1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-noncoherent.h>
12 #include <linux/export.h>
13 #include <linux/gfp.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17
18 /*
19 * Managed DMA API
20 */
21 struct dma_devres {
22 size_t size;
23 void *vaddr;
24 dma_addr_t dma_handle;
25 unsigned long attrs;
26 };
27
dmam_release(struct device * dev,void * res)28 static void dmam_release(struct device *dev, void *res)
29 {
30 struct dma_devres *this = res;
31
32 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 this->attrs);
34 }
35
dmam_match(struct device * dev,void * res,void * match_data)36 static int dmam_match(struct device *dev, void *res, void *match_data)
37 {
38 struct dma_devres *this = res, *match = match_data;
39
40 if (this->vaddr == match->vaddr) {
41 WARN_ON(this->size != match->size ||
42 this->dma_handle != match->dma_handle);
43 return 1;
44 }
45 return 0;
46 }
47
48 /**
49 * dmam_free_coherent - Managed dma_free_coherent()
50 * @dev: Device to free coherent memory for
51 * @size: Size of allocation
52 * @vaddr: Virtual address of the memory to free
53 * @dma_handle: DMA handle of the memory to free
54 *
55 * Managed dma_free_coherent().
56 */
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)57 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 dma_addr_t dma_handle)
59 {
60 struct dma_devres match_data = { size, vaddr, dma_handle };
61
62 dma_free_coherent(dev, size, vaddr, dma_handle);
63 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
64 }
65 EXPORT_SYMBOL(dmam_free_coherent);
66
67 /**
68 * dmam_alloc_attrs - Managed dma_alloc_attrs()
69 * @dev: Device to allocate non_coherent memory for
70 * @size: Size of allocation
71 * @dma_handle: Out argument for allocated DMA handle
72 * @gfp: Allocation flags
73 * @attrs: Flags in the DMA_ATTR_* namespace.
74 *
75 * Managed dma_alloc_attrs(). Memory allocated using this function will be
76 * automatically released on driver detach.
77 *
78 * RETURNS:
79 * Pointer to allocated memory on success, NULL on failure.
80 */
dmam_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)81 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 gfp_t gfp, unsigned long attrs)
83 {
84 struct dma_devres *dr;
85 void *vaddr;
86
87 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
88 if (!dr)
89 return NULL;
90
91 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
92 if (!vaddr) {
93 devres_free(dr);
94 return NULL;
95 }
96
97 dr->vaddr = vaddr;
98 dr->dma_handle = *dma_handle;
99 dr->size = size;
100 dr->attrs = attrs;
101
102 devres_add(dev, dr);
103
104 return vaddr;
105 }
106 EXPORT_SYMBOL(dmam_alloc_attrs);
107
108 /*
109 * Create scatter-list for the already allocated DMA buffer.
110 */
dma_common_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)111 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113 unsigned long attrs)
114 {
115 struct page *page;
116 int ret;
117
118 if (!dev_is_dma_coherent(dev)) {
119 unsigned long pfn;
120
121 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
122 return -ENXIO;
123
124 /* If the PFN is not valid, we do not have a struct page */
125 pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
126 if (!pfn_valid(pfn))
127 return -ENXIO;
128 page = pfn_to_page(pfn);
129 } else {
130 page = virt_to_page(cpu_addr);
131 }
132
133 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
134 if (!ret)
135 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
136 return ret;
137 }
138 EXPORT_SYMBOL_GPL(dma_common_get_sgtable);
139
140 /*
141 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
142 * that the intention is to allow exporting memory allocated via the
143 * coherent DMA APIs through the dma_buf API, which only accepts a
144 * scattertable. This presents a couple of problems:
145 * 1. Not all memory allocated via the coherent DMA APIs is backed by
146 * a struct page
147 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
148 * as we will try to flush the memory through a different alias to that
149 * actually being used (and the flushes are redundant.)
150 */
dma_get_sgtable_attrs(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)151 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
152 void *cpu_addr, dma_addr_t dma_addr, size_t size,
153 unsigned long attrs)
154 {
155 const struct dma_map_ops *ops = get_dma_ops(dev);
156
157 if (dma_is_direct(ops))
158 return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr,
159 size, attrs);
160 if (!ops->get_sgtable)
161 return -ENXIO;
162 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
163 }
164 EXPORT_SYMBOL(dma_get_sgtable_attrs);
165
166 #ifdef CONFIG_MMU
167 /*
168 * Return the page attributes used for mapping dma_alloc_* memory, either in
169 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
170 */
dma_pgprot(struct device * dev,pgprot_t prot,unsigned long attrs)171 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
172 {
173 if (force_dma_unencrypted(dev))
174 prot = pgprot_decrypted(prot);
175 if (dev_is_dma_coherent(dev) ||
176 (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
177 (attrs & DMA_ATTR_NON_CONSISTENT)))
178 return prot;
179 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
180 if (attrs & DMA_ATTR_WRITE_COMBINE)
181 return pgprot_writecombine(prot);
182 #endif
183 return pgprot_dmacoherent(prot);
184 }
185 #endif /* CONFIG_MMU */
186
187 /*
188 * Create userspace mapping for the DMA-coherent memory.
189 */
dma_common_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)190 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
191 void *cpu_addr, dma_addr_t dma_addr, size_t size,
192 unsigned long attrs)
193 {
194 #ifdef CONFIG_MMU
195 unsigned long user_count = vma_pages(vma);
196 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
197 unsigned long off = vma->vm_pgoff;
198 unsigned long pfn;
199 int ret = -ENXIO;
200
201 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
202
203 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
204 return ret;
205
206 if (off >= count || user_count > count - off)
207 return -ENXIO;
208
209 if (!dev_is_dma_coherent(dev)) {
210 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
211 return -ENXIO;
212
213 /* If the PFN is not valid, we do not have a struct page */
214 pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
215 if (!pfn_valid(pfn))
216 return -ENXIO;
217 } else {
218 pfn = page_to_pfn(virt_to_page(cpu_addr));
219 }
220
221 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
222 user_count << PAGE_SHIFT, vma->vm_page_prot);
223 #else
224 return -ENXIO;
225 #endif /* CONFIG_MMU */
226 }
227 EXPORT_SYMBOL_GPL(dma_common_mmap);
228
229 /**
230 * dma_can_mmap - check if a given device supports dma_mmap_*
231 * @dev: device to check
232 *
233 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
234 * map DMA allocations to userspace.
235 */
dma_can_mmap(struct device * dev)236 bool dma_can_mmap(struct device *dev)
237 {
238 const struct dma_map_ops *ops = get_dma_ops(dev);
239
240 if (dma_is_direct(ops)) {
241 return IS_ENABLED(CONFIG_MMU) &&
242 (dev_is_dma_coherent(dev) ||
243 IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN));
244 }
245
246 return ops->mmap != NULL;
247 }
248 EXPORT_SYMBOL_GPL(dma_can_mmap);
249
250 /**
251 * dma_mmap_attrs - map a coherent DMA allocation into user space
252 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
253 * @vma: vm_area_struct describing requested user mapping
254 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
255 * @dma_addr: device-view address returned from dma_alloc_attrs
256 * @size: size of memory originally requested in dma_alloc_attrs
257 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
258 *
259 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
260 * space. The coherent DMA buffer must not be freed by the driver until the
261 * user space mapping has been released.
262 */
dma_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)263 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
264 void *cpu_addr, dma_addr_t dma_addr, size_t size,
265 unsigned long attrs)
266 {
267 const struct dma_map_ops *ops = get_dma_ops(dev);
268
269 if (dma_is_direct(ops))
270 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size,
271 attrs);
272 if (!ops->mmap)
273 return -ENXIO;
274 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
275 }
276 EXPORT_SYMBOL(dma_mmap_attrs);
277
dma_get_required_mask(struct device * dev)278 u64 dma_get_required_mask(struct device *dev)
279 {
280 const struct dma_map_ops *ops = get_dma_ops(dev);
281
282 if (dma_is_direct(ops))
283 return dma_direct_get_required_mask(dev);
284 if (ops->get_required_mask)
285 return ops->get_required_mask(dev);
286
287 /*
288 * We require every DMA ops implementation to at least support a 32-bit
289 * DMA mask (and use bounce buffering if that isn't supported in
290 * hardware). As the direct mapping code has its own routine to
291 * actually report an optimal mask we default to 32-bit here as that
292 * is the right thing for most IOMMUs, and at least not actively
293 * harmful in general.
294 */
295 return DMA_BIT_MASK(32);
296 }
297 EXPORT_SYMBOL_GPL(dma_get_required_mask);
298
dma_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)299 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
300 gfp_t flag, unsigned long attrs)
301 {
302 const struct dma_map_ops *ops = get_dma_ops(dev);
303 void *cpu_addr;
304
305 WARN_ON_ONCE(!dev->coherent_dma_mask);
306
307 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
308 return cpu_addr;
309
310 /* let the implementation decide on the zone to allocate from: */
311 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
312
313 if (dma_is_direct(ops))
314 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
315 else if (ops->alloc)
316 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
317 else
318 return NULL;
319
320 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
321 return cpu_addr;
322 }
323 EXPORT_SYMBOL(dma_alloc_attrs);
324
dma_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)325 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
326 dma_addr_t dma_handle, unsigned long attrs)
327 {
328 const struct dma_map_ops *ops = get_dma_ops(dev);
329
330 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
331 return;
332 /*
333 * On non-coherent platforms which implement DMA-coherent buffers via
334 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
335 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
336 * sleep on some machines, and b) an indication that the driver is
337 * probably misusing the coherent API anyway.
338 */
339 WARN_ON(irqs_disabled());
340
341 if (!cpu_addr)
342 return;
343
344 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
345 if (dma_is_direct(ops))
346 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
347 else if (ops->free)
348 ops->free(dev, size, cpu_addr, dma_handle, attrs);
349 }
350 EXPORT_SYMBOL(dma_free_attrs);
351
dma_supported(struct device * dev,u64 mask)352 int dma_supported(struct device *dev, u64 mask)
353 {
354 const struct dma_map_ops *ops = get_dma_ops(dev);
355
356 if (dma_is_direct(ops))
357 return dma_direct_supported(dev, mask);
358 if (!ops->dma_supported)
359 return 1;
360 return ops->dma_supported(dev, mask);
361 }
362 EXPORT_SYMBOL(dma_supported);
363
364 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
365 void arch_dma_set_mask(struct device *dev, u64 mask);
366 #else
367 #define arch_dma_set_mask(dev, mask) do { } while (0)
368 #endif
369
dma_set_mask(struct device * dev,u64 mask)370 int dma_set_mask(struct device *dev, u64 mask)
371 {
372 /*
373 * Truncate the mask to the actually supported dma_addr_t width to
374 * avoid generating unsupportable addresses.
375 */
376 mask = (dma_addr_t)mask;
377
378 if (!dev->dma_mask || !dma_supported(dev, mask))
379 return -EIO;
380
381 arch_dma_set_mask(dev, mask);
382 *dev->dma_mask = mask;
383 return 0;
384 }
385 EXPORT_SYMBOL(dma_set_mask);
386
387 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
dma_set_coherent_mask(struct device * dev,u64 mask)388 int dma_set_coherent_mask(struct device *dev, u64 mask)
389 {
390 /*
391 * Truncate the mask to the actually supported dma_addr_t width to
392 * avoid generating unsupportable addresses.
393 */
394 mask = (dma_addr_t)mask;
395
396 if (!dma_supported(dev, mask))
397 return -EIO;
398
399 dev->coherent_dma_mask = mask;
400 return 0;
401 }
402 EXPORT_SYMBOL(dma_set_coherent_mask);
403 #endif
404
dma_cache_sync(struct device * dev,void * vaddr,size_t size,enum dma_data_direction dir)405 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
406 enum dma_data_direction dir)
407 {
408 const struct dma_map_ops *ops = get_dma_ops(dev);
409
410 BUG_ON(!valid_dma_direction(dir));
411
412 if (dma_is_direct(ops))
413 arch_dma_cache_sync(dev, vaddr, size, dir);
414 else if (ops->cache_sync)
415 ops->cache_sync(dev, vaddr, size, dir);
416 }
417 EXPORT_SYMBOL(dma_cache_sync);
418
dma_max_mapping_size(struct device * dev)419 size_t dma_max_mapping_size(struct device *dev)
420 {
421 const struct dma_map_ops *ops = get_dma_ops(dev);
422 size_t size = SIZE_MAX;
423
424 if (dma_is_direct(ops))
425 size = dma_direct_max_mapping_size(dev);
426 else if (ops && ops->max_mapping_size)
427 size = ops->max_mapping_size(dev);
428
429 return size;
430 }
431 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
432
dma_get_merge_boundary(struct device * dev)433 unsigned long dma_get_merge_boundary(struct device *dev)
434 {
435 const struct dma_map_ops *ops = get_dma_ops(dev);
436
437 if (!ops || !ops->get_merge_boundary)
438 return 0; /* can't merge */
439
440 return ops->get_merge_boundary(dev);
441 }
442 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
443