843 			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1844 				DECLARE_WAITQUEUE(wait, current);
1845 
1846 				add_wait_queue_exclusive(&audit_backlog_wait,
1847 							 &wait);
1848 				set_current_state(TASK_UNINTERRUPTIBLE);
1849 				stime = schedule_timeout(stime);
1850 				remove_wait_queue(&audit_backlog_wait, &wait);
1851 			} else {
1852 				if (audit_rate_check() && printk_ratelimit())
1853 					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1854 						skb_queue_len(&audit_queue),
1855 						audit_backlog_limit);
1856 				audit_log_lost("backlog limit exceeded");
1857 				return NULL;
1858 			}
1859 		}
1860 	}
1861 
1862 	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1863 	if (!ab) {
1864 		audit_log_lost("out of memory in audit_log_start");
1865 		return NULL;
1866 	}
1867 
1868 	audit_get_stamp(ab->ctx, &t, &serial);
1869 	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1870 			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1871 
1872 	return ab;
1873 }
1874 
1875 /**
1876  * audit_expand - expand skb in the audit buffer
1877  * @ab: audit_buffer
1878  * @extra: space to add at tail of the skb
1879  *
1880  * Returns 0 (no space) on failed expansion, or available space if
1881  * successful.
1882  */
audit_expand(struct audit_buffer * ab,int extra)1883 static inline int audit_expand(struct audit_buffer *ab, int extra)
1884 {
1885 	struct sk_buff *skb = ab->skb;
1886 	int oldtail = skb_tailroom(skb);
1887 	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1888 	int newtail = skb_tailroom(skb);
1889 
1890 	if (ret < 0) {
1891 		audit_log_lost("out of memory in audit_expand");
1892 		return 0;
1893 	}
1894 
1895 	skb->truesize += newtail - oldtail;
1896 	return newtail;
1897 }
1898 
1899 /*
1900  * Format an audit message into the audit buffer.  If there isn't enough
1901  * room in the audit buffer, more room will be allocated and vsnprint
1902  * will be called a second time.  Currently, we assume that a printk
1903  * can't format message larger than 1024 bytes, so we don't either.
1904  */
audit_log_vformat(struct audit_buffer * ab,const char * fmt,va_list args)1905 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1906 			      va_list args)
1907 {
1908 	int len, avail;
1909 	struct sk_buff *skb;
1910 	va_list args2;
1911 
1912 	if (!ab)
1913 		return;
1914 
1915 	BUG_ON(!ab->skb);
1916 	skb = ab->skb;
1917 	avail = skb_tailroom(skb);
1918 	if (avail == 0) {
1919 		avail = audit_expand(ab, AUDIT_BUFSIZ);
1920 		if (!avail)
1921 			goto out;
1922 	}
1923 	va_copy(args2, args);
1924 	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1925 	if (len >= avail) {
1926 		/* The printk buffer is 1024 bytes long, so if we get
1927 		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1928 		 * log everything that printk could have logged. */
1929 		avail = audit_expand(ab,
1930 			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1931 		if (!avail)
1932 			goto out_va_end;
1933 		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1934 	}
1935 	if (len > 0)
1936 		skb_put(skb, len);
1937 out_va_end:
1938 	va_end(args2);
1939 out:
1940 	return;
1941 }
1942 
1943 /**
1944  * audit_log_format - format a message into the audit buffer.
1945  * @ab: audit_buffer
1946  * @fmt: format string
1947  * @...: optional parameters matching @fmt string
1948  *
1949  * All the work is done in audit_log_vformat.
1950  */
audit_log_format(struct audit_buffer * ab,const char * fmt,...)1951 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1952 {
1953 	va_list args;
1954 
1955 	if (!ab)
1956 		return;
1957 	va_start(args, fmt);
1958 	audit_log_vformat(ab, fmt, args);
1959 	va_end(args);
1960 }
1961 
1962 /**
1963  * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1964  * @ab: the audit_buffer
1965  * @buf: buffer to convert to hex
1966  * @len: length of @buf to be converted
1967  *
1968  * No return value; failure to expand is silently ignored.
1969  *
1970  * This function will take the passed buf and convert it into a string of
1971  * ascii hex digits. The new string is placed onto the skb.
1972  */
audit_log_n_hex(struct audit_buffer * ab,const unsigned char * buf,size_t len)1973 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1974 		size_t len)
1975 {
1976 	int i, avail, new_len;
1977 	unsigned char *ptr;
1978 	struct sk_buff *skb;
1979 
1980 	if (!ab)
1981 		return;
1982 
1983 	BUG_ON(!ab->skb);
1984 	skb = ab->skb;
1985 	avail = skb_tailroom(skb);
1986 	new_len = len<<1;
1987 	if (new_len >= avail) {
1988 		/* Round the buffer request up to the next multiple */
1989 		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1990 		avail = audit_expand(ab, new_len);
1991 		if (!avail)
1992 			return;
1993 	}
1994 
1995 	ptr = skb_tail_pointer(skb);
1996 	for (i = 0; i < len; i++)
1997 		ptr = hex_byte_pack_upper(ptr, buf[i]);
1998 	*ptr = 0;
1999 	skb_put(skb, len << 1); /* new string is twice the old string */
2000 }
2001 
2002 /*
2003  * Format a string of no more than slen characters into the audit buffer,
2004  * enclosed in quote marks.
2005  */
audit_log_n_string(struct audit_buffer * ab,const char * string,size_t slen)2006 void audit_log_n_string(struct audit_buffer *ab, const char *string,
2007 			size_t slen)
2008 {
2009 	int avail, new_len;
2010 	unsigned char *ptr;
2011 	struct sk_buff *skb;
2012 
2013 	if (!ab)
2014 		return;
2015 
2016 	BUG_ON(!ab->skb);
2017 	skb = ab->skb;
2018 	avail = skb_tailroom(skb);
2019 	new_len = slen + 3;	/* enclosing quotes + null terminator */
2020 	if (new_len > avail) {
2021 		avail = audit_expand(ab, new_len);
2022 		if (!avail)
2023 			return;
2024 	}
2025 	ptr = skb_tail_pointer(skb);
2026 	*ptr++ = '"';
2027 	memcpy(ptr, string, slen);
2028 	ptr += slen;
2029 	*ptr++ = '"';
2030 	*ptr = 0;
2031 	skb_put(skb, slen + 2);	/* don't include null terminator */
2032 }
2033 
2034 /**
2035  * audit_string_contains_control - does a string need to be logged in hex
2036  * @string: string to be checked
2037  * @len: max length of the string to check
2038  */
audit_string_contains_control(const char * string,size_t len)2039 bool audit_string_contains_control(const char *string, size_t len)
2040 {
2041 	const unsigned char *p;
2042 	for (p = string; p < (const unsigned char *)string + len; p++) {
2043 		if (*p == '"' || *p < 0x21 || *p > 0x7e)
2044 			return true;
2045 	}
2046 	return false;
2047 }
2048 
2049 /**
2050  * audit_log_n_untrustedstring - log a string that may contain random characters
2051  * @ab: audit_buffer
2052  * @len: length of string (not including trailing null)
2053  * @string: string to be logged
2054  *
2055  * This code will escape a string that is passed to it if the string
2056  * contains a control character, unprintable character, double quote mark,
2057  * or a space. Unescaped strings will start and end with a double quote mark.
2058  * Strings that are escaped are printed in hex (2 digits per char).
2059  *
2060  * The caller specifies the number of characters in the string to log, which may
2061  * or may not be the entire string.
2062  */
audit_log_n_untrustedstring(struct audit_buffer * ab,const char * string,size_t len)2063 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2064 				 size_t len)
2065 {
2066 	if (audit_string_contains_control(string, len))
2067 		audit_log_n_hex(ab, string, len);
2068 	else
2069 		audit_log_n_string(ab, string, len);
2070 }
2071 
2072 /**
2073  * audit_log_untrustedstring - log a string that may contain random characters
2074  * @ab: audit_buffer
2075  * @string: string to be logged
2076  *
2077  * Same as audit_log_n_untrustedstring(), except that strlen is used to
2078  * determine string length.
2079  */
audit_log_untrustedstring(struct audit_buffer * ab,const char * string)2080 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2081 {
2082 	audit_log_n_untrustedstring(ab, string, strlen(string));
2083 }
2084 
2085 /* This is a helper-function to print the escaped d_path */
audit_log_d_path(struct audit_buffer * ab,const char * prefix,const struct path * path)2086 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2087 		      const struct path *path)
2088 {
2089 	char *p, *pathname;
2090 
2091 	if (prefix)
2092 		audit_log_format(ab, "%s", prefix);
2093 
2094 	/* We will allow 11 spaces for ' (deleted)' to be appended */
2095 	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2096 	if (!pathname) {
2097 		audit_log_string(ab, "<no_memory>");
2098 		return;
2099 	}
2100 	p = d_path(path, pathname, PATH_MAX+11);
2101 	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2102 		/* FIXME: can we save some information here? */
2103 		audit_log_string(ab, "<too_long>");
2104 	} else
2105 		audit_log_untrustedstring(ab, p);
2106 	kfree(pathname);
2107 }
2108 
audit_log_session_info(struct audit_buffer * ab)2109 void audit_log_session_info(struct audit_buffer *ab)
2110 {
2111 	unsigned int sessionid = audit_get_sessionid(current);
2112 	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2113 
2114 	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2115 }
2116 
audit_log_key(struct audit_buffer * ab,char * key)2117 void audit_log_key(struct audit_buffer *ab, char *key)
2118 {
2119 	audit_log_format(ab, " key=");
2120 	if (key)
2121 		audit_log_untrustedstring(ab, key);
2122 	else
2123 		audit_log_format(ab, "(null)");
2124 }
2125 
audit_log_task_context(struct audit_buffer * ab)2126 int audit_log_task_context(struct audit_buffer *ab)
2127 {
2128 	char *ctx = NULL;
2129 	unsigned len;
2130 	int error;
2131 	u32 sid;
2132 
2133 	security_task_getsecid(current, &sid);
2134 	if (!sid)
2135 		return 0;
2136 
2137 	error = security_secid_to_secctx(sid, &ctx, &len);
2138 	if (error) {
2139 		if (error != -EINVAL)
2140 			goto error_path;
2141 		return 0;
2142 	}
2143 
2144 	audit_log_format(ab, " subj=%s", ctx);
2145 	security_release_secctx(ctx, len);
2146 	return 0;
2147 
2148 error_path:
2149 	audit_panic("error in audit_log_task_context");
2150 	return error;
2151 }
2152 EXPORT_SYMBOL(audit_log_task_context);
2153 
audit_log_d_path_exe(struct audit_buffer * ab,struct mm_struct * mm)2154 void audit_log_d_path_exe(struct audit_buffer *ab,
2155 			  struct mm_struct *mm)
2156 {
2157 	struct file *exe_file;
2158 
2159 	if (!mm)
2160 		goto out_null;
2161 
2162 	exe_file = get_mm_exe_file(mm);
2163 	if (!exe_file)
2164 		goto out_null;
2165 
2166 	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2167 	fput(exe_file);
2168 	return;
2169 out_null:
2170 	audit_log_format(ab, " exe=(null)");
2171 }
2172 
audit_get_tty(void)2173 struct tty_struct *audit_get_tty(void)
2174 {
2175 	struct tty_struct *tty = NULL;
2176 	unsigned long flags;
2177 
2178 	spin_lock_irqsave(&current->sighand->siglock, flags);
2179 	if (current->signal)
2180 		tty = tty_kref_get(current->signal->tty);
2181 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
2182 	return tty;
2183 }
2184 
audit_put_tty(struct tty_struct * tty)2185 void audit_put_tty(struct tty_struct *tty)
2186 {
2187 	tty_kref_put(tty);
2188 }
2189 
audit_log_task_info(struct audit_buffer * ab)2190 void audit_log_task_info(struct audit_buffer *ab)
2191 {
2192 	const struct cred *cred;
2193 	char comm[sizeof(current->comm)];
2194 	struct tty_struct *tty;
2195 
2196 	if (!ab)
2197 		return;
2198 
2199 	cred = current_cred();
2200 	tty = audit_get_tty();
2201 	audit_log_format(ab,
2202 			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2203 			 " euid=%u suid=%u fsuid=%u"
2204 			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2205 			 task_ppid_nr(current),
2206 			 task_tgid_nr(current),
2207 			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2208 			 from_kuid(&init_user_ns, cred->uid),
2209 			 from_kgid(&init_user_ns, cred->gid),
2210 			 from_kuid(&init_user_ns, cred->euid),
2211 			 from_kuid(&init_user_ns, cred->suid),
2212 			 from_kuid(&init_user_ns, cred->fsuid),
2213 			 from_kgid(&init_user_ns, cred->egid),
2214 			 from_kgid(&init_user_ns, cred->sgid),
2215 			 from_kgid(&init_user_ns, cred->fsgid),
2216 			 tty ? tty_name(tty) : "(none)",
2217 			 audit_get_sessionid(current));
2218 	audit_put_tty(tty);
2219 	audit_log_format(ab, " comm=");
2220 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2221 	audit_log_d_path_exe(ab, current->mm);
2222 	audit_log_task_context(ab);
2223 }
2224 EXPORT_SYMBOL(audit_log_task_info);
2225 
2226 /**
2227  * audit_log_link_denied - report a link restriction denial
2228  * @operation: specific link operation
2229  */
audit_log_link_denied(const char * operation)2230 void audit_log_link_denied(const char *operation)
2231 {
2232 	struct audit_buffer *ab;
2233 
2234 	if (!audit_enabled || audit_dummy_context())
2235 		return;
2236 
2237 	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2238 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_LINK);
2239 	if (!ab)
2240 		return;
2241 	audit_log_format(ab, "op=%s", operation);
2242 	audit_log_task_info(ab);
2243 	audit_log_format(ab, " res=0");
2244 	audit_log_end(ab);
2245 }
2246 
2247 /* global counter which is incremented every time something logs in */
2248 static atomic_t session_id = ATOMIC_INIT(0);
2249 
audit_set_loginuid_perm(kuid_t loginuid)2250 static int audit_set_loginuid_perm(kuid_t loginuid)
2251 {
2252 	/* if we are unset, we don't need privs */
2253 	if (!audit_loginuid_set(current))
2254 		return 0;
2255 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2256 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2257 		return -EPERM;
2258 	/* it is set, you need permission */
2259 	if (!capable(CAP_AUDIT_CONTROL))
2260 		return -EPERM;
2261 	/* reject if this is not an unset and we don't allow that */
2262 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2263 				 && uid_valid(loginuid))
2264 		return -EPERM;
2265 	return 0;
2266 }
2267 
audit_log_set_loginuid(kuid_t koldloginuid,kuid_t kloginuid,unsigned int oldsessionid,unsigned int sessionid,int rc)2268 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2269 				   unsigned int oldsessionid,
2270 				   unsigned int sessionid, int rc)
2271 {
2272 	struct audit_buffer *ab;
2273 	uid_t uid, oldloginuid, loginuid;
2274 	struct tty_struct *tty;
2275 
2276 	if (!audit_enabled)
2277 		return;
2278 
2279 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2280 	if (!ab)
2281 		return;
2282 
2283 	uid = from_kuid(&init_user_ns, task_uid(current));
2284 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2285 	loginuid = from_kuid(&init_user_ns, kloginuid),
2286 	tty = audit_get_tty();
2287 
2288 	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2289 	audit_log_task_context(ab);
2290 	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2291 			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2292 			 oldsessionid, sessionid, !rc);
2293 	audit_put_tty(tty);
2294 	audit_log_end(ab);
2295 }
2296 
2297 /**
2298  * audit_set_loginuid - set current task's loginuid
2299  * @loginuid: loginuid value
2300  *
2301  * Returns 0.
2302  *
2303  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2304  */
audit_set_loginuid(kuid_t loginuid)2305 int audit_set_loginuid(kuid_t loginuid)
2306 {
2307 	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2308 	kuid_t oldloginuid;
2309 	int rc;
2310 
2311 	oldloginuid = audit_get_loginuid(current);
2312 	oldsessionid = audit_get_sessionid(current);
2313 
2314 	rc = audit_set_loginuid_perm(loginuid);
2315 	if (rc)
2316 		goto out;
2317 
2318 	/* are we setting or clearing? */
2319 	if (uid_valid(loginuid)) {
2320 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2321 		if (unlikely(sessionid == AUDIT_SID_UNSET))
2322 			sessionid = (unsigned int)atomic_inc_return(&session_id);
2323 	}
2324 
2325 	current->sessionid = sessionid;
2326 	current->loginuid = loginuid;
2327 out:
2328 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2329 	return rc;
2330 }
2331 
2332 /**
2333  * audit_signal_info - record signal info for shutting down audit subsystem
2334  * @sig: signal value
2335  * @t: task being signaled
2336  *
2337  * If the audit subsystem is being terminated, record the task (pid)
2338  * and uid that is doing that.
2339  */
audit_signal_info(int sig,struct task_struct * t)2340 int audit_signal_info(int sig, struct task_struct *t)
2341 {
2342 	kuid_t uid = current_uid(), auid;
2343 
2344 	if (auditd_test_task(t) &&
2345 	    (sig == SIGTERM || sig == SIGHUP ||
2346 	     sig == SIGUSR1 || sig == SIGUSR2)) {
2347 		audit_sig_pid = task_tgid_nr(current);
2348 		auid = audit_get_loginuid(current);
2349 		if (uid_valid(auid))
2350 			audit_sig_uid = auid;
2351 		else
2352 			audit_sig_uid = uid;
2353 		security_task_getsecid(current, &audit_sig_sid);
2354 	}
2355 
2356 	return audit_signal_info_syscall(t);
2357 }
2358 
2359 /**
2360  * audit_log_end - end one audit record
2361  * @ab: the audit_buffer
2362  *
2363  * We can not do a netlink send inside an irq context because it blocks (last
2364  * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2365  * queue and a tasklet is scheduled to remove them from the queue outside the
2366  * irq context.  May be called in any context.
2367  */
audit_log_end(struct audit_buffer * ab)2368 void audit_log_end(struct audit_buffer *ab)
2369 {
2370 	struct sk_buff *skb;
2371 	struct nlmsghdr *nlh;
2372 
2373 	if (!ab)
2374 		return;
2375 
2376 	if (audit_rate_check()) {
2377 		skb = ab->skb;
2378 		ab->skb = NULL;
2379 
2380 		/* setup the netlink header, see the comments in
2381 		 * kauditd_send_multicast_skb() for length quirks */
2382 		nlh = nlmsg_hdr(skb);
2383 		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2384 
2385 		/* queue the netlink packet and poke the kauditd thread */
2386 		skb_queue_tail(&audit_queue, skb);
2387 		wake_up_interruptible(&kauditd_wait);
2388 	} else
2389 		audit_log_lost("rate limit exceeded");
2390 
2391 	audit_buffer_free(ab);
2392 }
2393 
2394 /**
2395  * audit_log - Log an audit record
2396  * @ctx: audit context
2397  * @gfp_mask: type of allocation
2398  * @type: audit message type
2399  * @fmt: format string to use
2400  * @...: variable parameters matching the format string
2401  *
2402  * This is a convenience function that calls audit_log_start,
2403  * audit_log_vformat, and audit_log_end.  It may be called
2404  * in any context.
2405  */
audit_log(struct audit_context * ctx,gfp_t gfp_mask,int type,const char * fmt,...)2406 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2407 	       const char *fmt, ...)
2408 {
2409 	struct audit_buffer *ab;
2410 	va_list args;
2411 
2412 	ab = audit_log_start(ctx, gfp_mask, type);
2413 	if (ab) {
2414 		va_start(args, fmt);
2415 		audit_log_vformat(ab, fmt, args);
2416 		va_end(args);
2417 		audit_log_end(ab);
2418 	}
2419 }
2420 
2421 EXPORT_SYMBOL(audit_log_start);
2422 EXPORT_SYMBOL(audit_log_end);
2423 EXPORT_SYMBOL(audit_log_format);
2424 EXPORT_SYMBOL(audit_log);
2425