• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-noncoherent.h>
12 #include <linux/export.h>
13 #include <linux/gfp.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 
18 /*
19  * Managed DMA API
20  */
21 struct dma_devres {
22 	size_t		size;
23 	void		*vaddr;
24 	dma_addr_t	dma_handle;
25 	unsigned long	attrs;
26 };
27 
dmam_release(struct device * dev,void * res)28 static void dmam_release(struct device *dev, void *res)
29 {
30 	struct dma_devres *this = res;
31 
32 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 			this->attrs);
34 }
35 
dmam_match(struct device * dev,void * res,void * match_data)36 static int dmam_match(struct device *dev, void *res, void *match_data)
37 {
38 	struct dma_devres *this = res, *match = match_data;
39 
40 	if (this->vaddr == match->vaddr) {
41 		WARN_ON(this->size != match->size ||
42 			this->dma_handle != match->dma_handle);
43 		return 1;
44 	}
45 	return 0;
46 }
47 
48 /**
49  * dmam_free_coherent - Managed dma_free_coherent()
50  * @dev: Device to free coherent memory for
51  * @size: Size of allocation
52  * @vaddr: Virtual address of the memory to free
53  * @dma_handle: DMA handle of the memory to free
54  *
55  * Managed dma_free_coherent().
56  */
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)57 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 			dma_addr_t dma_handle)
59 {
60 	struct dma_devres match_data = { size, vaddr, dma_handle };
61 
62 	dma_free_coherent(dev, size, vaddr, dma_handle);
63 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
64 }
65 EXPORT_SYMBOL(dmam_free_coherent);
66 
67 /**
68  * dmam_alloc_attrs - Managed dma_alloc_attrs()
69  * @dev: Device to allocate non_coherent memory for
70  * @size: Size of allocation
71  * @dma_handle: Out argument for allocated DMA handle
72  * @gfp: Allocation flags
73  * @attrs: Flags in the DMA_ATTR_* namespace.
74  *
75  * Managed dma_alloc_attrs().  Memory allocated using this function will be
76  * automatically released on driver detach.
77  *
78  * RETURNS:
79  * Pointer to allocated memory on success, NULL on failure.
80  */
dmam_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)81 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 		gfp_t gfp, unsigned long attrs)
83 {
84 	struct dma_devres *dr;
85 	void *vaddr;
86 
87 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
88 	if (!dr)
89 		return NULL;
90 
91 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
92 	if (!vaddr) {
93 		devres_free(dr);
94 		return NULL;
95 	}
96 
97 	dr->vaddr = vaddr;
98 	dr->dma_handle = *dma_handle;
99 	dr->size = size;
100 	dr->attrs = attrs;
101 
102 	devres_add(dev, dr);
103 
104 	return vaddr;
105 }
106 EXPORT_SYMBOL(dmam_alloc_attrs);
107 
108 /*
109  * Create scatter-list for the already allocated DMA buffer.
110  */
dma_common_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)111 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113 		 unsigned long attrs)
114 {
115 	struct page *page;
116 	int ret;
117 
118 	if (!dev_is_dma_coherent(dev)) {
119 		unsigned long pfn;
120 
121 		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
122 			return -ENXIO;
123 
124 		/* If the PFN is not valid, we do not have a struct page */
125 		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
126 		if (!pfn_valid(pfn))
127 			return -ENXIO;
128 		page = pfn_to_page(pfn);
129 	} else {
130 		page = virt_to_page(cpu_addr);
131 	}
132 
133 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
134 	if (!ret)
135 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
136 	return ret;
137 }
138 EXPORT_SYMBOL_GPL(dma_common_get_sgtable);
139 
140 /*
141  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
142  * that the intention is to allow exporting memory allocated via the
143  * coherent DMA APIs through the dma_buf API, which only accepts a
144  * scattertable.  This presents a couple of problems:
145  * 1. Not all memory allocated via the coherent DMA APIs is backed by
146  *    a struct page
147  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
148  *    as we will try to flush the memory through a different alias to that
149  *    actually being used (and the flushes are redundant.)
150  */
dma_get_sgtable_attrs(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)151 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
152 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
153 		unsigned long attrs)
154 {
155 	const struct dma_map_ops *ops = get_dma_ops(dev);
156 
157 	if (dma_is_direct(ops))
158 		return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr,
159 				size, attrs);
160 	if (!ops->get_sgtable)
161 		return -ENXIO;
162 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
163 }
164 EXPORT_SYMBOL(dma_get_sgtable_attrs);
165 
166 #ifdef CONFIG_MMU
167 /*
168  * Return the page attributes used for mapping dma_alloc_* memory, either in
169  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
170  */
dma_pgprot(struct device * dev,pgprot_t prot,unsigned long attrs)171 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
172 {
173 	if (force_dma_unencrypted(dev))
174 		prot = pgprot_decrypted(prot);
175 	if (dev_is_dma_coherent(dev) ||
176 	    (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
177              (attrs & DMA_ATTR_NON_CONSISTENT)))
178 		return prot;
179 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
180 	if (attrs & DMA_ATTR_WRITE_COMBINE)
181 		return pgprot_writecombine(prot);
182 #endif
183 	return pgprot_dmacoherent(prot);
184 }
185 #endif /* CONFIG_MMU */
186 
187 /*
188  * Create userspace mapping for the DMA-coherent memory.
189  */
dma_common_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)190 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
191 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
192 		unsigned long attrs)
193 {
194 #ifdef CONFIG_MMU
195 	unsigned long user_count = vma_pages(vma);
196 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
197 	unsigned long off = vma->vm_pgoff;
198 	unsigned long pfn;
199 	int ret = -ENXIO;
200 
201 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
202 
203 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
204 		return ret;
205 
206 	if (off >= count || user_count > count - off)
207 		return -ENXIO;
208 
209 	if (!dev_is_dma_coherent(dev)) {
210 		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
211 			return -ENXIO;
212 
213 		/* If the PFN is not valid, we do not have a struct page */
214 		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
215 		if (!pfn_valid(pfn))
216 			return -ENXIO;
217 	} else {
218 		pfn = page_to_pfn(virt_to_page(cpu_addr));
219 	}
220 
221 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
222 			user_count << PAGE_SHIFT, vma->vm_page_prot);
223 #else
224 	return -ENXIO;
225 #endif /* CONFIG_MMU */
226 }
227 EXPORT_SYMBOL_GPL(dma_common_mmap);
228 
229 /**
230  * dma_can_mmap - check if a given device supports dma_mmap_*
231  * @dev: device to check
232  *
233  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
234  * map DMA allocations to userspace.
235  */
dma_can_mmap(struct device * dev)236 bool dma_can_mmap(struct device *dev)
237 {
238 	const struct dma_map_ops *ops = get_dma_ops(dev);
239 
240 	if (dma_is_direct(ops)) {
241 		return IS_ENABLED(CONFIG_MMU) &&
242 		       (dev_is_dma_coherent(dev) ||
243 			IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN));
244 	}
245 
246 	return ops->mmap != NULL;
247 }
248 EXPORT_SYMBOL_GPL(dma_can_mmap);
249 
250 /**
251  * dma_mmap_attrs - map a coherent DMA allocation into user space
252  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
253  * @vma: vm_area_struct describing requested user mapping
254  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
255  * @dma_addr: device-view address returned from dma_alloc_attrs
256  * @size: size of memory originally requested in dma_alloc_attrs
257  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
258  *
259  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
260  * space.  The coherent DMA buffer must not be freed by the driver until the
261  * user space mapping has been released.
262  */
dma_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)263 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
264 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
265 		unsigned long attrs)
266 {
267 	const struct dma_map_ops *ops = get_dma_ops(dev);
268 
269 	if (dma_is_direct(ops))
270 		return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size,
271 				attrs);
272 	if (!ops->mmap)
273 		return -ENXIO;
274 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
275 }
276 EXPORT_SYMBOL(dma_mmap_attrs);
277 
dma_get_required_mask(struct device * dev)278 u64 dma_get_required_mask(struct device *dev)
279 {
280 	const struct dma_map_ops *ops = get_dma_ops(dev);
281 
282 	if (dma_is_direct(ops))
283 		return dma_direct_get_required_mask(dev);
284 	if (ops->get_required_mask)
285 		return ops->get_required_mask(dev);
286 
287 	/*
288 	 * We require every DMA ops implementation to at least support a 32-bit
289 	 * DMA mask (and use bounce buffering if that isn't supported in
290 	 * hardware).  As the direct mapping code has its own routine to
291 	 * actually report an optimal mask we default to 32-bit here as that
292 	 * is the right thing for most IOMMUs, and at least not actively
293 	 * harmful in general.
294 	 */
295 	return DMA_BIT_MASK(32);
296 }
297 EXPORT_SYMBOL_GPL(dma_get_required_mask);
298 
dma_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)299 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
300 		gfp_t flag, unsigned long attrs)
301 {
302 	const struct dma_map_ops *ops = get_dma_ops(dev);
303 	void *cpu_addr;
304 
305 	WARN_ON_ONCE(!dev->coherent_dma_mask);
306 
307 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
308 		return cpu_addr;
309 
310 	/* let the implementation decide on the zone to allocate from: */
311 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
312 
313 	if (dma_is_direct(ops))
314 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
315 	else if (ops->alloc)
316 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
317 	else
318 		return NULL;
319 
320 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
321 	return cpu_addr;
322 }
323 EXPORT_SYMBOL(dma_alloc_attrs);
324 
dma_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)325 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
326 		dma_addr_t dma_handle, unsigned long attrs)
327 {
328 	const struct dma_map_ops *ops = get_dma_ops(dev);
329 
330 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
331 		return;
332 	/*
333 	 * On non-coherent platforms which implement DMA-coherent buffers via
334 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
335 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
336 	 * sleep on some machines, and b) an indication that the driver is
337 	 * probably misusing the coherent API anyway.
338 	 */
339 	WARN_ON(irqs_disabled());
340 
341 	if (!cpu_addr)
342 		return;
343 
344 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
345 	if (dma_is_direct(ops))
346 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
347 	else if (ops->free)
348 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
349 }
350 EXPORT_SYMBOL(dma_free_attrs);
351 
dma_supported(struct device * dev,u64 mask)352 int dma_supported(struct device *dev, u64 mask)
353 {
354 	const struct dma_map_ops *ops = get_dma_ops(dev);
355 
356 	if (dma_is_direct(ops))
357 		return dma_direct_supported(dev, mask);
358 	if (!ops->dma_supported)
359 		return 1;
360 	return ops->dma_supported(dev, mask);
361 }
362 EXPORT_SYMBOL(dma_supported);
363 
364 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
365 void arch_dma_set_mask(struct device *dev, u64 mask);
366 #else
367 #define arch_dma_set_mask(dev, mask)	do { } while (0)
368 #endif
369 
dma_set_mask(struct device * dev,u64 mask)370 int dma_set_mask(struct device *dev, u64 mask)
371 {
372 	/*
373 	 * Truncate the mask to the actually supported dma_addr_t width to
374 	 * avoid generating unsupportable addresses.
375 	 */
376 	mask = (dma_addr_t)mask;
377 
378 	if (!dev->dma_mask || !dma_supported(dev, mask))
379 		return -EIO;
380 
381 	arch_dma_set_mask(dev, mask);
382 	*dev->dma_mask = mask;
383 	return 0;
384 }
385 EXPORT_SYMBOL(dma_set_mask);
386 
387 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
dma_set_coherent_mask(struct device * dev,u64 mask)388 int dma_set_coherent_mask(struct device *dev, u64 mask)
389 {
390 	/*
391 	 * Truncate the mask to the actually supported dma_addr_t width to
392 	 * avoid generating unsupportable addresses.
393 	 */
394 	mask = (dma_addr_t)mask;
395 
396 	if (!dma_supported(dev, mask))
397 		return -EIO;
398 
399 	dev->coherent_dma_mask = mask;
400 	return 0;
401 }
402 EXPORT_SYMBOL(dma_set_coherent_mask);
403 #endif
404 
dma_cache_sync(struct device * dev,void * vaddr,size_t size,enum dma_data_direction dir)405 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
406 		enum dma_data_direction dir)
407 {
408 	const struct dma_map_ops *ops = get_dma_ops(dev);
409 
410 	BUG_ON(!valid_dma_direction(dir));
411 
412 	if (dma_is_direct(ops))
413 		arch_dma_cache_sync(dev, vaddr, size, dir);
414 	else if (ops->cache_sync)
415 		ops->cache_sync(dev, vaddr, size, dir);
416 }
417 EXPORT_SYMBOL(dma_cache_sync);
418 
dma_max_mapping_size(struct device * dev)419 size_t dma_max_mapping_size(struct device *dev)
420 {
421 	const struct dma_map_ops *ops = get_dma_ops(dev);
422 	size_t size = SIZE_MAX;
423 
424 	if (dma_is_direct(ops))
425 		size = dma_direct_max_mapping_size(dev);
426 	else if (ops && ops->max_mapping_size)
427 		size = ops->max_mapping_size(dev);
428 
429 	return size;
430 }
431 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
432 
dma_get_merge_boundary(struct device * dev)433 unsigned long dma_get_merge_boundary(struct device *dev)
434 {
435 	const struct dma_map_ops *ops = get_dma_ops(dev);
436 
437 	if (!ops || !ops->get_merge_boundary)
438 		return 0;	/* can't merge */
439 
440 	return ops->get_merge_boundary(dev);
441 }
442 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
443