• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/syscalls.h>
28 #include <linux/vmalloc.h>
29 #include "kexec_internal.h"
30 
31 static int kexec_calculate_store_digests(struct kimage *image);
32 
33 /*
34  * Currently this is the only default function that is exported as some
35  * architectures need it to do additional handlings.
36  * In the future, other default functions may be exported too if required.
37  */
kexec_image_probe_default(struct kimage * image,void * buf,unsigned long buf_len)38 int kexec_image_probe_default(struct kimage *image, void *buf,
39 			      unsigned long buf_len)
40 {
41 	const struct kexec_file_ops * const *fops;
42 	int ret = -ENOEXEC;
43 
44 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
45 		ret = (*fops)->probe(buf, buf_len);
46 		if (!ret) {
47 			image->fops = *fops;
48 			return ret;
49 		}
50 	}
51 
52 	return ret;
53 }
54 
55 /* Architectures can provide this probe function */
arch_kexec_kernel_image_probe(struct kimage * image,void * buf,unsigned long buf_len)56 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
57 					 unsigned long buf_len)
58 {
59 	return kexec_image_probe_default(image, buf, buf_len);
60 }
61 
kexec_image_load_default(struct kimage * image)62 static void *kexec_image_load_default(struct kimage *image)
63 {
64 	if (!image->fops || !image->fops->load)
65 		return ERR_PTR(-ENOEXEC);
66 
67 	return image->fops->load(image, image->kernel_buf,
68 				 image->kernel_buf_len, image->initrd_buf,
69 				 image->initrd_buf_len, image->cmdline_buf,
70 				 image->cmdline_buf_len);
71 }
72 
arch_kexec_kernel_image_load(struct kimage * image)73 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
74 {
75 	return kexec_image_load_default(image);
76 }
77 
kexec_image_post_load_cleanup_default(struct kimage * image)78 int kexec_image_post_load_cleanup_default(struct kimage *image)
79 {
80 	if (!image->fops || !image->fops->cleanup)
81 		return 0;
82 
83 	return image->fops->cleanup(image->image_loader_data);
84 }
85 
arch_kimage_file_post_load_cleanup(struct kimage * image)86 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
87 {
88 	return kexec_image_post_load_cleanup_default(image);
89 }
90 
91 #ifdef CONFIG_KEXEC_SIG
kexec_image_verify_sig_default(struct kimage * image,void * buf,unsigned long buf_len)92 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
93 					  unsigned long buf_len)
94 {
95 	if (!image->fops || !image->fops->verify_sig) {
96 		pr_debug("kernel loader does not support signature verification.\n");
97 		return -EKEYREJECTED;
98 	}
99 
100 	return image->fops->verify_sig(buf, buf_len);
101 }
102 
arch_kexec_kernel_verify_sig(struct kimage * image,void * buf,unsigned long buf_len)103 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
104 					unsigned long buf_len)
105 {
106 	return kexec_image_verify_sig_default(image, buf, buf_len);
107 }
108 #endif
109 
110 /*
111  * Free up memory used by kernel, initrd, and command line. This is temporary
112  * memory allocation which is not needed any more after these buffers have
113  * been loaded into separate segments and have been copied elsewhere.
114  */
kimage_file_post_load_cleanup(struct kimage * image)115 void kimage_file_post_load_cleanup(struct kimage *image)
116 {
117 	struct purgatory_info *pi = &image->purgatory_info;
118 
119 	vfree(image->kernel_buf);
120 	image->kernel_buf = NULL;
121 
122 	vfree(image->initrd_buf);
123 	image->initrd_buf = NULL;
124 
125 	kfree(image->cmdline_buf);
126 	image->cmdline_buf = NULL;
127 
128 	vfree(pi->purgatory_buf);
129 	pi->purgatory_buf = NULL;
130 
131 	vfree(pi->sechdrs);
132 	pi->sechdrs = NULL;
133 
134 #ifdef CONFIG_IMA_KEXEC
135 	vfree(image->ima_buffer);
136 	image->ima_buffer = NULL;
137 #endif /* CONFIG_IMA_KEXEC */
138 
139 	/* See if architecture has anything to cleanup post load */
140 	arch_kimage_file_post_load_cleanup(image);
141 
142 	/*
143 	 * Above call should have called into bootloader to free up
144 	 * any data stored in kimage->image_loader_data. It should
145 	 * be ok now to free it up.
146 	 */
147 	kfree(image->image_loader_data);
148 	image->image_loader_data = NULL;
149 }
150 
151 #ifdef CONFIG_KEXEC_SIG
152 static int
kimage_validate_signature(struct kimage * image)153 kimage_validate_signature(struct kimage *image)
154 {
155 	const char *reason;
156 	int ret;
157 
158 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
159 					   image->kernel_buf_len);
160 	switch (ret) {
161 	case 0:
162 		break;
163 
164 		/* Certain verification errors are non-fatal if we're not
165 		 * checking errors, provided we aren't mandating that there
166 		 * must be a valid signature.
167 		 */
168 	case -ENODATA:
169 		reason = "kexec of unsigned image";
170 		goto decide;
171 	case -ENOPKG:
172 		reason = "kexec of image with unsupported crypto";
173 		goto decide;
174 	case -ENOKEY:
175 		reason = "kexec of image with unavailable key";
176 	decide:
177 		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
178 			pr_notice("%s rejected\n", reason);
179 			return ret;
180 		}
181 
182 		/* If IMA is guaranteed to appraise a signature on the kexec
183 		 * image, permit it even if the kernel is otherwise locked
184 		 * down.
185 		 */
186 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
187 		    security_locked_down(LOCKDOWN_KEXEC))
188 			return -EPERM;
189 
190 		return 0;
191 
192 		/* All other errors are fatal, including nomem, unparseable
193 		 * signatures and signature check failures - even if signatures
194 		 * aren't required.
195 		 */
196 	default:
197 		pr_notice("kernel signature verification failed (%d).\n", ret);
198 	}
199 
200 	return ret;
201 }
202 #endif
203 
204 /*
205  * In file mode list of segments is prepared by kernel. Copy relevant
206  * data from user space, do error checking, prepare segment list
207  */
208 static int
kimage_file_prepare_segments(struct kimage * image,int kernel_fd,int initrd_fd,const char __user * cmdline_ptr,unsigned long cmdline_len,unsigned flags)209 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
210 			     const char __user *cmdline_ptr,
211 			     unsigned long cmdline_len, unsigned flags)
212 {
213 	int ret;
214 	void *ldata;
215 	loff_t size;
216 
217 	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
218 				       &size, INT_MAX, READING_KEXEC_IMAGE);
219 	if (ret)
220 		return ret;
221 	image->kernel_buf_len = size;
222 
223 	/* Call arch image probe handlers */
224 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
225 					    image->kernel_buf_len);
226 	if (ret)
227 		goto out;
228 
229 #ifdef CONFIG_KEXEC_SIG
230 	ret = kimage_validate_signature(image);
231 
232 	if (ret)
233 		goto out;
234 #endif
235 	/* It is possible that there no initramfs is being loaded */
236 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
237 		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
238 					       &size, INT_MAX,
239 					       READING_KEXEC_INITRAMFS);
240 		if (ret)
241 			goto out;
242 		image->initrd_buf_len = size;
243 	}
244 
245 	if (cmdline_len) {
246 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
247 		if (IS_ERR(image->cmdline_buf)) {
248 			ret = PTR_ERR(image->cmdline_buf);
249 			image->cmdline_buf = NULL;
250 			goto out;
251 		}
252 
253 		image->cmdline_buf_len = cmdline_len;
254 
255 		/* command line should be a string with last byte null */
256 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
257 			ret = -EINVAL;
258 			goto out;
259 		}
260 
261 		ima_kexec_cmdline(image->cmdline_buf,
262 				  image->cmdline_buf_len - 1);
263 	}
264 
265 	/* IMA needs to pass the measurement list to the next kernel. */
266 	ima_add_kexec_buffer(image);
267 
268 	/* Call arch image load handlers */
269 	ldata = arch_kexec_kernel_image_load(image);
270 
271 	if (IS_ERR(ldata)) {
272 		ret = PTR_ERR(ldata);
273 		goto out;
274 	}
275 
276 	image->image_loader_data = ldata;
277 out:
278 	/* In case of error, free up all allocated memory in this function */
279 	if (ret)
280 		kimage_file_post_load_cleanup(image);
281 	return ret;
282 }
283 
284 static int
kimage_file_alloc_init(struct kimage ** rimage,int kernel_fd,int initrd_fd,const char __user * cmdline_ptr,unsigned long cmdline_len,unsigned long flags)285 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
286 		       int initrd_fd, const char __user *cmdline_ptr,
287 		       unsigned long cmdline_len, unsigned long flags)
288 {
289 	int ret;
290 	struct kimage *image;
291 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
292 
293 	image = do_kimage_alloc_init();
294 	if (!image)
295 		return -ENOMEM;
296 
297 	image->file_mode = 1;
298 
299 	if (kexec_on_panic) {
300 		/* Enable special crash kernel control page alloc policy. */
301 		image->control_page = crashk_res.start;
302 		image->type = KEXEC_TYPE_CRASH;
303 	}
304 
305 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
306 					   cmdline_ptr, cmdline_len, flags);
307 	if (ret)
308 		goto out_free_image;
309 
310 	ret = sanity_check_segment_list(image);
311 	if (ret)
312 		goto out_free_post_load_bufs;
313 
314 	ret = -ENOMEM;
315 	image->control_code_page = kimage_alloc_control_pages(image,
316 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
317 	if (!image->control_code_page) {
318 		pr_err("Could not allocate control_code_buffer\n");
319 		goto out_free_post_load_bufs;
320 	}
321 
322 	if (!kexec_on_panic) {
323 		image->swap_page = kimage_alloc_control_pages(image, 0);
324 		if (!image->swap_page) {
325 			pr_err("Could not allocate swap buffer\n");
326 			goto out_free_control_pages;
327 		}
328 	}
329 
330 	*rimage = image;
331 	return 0;
332 out_free_control_pages:
333 	kimage_free_page_list(&image->control_pages);
334 out_free_post_load_bufs:
335 	kimage_file_post_load_cleanup(image);
336 out_free_image:
337 	kfree(image);
338 	return ret;
339 }
340 
SYSCALL_DEFINE5(kexec_file_load,int,kernel_fd,int,initrd_fd,unsigned long,cmdline_len,const char __user *,cmdline_ptr,unsigned long,flags)341 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
342 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
343 		unsigned long, flags)
344 {
345 	int ret = 0, i;
346 	struct kimage **dest_image, *image;
347 
348 	/* We only trust the superuser with rebooting the system. */
349 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
350 		return -EPERM;
351 
352 	/* Make sure we have a legal set of flags */
353 	if (flags != (flags & KEXEC_FILE_FLAGS))
354 		return -EINVAL;
355 
356 	image = NULL;
357 
358 	if (!mutex_trylock(&kexec_mutex))
359 		return -EBUSY;
360 
361 	dest_image = &kexec_image;
362 	if (flags & KEXEC_FILE_ON_CRASH) {
363 		dest_image = &kexec_crash_image;
364 		if (kexec_crash_image)
365 			arch_kexec_unprotect_crashkres();
366 	}
367 
368 	if (flags & KEXEC_FILE_UNLOAD)
369 		goto exchange;
370 
371 	/*
372 	 * In case of crash, new kernel gets loaded in reserved region. It is
373 	 * same memory where old crash kernel might be loaded. Free any
374 	 * current crash dump kernel before we corrupt it.
375 	 */
376 	if (flags & KEXEC_FILE_ON_CRASH)
377 		kimage_free(xchg(&kexec_crash_image, NULL));
378 
379 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
380 				     cmdline_len, flags);
381 	if (ret)
382 		goto out;
383 
384 	ret = machine_kexec_prepare(image);
385 	if (ret)
386 		goto out;
387 
388 	/*
389 	 * Some architecture(like S390) may touch the crash memory before
390 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
391 	 */
392 	ret = kimage_crash_copy_vmcoreinfo(image);
393 	if (ret)
394 		goto out;
395 
396 	ret = kexec_calculate_store_digests(image);
397 	if (ret)
398 		goto out;
399 
400 	for (i = 0; i < image->nr_segments; i++) {
401 		struct kexec_segment *ksegment;
402 
403 		ksegment = &image->segment[i];
404 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
405 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
406 			 ksegment->memsz);
407 
408 		ret = kimage_load_segment(image, &image->segment[i]);
409 		if (ret)
410 			goto out;
411 	}
412 
413 	kimage_terminate(image);
414 
415 	/*
416 	 * Free up any temporary buffers allocated which are not needed
417 	 * after image has been loaded
418 	 */
419 	kimage_file_post_load_cleanup(image);
420 exchange:
421 	image = xchg(dest_image, image);
422 out:
423 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
424 		arch_kexec_protect_crashkres();
425 
426 	mutex_unlock(&kexec_mutex);
427 	kimage_free(image);
428 	return ret;
429 }
430 
locate_mem_hole_top_down(unsigned long start,unsigned long end,struct kexec_buf * kbuf)431 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
432 				    struct kexec_buf *kbuf)
433 {
434 	struct kimage *image = kbuf->image;
435 	unsigned long temp_start, temp_end;
436 
437 	temp_end = min(end, kbuf->buf_max);
438 	temp_start = temp_end - kbuf->memsz;
439 
440 	do {
441 		/* align down start */
442 		temp_start = temp_start & (~(kbuf->buf_align - 1));
443 
444 		if (temp_start < start || temp_start < kbuf->buf_min)
445 			return 0;
446 
447 		temp_end = temp_start + kbuf->memsz - 1;
448 
449 		/*
450 		 * Make sure this does not conflict with any of existing
451 		 * segments
452 		 */
453 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
454 			temp_start = temp_start - PAGE_SIZE;
455 			continue;
456 		}
457 
458 		/* We found a suitable memory range */
459 		break;
460 	} while (1);
461 
462 	/* If we are here, we found a suitable memory range */
463 	kbuf->mem = temp_start;
464 
465 	/* Success, stop navigating through remaining System RAM ranges */
466 	return 1;
467 }
468 
locate_mem_hole_bottom_up(unsigned long start,unsigned long end,struct kexec_buf * kbuf)469 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
470 				     struct kexec_buf *kbuf)
471 {
472 	struct kimage *image = kbuf->image;
473 	unsigned long temp_start, temp_end;
474 
475 	temp_start = max(start, kbuf->buf_min);
476 
477 	do {
478 		temp_start = ALIGN(temp_start, kbuf->buf_align);
479 		temp_end = temp_start + kbuf->memsz - 1;
480 
481 		if (temp_end > end || temp_end > kbuf->buf_max)
482 			return 0;
483 		/*
484 		 * Make sure this does not conflict with any of existing
485 		 * segments
486 		 */
487 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
488 			temp_start = temp_start + PAGE_SIZE;
489 			continue;
490 		}
491 
492 		/* We found a suitable memory range */
493 		break;
494 	} while (1);
495 
496 	/* If we are here, we found a suitable memory range */
497 	kbuf->mem = temp_start;
498 
499 	/* Success, stop navigating through remaining System RAM ranges */
500 	return 1;
501 }
502 
locate_mem_hole_callback(struct resource * res,void * arg)503 static int locate_mem_hole_callback(struct resource *res, void *arg)
504 {
505 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
506 	u64 start = res->start, end = res->end;
507 	unsigned long sz = end - start + 1;
508 
509 	/* Returning 0 will take to next memory range */
510 	if (sz < kbuf->memsz)
511 		return 0;
512 
513 	if (end < kbuf->buf_min || start > kbuf->buf_max)
514 		return 0;
515 
516 	/*
517 	 * Allocate memory top down with-in ram range. Otherwise bottom up
518 	 * allocation.
519 	 */
520 	if (kbuf->top_down)
521 		return locate_mem_hole_top_down(start, end, kbuf);
522 	return locate_mem_hole_bottom_up(start, end, kbuf);
523 }
524 
525 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
kexec_walk_memblock(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))526 static int kexec_walk_memblock(struct kexec_buf *kbuf,
527 			       int (*func)(struct resource *, void *))
528 {
529 	int ret = 0;
530 	u64 i;
531 	phys_addr_t mstart, mend;
532 	struct resource res = { };
533 
534 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
535 		return func(&crashk_res, kbuf);
536 
537 	if (kbuf->top_down) {
538 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
539 						&mstart, &mend, NULL) {
540 			/*
541 			 * In memblock, end points to the first byte after the
542 			 * range while in kexec, end points to the last byte
543 			 * in the range.
544 			 */
545 			res.start = mstart;
546 			res.end = mend - 1;
547 			ret = func(&res, kbuf);
548 			if (ret)
549 				break;
550 		}
551 	} else {
552 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
553 					&mstart, &mend, NULL) {
554 			/*
555 			 * In memblock, end points to the first byte after the
556 			 * range while in kexec, end points to the last byte
557 			 * in the range.
558 			 */
559 			res.start = mstart;
560 			res.end = mend - 1;
561 			ret = func(&res, kbuf);
562 			if (ret)
563 				break;
564 		}
565 	}
566 
567 	return ret;
568 }
569 #else
kexec_walk_memblock(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))570 static int kexec_walk_memblock(struct kexec_buf *kbuf,
571 			       int (*func)(struct resource *, void *))
572 {
573 	return 0;
574 }
575 #endif
576 
577 /**
578  * kexec_walk_resources - call func(data) on free memory regions
579  * @kbuf:	Context info for the search. Also passed to @func.
580  * @func:	Function to call for each memory region.
581  *
582  * Return: The memory walk will stop when func returns a non-zero value
583  * and that value will be returned. If all free regions are visited without
584  * func returning non-zero, then zero will be returned.
585  */
kexec_walk_resources(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))586 static int kexec_walk_resources(struct kexec_buf *kbuf,
587 				int (*func)(struct resource *, void *))
588 {
589 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
590 		return walk_iomem_res_desc(crashk_res.desc,
591 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
592 					   crashk_res.start, crashk_res.end,
593 					   kbuf, func);
594 	else
595 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
596 }
597 
598 /**
599  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
600  * @kbuf:	Parameters for the memory search.
601  *
602  * On success, kbuf->mem will have the start address of the memory region found.
603  *
604  * Return: 0 on success, negative errno on error.
605  */
kexec_locate_mem_hole(struct kexec_buf * kbuf)606 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
607 {
608 	int ret;
609 
610 	/* Arch knows where to place */
611 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
612 		return 0;
613 
614 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
615 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
616 	else
617 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
618 
619 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
620 }
621 
622 /**
623  * kexec_add_buffer - place a buffer in a kexec segment
624  * @kbuf:	Buffer contents and memory parameters.
625  *
626  * This function assumes that kexec_mutex is held.
627  * On successful return, @kbuf->mem will have the physical address of
628  * the buffer in memory.
629  *
630  * Return: 0 on success, negative errno on error.
631  */
kexec_add_buffer(struct kexec_buf * kbuf)632 int kexec_add_buffer(struct kexec_buf *kbuf)
633 {
634 
635 	struct kexec_segment *ksegment;
636 	int ret;
637 
638 	/* Currently adding segment this way is allowed only in file mode */
639 	if (!kbuf->image->file_mode)
640 		return -EINVAL;
641 
642 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
643 		return -EINVAL;
644 
645 	/*
646 	 * Make sure we are not trying to add buffer after allocating
647 	 * control pages. All segments need to be placed first before
648 	 * any control pages are allocated. As control page allocation
649 	 * logic goes through list of segments to make sure there are
650 	 * no destination overlaps.
651 	 */
652 	if (!list_empty(&kbuf->image->control_pages)) {
653 		WARN_ON(1);
654 		return -EINVAL;
655 	}
656 
657 	/* Ensure minimum alignment needed for segments. */
658 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
659 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
660 
661 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
662 	ret = kexec_locate_mem_hole(kbuf);
663 	if (ret)
664 		return ret;
665 
666 	/* Found a suitable memory range */
667 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
668 	ksegment->kbuf = kbuf->buffer;
669 	ksegment->bufsz = kbuf->bufsz;
670 	ksegment->mem = kbuf->mem;
671 	ksegment->memsz = kbuf->memsz;
672 	kbuf->image->nr_segments++;
673 	return 0;
674 }
675 
676 /* Calculate and store the digest of segments */
kexec_calculate_store_digests(struct kimage * image)677 static int kexec_calculate_store_digests(struct kimage *image)
678 {
679 	struct crypto_shash *tfm;
680 	struct shash_desc *desc;
681 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
682 	size_t desc_size, nullsz;
683 	char *digest;
684 	void *zero_buf;
685 	struct kexec_sha_region *sha_regions;
686 	struct purgatory_info *pi = &image->purgatory_info;
687 
688 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
689 		return 0;
690 
691 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
692 	zero_buf_sz = PAGE_SIZE;
693 
694 	tfm = crypto_alloc_shash("sha256", 0, 0);
695 	if (IS_ERR(tfm)) {
696 		ret = PTR_ERR(tfm);
697 		goto out;
698 	}
699 
700 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
701 	desc = kzalloc(desc_size, GFP_KERNEL);
702 	if (!desc) {
703 		ret = -ENOMEM;
704 		goto out_free_tfm;
705 	}
706 
707 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
708 	sha_regions = vzalloc(sha_region_sz);
709 	if (!sha_regions) {
710 		ret = -ENOMEM;
711 		goto out_free_desc;
712 	}
713 
714 	desc->tfm   = tfm;
715 
716 	ret = crypto_shash_init(desc);
717 	if (ret < 0)
718 		goto out_free_sha_regions;
719 
720 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
721 	if (!digest) {
722 		ret = -ENOMEM;
723 		goto out_free_sha_regions;
724 	}
725 
726 	for (j = i = 0; i < image->nr_segments; i++) {
727 		struct kexec_segment *ksegment;
728 
729 		ksegment = &image->segment[i];
730 		/*
731 		 * Skip purgatory as it will be modified once we put digest
732 		 * info in purgatory.
733 		 */
734 		if (ksegment->kbuf == pi->purgatory_buf)
735 			continue;
736 
737 		ret = crypto_shash_update(desc, ksegment->kbuf,
738 					  ksegment->bufsz);
739 		if (ret)
740 			break;
741 
742 		/*
743 		 * Assume rest of the buffer is filled with zero and
744 		 * update digest accordingly.
745 		 */
746 		nullsz = ksegment->memsz - ksegment->bufsz;
747 		while (nullsz) {
748 			unsigned long bytes = nullsz;
749 
750 			if (bytes > zero_buf_sz)
751 				bytes = zero_buf_sz;
752 			ret = crypto_shash_update(desc, zero_buf, bytes);
753 			if (ret)
754 				break;
755 			nullsz -= bytes;
756 		}
757 
758 		if (ret)
759 			break;
760 
761 		sha_regions[j].start = ksegment->mem;
762 		sha_regions[j].len = ksegment->memsz;
763 		j++;
764 	}
765 
766 	if (!ret) {
767 		ret = crypto_shash_final(desc, digest);
768 		if (ret)
769 			goto out_free_digest;
770 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
771 						     sha_regions, sha_region_sz, 0);
772 		if (ret)
773 			goto out_free_digest;
774 
775 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
776 						     digest, SHA256_DIGEST_SIZE, 0);
777 		if (ret)
778 			goto out_free_digest;
779 	}
780 
781 out_free_digest:
782 	kfree(digest);
783 out_free_sha_regions:
784 	vfree(sha_regions);
785 out_free_desc:
786 	kfree(desc);
787 out_free_tfm:
788 	kfree(tfm);
789 out:
790 	return ret;
791 }
792 
793 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
794 /*
795  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
796  * @pi:		Purgatory to be loaded.
797  * @kbuf:	Buffer to setup.
798  *
799  * Allocates the memory needed for the buffer. Caller is responsible to free
800  * the memory after use.
801  *
802  * Return: 0 on success, negative errno on error.
803  */
kexec_purgatory_setup_kbuf(struct purgatory_info * pi,struct kexec_buf * kbuf)804 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
805 				      struct kexec_buf *kbuf)
806 {
807 	const Elf_Shdr *sechdrs;
808 	unsigned long bss_align;
809 	unsigned long bss_sz;
810 	unsigned long align;
811 	int i, ret;
812 
813 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
814 	kbuf->buf_align = bss_align = 1;
815 	kbuf->bufsz = bss_sz = 0;
816 
817 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
818 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
819 			continue;
820 
821 		align = sechdrs[i].sh_addralign;
822 		if (sechdrs[i].sh_type != SHT_NOBITS) {
823 			if (kbuf->buf_align < align)
824 				kbuf->buf_align = align;
825 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
826 			kbuf->bufsz += sechdrs[i].sh_size;
827 		} else {
828 			if (bss_align < align)
829 				bss_align = align;
830 			bss_sz = ALIGN(bss_sz, align);
831 			bss_sz += sechdrs[i].sh_size;
832 		}
833 	}
834 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
835 	kbuf->memsz = kbuf->bufsz + bss_sz;
836 	if (kbuf->buf_align < bss_align)
837 		kbuf->buf_align = bss_align;
838 
839 	kbuf->buffer = vzalloc(kbuf->bufsz);
840 	if (!kbuf->buffer)
841 		return -ENOMEM;
842 	pi->purgatory_buf = kbuf->buffer;
843 
844 	ret = kexec_add_buffer(kbuf);
845 	if (ret)
846 		goto out;
847 
848 	return 0;
849 out:
850 	vfree(pi->purgatory_buf);
851 	pi->purgatory_buf = NULL;
852 	return ret;
853 }
854 
855 /*
856  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
857  * @pi:		Purgatory to be loaded.
858  * @kbuf:	Buffer prepared to store purgatory.
859  *
860  * Allocates the memory needed for the buffer. Caller is responsible to free
861  * the memory after use.
862  *
863  * Return: 0 on success, negative errno on error.
864  */
kexec_purgatory_setup_sechdrs(struct purgatory_info * pi,struct kexec_buf * kbuf)865 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
866 					 struct kexec_buf *kbuf)
867 {
868 	unsigned long bss_addr;
869 	unsigned long offset;
870 	Elf_Shdr *sechdrs;
871 	int i;
872 
873 	/*
874 	 * The section headers in kexec_purgatory are read-only. In order to
875 	 * have them modifiable make a temporary copy.
876 	 */
877 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
878 	if (!sechdrs)
879 		return -ENOMEM;
880 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
881 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
882 	pi->sechdrs = sechdrs;
883 
884 	offset = 0;
885 	bss_addr = kbuf->mem + kbuf->bufsz;
886 	kbuf->image->start = pi->ehdr->e_entry;
887 
888 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
889 		unsigned long align;
890 		void *src, *dst;
891 
892 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
893 			continue;
894 
895 		align = sechdrs[i].sh_addralign;
896 		if (sechdrs[i].sh_type == SHT_NOBITS) {
897 			bss_addr = ALIGN(bss_addr, align);
898 			sechdrs[i].sh_addr = bss_addr;
899 			bss_addr += sechdrs[i].sh_size;
900 			continue;
901 		}
902 
903 		offset = ALIGN(offset, align);
904 
905 		/*
906 		 * Check if the segment contains the entry point, if so,
907 		 * calculate the value of image->start based on it.
908 		 * If the compiler has produced more than one .text section
909 		 * (Eg: .text.hot), they are generally after the main .text
910 		 * section, and they shall not be used to calculate
911 		 * image->start. So do not re-calculate image->start if it
912 		 * is not set to the initial value, and warn the user so they
913 		 * have a chance to fix their purgatory's linker script.
914 		 */
915 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
916 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
917 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
918 					 + sechdrs[i].sh_size) &&
919 		    !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
920 			kbuf->image->start -= sechdrs[i].sh_addr;
921 			kbuf->image->start += kbuf->mem + offset;
922 		}
923 
924 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
925 		dst = pi->purgatory_buf + offset;
926 		memcpy(dst, src, sechdrs[i].sh_size);
927 
928 		sechdrs[i].sh_addr = kbuf->mem + offset;
929 		sechdrs[i].sh_offset = offset;
930 		offset += sechdrs[i].sh_size;
931 	}
932 
933 	return 0;
934 }
935 
kexec_apply_relocations(struct kimage * image)936 static int kexec_apply_relocations(struct kimage *image)
937 {
938 	int i, ret;
939 	struct purgatory_info *pi = &image->purgatory_info;
940 	const Elf_Shdr *sechdrs;
941 
942 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
943 
944 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
945 		const Elf_Shdr *relsec;
946 		const Elf_Shdr *symtab;
947 		Elf_Shdr *section;
948 
949 		relsec = sechdrs + i;
950 
951 		if (relsec->sh_type != SHT_RELA &&
952 		    relsec->sh_type != SHT_REL)
953 			continue;
954 
955 		/*
956 		 * For section of type SHT_RELA/SHT_REL,
957 		 * ->sh_link contains section header index of associated
958 		 * symbol table. And ->sh_info contains section header
959 		 * index of section to which relocations apply.
960 		 */
961 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
962 		    relsec->sh_link >= pi->ehdr->e_shnum)
963 			return -ENOEXEC;
964 
965 		section = pi->sechdrs + relsec->sh_info;
966 		symtab = sechdrs + relsec->sh_link;
967 
968 		if (!(section->sh_flags & SHF_ALLOC))
969 			continue;
970 
971 		/*
972 		 * symtab->sh_link contain section header index of associated
973 		 * string table.
974 		 */
975 		if (symtab->sh_link >= pi->ehdr->e_shnum)
976 			/* Invalid section number? */
977 			continue;
978 
979 		/*
980 		 * Respective architecture needs to provide support for applying
981 		 * relocations of type SHT_RELA/SHT_REL.
982 		 */
983 		if (relsec->sh_type == SHT_RELA)
984 			ret = arch_kexec_apply_relocations_add(pi, section,
985 							       relsec, symtab);
986 		else if (relsec->sh_type == SHT_REL)
987 			ret = arch_kexec_apply_relocations(pi, section,
988 							   relsec, symtab);
989 		if (ret)
990 			return ret;
991 	}
992 
993 	return 0;
994 }
995 
996 /*
997  * kexec_load_purgatory - Load and relocate the purgatory object.
998  * @image:	Image to add the purgatory to.
999  * @kbuf:	Memory parameters to use.
1000  *
1001  * Allocates the memory needed for image->purgatory_info.sechdrs and
1002  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1003  * to free the memory after use.
1004  *
1005  * Return: 0 on success, negative errno on error.
1006  */
kexec_load_purgatory(struct kimage * image,struct kexec_buf * kbuf)1007 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1008 {
1009 	struct purgatory_info *pi = &image->purgatory_info;
1010 	int ret;
1011 
1012 	if (kexec_purgatory_size <= 0)
1013 		return -EINVAL;
1014 
1015 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1016 
1017 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1018 	if (ret)
1019 		return ret;
1020 
1021 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1022 	if (ret)
1023 		goto out_free_kbuf;
1024 
1025 	ret = kexec_apply_relocations(image);
1026 	if (ret)
1027 		goto out;
1028 
1029 	return 0;
1030 out:
1031 	vfree(pi->sechdrs);
1032 	pi->sechdrs = NULL;
1033 out_free_kbuf:
1034 	vfree(pi->purgatory_buf);
1035 	pi->purgatory_buf = NULL;
1036 	return ret;
1037 }
1038 
1039 /*
1040  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1041  * @pi:		Purgatory to search in.
1042  * @name:	Name of the symbol.
1043  *
1044  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1045  */
kexec_purgatory_find_symbol(struct purgatory_info * pi,const char * name)1046 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1047 						  const char *name)
1048 {
1049 	const Elf_Shdr *sechdrs;
1050 	const Elf_Ehdr *ehdr;
1051 	const Elf_Sym *syms;
1052 	const char *strtab;
1053 	int i, k;
1054 
1055 	if (!pi->ehdr)
1056 		return NULL;
1057 
1058 	ehdr = pi->ehdr;
1059 	sechdrs = (void *)ehdr + ehdr->e_shoff;
1060 
1061 	for (i = 0; i < ehdr->e_shnum; i++) {
1062 		if (sechdrs[i].sh_type != SHT_SYMTAB)
1063 			continue;
1064 
1065 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1066 			/* Invalid strtab section number */
1067 			continue;
1068 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1069 		syms = (void *)ehdr + sechdrs[i].sh_offset;
1070 
1071 		/* Go through symbols for a match */
1072 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1073 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1074 				continue;
1075 
1076 			if (strcmp(strtab + syms[k].st_name, name) != 0)
1077 				continue;
1078 
1079 			if (syms[k].st_shndx == SHN_UNDEF ||
1080 			    syms[k].st_shndx >= ehdr->e_shnum) {
1081 				pr_debug("Symbol: %s has bad section index %d.\n",
1082 						name, syms[k].st_shndx);
1083 				return NULL;
1084 			}
1085 
1086 			/* Found the symbol we are looking for */
1087 			return &syms[k];
1088 		}
1089 	}
1090 
1091 	return NULL;
1092 }
1093 
kexec_purgatory_get_symbol_addr(struct kimage * image,const char * name)1094 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1095 {
1096 	struct purgatory_info *pi = &image->purgatory_info;
1097 	const Elf_Sym *sym;
1098 	Elf_Shdr *sechdr;
1099 
1100 	sym = kexec_purgatory_find_symbol(pi, name);
1101 	if (!sym)
1102 		return ERR_PTR(-EINVAL);
1103 
1104 	sechdr = &pi->sechdrs[sym->st_shndx];
1105 
1106 	/*
1107 	 * Returns the address where symbol will finally be loaded after
1108 	 * kexec_load_segment()
1109 	 */
1110 	return (void *)(sechdr->sh_addr + sym->st_value);
1111 }
1112 
1113 /*
1114  * Get or set value of a symbol. If "get_value" is true, symbol value is
1115  * returned in buf otherwise symbol value is set based on value in buf.
1116  */
kexec_purgatory_get_set_symbol(struct kimage * image,const char * name,void * buf,unsigned int size,bool get_value)1117 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1118 				   void *buf, unsigned int size, bool get_value)
1119 {
1120 	struct purgatory_info *pi = &image->purgatory_info;
1121 	const Elf_Sym *sym;
1122 	Elf_Shdr *sec;
1123 	char *sym_buf;
1124 
1125 	sym = kexec_purgatory_find_symbol(pi, name);
1126 	if (!sym)
1127 		return -EINVAL;
1128 
1129 	if (sym->st_size != size) {
1130 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1131 		       name, (unsigned long)sym->st_size, size);
1132 		return -EINVAL;
1133 	}
1134 
1135 	sec = pi->sechdrs + sym->st_shndx;
1136 
1137 	if (sec->sh_type == SHT_NOBITS) {
1138 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1139 		       get_value ? "get" : "set");
1140 		return -EINVAL;
1141 	}
1142 
1143 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1144 
1145 	if (get_value)
1146 		memcpy((void *)buf, sym_buf, size);
1147 	else
1148 		memcpy((void *)sym_buf, buf, size);
1149 
1150 	return 0;
1151 }
1152 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1153 
crash_exclude_mem_range(struct crash_mem * mem,unsigned long long mstart,unsigned long long mend)1154 int crash_exclude_mem_range(struct crash_mem *mem,
1155 			    unsigned long long mstart, unsigned long long mend)
1156 {
1157 	int i, j;
1158 	unsigned long long start, end;
1159 	struct crash_mem_range temp_range = {0, 0};
1160 
1161 	for (i = 0; i < mem->nr_ranges; i++) {
1162 		start = mem->ranges[i].start;
1163 		end = mem->ranges[i].end;
1164 
1165 		if (mstart > end || mend < start)
1166 			continue;
1167 
1168 		/* Truncate any area outside of range */
1169 		if (mstart < start)
1170 			mstart = start;
1171 		if (mend > end)
1172 			mend = end;
1173 
1174 		/* Found completely overlapping range */
1175 		if (mstart == start && mend == end) {
1176 			mem->ranges[i].start = 0;
1177 			mem->ranges[i].end = 0;
1178 			if (i < mem->nr_ranges - 1) {
1179 				/* Shift rest of the ranges to left */
1180 				for (j = i; j < mem->nr_ranges - 1; j++) {
1181 					mem->ranges[j].start =
1182 						mem->ranges[j+1].start;
1183 					mem->ranges[j].end =
1184 							mem->ranges[j+1].end;
1185 				}
1186 			}
1187 			mem->nr_ranges--;
1188 			return 0;
1189 		}
1190 
1191 		if (mstart > start && mend < end) {
1192 			/* Split original range */
1193 			mem->ranges[i].end = mstart - 1;
1194 			temp_range.start = mend + 1;
1195 			temp_range.end = end;
1196 		} else if (mstart != start)
1197 			mem->ranges[i].end = mstart - 1;
1198 		else
1199 			mem->ranges[i].start = mend + 1;
1200 		break;
1201 	}
1202 
1203 	/* If a split happened, add the split to array */
1204 	if (!temp_range.end)
1205 		return 0;
1206 
1207 	/* Split happened */
1208 	if (i == mem->max_nr_ranges - 1)
1209 		return -ENOMEM;
1210 
1211 	/* Location where new range should go */
1212 	j = i + 1;
1213 	if (j < mem->nr_ranges) {
1214 		/* Move over all ranges one slot towards the end */
1215 		for (i = mem->nr_ranges - 1; i >= j; i--)
1216 			mem->ranges[i + 1] = mem->ranges[i];
1217 	}
1218 
1219 	mem->ranges[j].start = temp_range.start;
1220 	mem->ranges[j].end = temp_range.end;
1221 	mem->nr_ranges++;
1222 	return 0;
1223 }
1224 
crash_prepare_elf64_headers(struct crash_mem * mem,int kernel_map,void ** addr,unsigned long * sz)1225 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1226 			  void **addr, unsigned long *sz)
1227 {
1228 	Elf64_Ehdr *ehdr;
1229 	Elf64_Phdr *phdr;
1230 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1231 	unsigned char *buf;
1232 	unsigned int cpu, i;
1233 	unsigned long long notes_addr;
1234 	unsigned long mstart, mend;
1235 
1236 	/* extra phdr for vmcoreinfo elf note */
1237 	nr_phdr = nr_cpus + 1;
1238 	nr_phdr += mem->nr_ranges;
1239 
1240 	/*
1241 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1242 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1243 	 * I think this is required by tools like gdb. So same physical
1244 	 * memory will be mapped in two elf headers. One will contain kernel
1245 	 * text virtual addresses and other will have __va(physical) addresses.
1246 	 */
1247 
1248 	nr_phdr++;
1249 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1250 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1251 
1252 	buf = vzalloc(elf_sz);
1253 	if (!buf)
1254 		return -ENOMEM;
1255 
1256 	ehdr = (Elf64_Ehdr *)buf;
1257 	phdr = (Elf64_Phdr *)(ehdr + 1);
1258 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1259 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1260 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1261 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1262 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1263 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1264 	ehdr->e_type = ET_CORE;
1265 	ehdr->e_machine = ELF_ARCH;
1266 	ehdr->e_version = EV_CURRENT;
1267 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1268 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1269 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1270 
1271 	/* Prepare one phdr of type PT_NOTE for each present cpu */
1272 	for_each_present_cpu(cpu) {
1273 		phdr->p_type = PT_NOTE;
1274 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1275 		phdr->p_offset = phdr->p_paddr = notes_addr;
1276 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1277 		(ehdr->e_phnum)++;
1278 		phdr++;
1279 	}
1280 
1281 	/* Prepare one PT_NOTE header for vmcoreinfo */
1282 	phdr->p_type = PT_NOTE;
1283 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1284 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1285 	(ehdr->e_phnum)++;
1286 	phdr++;
1287 
1288 	/* Prepare PT_LOAD type program header for kernel text region */
1289 	if (kernel_map) {
1290 		phdr->p_type = PT_LOAD;
1291 		phdr->p_flags = PF_R|PF_W|PF_X;
1292 		phdr->p_vaddr = (Elf64_Addr)_text;
1293 		phdr->p_filesz = phdr->p_memsz = _end - _text;
1294 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1295 		ehdr->e_phnum++;
1296 		phdr++;
1297 	}
1298 
1299 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1300 	for (i = 0; i < mem->nr_ranges; i++) {
1301 		mstart = mem->ranges[i].start;
1302 		mend = mem->ranges[i].end;
1303 
1304 		phdr->p_type = PT_LOAD;
1305 		phdr->p_flags = PF_R|PF_W|PF_X;
1306 		phdr->p_offset  = mstart;
1307 
1308 		phdr->p_paddr = mstart;
1309 		phdr->p_vaddr = (unsigned long long) __va(mstart);
1310 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1311 		phdr->p_align = 0;
1312 		ehdr->e_phnum++;
1313 		phdr++;
1314 		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1315 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1316 			ehdr->e_phnum, phdr->p_offset);
1317 	}
1318 
1319 	*addr = buf;
1320 	*sz = elf_sz;
1321 	return 0;
1322 }
1323